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Abstract

In reinsurance, Poisson and Negative binomial distributions are employed for model-
ing frequency. However, the incomplete data regarding reported incurred claims above
a priority level presents challenges in estimation. This paper focuses on frequency es-
timation using Schnieper’s framework [5] for claim numbering. We demonstrate that
Schnieper’s model is consistent with a Poisson distribution for the total number of
claims above a priority at each year of development, providing a robust basis for pa-
rameter estimation. Additionally, we explain how to build an alternative assumption
based on a Negative binomial distribution, which yields similar results. The study in-
cludes a bootstrap procedure to manage uncertainty in parameter estimation and a case
study comparing assumptions and evaluating the impact of the bootstrap approach.

1 Introduction
In his profession, a reinsurer has to quote prices for excess of loss covers. Generally, the
reinsurer estimates the frequency and severity distributions. For the frequency, the most
common choices are the Poisson and Negative binomial distributions. The Poisson distri-
bution can be viewed as the natural distribution in an ideal world: when all claims are
independent and occur with a non-random intensity, the distribution is Poisson. However,
when there is some uncaptured randomness, the variance is greater than the mean. In the
particular case where the intensity of a Poisson distribution follows a Gamma distribution,
the overall distribution is known to be a Negative binomial one.

The data the reinsurer receives are often incomplete: only the reported incurred claims
above a certain threshold, typically known as the priority. In the context of excess of loss,
[5, Schnieper] proposed a model that separates the IBNR into what he termed true IBNR:
newly reported claims, and IBNER: variation in estimated cost over time.

Although [4, Mack] used some of the ideas from the Schnieper’s method, it has not
received much attention. Major contributions based on the Schnieper model include [3]
and [2]. In the former, the author derives an estimator for the mean square error of the
reserves. In the latter, they proposed a non-parametric bootstrap procedure to estimate the
distribution of the reserve.

∗Inria, CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91200 Palaiseau, nico-
las.baradel@polytechnique.edu.

1

ar
X

iv
:2

40
5.

02
87

1v
1 

 [
st

at
.M

E
] 

 5
 M

ay
 2

02
4



Schnieper also addressed a special case: claim numbering above a priority. The frequency
of claims exceeding the priority over time is divided into: claims that newly reach the priority
and claims that fall below it. In particular, he proposed assuming a Poisson distribution for
claims that reach the priority and a Binomial distribution for claims that drop below it.

In this paper, we focus on frequency estimation in presence of incomplete data, specifically
the reported incurred above a priority, using Schnieper’ framework for claim numbering. We
show that the total number of claims in his model follows a Poisson distribution at each
year of development. Consequently, this framework is consistent with a Poisson distribution
for the total number of claims above a priority and provides a consistent framework for
parameter estimation. We also propose an alternative assumption based on a Negative
binomial distribution, which yields similar results. We show that the total number of claims
also follows a Negative binomial distribution for each year of development and we provide an
estimation procedure. Additionally, we address claim reserving by providing the distribution
of ultimate claim numbers, conditioned on current incurred claims.

The paper is organized as follows. Section 2 presents Schnieper’s general model, with a
review of key estimators. Section 3 covers claim numbers above a priority. The first part
deals with the Schnieper assumption, from which we derive additional results. Specifically,
we obtain the distribution of the total number of claims for both purposes: quotation and
reserving. The second part presents an alternative assumption under which we show that
the total claim number above a priority follows a Negative binomial distribution. Section
4 describes a bootstrap procedure for each case, addressing uncertainty in parameter esti-
mation. Finally, Section 5 provides a case study comparing assumptions and evaluating the
impact of the bootstrap approach and its contribution to the different assumptions.

2 The general model
The Schnieper model, with an aim of excess of loss cover, separates two different behaviors
in the IBNR data:

• The occurrence of newly reported claims, which are assumed to arise randomly based
on the level of exposure ;

• The progression of previously reported claims, which is determined by the current
known amounts.

