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Abstract

The exact matching problem is a constrained variant of the maximum matching problem:
given a graph with each edge having a weight 0 or 1 and an integer k, the goal is to find a perfect
matching of weight exactly k. Mulmuley, Vazirani, and Vazirani (1987) proposed a randomized
polynomial-time algorithm for this problem, and it is still open whether it can be derandomized.
Very recently, El Maalouly, Steiner, andWulf (2023) showed that for bipartite graphs there exists
a deterministic FPT algorithm parameterized by the (bipartite) independence number. In this
paper, by extending a part of their work, we propose a deterministic FPT algorithm in general
parameterized by the minimum size of an odd cycle transversal in addition to the (bipartite)
independence number. We also consider a relaxed problem called the correct parity matching
problem, and show that a slight generalization of an equivalent problem is NP-hard.
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1 Introduction

The maximum matching problem is a fundamental problem in combinatorial optimization: given
a graph, the goal is to find a matching of maximum size. This problem is well-known to be
polynomial-time solvable by deterministic algorithms, initiated by Edmonds [3].

The exact matching problem (EM) is a constrained variant. We say that a graph is 0/1-weighted
if each edge has a weight 0 or 1, and define the weight of an edge subset (a matching, a path, a
cycle, etc.) as the sum of the weights of edges in it. The problem is stated as follows.

Problem (Exact Matching (EM)).

Input: A 0/1-weighted graph G and an integer k.

Task: Determine whether G has a perfect matching of weight k.

This problem was introduced by Papadimitriou and Yannakakis [17], and is known to be
polynomial-time solvable by a randomized algorithm proposed by Mulmuley, Vazirani, and Vazi-
rani [15]. It is, however, still widely open whether there exists a deterministic polynomial-time
algorithm or not, although several special cases have been solved, e.g., complete or comlete bipar-
tite graphs [10, 11, 21], K3,3-minor-free graphs [22], and bounded-genus graphs [9]. There are also
several research directions such as relaxation, approximation, and clarifying relations with other
problems [2, 4, 6, 7, 22]; see [5] for more details on its history.

1.1 FPT Algorithms for Exact Matching Problem

For a parameter k related to the input, a problem is said to be fixed-parameter tractable (FPT) if
there exists and a computable function f : Z → Z such that the problem can be solved in f(k)·nO(1)

time, where n is the input size. We also call an algorithm FPT (parameterized by k) if it admits
such a computational time bound.

Very recently, El Maalouly, Steiner, and Wulf [7] proposed a deterministic FPT algorithm for
EM in bipartite graphs parameterized by the bipartite independence number. As the independence
number of a graph is defined as the maximum size of an independent set, the bipartite independence
number of a bipartite graph is defined as the maximum size of a balanced independent set divided
by 2, i.e., the maximum integer β such that the bipartite graph admits an independent set of size
2β taking exactly β vertices from each color class. This result can be regarded as an extension of
the solution for complete bipartite graphs, which always have the bipartite independence number
0.

Theorem 1.1 (El Maalouly et al. [7]). The exact matching problem in bipartite graphs can be
solved by a deterministic FPT algorithm parameterized by the bipartite independence number.

Their result consists of two ingredients. One is an FPT reduction of EM to a relaxed problem,
the bounded correct parity matching problem (BCPM) stated as follows, parameterized by the
independence number in general and by the bipartite independence number for bipartite graphs.

Problem (Bounded Correct Parity Matching (BCPM)).

Input: A 0/1-weighted graph G and an integer k.

Task: Determine whether G has a perfect matching of weight k′ such that k′ ≤ k and k′ ≡ k

(mod 2).
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Theorem 1.2 (El Maalouly et al. [7]). The exact matching problem can be reduced to the bounded
correct parity matching problem by a deterministic FPT algorithm parameterized by the indepen-
dence number in general and by the bipartite independence number for bipartite graphs, where the
input graph does not change.

The other is a deterministic polynomial-time algorithm for BCPM in bipartite graphs.

Theorem 1.3 (El Maalouly et al. [7]). There exists a deterministic polynomial-time algorithm for
the bounded correct parity matching problem in bipartite graphs.

Their algorithm is based on a standard dynamic programming approach for an equivalent prob-
lem. It seems difficult to be generalized to general graphs (due to existence of so-called blossoms),
and it remains open whether BCPM can be deterministically solved in polynomial time or not.

