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We demonstrate a novel phase transition from stable to unstable fluid behaviour for fluid-filled
cosmological spacetimes undergoing decelerated expansion. This transition occurs when the fluid
speed of sound cS exceeds a critical value relative to the expansion rate a(t) = tα of spacetime. We
present an explicit relationship between α and cS , which subdivides the (α, cS)-parameter space into
two regions. Using rigorous techniques, we establish stability of quiet fluid solutions in the stable
region. Numerical experiments reveal that the complement of the stable region consists of unstable
solutions, implying sharpness of our stability result. We provide a definitive analytical bound and
high-precision numerical evidence for the exact location of the critical line separating the stable
from the unstable region.

Keywords: cosmology, fluid dynamics, instability, structure formation, shock formation

INTRODUCTION

The standard model of cosmology features three key
components: radiation, matter (where the pressure is
much smaller than the energy density) and the cosmo-
logical constant Λ or dark energy (cf. [1–3]). Radiation
and matter components are typically modelled as perfect
fluids obeying the relativistic Euler equations

uµ∇µρ+ (ρ+ p)∇µu
µ = 0

(ρ+ p)uµ∇µu
ν + (gµν + uµuν)∂µp = 0.

(1)

Radiation and matter are the dominant contributions to
the expansion of the Universe in the early and recent
stages respectively, where fluid density components lead
to expansion rates a(t) = t

1
2 (radiation) during the early

Universe followed by a period with a(t) = t
2
3 (dust) in

the matter phase. Key events for the present large-scale
structure of the Universe occurred during such phases
and are closely connected to fluid shock formation [4–
8]. The cosmological constant or dark energy is consid-
ered the main mechanism driving accelerated expansion
in later stages of cosmological evolution.

This letter concerns the radiation and matter epochs,
and their transition period, for a spatially flat universe,
as consistent with the current interpretation of observa-
tions, ie. the post-CMB epochs of evolution according
to the standard model. While the development of shocks
from significant large inhomogeneities seems natural, and
is known to occur in particular cases [9], it is unknown
under what circumstances shocks form from small inho-
mogeneities in the fluid. We use the term fluid instability
to refer to shocks that develop from arbitrarily small in-
homogeneities of a quiet fluid solution (ie. spatially ho-
mogeneous solution with uµ ≡ (∂t)

µ). Our results imply
that for all decelerated epochs there are unstable fluids.

Fluid stabilization

In the class of barotropic fluids with speed of sound
cS =

√
K and equation of state

p = Kρ, (2)

the global-in-time regularity of the fluid (in the expand-
ing time direction) is determined by the expansion rate of
the Universe, ie. the scale factor a(t), when the spacetime
metric is of the form

−dt2 + a(t)2g (3)

for a fixed Riemannian 3-metric g. Sufficiently fast ex-
pansion induces a damping effect in the fluid, which re-
duces the tendency for shocks to form. This effect was
first studied in the context of Newtonian cosmology un-
dergoing accelerated expansion [10]. This stabilization
effect competes with the speed of sound, which, if suffi-
ciently large, increases the tendency of shocks forming.
This behaviour is well understood in three regimes. In

the absence of expansion (ȧ(t) = 0) quiet fluids are unsta-
ble [11]. In the regime of accelerated expansion (ä(t) > 0)
such fluids are stable. Stability means that small inho-
mogeneities remain uniformly bounded and the fluid re-
mains regular for all times. Stability has been rigorously
established during the last two decades in an extensive
series of works [12–20]. Notably, in the regime of acceler-
ated expansion even superradiative fluids (K > 1/3) are
known to be stable [21, 22, 25] in the tilted case, but un-
stable in the homogeneous untilted case [23, 24]. For the
case of linear expansion (a(t) = t), stability depends non-
trivially on the speed of sound: radiation fluids are unsta-
ble [26] while all barotropic subradiative fluids (K < 1/3)
are stable [26, 27]. Stability for subradiative fluids in the
regime of linear expansion holds even in the presence of
backreaction [28, 29].

The critical regime, that of decelerated expansion, has
so far been poorly understood and is the subject of this
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letter. This regime includes the radiation and matter-
dominated epochs and their intermediate epochs.

