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Uni-directional social interactions are ubiquitous in real social networks whereas undirected in-
teractions are intensively studied. We establish a voter model in a dynamical directed network. We
analytically obtain the degree distribution of the evolving network at any given time. Furthermore,
we find that the average degree is captured by an emergent game. On the other hand, we find that
the fate of opinions is captured by another emergent game. Beyond expectation, the two emer-
gent games are typically different due to the unidirectionality of the evolving networks. The Nash
equilibrium analysis of the two games facilitates us to give the criterion under which the minority
opinion with few disciples initially takes over the population eventually for in-group bias. Our work
fosters the understanding of opinion dynamics ranging from methodology to research content.

I. INTRODUCTION

Evolutionary dynamics on dynamical networks are es-
sential to understand the complex systems in the real
world including opinions, behaviours, and epidemics
spreading [1–12]. Typically, there are two sides of the
coin for dynamics on dynamical networks: one is the
fate of the evolutionary dynamics; the other is the ever-
changing network. For opinion dynamics, the fate of
opinions (consensus or polarization) has been investi-
gated extensively [13–16]. In the empirical phenomena,
the minority can win sometime, such as in the presiden-
tial elections [17] and corporate operations [18]. What is
the impact of social rewiring on the minority winning?
The ever-changing network structure is much less inves-
tigated than the fate of opinions [19–21]. It is still un-
clear whether one side of the coin can be inferred from
the other. In particular, if the transient topology is cap-
tured, could it be used to predict the opinion formation?
For opinion dynamics, say whether the opinion with more
disciples initially can invade successfully in the end?

The voter model mirrors the simple average rule typi-
cally addressed in opinion dynamics in a stochastic man-
ner [22, 23]. There is an amount of prior works study-
ing the co-evolution of opinions on undirected networks
[24–26]. However, unidirectional interactions are more
ubiquitous in social relationships [27–29] and ecosystems
[30]. Compared with undirected networks, works on uni-
directed networks are small in number [31, 32]. Simula-
tions show that counter-intuitive results can arise due to
the uni-directionality [33]. On the other hand, in-group
bias refers to the tendency for individuals to favor their
own group over others’ [34–38]. The interaction between
in-group bias and network structure can also lead to non-
trivial dynamics, even for undirected networks [39]. The-
oretical explanations are lacking if both the directionality
of networks and in-group bias are taken into account.

In this paper, we establish a voter model in a dynami-
cal directed network. We address both sides of the coin,
i.e., transient topology and the fate of opinions. We find
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that each side of the coin is captured by an emergent
game. In particular, the two games are typically differ-
ent for dynamical uni-directional networks, whereas the
two games are the same for dynamical undirected net-
works. This game perspective facilitates us to predict
under what condition the minority with few disciples ini-
tially can win.

II. MODEL

Let us consider a system of N individuals. The social
relationships between individuals are captured by the dy-
namical directed networks. Each individual has on aver-
age L incoming links and L outgoing links. We assume
that N ≫ L. It implies that each individual has a lim-
ited number of neighbors compared with the population
size. Each individual holds either opinion + or opinion
−. There are four types of links in the population, i.e.,

S
∆
=

{−→
++,

−→
+−,

−→−+,
−→−−

}
. For the directed link

−−→
XY ∈ S,

X is the student and Y is the teacher. Each individual
has a student-node-set whose nodes flow into her and a
teacher-node-set whose nodes flow out of her. We denote
x± as the fraction of opinion ± in the population.

Opinion dynamics happens with probability ϕ and
linking dynamics occurs with probability 1 − ϕ at each
time step [20, 21, 40] (see Fig. 1). It is a coin tossing
issue, in which opinion dynamics is the head whereas the
linking dynamics is the tail. They are codependent.

For opinion dynamics, we focus on the voter model
[4]. An individual is randomly selected from the popula-
tion. The probability that she adopts opinion + is pro-
portional to the number of teachers with opinion + in her
teacher-node-set. It is notable that if her teacher-node-
set is empty, then she holds her current opinion. Opinion
keeping is not a prior assumption on the characteristics
of individuals in contrast with the zealots [41, 42].

For linking dynamics, there are three steps as fol-
lows:

(i) Selecting. A directed link
−−→
XY is randomly selected,

where
−−→
XY ∈ S. Either X or Y is randomly chosen.
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FIG. 1. Coevolutionary dynamics of opinions and di-
rected social relationships. (a) The social relationships
are described by the directed network. (b) With probability
ϕ, opinion updating happens. An individual is randomly se-
lected to update her opinion. We assume A is chosen. She
learns from her teachers B,C,D and F . Based on the voter
model, A adopts opinion − with probability 1/2. (c) With
probability 1− ϕ, linking dynamics happens. A directed link

is selected randomly. We assume
−→
AC is selected and A is

chosen. A breaks the directed link with probability k−−→
+− and

rewires to G.

