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PERFECT CODES OVER NON-PRIME POWER ALPHABETS:

AN APPROACH BASED ON DIOPHANTINE EQUATIONS

PEDRO-JOSÉ CAZORLA GARCÍA

Abstract. Perfect error correcting codes allow for an optimal transmission of
information while guaranteeing error correction. For this reason, proving their
existence has been a classical problem in both pure mathematics and informa-
tion theory. Indeed, the classification of the parameters of e−error correcting
perfect codes over q−ary alphabets was a very active topic of research in the
late 20th century. Consequently, all parameters of perfect e−error correcting
codes were found if e ≥ 3, and it was conjectured that no perfect 2−error
correcting codes exist over any q−ary alphabet, where q > 3. In the 1970s,
this was proved for q a prime power, for q = 2r3s and for only 7 other values
of q. Almost 50 years later, it is surprising to note that there have been no
new results in this regard and the classification of 2−error correcting codes
over non-prime power alphabets remains an open problem. In this paper, we
use techniques from the resolution of generalised Ramanujan–Nagell equation
and from modern computational number theory to show that perfect 2−error
correcting codes do not exist for 172 new values of q which are not prime
powers, substantially increasing the values of q which are now classified. In
addition, we prove that, for any fixed value of q, there can be at most finitely
many perfect 2−error correcting codes over an alphabet of size q.

1. Introduction

1.1. Background. Error correcting codes have been widely studied since the 1940s.
Apart from their intrinsic mathematical interest, this is due to the fact that error
correcting codes have many useful applications for information transmission and
engineering. For example, in [6] the authors discuss possible applications of error-
correcting codes to semiconductor memory, while the classical article by Shannon
[26] introduced error-correcting codes as a way to transmit information over noisy
channels.

While these applications are one of the main reasons why error correcting
codes are studied, the developments in this paper will be theoretical. Throughout
the article, we shall consider the following standard definition of an error correcting
code.

Definition 1. Let q ≥ 2, e ≥ 1 be positive integers, and let Zq be a set with
q elements, which we shall call the alphabet. An e−error correcting code C with
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parameters (n,M) is a subset of Zn
q of size M and such that any two elements

w1, w2 ∈ C differ in at least 2e+ 1 positions.

It is a standard fact in coding theory (for example, see [12, Theorem 2.16])
that any e−error correcting code with parameters (n,M) over an alphabet of size
q satisfies the sphere packing bound or Hamming bound :

(1) M





e
∑

j=0

(

n

j

)

(q − 1)j



 ≤ qn.

Let us briefly explain why this inequality holds. For this, let us define the set

(2) B(w, d) = {w2 ∈ C | w and w2 differ in at most d positions.},

where w ∈ C is fixed and d ≥ 0 is an integer. It is an easy combinatorial exercise
to see that

(3) |B(w, d)|=

d
∑

j=0

(

n

j

)

(q − 1)j.

In order for a code to be an e−error correcting code, it follows that the sets
B(w, e) and B(w′, e) are disjoint for w 6= w′, and therefore, we have that

(4)
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∑

j=0

(

n

j

)

(q − 1)j



 .

Since there are precisely qn elements in Zn
q , inequality (1) follows. In the case where

(1) is an equality, we say that the code is perfect. In other words, C is perfect if
and only if n and M satisfy the following Diophantine equation:

(5) M = qn

/

e
∑

j=0

(

n

j

)

(q − 1)j .

Perfect codes are optimal for information transmission, in the sense that they allow
for the maximum possible number of words while being able to correct e errors. In
other words, perfect codes are the most expressive e−error correcting codes that
are theoretically possible, and it is desirable to know whether they exist for a fixed
value of q and e.

For these reasons, the classification of perfect codes was a very active topic of
research in the late 20th century, and this led to the production of a vast amount
of literature on the topic. The most relevant works are summarised in Table 1 and
we refer the reader to [11] for a detailed survey on the history of perfect codes.

