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On the enumeration of permutations avoiding
chains of patterns
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Abstract. In 2019, Bóna and Smith introduced the notion of strong pattern
avoidance, saying that a permutation π strongly avoids a pattern σ if π and π2

both avoid σ. Recently, Archer and Geary generalized the idea of strong pattern
avoidance to chain avoidance, in which a permutation π avoids a chain of patterns
(τ (1) ∶ τ (2) ∶ ⋯ ∶ τ (k)) if the i-th power of the permutation avoids the pattern τ (i) for
1 ≤ i ≤ k. In this paper, we give explicit formulae for the number of sets of permu-
tations avoiding certain chains of patterns. Our results give affirmative answers to
two conjectures proposed by Archer and Geary.
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1 Introduction

Let Sn denote the symmetry group consisting of all permutations of [n] = {1,2, . . . , n},
which we can view as bijections from [n] to [n]. A permutation π can also be viewed
as a word by associating π with the word π(1)π(2)⋯π(n). Throughout this paper,
we always write a permutation π ∈ Sn as a word π = π1π2⋯πn, where πi = π(i) for
1 ≤ i ≤ n.

Given a permutation π ∈ Sn and a permutation σ ∈ Sk, an occurrence of σ in π is
a subsequence πi1πi2⋯πik of π that is order isomorphic to σ. We say π contains the
pattern σ if π contains an occurrence of σ. Otherwise, we say π avoids the pattern σ

or π is σ-avoiding. For example, the permutation 1534627 avoids the pattern 3142
while it contains the pattern 12345 corresponding to the subsequence 13467.

The study of pattern avoidance can be traced back to the work of MacMahon
[8] and has become a research focus in enumerative combinatorics over the past half
century. A recent survey on permutation patterns can be found in the books [2] and
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[6]. The notion of pattern avoidance has arisen many further variations. Bóna and
Smith [3] initiated the study of strong pattern avoidance, in which a permutation π

strongly avoids a pattern σ if π and π2 both avoid σ. The study of strong pattern
avoidance has attracted the interest of combinatorial scholars such as [4, 9].

Recently, Archer and Geary [1] generalized the idea of strong pattern avoidance
to chain avoidance, in which a permutation π avoids a chain (of patterns) (τ (1) ∶
τ (2) ∶ ⋯ ∶ τ (k)) if the i-th power of the permutation (i.e., πi) avoids the pattern τ (i)

for 1 ≤ i ≤ k. Let Sn(τ1 ∶ τ2 ∶ ⋯ ∶ τk) denote the set of (τ1 ∶ τ2 ∶ ⋯ ∶ τk)-avoiding
permutations in Sn. This definition can be extended to include sets of patterns,
which we will separate the patterns in a set with commas. For example, if π avoids
the chain (σ, ρ ∶ τ), then π avoids both σ and ρ and π2 avoids τ . For example, let
π = 1325467. Then we have π ∈ S7(231,1432 ∶ 231) because π avoids both 231 and
1432, π2 = 1234567 avoids 231.

It would also be natural to consider consecutive patterns as part of the chain.
We say π contains a consecutive pattern σ̄ = σ1σ2⋯σk if there is an occurrence of
σ corresponding to a consecutive subsequence πiπi+1⋯πi+k−1 (1 ≤ i ≤ n − k + 1) of
π. Otherwise, we say π avoids the (consecutive) pattern σ̄ or π is σ̄-avoiding. For
example, the permutation π = 1534627 avoids the pattern 321 while π contains the
pattern 213 corresponding to the consecutive subsequence 627.

Archer and Geary [1] obtained the explicit formulae for the number of sets
Sn(213,312 ∶ τ) for τ ∈ S3 and further posed the following conjectures.

Conjecture 1.1 For n ≥ 1, we have ∣Sn(231,1432 ∶ 231)∣ = Ln+1 − ⌈n2 ⌉ − 1, where
Ln+1 is the (n + 1)-th Lucas number (A000032, [7]).

Conjecture 1.2 For n ≥ 2, we have ∣Sn(213,312 ∶ 213)∣ = 2n−2 + n − 1.

The objective of this paper is to prove Conjecture 1.1 and Conjecture 1.2. Our
proofs are based on the recursive decompositions of the permutations in Sn(231,1432 ∶
231) and the permutations in Sn(213,312 ∶ 213), respectively.