In this paper, we try to fill the gap between general graphs and bipartite graphs by considering
an odd cycle transversal, which is a vertex subset intersecting all the odd cycles in the graph, or
equivalently, whose removal makes the graph bipartite. Our results are stated as follows.

Theorem 1.4.

(1) The bounded correct parity matching problem can be solved by a deterministic FPT algorithm
parameterized by the minimum size of an odd cycle transversal.

(2) The exact matching problem can be solved by a deterministic FPT algorithm parameterized
by the independence number plus the minimum size of an odd cycle transversal. The inde-
pendence number can be sharpened as the bipartite independence number after removing a
minimum odd cycle transversal.

Since the empty set is an odd cycle transversal for any bipartite graph, Theorem 1.4 extends
Theorems 1.3 and 1.1.

1.2 On Correct Parity Matching Problem

We also consider a further relaxed problem, the correct parity matching problem (CPM) stated as
follows.

Problem (Correct Parity Matching (CPM)).

Input: A 0/1-weighted graph G and an integer k.

Task: Determine whether G has a perfect matching of weight k′ such that k′ ≡ k (mod 2).

El Maalouly, Steiner, and Wulf [7] also proposed a deterministic polynomial-time algorithm for
this problem. Their algorithm utilizes a linear algebraic trick with the aid of Lovász’ algorithm [14]
for finding a basis of the linear subspace spanned by perfect matchings. It is elegant but heavily
depends on the fact that we are only interested in the parity of the weight, and it seems difficult
to obtain from it a promising idea to tackle EM.

Let us consider a “purely graphic” approach to CPM, which may give some hopeful idea for
EM. We first find a perfect matching M . If the weight of M has the same parity as k, we are
done. Otherwise, we solve the odd alternating cycle problem (OAC) stated as follows, where an
M -alternating cycle is a simple cycle that alternates between edges in M and not in M .

2



Problem (Odd Alternating Cycle (OAC)).

Input: A 0/1-weighted graph G and a perfect matching M in G.

Task: Determine whether G has an M -alternating cycle of odd weight.

It is not difficult to observe that the answers of the original CPM instance and of the corre-
sponding OAC instance are the same. If there exists an M -alternating cycle C of odd weight, then
the symmetric difference M△C = (M \C)∪ (C \M) is a desired perfect matching (with its parity
different from M). Conversely, if there exists a perfect matching M ′ in G with its parity different
from M , then the symmetric difference M△M ′ forms disjoint M -alternating cycles having an odd
weight in total, which must contain at least one M -alternating cycle of odd weight.

Thus, CPM and OAC are polynomial-time equivalent. One natural way to solve OAC is testing
for each edge e ∈ M whether there exists such a cycle through e. We call this subproblem the odd
alternating cycle through an edge problem (OACe), stated as follows.

Problem (Odd Alternating Cycle through an Edge (OACe)).

Input: A 0/1-weighted graph G, a perfect matching M in G, and a matching edge e ∈ M .

Task: Determine whether G has an M -alternating cycle of odd weight and through e.

Unfortunately, this problem turns out NP-hard. This result implies that, in order to solve CPM,
we should search an odd alternating cycle not locally but globally.

Theorem 1.5. The odd alternating cycle through an edge problem is NP-hard even if the input
graph is bipartite and contains exactly one (matching) edge of weight 1.

The proof technique is based on a recent result of Schlotter and Sebő [19] on the NP-hardness
of finding a shortest odd path between two specified vertices in an edge-weighted undirected graph
with no negative cycle.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we describe necessary definitions. In
Section 3, we prove Theorem 1.4, and discuss heuristic speeding-up of our FPT algorithm. In
Section 4, we prove Theorem 1.5, and discuss further related problems.

2 Preliminaries

For basic concepts, terms, and notation on graphs and algorithms, see, e.g., [12, 20].
Let G = (V,E) be a graph with vertex set V and edge set E, which is not necessarily simple.