From Table 1, we immediately notice that perfect codes do exist if q is a prime
power, and are either Hamming codes with parameters

(6) (n,M, e, q) =

(

qr − 1

q − 1
,
qr − 1

q − 1
− r − 1, 1, q

)

,

for any r ≥ 2, or are Golay codes with parameters

(7) (n,M, e, q) = (11, 36, 2, 3), (23, 212, 3, 2).
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Reference q e Main results

Tietäväinen [29], and
Leontiev and Zinoniev [18]

(independently)

Prime
power

≥ 1

All perfect codes over prime power
alphabets are either Hamming
codes or have parameters (n,M,

e, q) = (11, 36, 2, 3), (23, 212, 3, 2).

Reuvers [25]
Non-
prime
power

3, 4, 5
There are no perfect e−error
correcting codes over a q-ary

alphabet.
Best [4] 7, ≥ 9

Hong [13] 6, 8

Reuvers [25]
6, 15, 21, 22,
26, 30, 35

2
There are no perfect e−error
correcting codes over a q-ary

alphabet.
van Lint [20] 10

Bassalygo et al. [2] 2r · 3s

Table 1. Summary of existing results on perfect e−error correct-
ing codes over q−ary alphabets

This was proved by Tietäväinen [29], and independently by Leontiev and Zinoniev
[18]. Therefore, if q is a prime power, perfect codes do exist and are completely
classified for any value of e ≥ 1.

However, as it is apparent from Table 1, the situation when q is not a prime
power is quite different. In this case, all the existing results are negative for any
values of e and q. This has led many authors to conjecture (see for example [11,
Section 5]) the following:

Conjecture 1. Let q ≥ 6 be a non-prime power. Then, there are no perfect error
correcting codes over Zq.

In Table 1, we see that the combination of the works of Reuvers [25], Best [4]
and Hong [4] successfully proves Conjecture 1 for e−error correcting codes, where
e ≥ 3. For e ≤ 2, the number of results is much more scarce, and almost non-
existent for e = 1, as remarked by Heden in [11, Section 2].

For e = 2, as shown in the last rows of Table 1, the existing results are due
to Reuvers [25], van Lint [20] and Bassalygo et al. [2]. Together, they show that
perfect 2−error correcting codes do not exist for

(8) q = 6, 10, 15, 21, 22, 26, 30, 35 and q = 2s3r,

where r, s > 0 are positive integers. We remark that the methods used in all these
papers are specific to the cases at hand and cannot be generalised to other values
of q. This is probably the reason why there have been no new results in the area
in more than 50 years.
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Indeed, we believe that the great difficulty of dealing with the case where q

is not a prime power, as well as the lack of a general methodology for these cases
justifies the scarcity of literature.

To illustrate this, we note that there is a significant amount of modern articles
which aim to generalise the results in Table 1 to extended codes or to different
metrics, but they always treat the case when q is a prime power. For example,
under this assumption Li and Xing [19] classify perfect quantum codes and Gubitosi,
Portela and Qureshi [10] show analogous results for the Niederreiter-Rosenbloom-
Tsfasman metric.

In conclusion, we identify a clear gap in the literature in the case e = 2, since,
apart from the family studied in [2], there are only 7 values of q which are not
prime powers and for which non-existence has been proved, and there have been no
new results in half a century. In addition, the techniques used in the proofs cannot
be generalised, which makes it difficult to extend the results to different codes or
metrics.

In this paper, we address this gap in the literature by proving non-existence
results for the case e = 2 and 172 new values of q, therefore substantially increasing
the evidence towards Conjecture 1. In addition, our methods are theoretically valid
for all values of q and the only obstructions that we encounter are of a computational
nature. Consequently, it seems feasible to generalise them to other problems, and
we shall comment more on this in Section 5.2.

1.2. The main results. For the rest of the paper, we let q ≥ 6 be a positive
integer which is not a prime power. In this paper, we will prove new results related
to the non-existence of perfect 2−error correcting codes over alphabets of size q.

Since our methodology applies for q = 6, 15, 21, 22, 26, 30, 35, for q = 10, and
for some cases where q = 2r · 3s, we shall recover the aforementioned results by
Reuvers [25], van Lint [20] and Bassalygo et al [2]. Therefore, our findings are
consistent with the previously existing literature.

Our main result is the following, which covers all but two values of q ≤ 200, as
well as some values of q in the interval q ∈ [201, 600] subject to certain additional
restrictions.

Theorem 2. Let q ≥ 6 be a positive integer which is not a prime power, satisfying
any of the following conditions.