2 Avoiding the chain (231, 1432 ∶ 231)
This section is devoted to the proof of Conjecture 1.1. This will be accomplished
by showing that the both sides of the equation in Conjecture 1.1 satisfy the same
recurrence and initial conditions. The following lemma is crucial for our proof.
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Lemma 2.1 Let n ≥ 3 and π = π1π2⋯πn ∈ Sn(231,1432 ∶ 231). Then we have either
π1 = n, πn = n or πn−1πn = n(n − 1).

Proof. The result is trivial for n = 3. Now we let n ≥ 4. Assume that π1 ≠ n, πn ≠ n
and πn−1πn ≠ n(n − 1). Let πk = n. Then 2 ≤ k ≤ n − 1. Combining the fact π is
231-avoiding, we have that π can be written in the form π = σnτ , where σ and τ

are not empty and all the elements in σ are less than the elements in τ . Notice that
πn−1πn ≠ n(n−1). It is easily seen that τ contains at least two elements, namely, k ≤
n−2. We claim that the elements in τ are increasing. If not, there exists some i > k
such that πi > πi+1. It follows that the subsequence π1nπiπi+1 forms an occurrence of
the pattern 1432 in π, contradicting to the fact that π is 1432-avoiding. This proves
the claim. Hence π is of the form π = σnk(k + 1)⋯(n − 1). Now consider π2. It is
easily checked that π2(k) = π(π(k)) = π(n) = n−1, π2(k + 1) = π(π(k+1)) = π(k) = n
and π2(n) = π(π(n)) = π(n− 1) = n− 2. Then π2(k)π2(k + 1)π2(n) = (n− 1)n(n− 2)
forms an occurrence of the pattern 231 in π2, contradicting to the fact that π2 is
231-avoiding. This completes the proof.

Given n ≥ 3, Lemma 2.1 enables us to divide the set Sn(231,1432 ∶ 231) into the
following three disjoint subsets:

P1

n ∶= {π ∣ π = π1π2⋯πn ∈ Sn(231,1432 ∶ 231) and π1 = n},
P2

n ∶= {π ∣ π = π1π2⋯πn ∈ Sn(231,1432 ∶ 231) and πn = n},
P3

n ∶= {π ∣ π = π1π2⋯πn ∈ Sn(231,1432 ∶ 231) and πn−1πn = n(n − 1)}.
We shall characterize the permutations in P1

n, P
2
n and P3

n, respectively. The following
theorem is needed for the characterization of P1

n.

Theorem 2.2 ([3], Theorem 3.1) For any permutation π ending in 1, the following
two statements are equivalent.

(A) The permutation π is strongly 312-avoiding.

(B) The permutation π has form π = (k + 1)(k + 2)⋯nk(k − 1)(k − 2)⋯1 where
⌈n
2
⌉ ≤ k ≤ n − 1.

Lemma 2.3 Let n ≥ 3 and π = π1π2⋯πn. Then we have

P1

n = {π ∣ π = n(n − 1)⋯(n − k + 1)12⋯(n − k), ⌈n2 ⌉ ≤ k ≤ n − 1}.

Proof. Let An ∶= {π ∣ π = π1π2⋯πn ∈ Sn(312 ∶ 312), πn = 1} and Bn ∶= {π ∣ π =
π1π2⋯πn ∈ Sn(231 ∶ 231), π1 = n}. By the definition of P1

n, we have P1
n ⊆ Bn. As
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the pattern 231 is the inverse of 312, it is straightforward to see that π is strongly
231-avoiding if and only if π−1 is strongly 312-avoiding. Note that a permutation π

begins with n if and only if π−1 ends in 1. Therefore, the inverse map is a bijection
between An and Bn. From Theorem 2.2, we obtain that

An = {π ∣ π = (k + 1)(k + 2)⋯nk(k − 1)(k − 2)⋯1, ⌈n
2
⌉ ≤ k ≤ n − 1}.

It can be checked that the permutation (k + 1)(k + 2)⋯nk(k − 1)(k − 2)⋯1 is the
inverse of n(n − 1)⋯(n − k + 1)12⋯(n − k). It yields that

Bn = {π ∣ π = n(n − 1)⋯(n − k + 1)12⋯(n − k), ⌈n
2
⌉ ≤ k ≤ n − 1}.