The Schnieper’s framework requires more summary statistics than the aggregated evolution
of the incurred claims, which we introduce below:

• The random variables (Ni,j)1≤i,j≤n represent the total amount of new excess claims,
referring to claims that have not been recorded as excess claims in previous development
years ;

• The random variables (Di,j)1≤i,j≤n represent the decrease in the total claims amount
between development years j− 1 and j, concerning claims that were already known in
development year j − 1.

The (Di,j)1≤i,j≤n can be negative in the event of an increase and, by construction, Di,1 = 0
for all 1 ≤ i ≤ n.
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Given (Ni,j)1≤i,j≤n and (Di,j)1≤i,j≤n, the cumulative incurred data (Ci,j)1≤i,j≤n can be
calculated using the following iterative process:

Ci,1 = Ni,1, 1 ≤ i ≤ n

Ci,j+1 = Ci,j +Ni,j+1 −Di,j+1, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1
(1)

We also introduce non-negative exposures (Ei)1≤i≤n that are assumed to be known and
associated with the data mentioned above. Finally, we introduce the following filtration:

Fk := σ(Ni,j, Di,j | i+ j ≤ k + 1), k ≥ 1.

The current available information is Fn. In the context of Schnieper’s general model, the
following assumption is made:

Assumption 2.1.

H1 The random variables (Ni1,j, Di1,j)1≤j≤n and (Ni2,j, Di2,j)1≤j≤n are independent for i1 ̸=
i2.

H2 For 1 ≤ j ≤ n, there exists λj ≥ 0 and for 1 ≤ j ≤ n− 1, there exists δj ≤ 1 such that

E(Ni,j | Fi+j−2) = λjEi, 1 ≤ i ≤ n,

E(Di,j+1 | Fi+j−1) = δjCi,j, 1 ≤ i ≤ n.

H3 For 1 ≤ j ≤ n− 1, there exist σ2
j ≥ 0 and τ 2j ≥ 0 such that

V ar(Ni,j | Fi+j−2) = σ2
jEi, 1 ≤ i ≤ n,

V ar(Di,j+1 | Fi+j−1) = τ 2j Ci,j, 1 ≤ i ≤ n.

From the above assumption, Schnieper introduced the following estimators for the λ’s
and the δ’s.

λ̂j :=

∑n−j+1
i=1 Ni,j∑n−j+1
i=1 Ei

,

δ̂j :=

∑n−j
i=1 Di,j+1∑n−j
i=1 Ci,j

.

(2)

They are obviously biasfree estimates of the λ’s and δ’s respectively. Additionally, they
are the best linear estimators in Ni,j

Ei
and Di,j+1

Ci,j
respectively as a consequence of H3.

Schnieper developed a way to estimate the expected value of Cn+1,n and the pure premium
for the following year, including the total reserve along with its associated mean square error.
We now present the model for claim number, which can be considered a specific instance of
the broader model.

3 The model for claim numbers
Schnieper also dealt with a special case: the number of claims above a priority, which is the
focus of this paper. From this point onward, for a given priority level, we define
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• The random variables (Ni,j)1≤i,j≤n represent the number of new excess claims pertain-
ing to accident year i in development year j (were below the priority or not reported
in development year j − 1) ;

• The random variables (Di,j)1≤i,j≤n represent the number of claims that exceeded the
priority in development year j − 1 but have since decreased in cost to fall below the
priority in development year j.

In this context, the (Di,j) are now non-negative and remain bounded by (Ci,j−1). Addi-
tionally, all data are integer.

Schnieper proposed that the new claims, denoted as (Ni,j), follow a Poisson distribution,
while the claims decreasing below the priority, represented by (Di,j), follow a Binomial
distribution. The reasoning is as follows: claims that rise above the priority (either new or
previously below the threshold) occur independently at non random intensity, aligning with
a Poisson distribution. Meanwhile, each claim above the priority has a certain probability
of falling below the threshold each year, occurring independently and leading to a binomial
distribution. The next subsection will provide a detailed explanation of these assumptions
and additional results as stated in [5], including the finding that (Ci,j) follows a Poisson
distribution at each date.