(1) q ≤ 200 and q 6= 94, 166.

(2) q ≤ 600 and all prime divisors of q are contained in the set {2, 3, 5, 7, 11}.

Then, there are no perfect 2−error correcting codes over alphabets of size q.

The values of q in the theorem are optimal given the current existing compu-
tational techniques and the methods used in this paper. We will comment more on
this in Section 5.1.

The second result that we present applies to all values of q, but, instead of
showing non-existence of perfect codes, it shows that there can only be finitely
many perfect 2−error correcting perfect codes over a q−ary alphabet. This is
consistent with Conjecture 1, albeit much weaker.
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Theorem 3. Let q ≥ 6 be a positive integer which is not a prime power. Then,
there are at most finitely many perfect 2−error correcting codes over an alphabet of
size q.

In order to prove Theorems 2 and 3, we will study the perfect code condition
(5) with e = 2. We shall see that, for a fixed value of q, it can be reduced to a
Ramanujan–Nagell type equation, which we can solve effectively with the use of
several techniques from computational number theory.

The history of Ramanujan–Nagell type equations is rich and has motivated a
vast amount of research in the number theory community ever since Ramanujan
conjectured that the Diophantine equation

(9) x2 + 7 = 2n,

only had solutions for n = 3, 4, 5, 7 and 15. This was proved by Mordell in 1948 [23]
and led to many researchers considering generalisations of (9). We refer the reader
to [16] for a detailed survey of generalisations of the Ramanujan–Nagell equation.

In order to prove Theorems 2 and 3, we shall solve a Ramanujan–Nagell type
equation. If, after resolving the equation, there are any solutions (n,M) to (5), we
can use Lloyd’s theorem to prove that they cannot constitute a perfect code.

The organisation of this paper is as follows. In Section 2, we will reduce the
Hamming bound to a Ramanujan–Nagell equation and prove Theorem 3. In Section
3, we will build upon the work of von Känel and Matschke [14] in order to obtain
all solutions to the previously obtained Ramanujan–Nagell equations. In Section
4, we will show that the outstanding solutions cannot form perfect codes by using
Lloyd’s theorem, and therefore prove Theorem 2. In Section 5, we shall discuss
complications arising from our methodology, as well as potential future lines of
work. Finally, in Section 6, we will briefly summarise our findings and explain how
they overcome the shortcomings in the literature.

All computations in this paper have been carried out with the use of Magma
[5] code. The code is available for the reader in the author’s GitHub repository
(https://github.com/PJCazorla/perfect-q-ary-codes) and can be used to check the
correctness of the computations.

2. The Hamming bound and Ramanujan–Nagell type equations

We suppose that there exists a perfect 2 error-correcting q−ary code with
parameters (n,M). In order to avoid trivial codes, we shall assume that n ≥ 5 and
M ≥ 2. Then, it follows from the perfect code condition (5) with e = 2 that

(10)

(

1 + n(q − 1) +
n(n− 1)

2
(q − 1)2

)

M = qn.

Let q1, . . . , qk denote the prime divisors of q. By (10), M | qn and, consequently,
there is a solution (n, n1, . . . , nk) ∈ Zk+1 to the Diophantine equation

(11) 1 + n(q − 1) +
n(n− 1)

2
(q − 1)2 = qn1

1 . . . qnk

k ,

with n ≥ 5 and where q ≥ 6 is fixed. Now, let us introduce some notation. Let x
and Dq be given by the following expressions:

(12) x = 2n(q − 1) + 3− q and Dq = 8− (q − 3)2.

https://github.com/PJCazorla/perfect-q-ary-codes
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Multiplying (11) by 8 and completing the square, we see that the existence of a
perfect 2-error correcting code over a q−ary alphabet implies that there exists a
solution (x, n1, . . . , nk) ∈ Zk+1 to the Diophantine equation

(13) x2 +Dq = 8qn1

1 . . . qnk

k .

Let A denote the set of positive integers supported only on {q1, . . . , qk}, so that

(14) A = {qα1

1 . . . qαk

k | α1, . . . , αk ≥ 0}.