Conditions for instability

We consider the full range of decelerated power-law
expansion rates

a(t) = tα, 0 < α < 1, (4)

and fluids with speeds of sound exhausting all speeds
between dust and radiation

0 ≤ K ≤ 1/3. (5)

We provide strong evidence that the parameter space

{(α,K) | α ∈ (0, 1), K ∈ [0, 1/3]}

decomposes into two regions: a region of stable pairs and
a region of unstable pairs (cf. Fig. 1). A pair (α,K) is un-
stable if, in the spacetime (3) with α-expansion rate (4),
there exists a sequence of initial data approximating a
quiet fluid solution, that launches a sequence of solutions
for which singularities form in finite time. Our analyt-
ical and numerical studies illustrate that the transition
between both regions is located on the critical line,

Kcrit(α) = 1− 2

3α
. (6)

For an epoch with expansion rate α ∈ (2/3, 1) the phase
transition of a quiet fluid occurs when the speed of sound
passes the critical value Kcrit(α). This yields the follow-
ing primary observations:

• In the decelerated regime, stability of the fluid de-
pends on the position in parameter space relative
to the critical curve (6).

• All barotropic fluids are unstable when α < 2/3 .

• For expansion rates α > 2/3 the barotropic fluids
are stable if K < Kcrit(α) and unstable otherwise.

• The behaviour in the decelerated regime is in con-
trast to the accelerated regime, where fluid stabi-
lization is known to be universal. It follows that
relativistic fluids present in the Universe during an
epoch of decelerated expansion must have formed
shocks, provided their speed of sound was suffi-
ciently small relative to the expansion rate.

• For expansion rates in the regime 1/2 < α ≤ 2/3,
dust fluids are stable. On the other hand, fluids
with arbitrarily small but positive speed of sound
are unstable. Thus in this regime, which interpo-
lates between the standard radiative and dust mod-
els, the behaviour of dust does not approximate
the behaviour of fluids with non-vanishing speed of
sound, and so using a dust model as an approxima-
tion for a fluid with small but non-vanishing speed
of sound is misleading.

• Rigorous analysis implies that in the region
1− 2

3α < K < 2
3 − 1

3α shock formation is caused by
the coupling of the fluid equations and not an iso-
lated effect of the Burgers term in the fluid velocity
equation.

In addition to these results, we also provide constructive
analytical evidence that dust (K = 0) is unstable in the
region 0 < α ≤ 1/2, and radiation fluids (K = 1/3) are
unstable for 0 < α ≤ 1. While the latter has already been
established with different methods in [26], the former was
previously unknown.

FIG. 1. Numerical results for the parameter space: Sta-
ble (blue) and unstable (red) regions in the parameter space
(α,K). The black points are determined from the asymptotic
analysis of the unstable points (see the text in section Numer-
ics on small data shock formation below) and their location
coincide with the critical curve (6) (grey line). The grey curve
is independently predicted by a rigorous stability analysis as
a lower bound for values of K(α), such that (α,K) is unstable
(see section Decay of perturbations in the stable regime).

Methodology

Using energy methods based on analytical techniques
from hyperbolic PDEs, we establish a lower bound for
the location of the critical line. This bound coincides
precisely with (6). We prove that all points (α,K) be-
low that line are stable. In the complementary region
of parameter space, we use high precision numerics and
corresponding asymptotic analysis to provide strong ev-
idence for shock formation. Both approaches indepen-
dently identify the critical line (6) as the location for the
phase transition between stability and shock formation.

EQUATIONS

We study the relativistic Euler equations (1) on space-
times of the form (3) with toroidal topology, gij =
δij and impose T2-symmetry on the fluid variables,
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energy density ρ = ρ(t, x) and fluid velocity uµ =(
u0(t, x), u1(t, x), 0, 0

)
, where uµu

µ = −1 and ρ(t, x) =
ρ(t, x+ 2π) etc.

We introduce expansion-normalized variables

v := tα
u1

u0
, L := log

(
t3α(1+K)ρ

)
,

to obtain the system

∂tv = −α(1− 3K)

t
v − t−α 1−K

1−Kv2
v∂xv

− t−α K

1 +K

(1− v2)2

1−Kv2
∂xL

+ α(1−K)(1− 3K)
t−α

1−Kv2
v3,

∂tL = − 1 +K

1−Kv2
t−α∂xv −

1−K

1−Kv2
t−αv∂xL

+ α(1 +K)(1− 3K)
t−α

1−Kv2
v2.

(7)

Additionally, for the mean velocity v =
∫
S1 vdx the fol-

lowing equation holds:

∂tv = −α(1− 3K)

t
v +

∫
S1

v2t−α

1−Kv2
h(∂xL, v)dx, (8)

where h(· , ·) is a homogeneous polynomial.