3.1 The Poisson assumption

The following assumption corresponds to [5, Assumptions A′′
1 − A′′

2].

Assumption 3.1.

H2’ For 1 ≤ j ≤ n, there exists λj ≥ 0 and for 1 ≤ j ≤ n− 1, there exists 0 ≤ δj ≤ 1 such
that

Ni,j | Fi+j−2 ∼ P (λjEi) , 1 ≤ i ≤ n,

Di,j+1 | Fi+j−1 ∼ B(Ci,j, δj), 1 ≤ i ≤ n.

Note that H2’ implies H2 and H3 from Section 2. We assume now that the assumptions
H1 and H2’ hold. Given these, [5] showed that the λ̂’s and δ̂’s defined in (2) are also the
maximum likelihood estimators and are efficient as their variance is the inverse of the Fisher
information criteria.

From what Schnieper stated in this framework, we shall show additional results. Specifi-
cally, under H2’, the (Ci,j)1≤i,j≤n follow a Poisson distribution. Before to state it, recall first
a classic lemma that will be essential.

Lemma 3.1. Let N be a random variable with distribution P(λ) with λ > 0 and D a random
variable such that D | N ∼ B(N, p) for 0 < p < 1. Then

N −D ∼ P(λ(1− p)).

Proof. For completeness, we provide the proof of this elementary result . Let k ∈ N.
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P(N −D = k) =
∑
n∈N

P ({D = n− k} | {N = n})P (N = n)

=
∑
n≥k

n!

k!(n− k)!
pn−k(1− p)k

e−λλn

n!

=
e−λ [λ(1− p)]k

k!

∑
n≥0

(pλ)n

n!

=
e−λ(1−p) [λ(1− p)]k

k!
.

Proposition 3.2. For all 1 ≤ i, j ≤ n, we have

Ci,j ∼ P
(
λ′
jEi

)
,

with

λ′
j :=

j∑
k=1

λk

(
j−1∏
ℓ=k

(1− δℓ)

)
.

Proof. We prove the lemma by induction. Let 1 ≤ i ≤ n be fixed. By construction Ci,1 =
Ni,1 ∼ P(λ1Ei). Assume as the induction hypothesis that Ci,j follows a Poisson distribution
with parameter λ′

jEi. Recall the relation in (1):

Ci,j+1 = Ci,j +Ni,j+1 −Di,j+1.

Under H2’, by Lemma 3.1,

Ci,j −Di,j+1 ∼ P
(
λ′
jEi(1− δj)

)
,

and finally:
Ci,j+1 ∼ P

(
λj+1Ei + λ′

j(1− δj)Ei

)
= P

(
λ′
j+1Ei

)
.

The above result provides the distribution of Cn+1,n given the corresponding exposure.
In practice, we are also interested in the conditional distribution Ci,j | Fn for i+ j > n+ 1.
Before presenting this result, we introduce an essential lemma.

Lemma 3.3. Let N ∈ N∗. Let D1 ∼ B(N, p1), and Dn+1 | {
∑n

i=1Di = d} ∼ B(N − d, pn+1)
for n ≥ 1. Then

N −
n∑

i=1

Di ∼ B

(
N,

n∏
i=1

(1− pi)

)
.