Clearly, the Diophantine equation (13) can be rewritten as

(15) x2 + b = cy,

where x ∈ Z, y ∈ A, b = Dq and c = 8. This is an example of a generalised

Ramanujan–Nagell equation, as considered by von Känel and Matschke in [14].
We can immediately use their work to prove Theorem 3.

Proof of Theorem 3. By [14, Corollary K], it follows that there are at most finitely
many solutions to any generalised Ramanujan–Nagell equation such as (15) and,
consequently, there are at most finitely many solutions to (13), showing that there
can only be finitely many perfect 2−error correcting q−ary codes for a fixed value
of q.

For the convenience of the reader, we shall give a different proof of the fact
that (15) has finitely many solutions. This proof will allow us to fix notation and
will be insightful for our work in Section 3.

Without loss of generality, we can assume that gcd(c, q1 . . . qk) = 1. This is
because any powers of q1, . . . , qk present in c can be absorbed into y without altering
the number of solutions of (15). Then, we can write

(16) c = c0c
3
1 and y = y0y

3
1,

where c0, c1, y0, y1 ∈ Z with c0 and y0 cubefree. We note here that

(17) c0y0 ∈ {c0q
a1

1 . . . qak

k | 0 ≤ a1, . . . , ak ≤ 2}.

We define d and z by

(18) d = c0y0 and z = c1y1,

so that (15) can be rewritten as

(19) x2 + b = dz3.

Let (x, z) ∈ Z2 be a solution to the previous equation and let (X,Y ) be given by

(20) X = dz and Y = dx.

Then, (X,Y ) is an integral point on the Mordell curve

(21) Ed : Y 2 = X3 − d2b.

By the work of Siegel [27], these curves have finitely many integral points. In
addition, since the set in (17) is finite, there are only finitely many curves Ed to
consider. Consequently, there are at most finitely many solutions to (15), finishing
the proof. �
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From the definition of x and Dq given in (12), we note that x and Dq are even
precisely when q is odd. Therefore, we can define

(22) x′ =
x

2
and D′

q =
Dq

2
.

In these cases, we can divide (13) by 4 and obtain the following equation, which,
computationally, is slightly easier to solve:

(23) (x′)2 +D′
q = 2qn1

1 . . . qnk

k .

If we let b = D′
q and c = 2, this is another instance of a generalised Ramanujan–

Nagell equation in the form of (15). We shall present an algorithm for resolving
these equations in Section 3.

3. Resolving the Diophantine equations

As we explained in Section 2, the existence of a perfect 2−error correcting code
over a q−ary alphabet implies the existence of a solution (x, y) to the generalised
Ramanujan–Nagell equation (15). In this section, we shall present an algorithm to
solve this type of equations. Our algorithm is based on [14, Algorithm 6.2].

As we discussed in the proof of Theorem 3, we can reduce the resolution of
(15) to the determination of all integral points (X,Y ) on a finite number of Mordell
curves Ed. Then, by (16), (18) and (20), we may recover the original solutions x

and y via the expressions

(24) x =
Y

d
and y =

d

c0

(

X

c1d

)3

.

In order to compute the integral points on the Mordell curves Ed, we distinguish
two cases. Following [14, Section 4.1], we define aS by

(25) aS = 1728
∏

p

pmin{ordp(bd
2),2},

where the product is taken over all primes p and ordp(.) denotes the standard p−adic
valuation. If aS < 500, 000, we can use [14, Algorithm 4.2] to compute all integral
points very efficiently. This restriction is due to the fact that the algorithm requires
the computation of all elliptic curves of conductor N | aS . If aS < 500, 000, these
curves have been computed by Cremona [7] and so the necessary computational
effort is minimal.

In the case where aS ≥ 500, 000, our code computes the integral points by using
Magma’s function IntegralPoints, which is based upon the use of linear forms in
complex and p-adic elliptic logarithms (for a reference, see [28]). In this case, the
main computational difficulty lies in the fact that a Mordell-Weil basis for Ed needs
to be computed which, in general, is very hard. We introduce two tricks to mitigate
this difficulty.