Observe that all the permutations of the form n(n − 1)⋯(n − k + 1)12⋯(n − k) are
1432-avoiding. We derive that Bn ⊆ P1

n. Hence we have P
1
n = Bn. This completes the

proof.

Given σ ∈ Sk and τ ∈ Sm, let σ ⊕ τ denote the direct sum of σ and τ defined by

(σ ⊕ τ)(i) =
⎧⎪⎪⎨⎪⎪⎩
σ(i), if 1 ≤ i ≤ k,
τ(i − k) + k, if k + 1 ≤ i ≤ k +m.

For example, 231 ⊕ 21 = 23154. The following fact is straightforward from the
definition of direct sum.

(σ ⊕ τ)2 = σ2 ⊕ τ 2. (2.1)

Lemma 2.4 Let n ≥ 3 and π = π1π2⋯πn ∈ Sn. Then π ∈ P2
n if and only if π = σ ⊕ 1

for some σ ∈ Sn−1(231,1432 ∶ 231).

Proof. If π ∈ P2
n, then we have πn = n. By the definition of the direct sum, we

have that π = σ ⊕ 1 for some σ ∈ Sn−1. From (2.1) we have π2 = σ2 ⊕ 1. This
means that σ (resp. σ2) is a subsequence of π (resp. π2). Since π avoids the chain
(231,1432 ∶ 231), we deduce that σ also avoids the chain (231,1432 ∶ 231), that is,
σ ∈ Sn−1(231,1432 ∶ 231).

Conversely, if π = σ ⊕ 1 for some σ ∈ Sn−1(231,1432 ∶ 231), we have πn = n

and π2 = σ2 ⊕ 1. To prove π ∈ P2
n, it suffices to show that π avoids the chain

(231,1432 ∶ 231). Observe that the element πn = n can not appear in any occurrences
of the pattern 231 (resp. 1432) in π. Combining the fact that σ avoids the chain
(231,1432 ∶ 231), we deduce that π avoids both 231 and 1432. By a similar argument
as above, we have π2 is 231-avoiding. In conclusion, we have π avoids the chain
(231,1432 ∶ 231), as desired.
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Lemma 2.5 Let n ≥ 3 and π = π1π2⋯πn ∈ Sn. Then π ∈ P3
n if and only if π = σ ⊕ 21

for some σ ∈ Sn−2(231,1432 ∶ 231).

Proof. If π ∈ P3
n, then we have πn−1πn = n(n − 1). By the definition of the direct

sum, we have that π = σ ⊕ 21 for some σ ∈ Sn−2. Then we obtain π2 = σ2 ⊕ 12 from
(2.1). This means that σ (resp. σ2) is a subsequence of π (resp. π2). Since π avoids
the chain (231,1432 ∶ 231), we deduce that σ also avoids the chain (231,1432 ∶ 231),
that is, σ ∈ Sn−2(231,1432 ∶ 231).

Conversely, assume that π = σ ⊕ 21 for some σ ∈ Sn−2(231,1432 ∶ 231). By the
definition of direct sum and (2.1), we have πn−1πn = n(n − 1) and π2 = σ2 ⊕ 12.
To prove π ∈ P3

n, it suffices to show that π avoids the chain (231,1432 ∶ 231). As
πn−1πn = n(n−1), we deduce that neither n nor n−1 can appear in any occurrences
of the pattern 231 (resp. 1432) in π. Combining the fact that σ avoids the chain
(231,1432 ∶ 231), we deduce that π avoids both 231 and 1432. By a similar argument
as above, we have π2 is 231-avoiding. Therefore π avoids the chain (231,1432 ∶ 231),
as desired.