Proof. We prove the lemma by induction. It is clear that N −D1 ∼ B(N, 1−p1). Let n ≥ 1,
and assume by induction that

N −
n∑

i=1

Di ∼ B

(
N,

n∏
i=1

(1− pi)

)
.
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Let k ∈ {0, . . . , N}. For ease of notation, we introduce 1 − πn :=
∏n

i=1(1 − pi). It follows
that

P

[
N −

n+1∑
i=1

Di = k

]
=

N∑
d=0

P

[
N −

n+1∑
i=1

Di = k

∣∣∣∣∣
n∑

i=1

Di = d

]
P

(
n∑

i=1

Di = d

)

=
N∑
d=0

P

[
Dn+1 = N − d− k

∣∣∣∣∣
n∑

i=1

Di = d

]
P

(
N −

n∑
i=1

Di = N − d

)

=
N−k∑
d=0

(N − d)!

k!(N − d− k)!
pN−d−k
n+1 (1− pn+1)

k N !

d!(N − d)!
πd
n(1− πn)

N−d

=
N !

k!(N − k)!
(1− πn+1)

k

N−k∑
d=0

(N − k)!

(N − d− k)!d!
pN−d−k
n+1 πd

n(1− πn)
N−d−k

=
N !

k!(N − k)!
(1− πn+1)

k (πn + pn+1(1− πn))
N−k

=
N !

k!(N − k)!
(1− πn+1)

kπN−k
n+1 .

Proposition 3.4. For all 1 ≤ i, j ≤ n such that i+ j > n+ 1, we have

Ci,j | Fn ∼ B(Ci,n−i+1, δ
′
i,j) + P

(
λ′
i,jEi

)
,

where the two distributions are independent, and with

δ′i,j :=

j−1∏
k=n−i+1

(1− δk),

λ′
i,j :=

j∑
k=n−i+2

λk

(
j−1∏
ℓ=k

(1− δℓ)

)
.

Proof. We prove the lemma by induction. Let 1 ≤ i ≤ n be fixed. Since:

Ci,n−i+2 = Ci,n−i+1 −Di,n−i+2 +Ni,n−i+2,

from Lemma 3.3, Ci,n−i+1 − Di,n−i+2 | Fn ∼ B(Ci,n−i+1, 1 − δi,n−i+1) and Ni,n−i+2 | Fn ∼
P(λn−i+2Ei). Assume by induction that:

Ci,j | Fn ∼ B
(
Ci,n−i+1, δ

′
i,j

)
+ P

(
λ′
i,jEi

)
.

Remark that
Ci,j+1 = Ci,n−i+1 + (Ci,j − Ci,n−i+1) +Ni,j+1 −Di,j+1.

and Di,j+1 ∼ B(Ci,j, δj) = B(Ci,n−i+1, δj) + B(Ci,j − Ci,n−i+1, δj).
Under H2’, by Lemma 3.3,

Ci,n−i+1 − B(Ci,n−i+1, δj) | Fn ∼ B
(
Ci,n−i+1, δ

′
i,j+1

)
,

and
(Ci,j − Ci,n−i+1)− B(Ci,j − Ci,n−i+1, δj) | Fn ∼ P

(
λ′
i,jEi(1− δj

)
)

and finally, by Lemma 3.1

Ci,j+1 | Fn ∼ B
(
Ci,n−i+1, δ

′
i,j+1

)
+ P

(
λ′
i,j+1Ei

)
.
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The result indicates that, following the observation of Fn, the distribution of an unob-
served Ci,j can be described as the sum of two components: current claims that exceed the
priority threshold and are likely to stay above it, and new claims that may initially rise
above the priority but might later fall below it.

In practice, the Poisson distribution is commonly used for modeling the number of claims
due to its simplicity and the assumption of independent arrivals with non-random intensity
across all claims. However, it is often observed that the empirical variance exceeds the
empirical mean, suggesting that the claim data might not fully adhere to the assumptions
of the Poisson distribution.

For instance, if the intensity parameter of claim arrivals for each policy follows a Gamma
distribution, the total number of claims is known to follow a Negative binomial distribution.
This distribution is favored because it remains straightforward to use, accommodates excess
variance, and converges to the Poisson distribution when this variance diminishes.

In the following subsection, we propose using the Negative binomial distribution instead
of the Poisson, demonstrating that, with an appropriate assumption, it can yield comparable
results.