Firstly, we note that the question of determining the rank r of Ed is highly
non-trivial. However, by the work of Kolyvagin [15], we know that if the analytic
rank of an elliptic curve is 0 or 1, its algebraic rank coincides with its analytic rank.
Since computing the analytic rank is much easier computationally than computing
the algebraic rank, there are substantial computational savings in these cases.
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We also remark that if r = 0, there is no need to compute any generators to
the Mordell-Weil group. Similarly, if r = 1, a generator can be found by computing
Heegner points, as shown by Gross and Zagier [9]. We implement these two im-
provements in our code. While it could seem that these are not significant for the
computation, they actually help tremendously and allow us to solve many equations
which would otherwise not be amenable to our techniques.

Alternatively, we could have used the work of Bennett and Ghadermarzi [3],
who computed all integral points on the Mordell curves

(26) Ek : y2 = x3 + k,

where 0 < |k|≤ 107. They use a different set of techniques, involving the resolution
of cubic Thue equations. This entrails a similar level of computational complexity
to our approach, and it does not introduce any substantial computational improve-
ments.

With the presented algorithm, we are able to solve the generalised Ramanujan–
Nagell equations and recover the values of n and M which could represent a perfect
2−error correcting q−ary code. This is the content of the following lemma.

Lemma 3.1. Let q ≥ 6 be a positive integer which is not a prime power satisfying
either of the two conditions in Theorem 2. Then, all solutions (n,M) to (10) with
n ≥ 5 are given in Table 2.

Proof. Using the algorithm that we have previously presented, we obtain all solu-
tions (x, y) ∈ Z2 to each of the generalised Ramanujan–Nagell equations. By (12),
we can then recover n as

(27) n =
x+ q − 3

2(q − 1)
,

and obtaining M is immediate from (10). All the solutions that we found are
contained in Table 2. �

q n M

15 11 34 · 510

21 52 340 · 752

46 93 279 · 2391

Table 2. Solutions to (10) with n ≥ 5 and q satisfying the condi-
tions in Theorem 2.

4. Dealing with the outstanding solutions: Lloyd’s theorem

In order to finish the proof of Theorem 2, we need to show that none of the
solutions in Table 2 can be parameters for a perfect q−ary code. For this purpose,
we shall use Lloyd’s Theorem, which was originally proved by Lloyd [21] if q is a
prime power. The general case was proved independently by Bassalygo [1], Delsarte
[8] and Lenstra [17]. The statement of that theorem is as follows.
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Theorem 4. (Lloyd) Let n, e and q be positive integers. Suppose that there exists
a perfect e−error correcting code over a q−ary alphabet with word length n. Then,
the polynomial

(28) Le(x) =

e
∑

i=0

(−1)i(q − 1)e−i

(

x− 1

i

)(

n− x

e− i

)

has e distinct integer zeros in the interval [1, n].

Our previous work, together with Lloyd’s theorem, allow us to finish the proof
of Theorem 2.

Proof of Theorem 2. Let q be a number satisfying the conditions in the theorem
and suppose for contradiction that there exists a perfect 2−error correcting code
over a q−ary alphabet, with parameters (n,M).

By our discussion in Sections 2 and 3, along with Lemma 3.1, we know that
the tuple (q, n,M) is contained in one of the rows of Table 2. By Theorem 4, it
follows that the polynomial L2(x) given by

(29) L2(x) = (q− 1)2
(n− x)(n − x− 1)

2
− (q− 1)(x− 1)(n− x) +

(x− 1)(x− 2)

2

has two distinct integer roots x1, x2 with 1 ≤ x1 < x2 ≤ n. However, we check
with Magma that this is not the case for any of the values of q and n in Table 2.
Consequently, for all the values of q in the statement of Theorem 2, there does not
exist a perfect 2−error correcting code over an alphabet of size q. �

5. Limitations and future lines of work

In this section, we shall briefly comment on the limitations of the methodology
that we present in this paper, as well as propose future lines of work and different
problems which could be solved by leveraging these techniques.

5.1. Limitations of our methodology. Firstly, we remark that our methods can
show non-existence of perfect 2−error correcting codes for a fixed value of q, but
they are not able to handle infinite families of q. The main reason why is due to
the fact that the coefficient Dq in (13) depends on q and it would no longer be
constant.