A (simple) path P in G is a connected subgraph (V (P ), E(P )) of G, defined by an alternating
sequence of vertices and edges (v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ) such that all vertices v0, v1, . . . , vℓ
are distinct and ei = {vi−1, vi} ∈ E for each i = 1, 2, . . . , ℓ, where V (P ) = {v0, v1, . . . , vℓ} and
E(P ) = {e1, e2, . . . , eℓ}. A (simple) cycle C in G is a connected subgraph (V (C), E(C)) of G,
defined by an alternating sequence of vertices (v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ, e0, v0) such that P =
(v0, e1, v1, e2, v2, . . . , vℓ−1, eℓ, vℓ) is a path and e0 = {vℓ, v0} ∈ E \ E(P ), where V (C) = V (P ) and
E(C) = E(P )∪{e0}. We also deal with paths and cycles just as edge subsets or as vertex sequences
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(if there is no confusion). For directed graphs, we define them analogously by replacing undirected
edges {u, v} between u and v with directed edges (u, v) from u to v.

A matching in G is a subset of edges no two of which share a vertex. A matching is said to be
perfect if it covers all vertices. A path or cycle is said to be M -alternating if it alternates between
edges in M and not in M .

An independent set in G is a subset of vertices no two of which are adjacent in G. The maximum
size of an independent set in a graph is called the independence number. The complement of an
independent set is called a vertex cover, i.e., for a vertex cover X in G, any edge in G is incident
to some vertex in X.

A graph is said to be bipartite if there exists a (possibly trivial) bipartition (A,B) of its vertex
set such that A and B are both independent sets. When we fix such a bipartition, A and B are
called the color classes of the bipartite graph. Then, a balanced independent set in the bipartite
graph is an independent set X such that |X ∩ A| = |X ∩ B|. The maximum size of a balanced
independent set in a bipartite graph divided by 2 (i.e., counting the vertices in either color class) is
called the bipartite independence number. An odd cycle transversal in G is a vertex subset X such
that G−X is bipartite, where G−X denotes the subgraph of G obtained by removing the vertices
in X with its incident edges.

3 An FPT Algorithm for Exact Matching Problem

3.1 Proof of Theorem 1.4

In this section, we prove Theorem 1.4.
Let G = (V,E) be a 0/1-weighted graph, k be an integer, andX ⊆ V be an odd cycle transversal

of G. Let (A,B) be a pair of the two color classes of G −X (if it is not unique, fix an arbitrary
one). For each subset Y ⊆ X, we define a bipartite graph GY = (A∪Y,B∪ (X \Y );EY ) as follows,
which is a subgraph of G:

EY := { {u, v} ∈ E | u ∈ A ∪ Y, v ∈ B ∪ (X \ Y ) }.

We then have the following lemma.

Lemma 3.1. (G, k) is a yes-instance of BCPM (or EM) if and only if (GY , k) is a yes-instance of
BCPM (or EM, respectively) for some Y ⊆ X.

Proof. Since each GY is a subgraph of G, if GY has a desired perfect matching, then so does G.
Conversely, we show that, for any perfect matching M in G, there exists a subset Y ⊆ X such

that GY has the same perfect matching M . Since A and B are both independent sets in G (as
G−X is bipartite), each edge e = {u, v} ∈ M satisfies |{u, v} ∩A| ≤ 1 and |{u, v} ∩B| ≤ 1.

• If |{u, v} ∩A| = 1 and |{u, v} ∩B| = 1, then e always exists in GY by definition.

• Suppose that |{u, v} ∩ A| = 1 and |{u, v} ∩ B| = 0. By symmetry, we assume u ∈ A. In this
case, e ∈ EY if and only if v ∈ X \ Y .

• Suppose that |{u, v} ∩A| = 0 and |{u, v} ∩B| = 1. By symmetry, we assume u ∈ B. In this
case, e ∈ EY if and only if v ∈ Y .

• Suppose that |{u, v} ∩ A| = 0 and |{u, v} ∩ B| = 0. In this case, e ∈ EY if and only if
|{u, v} ∩ Y | = 1.
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Since M is a matching, all the end vertices of the edges in M are distinct. Therefore, we can
consider the above conditions independently for each edge in M , and then some Y ⊆ X satisfies
the conditions of e ∈ EY for all the edges e ∈ M . Thus, we are done.

By Lemma 3.1, we can solve BCPM by finding a minimum odd cycle transversal X and by
solving BCPM in the bipartite graphs GY for all subsets Y ⊆ X, i.e., 2|X| times. Since a minimum
odd cycle transversal can be found by deterministic FPT algorithms parameterized by its size
(initiated by Reed, Smith, and Vetta [18]), combining with Theorem 1.3, we obtain Theorem 1.4(1).