(ii) Breaking. The selected individual breaks the di-

rected link
−−→
XY with a pre-defined breaking proba-

bility k−−→
XY , where 0 < k−−→

XY < 1.

(iii) Rewiring. If the selected individual breaks the di-

rected link
−−→
XY , then she rewires to a new individ-

ual, who is neither in her teacher-node-set nor in
her student-node-set.

III. AN EMERGENT GAME FOR THE
TRANSIENT TOPOLOGY

For ϕ = 1, the social relationships are invariant and
individuals only update their opinions [33, 43]. For
ϕ = 0, the social network evolves all the time whereas
the fractions of opinions are constant. We focus on
ϕ → 0+. Individuals prefer to adjust their social rela-
tionships rather than to change their opinions, which is
widespread in real social systems [44]. It leads to a time
scale separation, that is, all the directed links are almost
in the stationary regime when the opinion update oc-
curs. The stationary distribution of the directed links is
πS = (π−−→

++, π−−→
+−, π−−→−+, π−−→−−) (see Appendix A for details).

What are the key topology features that pave the way
for successful invasions? We concentrate on the size of
student-node-set, i.e., in-degree. Denote din+ as the in-
degree for one node with opinion +. Suppose there is
an individual, named after Sally. Without loss of gen-
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A B
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D
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A B

C

D

k
+−
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# of Sally’s student decreases
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C
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k
++

FIG. 2. Markov transitions of Sally’s student size. (Top
Panel) Select one link which is not point to Sally. We assume

that
−−→
CD is selected and C is chosen to break the

−−→
CD. Then C

chooses the new teacher Sally. Hence, the number of Sally’s
students increases by one. (Bottom Panel) Select one link
which is point to Sally. We assume that the directed link−→
BS is selected and B is chosen to break the

−→
BS. Then B

finds a new teacher A. Hence, the number of Sally’s students
decreases by one.

erality, we assume that she adopts opinion + and she
has din+ ∈ [0, N − 1] students. If an individual who is
not Sally’s current student rewires to Sally, then din+

increases by one with probability (see Fig. 2)

P+
din +

=
NL− din+

NL︸ ︷︷ ︸
select a link which
is not point to Sally

πS ·

 k−−→
++/2

k−−→
+−/2

k−−→−+/2
k−−→−−/2


︸ ︷︷ ︸

break the link

1

N − 1︸ ︷︷ ︸
rewire to Sally

.

(1)

On the other hand, if Sally’s student rewires to other
individuals, then din+ decreases by one with probability
(see Fig. 2)

P−
din +

=
din+

NL︸ ︷︷ ︸
select a link which
is point to Sally

(
π−−→

++k−−→
++/2

π−−→
++ + π−−→−+

+
π−−→−+k−−→−+/2

π−−→
++ + π−−→−+

)
︸ ︷︷ ︸

break the link

1︸︷︷︸
rewire to

other nodes

.

(2)

The one-step transition matrix P of the Markov pro-
cess is thus obtained. The Markov chain is aperi-
odic and irreducible, thus ergodic. Hence it has a
unique stationary distribution ΞD = (ξ0, ξ1, ξ2, · · · ξN−1)
which is determined by ΞDP = ΞD [45]. Based
on [46], the stationary distribution is given by

ξj =

(
P+

0

P−
j

∏j−1
i=1

P+
i

P−
i

)(
1 +

∑N−1
k=1

P+
0

P−
k

∏k−1
i=1

P+
i

P−
i

)−1

,

where 1 ≤ j ≤ N − 1 and
∏0

i=1
P+

i

P−
i

= 1. For j = 0,
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we have ξ0 =
(
1 +

∑N−1
k=1

P+
0

P−
k

∏k−1
i=1

P+
i

P−
i

)−1

. If the pop-

ulation size is infinitely large, i.e., N → +∞, then the
in-degree follows the Poisson distribution (see more de-
tails in Supplemental Material). The obtained Poisson
distribution facilitates us to obtain the average in-degree
analytically. The expectation of din+ is LU+, where L is
the average in-degree of the network and

U+ = πS ·

 k−−→
++

k−−→
+−

k−−→−+

k−−→−−

/(
π−−→

++k−−→
++ + π−−→−+k−−→−+

π−−→
++ + π−−→−+

)
(3)

which is the ratio of breaking the link in Eq. (1)
and Eq. (2). Interestingly, U+ = (π−−→