For this reason, even if the set (17) remains finite (which could be achieved
by fixing the prime divisors of q, for example), we would effectively need to obtain
all integral points for a family of Mordell curves Ed(q). In this situation, the
results of Siegel [27] do not apply and, consequently, it is entirely possible that
there are infinitely many integral points to consider. In addition, and to the best of
our knowledge, there are not any techniques that allow to determine integral points
over families of elliptic curves in an effective manner. This is why we believe that,
in order to prove Conjecture 1, even just for e = 2, significantly new ideas will need
to be introduced.

If we fix q, we note that, in principle, all the techniques that we have presented
in this paper would be applicable for any q. However, in practice, it is computa-
tionally unfeasible to resolve (13) for values of q other than those in Theorem 2.
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For this reason, it is unlikely that the range of values of q can be extended much
further with our methodology.

This is mainly due to the fact that, despite the computational improvements
that we have introduced in Section 3, we ultimately need to find a list of genera-
tors for the group Ed(Q), where Ed is the Mordell curve (21). As the conductor
of Ed grows, even finding one rational point on Ed is a very hard problem and,
consequently, it is impractical to compute a basis for Ed(Q).

To illustrate the computational difficulties, let us consider the case q = 94 =
2 · 47. This is excluded from Theorem 2 because our methodology would require us
to work with the curve

(30) E2·472 : y2 = x3 + 161478403652,

which has conductor N = 16328471028588 = 22 · 33 · 472 · 82732. While we are
able to show that E2·472 has rank 1, N is too large to apply the Heegner point
methodology and, consequently, we are unable to find a generator of E2·472(Q).

If q has a large prime divisor p, there is a slightly different problem. In this
instance, and for q large, we need to use the Magma IntegralPoints subroutine to
find integral points on the Mordell curve (21). However, this relies on the use of
linear forms in p−adic elliptic logarithms (see [28]) and the bounds obtained by
applying this method are astronomical as p grows, which makes it impossible to
find all solutions to (13). In fact, this is the main reason why we needed to exclude
prime divisors larger than 13 if q ≤ 600.

Due to the high computational burden, we believe that the results that we
present here cannot be significantly extended without the introduction of new al-
gorithms to resolve the Ramanujan–Nagell equation (13). Promising results in this
direction are the newly-improved estimates for linear forms in three logarithms by
Mignotte and Voutier [22] and some work on the generalised Ramanujan–Nagell
equation by Mutlu, Le and Soydan [24], which, if extended, could allow for a more
efficient resolution of (13).

5.2. Future lines of work. In this paper, we used extensively two features of
perfect 2−error correcting codes: the perfect code condition (10) and the fact that
Lloyd’s Theorem (Theorem 4) applies. As long as these two conditions are satisfied,
it seems plausible that our approach could generalise.

For instance, the methods that we present here could be used to approach per-
fect 2−error correcting quantum codes, by mimicking this approach and changing
the perfect code condition (5) by the perfect quantum code condition:

(31) M = qn

/

e
∑

j=0

(

n

j

)

(q2 − 1)j .

Li and Xing [19] classified perfect quantum codes over q−dimensional qudits, where
q is a prime power. In addition, they proved an analogue of Lloyd’s theorem for
quantum codes. This makes the situation completely analogous to the classical case
and, for this reason, it seems reasonable that the approach that we presented here
would directly generalise to quantum codes.
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6. Conclusions

The main findings of this paper are Theorems 2 and 3, where we show that
perfect 2-error correcting codes over q−ary alphabets do not exist for more than
170 new values of q, and show that, for a fixed value of q, there can only be finitely
many 2−error correcting perfect codes.

In previously existing literature, no values of q with more than three prime
factors were considered and, in addition, the methods used were specific to the
cases at hand and could not be generalised. In addition, there had been no new
results in over 50 years, showing a clear gap in the literature.

In this paper, we successfully address this gap by showing non-existence of
perfect codes for some values of q with four prime factors (q = 210, 330, 462) and
provide a method which would theoretically apply to any fixed value of q, with the
only existing problems arising from current computational technology. Our results
improve the number of q for which 2−error correcting codes have been classify by
more than 2,000%.

We remark that these results are also relevant from a practical point of view,
since they show that, for many values of q, the optimal information transmission
scheme while attempting to correct 2 errors cannot be that of perfect codes and,
consequently, alternative schemes need to be considered in order to achieve the best
possible codes.