The first statement of Theorem 1.4(2) is an immediate consequence of Theorem 1.2 and Theo-
rem 1.4(1) applied in this order. To see the second statement of Theorem 1.4(2), let us swap the
order, i.e., we first find a minimum odd cycle transversal X and apply Lemma 3.1, and then apply
Theorem 1.2 to each GY . We then obtain an algorithm for EM, which is FPT parameterized by the
maximum of the bipartite independence numbers βY of GY plus |X|. As shown below, for every
Y ⊆ X, the parameter βY is bounded by the bipartite independence number β of G−X plus |X|,
which concludes the second statement of Theorem 1.4(2).

Lemma 3.2. βY ≤ β + |X| for any Y ⊆ X.

Proof. Let Z be a maximum balanced independent set in GY . Then, Z∩(A∪B) = (Z∩A)∪(Z∩B) is
an independent set in G−X, which includes a balanced independent set of size 2min{|Z∩A|, |Z∩B|}
in G−X. Also, as Z is balanced, we have |Z ∩A|+ |Z ∩ Y | = |Z ∩B|+ |Z ∩ (X \ Y )|. Thus,

2βY = |Z| = 2
(

min{|Z ∩A|, |Z ∩B|}+max{|Z ∩ Y |, |Z ∩ (X \ Y )|}
)

≤ 2(β + |X|).

Remark 3.3. The bipartite independence number after removing a minimum odd cycle transversal
and the minimum size of an odd cycle transversal are somewhat correlated, but can behave arbi-
trarily. For example, by starting with a bipartite graph with small bipartite independence number,
choosing a few vertices, and add many edges incident to the chosen vertices, one can construct a
graph with both parameters small, for which our FPT algorithm works.

3.2 Heuristic Speeding-Up

In this section, we consider heuristic speeding-up of the algorithm of Theorem 1.4.
Let G = (V,E), k, X, and (A,B) the same as the beginning of Proof of Theorem 1.4, and let

n = |V |. We assume that G has a perfect matching, since otherwise (G, k) is clearly a no-instance.
For Y ⊆ X, if |A| + |Y | 6= n

2 , then the bipartite graph GY has no perfect matching, and hence
(GY , k) is a no-instance. Therefore, we can solve BCPM/EM by solving BCPM/EM in the bipartite

graphs GY for all Y ⊆ X with |Y | = n
2 − |A|, i.e.,

( |X|
n

2
−|A|

)

times rather than 2|X| times. To make
( |X|

n

2
−|A|

)

small, we consider the following problem, called the unbalanced bipartization problem (UB).

Problem (Unbalanced Bipartization (UB)).

Input: A graph G having a perfect matching, and two integers k and l.

Task: Determine whether G has an odd cycle transversal X ⊆ V satisfies the following conditions:

• |X| ≤ k.

• G−X has two color classes (A,B) such that |A| ≥ n
2 − l.

5



Lemma 3.4. The unbalanced bipartization problem is NP-hard.

Proof. We reduce to UB the odd cycle transversal problem (OCT) stated as follows, which is NP-
hard and admits FPT algorithms parameterized by k (initiated by [18]).

Problem (Odd Cycle Transversal (OCT)).

Input: A graph G and an integer k.

Task: Determine whether G has an odd cycle transversal X ⊆ V of size at most k.

If G has a perfect matching, then the OCT instance (G, k) reduces to an UB instance (G, k, n2 ).
Thus, it suffices to prove that OCT is NP-hard even if the input graph has a perfect matching.

Suppose that we are given an OCT instance (G = (V,E), k), where G does not necessarily have
a perfect matching. We define a graph G′ = (V ′, E′) as follows:

V ′ := V ∪ { v′ : v ∈ V },

E′ := E ∪ {{v, v′} : v ∈ V }.

Clearly, G′ has a perfect matching consisting of the additional edges. Also, since the degree of
each additional vertex is 1, no cycle intersects them, and hence the two OCT instances (G, k) and
(G′, k) are equivalent. Thus, we are done.

If l ≥ k
2 , then the UB instance (G, k, l) is equivalent to the OCT instance (G, k) (|X| ≤ k implies

that |A| ≥ n−k
2 or |B| ≥ n−k

2 ). Thus, we assume l < k
2 . A näıve brute-force algorithm for UB takes

nk+O(1) time. We can design an XP algorithm with a better computational time bound as follows.

Lemma 3.5. The unbalanced bipartization problem can be solved in 2.3146knl+O(1) time.

Proof. This proof is based on an FPT algorithm for OCT parameterized by k through a reduction
to the unweighted vertex cover problem (UVC) (cf. [1]).