DECAY OF PERTURBATIONS IN THE STABLE
REGIME

In the stable regime of parameter space, (1 − K)α >
2/3, the following theorem establishes stability for each
point in that region. For convenience, we introduce suit-
able Sobolev norms, measuring the perturbation from the
quiet fluid:

∥(v, L)∥(2) := ∥∇v∥L2 + ∥∇2v∥L2

+ ∥∇L∥L2 + ∥∇2L∥L2 .
(9)

Theorem 1 Let (1 −K)α > 2/3, 0 < K < 1/3. Then,
for given δ > 0 there exists an ε > 0 such that for initial
data (v0, L0) with |v0|+ ∥(v0, L0)∥(2) < ε the emanating
solution (v(t), L(t)) decays according to

∥(v(t), L(t))∥(2) <∼ t−α(1−3K)/2+δ (10)

and

|v(t)| <∼ t−α(1−3K)+δ. (11)

Similar estimates hold for higher order norms.

The mechanism driving decay, which yields Theorem 1, is
presented below; for a complete proof without symmetry
restrictions see [31]. Decay is established by deriving an
estimate on v and on the L2-energy of derivatives of v and

L and combining them using a continuity (or bootstrap)
argument. For that purpose, choose a sufficiently small
constant 0 < δ < 2/5K obeying 10δ < α(1−3K)−2(1−
α) and consider a sufficiently small initial data size ε > 0
so that the bounds

∥(v, L)∥(2) ≤ C1t
−α(1−3K)/2+δ

and |v| ≤ C2t
−α(1−3K)+δ

(12)

hold on a sufficiently long time interval. We will then
show that improved bounds hold for all times.
From (8), we obtain for the rescaled mean value v̂ :=

tα(1−3K)−δ/2v, the following equation:

d

dt
v̂ = − δ

2t
v̂ +

tα(1−3K)−δ/2+1−α

t
f(v,∇v,∇L), (13)

where |f(v,∇v,∇L)| ≤ F (v, ∥(v, L)∥(2)) and F is a poly-
nomial, of at least third order, without lower order terms.
In consequence, a factor of t3α(1−3K)/2−3δ can be ab-
sorbed into f yielding a term uniformly bounded by (12).
This implies

d

dt
v̂ ≤ −δt−1v̂ +

C3

t1+(α(1−3K)−2(1−α))/4
.

As the exponent of t in the denominator is strictly larger
than 1 by the condition on α and K, this implies the
desired bound for v.
We then define the following energy functional mea-

suring the deviation from the quiet fluid state:

Ec[v, L](t) =
1

2

∫
S1
(∂xv)

2dx

+
K

(1 +K)2
1

2

∫
S1
(1− v2)2(∂xL)

2dx

+ ct−(1−α)

∫
S1
v · ∂xLdx

(14)

with parameter c > 0 chosen as c = 1
2α(1−3K)(1+K)−1.

For sufficiently large t and sufficiently small |v| this is
equivalent to the L2-norm of ∂xv and ∂xL. To see this,
we have

∫
v∂xLdx =

∫
(v− v̄)∂xLdx, using integration by

parts, and the latter can be estimated up to a constant
by the product ∥∂v∥L2 · ∥∂L∥L2 using Hölder’s estimate
and the Poincaré inequality. For the corrected energy of

second order E
(2)
c (t) = Ec[v(t), L(t)]+Ec[∂xv(t), ∂xL(t)],

we obtain an estimate of the form

d

dt
E(2)

c (t) ≤ −α(1− 3K) + C2t
−(1−α)

t
E

(2)
0 (t)

+ C1
t1−α

t

[(
E

(2)
0

)3/2

+N

(√
E

(2)
0 , v

)]
,

(15)
where N is a polynomial, of at least third order, without
lower order terms. The condition α(1 − 3K) > 2(1 −
α) allows a factor tα(1−3K)−δ/2 to be absorbed into the
energy to obtain

d

dt

(
tα(1−3K)−δ/2E(2)

c [v, L](t)
)
≤ C

t1−α

t
tα(1−3K)−δ/2v3

(16)
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FIG. 2. Time evolution of ∥(v, L)∥3/∥(v, L)∥0, see Eq. (18), for initial data (v, L)|t=1 = (ε sinx, 0) with different amplitudes ε
(colour coded). We show both the unstable (α,K) = (0.7, 1/6) (left) and stable (α,K) = (0.9, 1/6) (right) cases.

for sufficiently small initial data. By the condition on α
and K, the right-hand side is integrable and this implies,
for sufficiently small data, that the energy decays as

E(2)
c [v, L](t) ≤ C4

tα(1−3K)−δ/2
. (17)

This concludes the proof of the theorem.