Proof of Conjecture 1.1. Let n ≥ 1 and f(n) = ∣Sn(231,1432 ∶ 231)∣. Then we
have

f(n) = ∣P1

n∣ + ∣P2

n∣ + ∣P3

n∣
for n ≥ 3. Lemmas 2.3, 2.4 and 2.5 tell us that ∣P1

n∣ = n − ⌈n2 ⌉ = ⌈n−12 ⌉, ∣P2
n∣ = f(n − 1)

and ∣P3
n∣ = f(n − 2), respectively. Therefore we have

f(n) = ⌈n − 1
2
⌉ + f(n − 1) + f(n − 2)

for n ≥ 3 with the initial conditions f(1) = 1 and f(2) = 2. Notice that the Lucas
numbers Ln satisfy that Ln = Ln−1 + Ln−2 for n ≥ 3 with the initial conditions
L1 = 1 and L2 = 3. It is routine to check that f(n) and Ln+1 − ⌈n2 ⌉ − 1 satisfy the
same recurrence and initial conditions. Thus f(n) = Ln+1 − ⌈n2 ⌉ − 1 for n ≥ 1. This
completes the proof.

3 Avoiding the chain (213, 312 ∶ 213)
This section is devoted to the proof of Conjecture 1.2. To this end, we need to
give a characterization of the permutations in Sn(213,312 ∶ 213). Note that the
permutations in Sn(213,312) are exactly the set of unimodal permutations, i.e.,
those permutations π = π1π2⋯πn with π1 < π2 < ⋯ < πk > πk+1 > ⋯ > πn for some
1 ≤ k ≤ n [5]. For a unimodal permutation π = π1π2⋯πn, we have either π1 = 1 or
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πn = 1. Hence, for n ≥ 2, we can divide the set Sn(213,312 ∶ 213) into the following
two disjoint subsets:

Q1

n ∶= {π ∣ π = π1π2⋯πn ∈ Sn(213,312 ∶ 213) and π1 = 1},
Q2

n ∶= {π ∣ π = π1π2⋯πn ∈ Sn(213,312 ∶ 213) and πn = 1}.

We will give characterizations of the unimodal permutations in Q1
n and Q2

n,
respectively.

Lemma 3.1 Let n ≥ 3 and π = π1π2⋯πn ∈ Sn. Then we have π ∈ Q1
n if and only if

π = 1⊕ σ for some σ ∈ Sn−1(213,312 ∶ 213).

Proof. If π ∈ Q1
n, then we have π1 = 1. By the definition of direct sum, the permuta-

tion π can be written as π = 1⊕σ for some σ ∈ Sn−1. From (2.1), we have π2 = 1⊕σ2.
Hence σ (resp. σ2) is order isomorphic to π2π3⋯πn (resp. π2(2)π2(3)⋯π2(n)).
Then σ ∈ Sn−1(213,312 ∶ 213) follows directly from the fact that π avoids the chain
(213,312 ∶ 213).

Conversely, if π = 1 ⊕ σ for some σ ∈ Sn−1(213,312 ∶ 213). Then we have π1 = 1
and π2 = 1 ⊕ σ2. To prove π ∈ Q1

n, it suffices to show that π avoids the chain
(213,312 ∶ 213). Observe that the element π1 = 1 can not appear in any occurrences
of the pattern 213 (resp. 312) in π. Combining the fact that σ avoids the chain
(213,312 ∶ 213), we deduce that π avoids both 213 and 312. By a similar argument
as above, we have π2 is 213-avoiding. Therefore the permutation π avoids the chain
(213,312 ∶ 213), as desired.

The following lemma is needed for the characterization of permutations in Q2
n.

Lemma 3.2 Let n ≥ 3 and π = π1π2⋯πn ∈ Sn(213,312). If π2(i− 1)π2(i)π2(i+ 1) is
an occurrence of the consecutive pattern 213 in π2, then we have πi = n.

Proof. We have known that the permutations in Sn(213,312) are unimodal permu-
tations. If πi ≠ n, then we have either πi−1 < πi < πi+1 or πi−1 > πi > πi+1. In the
former case, we have π(πi−1)π(πi)π(πi+1) = π2(i − 1)π2(i)π2(i + 1) is a subsequence
of π. Since π2(i − 1)π2(i)π2(i + 1) is an occurrence of the consecutive pattern 213
in π2, we obtain that π contains the pattern 213, contradicting to the fact that π is
213-avoiding. In the later case, we have π(πi+1)π(πi)π(πi−1) = π2(i+1)π2(i)π2(i−1)
is a subsequence of π. Since π2(i−1)π2(i)π2(i+1) is an occurrence of the consecutive
pattern 213 in π2, we have π2(i+1)π2(i)π2(i−1) is an occurrence of the pattern 312
in π, contradicting to the fact that π is 312-avoiding. This completes the proof.