++ + π−−→−+)/x+ =
f+/(x+f+ + x−f−), where f+ = x+/k−−→

++ + x−/k−−→−+ and
f− = x+/k−−→

+−+x−/k−−→−−. f± can be regarded as the payoff
of the following game

Min-degree =

+ −

+

−


1

k−−→
++

1

k−−→−+

1

k−−→
+−

1

k−−→−−

 . (4)

The Nash equilibrium of Eq. (4) x∗
in-degree+ is

x∗
in-degree+ =

1/k−−→−− − 1/k−−→−+

1/k−−→
++ − 1/k−−→

+− − 1/k−−→−+ + 1/k−−→−−

. (5)

It refers to a topology in which opinion + has as many
students as opinion − does. If x+ > x∗

in-degree+, the aver-
age in-degree of opinion + is larger than that of opinion
− (see Fig. 3).
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FIG. 3. Opinion + has as many students as opinion −
does in the Nash equilibrium of Min-degree. For in-group
bias, if the proportion of opinion + is larger than x∗

in-degree+,
then the average degree of opinion + is larger than opinion
−’s. It implies that more students learn opinion +. Oth-
erwise, the average degree of opinion − is larger. Param-
eters: k−−→

++ = 0.3, k−−→
+− = 0.6, k−−→−+ = 0.9 and k−−→−− = 0.2.

x∗
in-degree+ = 0.7 in this case. We run 100 rounds of the sim-

ulation. We set N = 100, L = 4 and ϕ = 0.01.

IV. ANOTHER EMERGENT GAME FOR THE
FATE OF OPINIONS

For the evolutionary dynamics of opinions, the voter
model in the evolving network is a Markov chain with
state x+ and the state space is {0, 1/N, 2/N, · · · , 1}
[20, 21]. x+ increases by 1/N if an individual
with opinion − learns opinion + with probability
qπ−−→−+/(qπ−−→−+ + qπ−−→−−) = π−−→−+/(π−−→−+ + π−−→−−). Here q
is the average size of the teacher set. Hence, the
transition probability that x+ increases by 1/N is
T+
x+

= x−π−−→−+/ (π−−→−+ + π−−→−−). Similarly, the tran-

sition probability that x+ decreases by 1/N is
T−
x+

= x+π−−→
+−/ (π−−→

++ + π−−→
+−). The probability that

x+ remains constant is T 0
x+

= 1 − T+
x+

− T−
x+

. For
large population size limit, i.e., N → +∞, the
mean-field equation is given by ẋ+ = T+

x+
− T−

x+
,

capturing the evolution of the opinions. Thus we have
ẋ+ = Ax+x− [(x+k−−→

+−/k−−→
++ + x−)− (x+ + x−k−−→−+/k−−→−−)],

whereA = [k−−→
++k−−→−− (k−−→

+−x+ + k−−→
++x−) (k−−→−−x+ + k−−→−+x−)]

−1

is positive, provided that k−−→
++k−−→

+−k−−→−+k−−→−−x+x− ̸= 0.
Multiplying A−1 on the right side does not alter the
asymptotic dynamics, i.e., the fixed points and their
stability. We end up with the equation

ẋ+ = x+x− [(x+k−−→
+−/k−−→

++ + x−)− (x+ + x−k−−→−+/k−−→−−)] ,
(6)

which is a replicator equation with payoff matrix

Mopinion =

+ −

+

−


k−−→

+−

k−−→
++

1

1
k−−→−+

k−−→−−

 . (7)

Intuitively, the payoff of an individual + against an in-
dividual + is proportional to k−−→

+−/k−−→
++. If k−−→

+− increases,
then the number of students with opinion + who learn
opinion − decreases. A part of these students recon-
nect to new teachers with opinion + and adopt opin-
ion +. Hence the proportion of opinion + increases.
In our model, in-group bias corresponds to k−−→

+− > k−−→
++

and k−−→−+ > k−−→−−. That is to say, students who adopt
different opinions from their teachers’ are more likely to
change teachers than those who adopt the same opinions.
The emergent payoff matrix in this case is a coordination
game. There is only one unstable internal equilibrium for
game Eq. (7)

x∗
opinion+ =

k−−→−+/k−−→−− − 1

k−−→
+−/k−−→

++ + k−−→−+/k−−→−− − 2
. (8)

Thus all the individuals adopt opinion + if the ini-
tial fraction of opinion +, denoted as xinitial+, exceeds
x∗
opinion+. Otherwise all, the individuals reach consensus

on opinion −. If xinitial+ is between 1/2 and x∗
opinion+,

opinion − can win, even if opinion − is minority initially,
which is counter-intuitive. The emergent game helps to
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figure out when the minority can take over [17, 18].
Besides in-group bias, we also discuss other cases as

follows [Fig. 4].