3.2 The Negative binomial assumption

In this section, we aim to establish a Negative binomial framework that yields results similar
to those obtained from the previous Poisson framework. We begin by introducing a new
assumption that serves as a replacement for H2’. The change of this assumption has an
impact only on the sequence of random variables (Ni,j)1≤i,j≤n.

Assumption 3.2.

H2" For 1 ≤ j ≤ n, there exists rj ≥ 0 and for 1 ≤ j ≤ n− 1, there exists 0 ≤ δj ≤ 1 such
that

Ni,j | Fi+j−2 ∼ NB (rjEi, pj) in which pj+1 :=
pj

1− δj(1− pj)
, 1 ≤ i ≤ n,

Di,j+1 | Fi+j−1 ∼ B(Ci,j, δj), 1 ≤ i ≤ n.

Similarly, H2" implies H2 and H3 from Section 2. The structure of the p’s may not
initially appear clear or intuitive. However, the representation of these parameters will be
clarified later. The free parameters are the (rj)1≤j≤n (which replace the λ’s from H2’ ),
the (δj)1≤j≤n−1 and p1 ∈]0, 1[. There is only one additional parameter, compared to H2’.
This extra parameter governs the additional variance due to the specific configuration of the
family (pj)1≤j≤n.

Remark 3.5. The p’s can be explicitly expressed in terms of p1 and the δ’s:

pj =
p1

1− (1− p1)
[∑j−1

k=1 δk
∏k−1

ℓ=1 (1− δℓ)
] , 1 ≤ j ≤ n.

The above remark can be verified through direct induction. Estimating the r’s, δ’s,
and p1 cannot yield explicit maximum likelihood estimates. For δ̂’s, we can use the same
estimator as the one defined in the Poisson framework in (2). When p1 is known, we can set:

r̂j := λ̂j
pj

1− pj
, 1 ≤ j ≤ n.
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Finally, the estimation of p1 can be computed numerically using maximum likelihood meth-
ods.

It remains to explain why we choose this form for the p’s. It is a consequence of the
following result, in order to have a consistent form, as in the Poisson case. To establish the
distribution of the (Ci,j), we begin with a lemma.

Lemma 3.6. Let N be a random variable with distribution NB(r, p) for r > 0 and 0 < p < 1,
and D a random variable such that D | N ∼ B(N, δ) for 0 < δ < 1. Then

N −D ∼ NB(r, p′) with p′ :=
p

1− δ(1− p)
.

Proof.

P(N −D = k) =
∑
n∈N

P ({D = n− k} | {N = n})P (N = n)

=
∑
n≥k

n!

k!(n− k)!
δn−k(1− δ)k

Γ(r + n)

n!Γ(r)
pr(1− p)n

=
(1− δ)k

k!
pr
∑
n≥0

δn

n!

Γ(r + n+ k)

Γ(r)
(1− p)n+k

=
[(1− δ)(1− p)]k

k!
pr
∑
n≥0

Γ(r + n+ k)

n!Γ(r)
[δ(1− p)]n

=
Γ(r + k)

k!Γ(r)

[
(1− δ)(1− p)

1− δ(1− p)

]k [
p

1− δ(1− p)

]r
.

Proposition 3.7. For all 1 ≤ i, j ≤ n, we have

Ci,j ∼ NB
(
r′jEi, pj

)
,

with

r′j :=

j∑
k=1

rk.

Proof. We prove the lemma by induction. Let 1 ≤ i ≤ n be fixed. By construction Ci,1 =
Ni,1 ∼ NB(r1Ei, p1). Assume by induction that Ci,j follows a Negative binomial distribution
with parameter (r′jEi, pj). Recall that

Ci,j+1 = Ci,j +Ni,j+1 −Di,j+1.