6



Lemma 3.3 For n ≥ 3, we have

Q2

n = {π = π1π2⋯πn ∣ π = 23⋯n1 or π = σn(n − 1)τ1},
where σ (possibly empty) is increasing and τ (possibly empty) is decreasing.

Proof. Let π = π1π2⋯πn be a unimodal permutation with πk = n and πn = 1. Then
we have either πk−1 = n − 1 or πk+1 = n − 1.
Case (i). πk−1 = n − 1.
First we consider the permutation π = 23⋯n1. We have π2 = 34⋯n12. By the
definition of Q2

n, one can easily check that π ∈ Q2
n. Now assume that π ≠ 23⋯n1.

It yields that there exists at least one element between n and 1 in π. We claim
that π ∉ Q2

n. We will prove the claim by showing that π2(k − 1)π2(k)π2(k + 1) is an
occurrence of the consecutive pattern 213 in π2. Since π is unimodal with πk = n
and πn = 1, we have πi > i for i ∈ [1, k] and πk+1 ≥ πj ≥ πn−1 for j ∈ [k + 1, n − 1]. It
is routine to check that π2(k) = π(πk) = πn = 1 and π2(k − 1) = π(πk−1) = πn−1. If
πk+1 ≤ k, we have π2(k + 1) = π(πk+1) > πk+1. As πk+1 ≥ πn−1 = π2(k − 1), we have
π2(k + 1) > π2(k − 1). It follows that π2(k − 1)π2(k)π2(k + 1) is an occurrence of
the pattern 213 in π2, as desired. Now suppose that k < πk+1 < n − 1. We have
π2(k − 1) = π(n − 1) < π(πk+1) = π2(k + 1). Again π2

k−1π
2

k
π2

k+1 is an occurrence of
the pattern 213 in π2, as desired. Hence, the claim is verified. In conclusion, there
exists only one permutation π = 23⋯n1 ∈ Q2

n if πk−1 = n − 1.
Case (ii). πk+1 = n − 1.
Recall that π is unimodal. In this case, the permutation π can be written in the
form π = σn(n−1)τ1 where σ (possibly empty) is increasing and τ (possibly empty)
is decreasing. We need to show that all such permutations are contained in the
set Q2

n. If σ is empty, it is straightforward to check that π = n(n − 1)⋯1 ∈ Q2
n,

as desired. Now assume that σ is nonempty. To prove π ∈ Q2
n, we need to show

that π2 avoids the consecutive pattern 213. From Lemma 3.2, it is sufficient to
show that π2(k − 1)π2(k)π2(k + 1) is not an occurrence of 213 in π2. Observe that
k ≤ πk−1 < n−1. Since π is unimodal, we have π2(k−1) = π(πk−1) > π(n−1) = π2(k+1).
Thus, π2(k − 1)π2(k)π2(k + 1) is not an occurrence of 213 in π2, as desired.

Proof of Conjecture 1.2. Let n ≥ 2 and g(n) = ∣Sn(213,312 ∶ 213)∣. Then we have

g(n) = ∣Q1

n∣ + ∣Q2

n∣.
By Lemma 3.1, we have ∣Q1

n∣ = g(n − 1) for n ≥ 3. Lemma 3.3 tells us that

Q2

n = {π = π1π2⋯πn ∣ π = 23⋯n1 or π = σn(n − 1)τ1},
where σ (possibly empty) is increasing and τ (possibly empty) is decreasing. A
permutation π ∈ Q2

n with the form π = σn(n − 1)τ1 is uniquely determined by the
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set consisting of the elements in σ. We can choose the elements of σ in (n−3
r
) way if

σ contains r elements. Then we deduce that

∣Q2

n∣ = 1 +
n−3

∑
r=0

(n − 3
r
) = 2n−3 + 1

for n ≥ 3. Therefore we have

g(n) = g(n − 1) + 2n−3 + 1
for n ≥ 3. Taking into account the initial conditions g(2) = 2, the unique solution is
g(n) = 2n−2 + n − 1. This completes the proof.
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