• Out-group bias: k−−→
+− < k−−→

++ and k−−→−+ < k−−→−−. Eq.
(7) refers to a coexistence game. x∗

opinion+ is one
internal stable equilibrium. Opinion + and opinion
− coexist if they coexist in the beginning.

• Dominance of opinion +: k−−→
+− > k−−→

++ and k−−→−+ <
k−−→−−. Opinion + is in-group bias, and the other
opinion − is out-group bias. x∗ = 0 is unstable
and x∗ = 1 is stable. Then, opinion + dominates
the population.

• Dominance of opinion −: k−−→
+− < k−−→

++ and k−−→−+ >
k−−→−−. Opinion + is out-group bias, and the other
opinion − is in-group bias. x∗ = 0 is stable and
x∗ = 1 is unstable. Then, opinion − dominates the
population.

V. A TALE OF TWO GAMES TO APPROACH
THE COUNTER-INTUITIVE PHENOMENON

If k−−→
+− = k−−→−+ = k, where 0 < k < 1, we have

Mopinion = k · Min-degree and x∗
in-degree+ = x∗

opinion+,
which implies that ONE emergent game is sufficient to
capture both the fate of opinions and the transient topol-
ogy. It mirrors an undirected-like network. The network
has symmetric-like properties in a statistical sense al-
though it is still directed. In this case, if one opinion has
more students than the other initially, then the former
opinion can take over the population eventually.

If k−−→
+− ̸= k−−→−+, the emergent game Min-degree differs

from Mopinion, which can give rise to some even more
counter-intuitive results [Fig. 4(b)]. For in-group bias
and k−−→

+− > k−−→−+, if xinitial+ ∈ [x∗
opinion+, x

∗
in-degree+], then

opinion + invades successfully in the end, even if opin-
ion + has few disciples [Fig. 4(c)]. Hence, the num-
ber of disciples of an opinion is not the key factor for
the successful invasion for the dynamical directed net-
works. Similarly, for in-group bias and k−−→

+− < k−−→−+, if
xinitial+ ∈ [x∗

in-degree+, x
∗
opinion+], then opinion − invades

successfully in the end, even if opinion − has few dis-
ciples. Furthermore, if xinitial+ > 1/2 and xinitial+ ∈
[x∗

in-degree+, x
∗
opinion+], then opinion − can take over in

the end, even if the minority opinion − with few disciples
initially, which is even more counter-intuitive [Fig. 4(d)].

VI. CONCLUSION AND DISCUSSION

We focus on the voter model in the evolving directed
network. The transient topology in the sense of average
degree and the fate of opinions are found to be captured
by two emergent 2×2 games, respectively. Therefore, we
show that opinion dynamics is equivalent to games, both
network wise and opinion wise. With a game perspective,

FIG. 4. A tale of two games. (a) Game interactions
for the fate of opinions. (b) Based on the two games,
counter-intuitive phenomena emerge. (c) Opinion + with
few disciples in the beginning wins. Parameters: k−−→

++ = 0.3,
k−−→
+− = 0.9, k−−→−+ = 0.6 and k−−→−− = 0.2. x∗

in-degree+ = 0.6 and
x∗
opinion+ = 0.5. The initial fraction of opinion + is 0.52.

(d) The minority opinion − with few disciples in the be-
ginning wins, which is even more counter-intuitive. Param-
eters: k−−→

++ = 0.3, k−−→
+− = 0.6, k−−→−+ = 0.9 and k−−→−− = 0.2.

x∗
in-degree+ = 0.7 and x∗

opinion+ ≈ 0.78. The initial fraction of
opinion + is 0.75. We set N = 100, L = 4 and ϕ = 0.01.

our work not only provides the threshold under which
the minority can win, but also gives the critical social
adjustment rule to ensure that the minority with few
disciples initially can win, which is even more counter-
intuitive. This also implies that transient topology alone
is not sufficient to predict the fate of opinions, unless the
network is undirected.

Opinion dynamics and evolutionary game theory are
two fields in complex systems. Recent years have seen an
increasing interest in studying opinion dynamics via the
game approach [47–50]. All of the previous works assume
a utility function (game interaction) first, and then indi-
viduals adjust their opinions via maximizing their pay-
offs. Individuals in our model have no payoff in mind
when updating opinions. The game itself is a result,
rather than an assumption. Our work sheds a deeper
connection between opinion dynamics and evolutionary
games. Furthermore, we are the first to use an emer-
gent game (not games assumed priorly) to capture the
time-dependent average degree in contract with previous
works [51–53]. Our work thus bridges the gap between
game theory and transient topology in dynamical net-
works.