Problem (Unweighted Vertex Cover (UVC)).

Input: A graph G and an integer k.

Task: Determine whether G has a vertex cover of size at most k.

The weighted vertex cover problem (WVC) is a weighted variant of UVC.

Problem (Weighted Vertex Cover (WVC)).

Input: A graph G, a vertex-weight function w : V → Z≥0, and an integer k.

Task: Determine whether G has a vertex cover of weight at most k.

The proof is sketched as follows. We first reduce UB to WVC, and then reduce WVC to UVC
by the result of Niedermeier and Rossmonith [16] (Lemma 3.6). Finally, we solve UVC by an
FPT algorithm proposed by Lokshtanov, Narayanaswamy, Raman, Ramanujan, and Saurabh [13]
(Lemma 3.7).
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Lemma 3.6 (Niedermeier and Rossmonith [16]). Let (G = (V,E), w, k) be a WVC instance. For
each vertex v ∈ V , let C(v) be the set of w(v) copies of v. We define a graph G̃ = (Ṽ , Ẽ) as follows:

Ṽ :=
⋃

v∈V

C(v),

Ẽ := { {ũ, ṽ} : {u, v} ∈ E, ũ ∈ C(u), ṽ ∈ C(v) }.

Then, the WVC instance (G,w, k) and the UVC instance (G̃, k) are equivalent.

Lemma 3.7 (Lokshtanov et al. [13]). There exists a deterministic algorithm for UVC running in
2.3146k−µnO(1) time, where µ is the maximum size of a matching in the graph.

Suppose that we are given a UB instance G = (V,E), k, and l. Let M be a perfect matching in
G. For each subset F ⊆ M , we construct a corresponding WVC instance (GF , wF , kF ) as follows.

A graph GF = (V F , EF ) is defined as follows, where V (F ) denotes the set of end vertices of
edges in F :

V F
1 := { v1 : v ∈ V \ V (F ) },

V F
2 := { v2 : v ∈ V },

V F := V F
1 ∪ V F

2 ,

EF := { {v1, v2} : v ∈ V \ V (F ) } ∪ { {ui, vi} : {u, v} ∈ E, ui, vi ∈ V F
i , i ∈ {1, 2} }.

A vertex-weight function wF : V F → Z≥0 is defined as

wF (v) :=

{

k + 1 (v ∈ V F
1 ),

1 (v ∈ V F
2 ).

Let us define
kF =

(n

2
− |F |

)

(k + 2) + k.

We then have the following lemma.

Lemma 3.8. (G, k, l) is a yes-instance of UB if and only if (GF , wF , kF ) is a yes-instance of WVC
for some F ⊆ M with |F | ≤ l.

Proof. Suppose that G has a desired odd cycle transversal X ⊆ V . Then, G − X has two color
classes (A,B) such that |A| ≥ n

2 −l. Let F = { e : e ∈ M, e∩A = ∅ }, A′ = { v1 : v ∈ A } ⊆ V F
1 , and

B′ = { v2 : v ∈ B } ⊆ V F
2 . As A′∪B′ is an independent set in GF , its complement V F \(A′∪B′) is a

vertex cover inGF . Since |A′| = |A| = |M |−|F | = n
2−|F | and |B′| = |B| = n−|X|−|A| ≥ n

2−k+|F |,
its weight is

wF (V
F )− wF (A

′ ∪B′) = (|V F
1 | − |A′|)(k + 1) + |V F

2 | − |B′|

≤
(

(n− 2|F |)−
(n

2
− |F |

))

(k + 1) + n−
(n

2
− k + |F |

)

= kF .

Thus, V F \ (A′ ∪B′) is a desired vertex cover. As |A| ≥ n
2 − l, we have |F | = |M | − |A| ≤ l.
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Conversely, suppose that GF has a desired vertex cover X for some F ⊆ M with |F | ≤ l. We
first show that

|X ∩ V F
1 | =

n

2
− |F |. (1)

Since V F
1 has a perfect matching corresponding to M \ F , we have |X ∩ V F

1 | ≥ n
2 − |F |. To

derive a contradiction, suppose that |X ∩ V F
1 | > n

2 − |F |. Since V F
2 also has a perfect matching

corresponding to M , we have |X ∩ V F
2 | ≥ n

2 . Thus, we obtain

wF (X) = wF (X ∩ V F
1 ) + wF (X ∩ V F

2 )