Under the assumption that the contribution of the
derivative of the energy density is small a similar analy-
sis as above would imply that the fluid stabilizes in the
region 3K < 2 − 1/α. This follows since the correction
term would not be necessary and in turn the full de-
cay provided by the negative definite term in v would be
available to compensate the tα growth. However, the nu-
merics show instability in the region 1− 2

3α < K < 2
3−

1
3α ,

in particular. In consequence, the shocks forming in that
region cannot be generated solely by the Burgers term
in the fluid velocity equation but must involve an effect
caused, at least in part, by the derivative of the energy
density.

NUMERICS ON SMALL DATA SHOCK
FORMATION

We next solve (7) numerically with the method of lines:
we use a Fourier pseudospectral approach to discretise
the equations in the x-direction on a grid of N colloca-
tion points xj = 2πj/N , j = 0, . . . , N − 1, combined
with an adaptive Runge-Kutta algorithm of variable or-
der and step-size to evolve the resulting equations for-
ward in time. For convenience, we work with logarithmic
time τ = ln t. In the time-integration we set a strict
error tolerance bound to 10−14. For spatial resolution,
we typically take N = 128, which is as tradeoff between
accuracy and the runtime. We stress that for a fixed
number of grid points we can follow the singularity for-
mation (in the unstable regime) for a finite amount of
time. As a consequence, we are unable to get an exact
breaking time t∗, as that would require using an adaptive

grid. However, by carefully choosing N and the thresh-
olds in the shock formation/stability detection algorithm
(see below), we obtain robust and consistent results.
We experimented with several families of initial data.

Our classification of the parameter space (α,K) is inde-
pendent of these choices. For concreteness, we discuss
the results with (v, L)|t=1 = (ε sinx, 0), ε > 0.
During the time-evolution we monitor the quantity

∥(v, L)∥3/∥(v, L)∥0 where

∥(v, L)∥k := (1 +K)2∥∇kv∥2L2 +K∥∇kL∥2L2 , (18)

and we classify a solution as smooth or shock forming
if this ratio is smaller than 10−3 or larger than 106 re-
spectively. See Fig. 2, which illustrates a behaviour of
solutions in the limit of ε → 0 for different points in the
parameter space (α,K).
We consider individual points in the parameter space

(α,K) from within the regime of decelerated expansion
rates and speeds of sound below radiation. A direct de-
termination of the boundary between the stable and un-
stable regions appears particularly difficult as the time
evolution in the transition region is especially demanding.
Therefore, we rely on the following asymptotic analysis.
We start the analysis from the points with very slow

expansion and move towards larger α along the K =
const lines. In the unstable regime we observe that the
breaking time exhibits the scaling

log t∗ ≈ −A log ε+B , ε → 0 , (19)

with (α,K)-dependent constants A and B, which can be
determined by fitting the formula to the numerical data,
see Fig. 3. Next, inspecting the relation between A and
α, with fixed K, we find

A ≈ D

α∗ − α
, (20)

ie. A diverges as α approaches α∗ from below. As be-
fore the constants D and α∗ can be found by fitting the
formula, cf. Fig. 3. Such values of α∗ all lie on the crit-
ical line, see Fig. 3. The relative error between α∗ and
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FIG. 3. Left: The logarithm of the breaking time t∗ as a function of initial data amplitude ε for K = 1/6 and sample values of
α (colour coded) left to the transition curve. Points are the numerical data and the lines are the fits of (19) in the asymptotic
region ε → 0. Right: The behaviour of the proportionality coefficient A in (19) as a function of the expansion exponent α. On
the log-log plot the data points, shown are the results for a few values of K (colour coded), lay on the straight line, implying
the relation (20), with α∗ values which agree with Eq. (6).

the value from Eq. (6) is less than 0.8%, and it system-
atically decreases when we increase both the resolution
N and the threshold for shock formation and simultane-
ously get closer to the critical line. This agrees with the
analytical results of previous sections, from the side of
the unstable region. For D in (20), we have the following
guess D ≈ K + 2/3. Together (19) and (20) imply the
following for the breaking time

t∗ ∼ ε(K+2/3)/( 2
3(1−K)

−α) , α <
2

3(1−K)
. (21)

For evolution on the critical line (α,Kcrit), we find ev-
idence that

t∗ ∼ exp
(
eB/ε

)
, B = const , α =

2

3(1−K)
, (22)

which implies instability as ε → 0. The points right of
(or below) the critical line are classified as stable, since
for them the breaking times t∗ → ∞ for ε → ε0 > 0, and
the solution exists globally for ε < ε0.
The unstable region matches the rigorously known

boundary values on the radiation line K = 1/3 (cf. fol-
lowing section). The vertical rightmost boundary of the
stable region (α=1) consists of stable points if K < 1/3,
and one unstable point for K = 1/3, which connects
with the unstable region and hence consists of a tran-
sition point (both stable and unstable points are in its
neighborhood). The lower horizontal boundary of the
stable region coincides only partially with the dust line
for α > 2/3. This suggests that the transition from the
unstable region to the dust line for 1/2 < α < 2/3 is not
continuous.