It is shown that if the network is undirected, then
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Eq. (4) is equivalent to Eq. (7). Consequently, ONE
emergent game is sufficient to capture both the transient
topology and fate of opinions. It implies that the tran-
sient topology (student size) suffices to predict the opin-
ion formation, that is, the opinion with more disciples
wins eventually in the dynamical undirected networks.
Hence, the unidirectionality of networks is a necessary
condition to make opinions with few disciples take over.

Fragmentation does not play a role in our model un-
like other opinion dynamics models [13, 14, 31]. We show
that there are only two absorbing states for the approx-
imated Markov chain. It implies that individuals reach
consensus sooner or later. Furthermore, we study the
complexity of the revised model, in which the previous
step (i) is replaced by the following: the two extremes of
the selected link are chosen by different probabilities de-
pending on the link type rather than randomly irrespec-
tive of the link type. We find that the transient topology
in the revised model is fully captured by an emergent
three-player two-strategy game which has at most two
internal equilibria. On the other hand, the fate of opin-
ions is captured by a replicator equation of an emergent
four-player two-strategy game which has at most three in-
ternal equilibria. These multi-equilibria of the two emer-
gent games imply that counter-intuitive results are more
likely to take place than the previous model (see Sup-
plemental Material). This highlights the complexity of
the rewiring process on unidirectional networks is key for
such the counter-intuitive opinion formation process.

To sum up, based on the Nash equilibrium analysis of
the two emergent games, our work fills the gap between
the literature on opinion dynamics and the counter-
intuitive phenomenon.
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APPENDIX A: LINKING DYNAMICS

Here the number of directed links NL is constant.
Each directed link i (i = 1, 2, · · · , NL) is selected with
probability 1/NL. In time t, we randomly select a di-
rected link it = i. If the selected it does not break, then
we have it+1 = it. Otherwise, a new directed link is intro-
duced, denoted as it+1. We denote the type of directed
edge of it by T (it), where T (it) ∈ S.

The linking dynamics is captured by Markov chain
with transition matrix Q(−−→AB)(−−→CD), which is the probabil-

ity that link
−−→
AB transforms to link

−−→
CD in one time step.

For instance, Q(−−→++)(−−→++) is the probability that it of type−→
++ transforms to it+1 of type

−→
++. In this case, one of

the following two cases occurs:
(1) it is not selected (with probability (NL− 1) /NL).
(2) it is selected (with probability 1/NL). Either the

original
−→
++ link is not broken (with probability 1−k−−→

++),

or the original
−→
++ link is broken and student + (or

teacher +) rewires to a new teacher(student) + (with
probability k−−→

++x+, where x+ is the fraction of opinion
+). Hence,

Q(−−→++)(−−→++) =
NL− 1

NL
+

1

NL
(1− k−−→

++ + k−−→
++x+) . (A1)

The transition probability matrix is given by

Q =
NL− 1

NL
I4 +

1

NL
V, (A2)

where I4 is the identity matrix and the matrix V is given
by

V =
−→
++

−→
+− −→−+

−→−−
−→
++
−→
+−
−→−+
−→−−

 1− k−−→
++x− k−−→

++x−/2 k−−→
++x−/2 0

k−−→
+−x+/2 1− k−−→

+−/2 0 k−−→
+−x−/2

k−−→−+x+/2 0 1− k−−→−+/2 k−−→−+x−/2
0 k−−→−−x+/2 k−−→−−x+/2 1− k−−→−−x+

 ,

(A3)
The matrix V is an approximation because it is pos-
sible that an individual reconnects to her students or
teachers. Since the population size is much larger
than the average degree of the nodes, i.e., N ≫ L,
the approximation is completely acceptable. The state
space of the Markov chain is S. If ϕ ≪ 1 and
k−−→

++k−−→
+−k−−→−+k−−→−−x+x− ̸= 0, there is a unique stationary

distribution πS = (π−−→
++, π−−→

+−, π−−→−+, π−−→−−), where

πS = N ∗
(

x2
+

k−−→
++

,
x+x−

k−−→
+−

,
x+x−

k−−→−+

,
x2
−

k−−→−−

)
(A4)

determined by equation πSQ = πS . N ∗ > 0 is a
normalization factor. Here π−−→

XY
is the probability of

the directed link
−−→
XY in the stationary regime. If x+

increases, then π−−→
++

increases and π−−→−− decreases. That

is, the number of
−→
++ increases and the number of

directed links
−→−− decreases.
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