In order to verify all computations carried out in this paper, we provide the
reader with the Magma code available in the author’s GitHub repository (accessible
at https://github.com/PJCazorla/perfect-q-ary-codes), which can be used to check
the correctness of Theorem 2.

Finally, we remark that our results are consistent with the existing literature
in the cases where they overlap and, in addition, they support Conjecture 1, which
is widely believed to be true.
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[10] V. Gubitosi, A. Portela and C. Qureshi, On the non-existence of perfect codes in the
Niederreiter-Rosenbloom-Tsfasman metric, https://arxiv.org/abs/2302.11738.

[11] O. Heden, On perfect codes over non prime power alphabets, Contemporary Mathematics
523 (2010), 173–184.

[12] R. Hill, A First Course in Coding Theory, Oxford Applied Mathematics and Computing
Science Series (1986), Second Edition, Oxford.

[13] Y. Hong, On the nonexistence of unknown perfect 6− and 8− codes in Hamming schemes
H(n, q) with q arbitrary, Osaka J. Math. 21 (1984), 687–700.

[14] R. von Känel and B. Matschke, Solving S-unit, Mordell, Thue, Thue–Mahler and general-
ized Ramanujan–Nagell equations via Shimura–Taniyama conjecture, Memoirs of the American
Mathematical Society, 286 (1419), 2016.

[15] V. Kolyvagin, Finiteness of E(Q) and X(E,Q) for a class of Weil curves, Math. USSR Izv.
32 (3) (1989),523–541.

[16] M. Le and G. Soydan, A brief survey on the generalized Lebesgue–Ramanujan–Nagell equa-
tion, Surveys in Mathematics and its Applications 15 (2020), 473–523.

[17] H. W. Lenstra, Two theorems on perfect codes, Discrete Mathematics 3, (1972) 125–132.
[18] V. K. Leontiev and V. A. Zinoviev, Nonexistence of perfect codes over Galois fields, Problems
of Inform. Theory, 2(2) (1973), 123–132.

[19] Z. Li and L. Xing, Classification of q-Ary Perfect Quantum Codes, IEEE Transactions on

Information Theory 59 (1), (2013), 631–634.
[20] J. H. van Lint, Recent results on perfect codes and related topics, Combinatorics (ed by M.
Hall Jr and J. H. van Lint) (1974), 158–178, Mathematical Center Tracts 55, Amsterdam.

[21] S. P. Lloyd, Block coding, The Bell System Technical Journal 36, (1957), 517–535.
[22] M. Mignotte and P. Voutier, A kit for linear forms in three logarithms, 2023, to appear in
Math. Comp.

[23] L. Mordell, The Diophantine equation x2 +7 = 2n, Norsk Matematisk Tidsskrift 30, (1948),
62–64.

[24] E. K. Mutlu, M. Le and G. Soydan, A modular approach to the generalized Ramanujan–Nagell
equation, Indagationes Mathematicae, 33 (5), 2022, 992–1000.

[25] H. F. H. Reuvers, Some nonexistence theorems for perfect codes over arbitrary alphabets,
PhD Thesis, Eindhoven Technological Univ. 1977.

[26] C. E. Shannon. A mathematical theory of communication, Bell System Tech. J. 27, (1948),
379–423.

[27] C. L. Siegel, Einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad.
Wiss. Phys. Math. Kl. 1 (1929), 41–69.

[28] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear
forms in elliptic logarithms, Acta Arith., 67 (1994), 177–196.

[29] A. Tietäväinen, On the nonexistence of perfect codes over finite fields, SIAM J. Appl. Math.
24 (1973), 88–96.

Department of Mathematics, University of Manchester, Manchester, United King-

dom, M13 9PL

Email address: pedro-jose.cazorlagarcia@manchester.ac.uk

https://arxiv.org/abs/2302.11738

	1. Introduction
	1.1. Background
	1.2. The main results

	2. The Hamming bound and Ramanujan–Nagell type equations
	3. Resolving the Diophantine equations
	4. Dealing with the outstanding solutions: Lloyd's theorem
	5. Limitations and future lines of work
	5.1. Limitations of our methodology
	5.2. Future lines of work

	6. Conclusions
	References