Under H2”, by Lemma 3.6,

Ci,j −Di,j+1 ∼ NB
(
r′jEi, pj+1

)
,

and finally:
Ci,j+1 ∼ NB

(
r′j+1Ei, pj+1

)
.
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The form of the p’s can now be understood. Assuming new claims above the priority
threshold follow a Negative binomial distribution and that some claims may later fall below
the priority, we aim to maintain consistency at any point in time with the Negative binomial
distribution. Consequently, this leads to the specific form of the p’s. Notably, the likelihood
of claims dropping below the priority with probabilities δ’s influences the Negative binomial
distribution, including claims not yet reported in future development years. This relationship
leads to this specific form of the p’s.

The preceding result provides the distribution of Cn+1,n given the related exposure. Ad-
ditionally, we may be interested in the distribution of Ci,j | Fn for i+ j > n+1, as described
in the following proposition.

Proposition 3.8. For all 1 ≤ i, j ≤ n such that i+ j > n+ 1, we have

Ci,j | Fn ∼ B(Ci,n−i+1, δ
′
i,j) +NB

(
r′jEi, pj

)
,

where the sum of the distributions is independent, and with

δ′i,j :=

j−1∏
k=n−i+1

(1− δk),

r′j :=

j∑
k=n−i+2

rk.

Proof. The proof follows the same reasoning as in Proposition 3.4, with the key difference
being the application of Lemma 3.6 in place of Lemma 3.1.

4 Bootstrap methodology
In [2], the author discusses a bootstrap methodology for the general Schnieper model to res-
imulate the λ’s and δ’s, accounting for uncertainty in the parameters. They also simulate a
Gaussian random variable to integrate the internal randomness of the process for each devel-
opment stage. This follows the main ideas of the non-parametric bootstrap as summarized
in [1].

Here, we present a distinct approach that utilizes the specific framework of claim num-
bers and proposes a comprehensive parametric bootstrap methodology without computing
residuals or making any additional assumption.

4.1 The Poisson case

Let M be the total number of bootstrap simulations to be performed. To account for the
inherent randomness of the λ’s and δ’s, for 1 ≤ m ≤ M , we simulate

Cm
i,1 ∼ P

(
λ̂1Ei

)
, 1 ≤ i ≤ n,

Cm
i,j+1 ∼ Cm

i,j + P
(
λ̂j+1Ei

)
− B

(
Cm

i,j, δ̂j

)
, 1 ≤ j ≤ n− i.

From these upper triangles, we can estimate the λ’s and δ’s. We denote these estimates as
(λ̂m

j )1≤j≤n and (δ̂mj )1≤j≤n−1, respectively.

9



Bootstrap simulation of Cn+1,n. Following Proposition 3.2, the bootstrap simulation is
performed as follows:

Cm
n+1,n ∼ P(λ̂′m

n En+1), 1 ≤ m ≤ M.

Bootstrap simulation of Ci,j | Fn. For the lower triangle, the simulation is conducted
using:

Cm
i,n−i+1 := Ci,n−i+1, 1 ≤ i ≤ n,

Cm
i,j+1 := Cm

i,j + P
(
λ̂m
j+1Ei

)
− B

(
Cm

i,j, δ̂
m
j

)
, n− i+ 1 ≤ j ≤ n− 1.

This procedure generates a bootstrap distribution for the random variable Ci,j | Fn on
the lower triangle. In this process, the uncertainty associated with the estimators of the
parameters is integrated.

Remark 4.1. Based on Proposition 3.4, when our focus is on Ci,n | Fn, we can efficiently
simulate Cm

i,n, using

Cm
i,n ∼ B(Ci,n−i+1, δ̂

′m
i,n) + P

(
λ̂′m
i,nEi

)
,

where the sum of the distributions is independent, and with

δ̂′mi,n :=
n−1∏

k=n−i+1

(1− δ̂mk ),

λ̂′m
i,n :=

n∑
k=n−i+2

λ̂m
k

(
n−1∏
ℓ=k

(1− δ̂mℓ )

)
.

This provides a more efficient algorithm.

For the simulations of the λ’s and the δ’s, we could have been tempted to use the following
result.