≥
(n

2
− |F |+ 1

)

(k + 1) +
n

2
= kF + |F |+ 1,

which contradicts wF (X) ≤ kF . Thus, we have (1).
From (1) and wF (X) ≤ kF , we obtain

|X ∩ V F
2 | ≤ kF − wF (X ∩ V F

1 ) =
n

2
− |F |+ k. (2)

Let Z = V F \ X, A′ = Z ∩ V F
1 , and B′ = Z ∩ V F

2 . Let A and B denote the vertex subsets
in G corresponding to A′ and B′, respectively. We show that V \ (A ∪ B) is a desired odd cycle
transversal in the UB instance (G, k, l).

Since X is a vertex cover in GF , its complement Z is an independent set in GF . Since GF

has an edge {v1, v2} for every v ∈ V \ V (F ), we have A ∩ B = ∅. In addition, both A and B

are independent sets in G, and hence V \ (A ∪B) is an odd cycle transversal in G. From (1) and
|F | ≤ l, we obtain

|A| = |V F
1 | − |X ∩ V F

1 | =
n

2
− |F | ≥

n

2
− l.

Combined with (2), we have

|V \ (A ∪B)| = |V | − |A| − |B|

= |V | − |A| − (|V F
2 | − |X ∩ V F

2 |)

≤ n−
(n

2
− |F |

)

−
(

n−
(n

2
− |F |+ k

))

= k.

Thus, V \ (A ∪B) is a desired odd cycle transversal.

By Lemma 3.8, we can solve a UB instance (G, k, l) by solving the WVC instances (GF , w, kF ) for
all subsets F ⊆ M with |F | ≤ l, i.e., O(nl) times. By Lemma 3.6, we can define the corresponding
UVC instance (G̃F = (Ṽ F , ẼF ), kF ) as follows:

Ṽ F :=
⋃

v∈V F

C(v),

ẼF := { {ũ, ṽ} : {u, v} ∈ EF , ũ ∈ C(u), ṽ ∈ C(v) }.
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As GF has a perfect matching MF = { {u1, v1} : {u, v} ∈ M \ F } ∪ { {u2, v2} : {u, v} ∈ M },
G̃F has a corresponding perfect matching M̃F . By Lemma 3.7, we can solve each UVC instance
(G′

F , kF ) in 2.3146kF−|M̃F |nO(1) time, where

kF − |M̃F | =
(n

2
− |F |

)

(k + 2) + k −
((n

2
− |F |

)

(k + 1) +
n

2

)

= k − |F |

≤ k.

Thus, we are done.

4 NP-hardness of Related Problems

4.1 Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The proof is similar to that of [19, Theorem 4.3]. We
reduce to OACe the back and forth paths problem (BFP) stated as follows, which is known to be
NP-hard [8].

Problem (Back and Forth Paths (BFP)).

Input: A directed graph G and two vertices s and t.

Task: Determine whether G has a simple cycle that contains both s and t.

Suppose that we are given a BFP instance G = (V,E) and s, t ∈ V . We construct the corre-
sponding OACe instance, i.e., a 0/1-weighted graph Ĝ = (V̂ , Ê), a perfect matching M̂ , and ê ∈ M̂

as follows.
We split each v ∈ V into two vertices, in-copy v− and out-copy v+. For each directed edge

(u, v) ∈ E, we create an edge {u+, v−} of weight 0. For each vertex v ∈ V , we create an edge
{v−, v+}, whose weight is 1 if v = t and 0 otherwise. Define M̂ as those edges {v−, v+} (v ∈ V ),
and let ê be {s−, s+}. To sum up, we define

V̂ := { v− : v ∈ V } ∪ { v+ : v ∈ V },

Ê := { {u+, v−} : (u, v) ∈ E } ∪ { {v−, v+} : v ∈ V },

M̂ := { {v−, v+} : v ∈ V },

ê := {s−, s+},

where only {t−, t+} has weight 1 . Note that this construction satisfies the additional conditions
(bipartiteness and uniqueness of an edge of weight 1) in Theorem 1.5.

We show that there exists a simple cycle containing s and t in G if and only if there exists an
M̂ -alternating cycle of odd weight through ê = {s−, s+} in Ĝ.