BOUNDS ON THE SHOCK FORMATION TIME

In the cases of dust (K = 0) and radiation (K = 1/3)
we provide rigorous estimates on the breaking time us-

ing intersecting characteristics. This implies a definitive
proof of the instability of quiet dust solutions on space-
times of the form (3) with α ≤ 1/2 as well as of the
instability of quiet radiation solutions with α ≤ 1. The
estimates are derived by constructing explicit intersect-
ing curves, which envelop two characteristics.
The equation for the fluid velocity of a dust field in a

spacetime of the form (3) is, due to decoupling, given by

∂tu+
(√

t2αu2 + 1
)−1

u∂xu = −2αt−1u. (23)

We consider two distinct points x1, x2 ∈ [0, 2π] with
x1 < x2 and u0(x1) > u0(x2) > 0. The characteristic
emanating from the point xi is

ẋi(t) =
u0(xi)t

−2α√
1 + t−2αu0(xi)2

. (24)

In the case α = 1/2, we define the curves γ+
i (t) =

u0(xi) log t+ xi for i = 1, 2. Then γ+
2 is an upper bound

to x2(t) when t > 1. A lower bound to x1(t) is given by
γ−
1 = γ+

1 −m(u0(x1)), where

m(y) =
∣∣∣2y log (2y−2

(
−1 +

√
y2 + 1

))∣∣∣ .
The enveloping curves γ−

1 and γ+
2 intersect at time

T+ = exp

(
−x2 − x1

∆(u0)

)
exp

(
m(u0(x1))

−∆(u0)

)
, (25)

where ∆(u0) = u0(x2)−u0(x1). The breaking time T+ is
finite, proving instability of the solution for all initial data
in question. Furthermore, by rescaling a particular initial
data profile by λ, one can deduce that the exponential
term tends to 1 as λ → 0. This gives a particularly
simple expression for the estimate of the breaking time.
For 0 < α < 1/2 similar upper and lower bounds γ+ and
γ− can be established (for details see [31]).
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In the case of radiation, we choose α ∈ (0, 1] and define
u ∈ (−1, 1) via u0 = (1−u2)−1/2 and u1 = u(1−u2)−1/2.
Following [9] we define

φ =

√
K

1 +K
ln(ρ/ρc), (26)

where ρc > 0 is a constant and

r = φ+
1

2
ln

1 + u

1− u
, s = φ− 1

2
ln

1 + u

1− u
. (27)

Finally, R := t−cer and S := t−ces for some fixed c > 0.
Along characteristics it can be shown that R is con-
stant and if S is chosen constant initially then it remains
constant globally. For the first spatial derivative of R,
W = ∂xR, we obtain the Riccati-type equation (for de-
tails see [31])

dW

dt
=

12S(3α)1−α[
(3 +

√
3)R+ (3−

√
3)S

]2 t−αW2. (28)

In combination with the behaviour ofR and S, this equa-
tion leads to blow-up in finite-time of non-trivial initial
data for W, ie. the spatial derivative of R, for all α ≤ 1.

DISCUSSION

We provide strong evidence for a phase transition of
barotropic fluids in decelerated spacetimes and classify
all points in the decelerated region of the parameter space
with respect to the (in)stability nature of the correspond-
ing barotropic fluid. In combination with previous results
on the regime of accelerated and linear expansion, this re-
solves the fluid stabilization problem for barotropic fluids
and provides a first generic example of a phase transition
from stable to unstable cosmological fluids. The analytic
and numerical approaches are complementary and pre-
dict the critical line independently of each other.

While this class of fluids is the most relevant in cos-
mology, there are numerous alternative equations of state
used in modelling other regimes of relativistic matter
dynamics. One could also look at non-compact spatial
topologies where the effect of dispersion would also oc-
cur, see for example [30] in the context of Vlasov matter.
Given the robust nature of the methods employed in the
study of our barotropic case, we expect that similar ef-
fects exist for alternative equations of state and for other
topologies. There is no a priori reason why the critical
behaviour should be limited to the barotropic case.
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