Lemma 4.2. Under H1 and H2’, we have:

λ̂j | Bj−1 ∼
P
(
λj

∑n−j+1
i=1 Ei

)
∑n−j+1

i=1 Ei

, 1 ≤ j ≤ n,

δ̂j | Bj ∼
B
(∑n−j

i=1 Ci,j, δj

)
∑n−j

i=1 Ci,j

, 1 ≤ j ≤ n− 1,

in which Bk := σ(Ni,j, Di,j | i+ j ≤ n+ 1, j ≤ k).

Proof. Direct consequence of H1 and H2’.

As mentioned, we could consider it in order to re-simulate the λ’s and the δ’s. While
this approach may work for the λ’s, it won’t yield accurate results for the δ’s. Although
these two sets of values are uncorrelated, they are not independent. Furthermore, there is
no reason to assume that the λ’s and δ’s are independent of each other. Therefore, it is more
effective to re-simulate the entire upper triangle and compute the estimators from that data.
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4.2 The Negative binomial case

We extend the Poisson model to fit the Negative binomial framework. To account for the
variability in the parameters r’s, δ’s and p1, for 1 ≤ m ≤ M , we simulate

Cm
i,1 ∼ NB (r̂1Ei, p̂1) , 1 ≤ i ≤ n,

Cm
i,j+1 ∼ Cm

i,j +NB (r̂j+1Ei, p̂j+1)− B
(
Cm

i,j, δ̂j

)
, 1 ≤ j ≤ n− i.

From these upper triangles, we can estimate the r’s, δ’s and p1. These are denoted
respectively as (r̂mj )1≤j≤n, (δ̂mj )1≤j≤n−1, and p̂m1 .

Bootstrap simulation of Cn+1,n. Following Proposition 3.7, the simulation is straight-
forward:

Cm
n+1,n ∼ NB(r̂′m

n En+1, p̂
m
n ), 1 ≤ m ≤ M.

Bootstrap simulation of Ci,j | Fn. For the lower triangle, we simulate :

Cm
i,n−i+1 := Ci,n−i+1, 1 ≤ i ≤ n,

Cm
i,j+1 := Cm

i,j +NB
(
r̂mj+1Ei, p̂

m
j+1

)
− B

(
Cm

i,j, δ̂
m
j

)
, n− i+ 1 ≤ j ≤ n− 1.

Similarly to the approach discussed in remark 4.1 for the Poisson case, if our focus is
solely on the distribution Ci,n | Fn, we can bypass simulating the entire lower triangle using
Proposition 3.8.

5 Example
We present two triangles of simulated data to illustrate both cases with n = 6 years of
observations. For the first one, the exposure and the C triangle are:

i Ei Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6

1 20 5 9 11 12 13 11
2 25 11 16 13 11 17
3 32 9 17 22 22
4 38 10 10 11
5 42 17 18
6 45 14

whose decomposition in N and D is:

i Ni,1 Ni,2 Ni,3 Ni,4 Ni,5 Ni,6

1 5 4 5 2 1 0
2 11 9 4 4 6
3 9 14 9 3
4 10 7 5
5 17 10
6 14

i Di,1 Di,2 Di,3 Di,4 Di,5 Di,6

1 0 0 3 1 0 2
2 0 4 7 6 0
3 0 6 4 3
4 0 7 4
5 0 9
6 0
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We can derive directly the λ’s and δ’s.

j 1 2 3 4 5 6
λ̂j 0.327 0.28 0.2 0.117 0.156 0
δ̂j 0.5 0.346 0.217 0 0.154 –

Let En+1 = 50 be the exposure for the upcoming year. Under the Poisson assumption,
using the estimator of the intensity leads to:

Cn+1,n ∼ P (27.752)

Under the Negative binomial assumption and utilizing the λ’s and the δ’s, and computing
p1 by maximum likelihood leads to optimal p1 → 1. In this case, the Negative binomial
distribution converges to the Poisson distribution: the assumption does not appear suitable.