Suppose that there exists a simple cycle C = (s, v1, v2, . . . , t, . . . , vℓ, s) containing s and t in G.
Then, there exists a corresponding simple cycle Ĉ = (s−, s+, v−1 , v

+
1 , v

−
2 , v

+
2 , . . . , t

−, t+, . . . , v−ℓ , v
+
ℓ , s

−)

in Ĝ, which is clearly M̂ -alternating, of weight 1 (due to the edge {t−, t+}), and through ê =
{s−, s+}.

Conversely, suppose that there exists an M̂ -alternating cycle Ĉ of odd weight through ê =
{s−, s+} in Ĝ. Since {t−, t+} is the only edge having weight 1, it must be traversed by Ĉ. In
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addition, since the graph Ĝ is bipartite and the two color classes correspond to the signs, Ĉ

alternately intersects u− and v+ for some vertices u, v ∈ V . That is, Ĉ is a form of

(s−, s+, v−1 , v
+
1 , v

−
2 , v

+
2 , . . . , t

−, t+, . . . , v−ℓ , v
+
ℓ , s

−),

and hence there exists a corresponding simple cycle C = (s, v1, v2, . . . , t, . . . , vℓ, s) in G. Thus, we
are done.

4.2 Further Related Problems

In this section, we discuss several more problems related to OACe.
For a matching M , an M -augmenting path is a simple path between two unmatched vertices

that alternates between edges in M and not in M . This is an elementary but crucial structure in
the maximum matching problem. In particular, a matching M is not of maximum size if and only
if there exists an M -augmenting path.

OACe reduces to the odd augmenting path problem (OAP) stated as follows; thus, OAP is also
NP-hard.

Problem (Odd Augmenting Path (OAP)).

Input: A 0/1-weighted graph G and a matching M in G.

Task: Determine whether G has an M -augmenting path of odd weight.

Lemma 4.1. OACe reduces to OAP.

Proof. Suppose that we are given an OACe instance, i.e., a 0/1-weighted graph G = (V,E), a
perfect matching M , and a matching edge e = {u, v} ∈ M . Consider a graph G′ = (V,E \ {e})
and a matching M ′ = M \ {e} in G′. In addition, if the weight of e is 1, then we switch the
weight (change it from 0 to 1 and from 1 to 0) of every edge incident to u in G′. Then, G has an
M -alternating cycle of odd weight and through e if and only if G′ has an M ′-augmenting path of
odd weight. The former is indeed transformed into the latter just by removing e (note that both
traverse exactly one edge incident to u in G′, which preserves the parity of their weights). Also,
since u and v are the only unmatched vertices with respect to M ′, the latter is transformed into
the former by adding e. Thus, we are done.

The proof and Theorem 1.5 imply the following.

Corollary 4.2. The odd augmenting path problem is NP-hard even if the input graph is bipartite
and contains exactly one (matching) edge of weight 1 and the input matching is of size n

2 −1, where
n is the number of vertices.

OAP with this additional conditions reduces to the disjoint augmenting path problem (DAP)
stated as follows; thus, DAP is also NP-hard.

Problem (Disjoint Augmenting Path (DAP)).

Input: A graph G, a matching M in G, and unmatched vertices s1, s2, t1, t2.

Task: Determine whether G has disjoint M -augmenting paths between {s1, s2} and {t1, t2}.

10



The reduction is easy. Let s1, s2 be the original unmatched vertices, let t1, t2 be the end vertices
of the unique matching edge e of weight 1, and remove e.

Corollary 4.3. The disjoint augmenting path problem is NP-hard even if the input graph is bipar-
tite.

In contrast, a relaxed problem, the free disjoint augmenting path problem (FDAP) stated as
follows, is polynomial-time solvable.

Problem (Free Disjoint Augmenting Path (FDAP)).

Input: A graph G, a matching M in G, and unmatched vertices s1, s2, t1, t2.

Task: Determine whether G has disjoint M -augmenting paths with end vertices in {s1, s2, t1, t2}.

Lemma 4.4. FDAP can be solved by a deterministic polynomial-time algorithm.

Proof. Let G′ be a subgraph of G obtained by removing the unmatched vertices other than
s1, s2, t1, t2. If G′ has a perfect matching M ′, then the symmetric difference M△M ′ contains
desired disjoint M -augmenting paths. Conversely, if G contains desired disjoint M -augmenting
paths, so does G′, which implies that G′ has a perfect matching. Thus, it suffices to solve the
maximum matching problem in G′, for which a deterministic polynomial-time algorithm exists.
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