To account for the uncertainty in the unknown parameters, we can use the bootstrap
procedure. We get that the variance of Cn+1,n is now around 54.132, which is notably
higher than the variance obtained when using the Poisson distribution with the estimated
parameter. Figure 1 illustrates the histogram of Cn+1,n with the distribution P (27.752)
(lighter on the left) compared to the distribution obtained from the bootstrap procedure
(darker on the right).
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Figure 1: Comparison of the distribution of the estimated distribution P (27.752) (on the
left), and the associated bootstrap distribution (on the right); with M = 107 simulations.

We now introduce a second set of triangles, the exposure and the C triangle are:
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i Ei Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6

1 20 8 4 12 12 14 13
2 25 3 5 7 10 15
3 32 5 10 11 9
4 38 27 20 29
5 42 23 18
6 45 14

whose decomposition in N and D is:

i Ni,1 Ni,2 Ni,3 Ni,4 Ni,5 Ni,6

1 8 3 9 4 3 0
2 3 5 4 3 6
3 5 7 3 3
4 27 8 13
5 23 7
6 14

i Di,1 Di,2 Di,3 Di,4 Di,5 Di,6

1 0 7 1 4 1 1
2 0 3 2 0 1
3 0 2 2 5
4 0 15 4
5 0 12
6 0

Again, we can derive directly the λ’s and δ’s.

j 1 2 3 4 5 6
λ̂j 0.396 0.191 0.252 0.13 0.2 0
δ̂j 0.591 0.231 0.3 0.091 0.071 –

Given an exposure of En+1 = 50 for the next year and assuming a Poisson distribution,
we get that

Cn+1,n ∼ P (30.243)

Computing p1 by maximum likelihood does not lead to p1 → 1 anymore. We find p̂1 = 0.397.
This implies that

j 1 2 3 4 5 6
p̂j 0.397 0.616 0.676 0.749 0.767 0.78
r̂j 0.263 0.402 0.418 0.448 0.328 0.177

In particular, under the Negative binomial assumption,

Cn+1,n ∼ NB (106.94, 0.780) .

By construction, the expected value of Cn+1,n remains at 30.243, but the variance increases
to 38.796.

To choose between the two assumptions, we can calculate the log-likelihood and AIC for
both cases. Table 1 presents the results.
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log-L. AIC
P -53.937 119.875
NB -50.793 115.586

Table 1

It appears that using the Negative binomial distribution is the most suitable choice in
this scenario. Given that the δ’s re also part of the definition of the p’s, one might question
whether it would be beneficial to estimate both (p1, (δj)1≤j≤n−1) simultaneously using data
from both N and D. Let (p̃1, (δ̃j)1≤j≤n−1) denote the new estimators. Table 2 provides a
comparison, which shows that the difference is minimal.

j 1 2 3 4 5
δ̂j 0.591 0.231 0.3 0.091 0.071
δ̃j 0.601 0.232 0.305 0.092 0.071

j 1 2 3 4 5 6
p̂j 0.397 0.616 0.676 0.749 0.767 0.78
p̃j 0.393 0.619 0.679 0.753 0.77 0.783

Table 2

Figure 2 shows the distribution from the Poisson assumption (lighter on the left) com-
pared with the distribution from the negative binomial assumption (darker on the right).
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Figure 2: Comparison of the distribution of the estimated distribution P (30.243) (on the
left), the distribution of the estimated distribution NB (106.939, 0.780) (on the right).

Figure 3 illustrates the bootstrap distribution from the Poisson assumption (lighter on the
left) and from the Binomial negative assumption (darker on the right). In each simulation
using the negative binomial approach, if the estimated p̂1 was close to 1, suggesting that
the Poisson distribution was a better fit, the simulation was conducted using the Poisson
framework. The bootstrap results show that the variance of the distribution under the
Poisson assumption is 62.33, while the variance under the negative binomial assumption is
67.381.
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Figure 3: Comparison of the Bootstrap distribution obtained with the Poisson assumption
(on the left), and with the Negative binomial assumption (on the right); with M = 107

simulations.
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