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ABSTRACT  

High-content image-based assays have fueled significant discoveries in the life sciences in the 

past decade (2013-2023), including novel insights into disease etiology, mechanism of action, 

new therapeutics, and toxicology predictions. Here, we systematically review the substantial 

methodological advancements and applications of Cell Painting. Advancements include 

improvements in the Cell Painting protocol, assay adaptations for different types of 

perturbations and applications, and improved methodologies for feature extraction, quality 

control, and batch effect correction. Moreover, machine learning methods recently surpassed 

classical approaches in their ability to extract biologically useful information from Cell Painting 

images. Cell Painting data have been used alone or in combination with other -omics data to 

decipher the mechanism of action of a compound, its toxicity profile, and many other 

biological effects. Overall, key methodological advances have expanded Cell Painting’s ability 

to capture cellular responses to various perturbations. Future advances will likely lie in 

advancing computational and experimental techniques, developing new publicly available 

datasets, and integrating them with other high-content data types.  
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INTRODUCTION  

Phenotypic drug discovery (PDD) identifies compounds based on their ability to alter a given 

disease phenotype. PDD has been a critical component of therapeutic development1, having 

evolved from screening a few compounds in animals to testing millions in cell models. 

Although target-based drug discovery (TDD) bore much fruit throughout the 20th century2, 

scientific advancements such as development of gene editing tools, organoids, and imaging 

assay technologies, as well as the increasing awareness that understanding the exact 

molecular target of a compound, as required in TDD, is not always a prerequisite for effective 

and safe therapeutic discovery. This has resulted in the resurgence of phenotypic screening 

approaches.1 This is evident from the fact that around 7–18% of FDA-approved drugs do not 

have a defined molecular target3, and several drugs have been found not to work via their 

purported target, as highlighted in a recent analysis on anti-cancer drugs that therapeutically 

acted through off-target effects.4 Therefore, phenotypic strategies have gained favor because 

they also allow compounds to be explored in a target-agnostic manner (using hypothesis-free 

assays).5  

Although target-based strategies (using hypothesis-based assays) have been valuable in 

specific therapeutic areas, they have limitations, particularly when targets are complex or 

considered undruggable, and when the disease of interest is polygenic.6 Swinney and Anthony 

highlighted that, out of the 50 small molecules discovered as first-in-class small molecule 

drugs with new molecular mechanisms of action (MoA) between 1999 and 2008, target-based 

strategies discovered 34% of these (17 small molecules) while phenotypic strategies 

discovered 56% (28 small molecules) with the remaining 10% (5 small molecules) being 

synthetic versions of natural substances.7 However, this does not mean that target-based 
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drug discovery is inherently inferior; phenotypic drug discovery is more likely to succeed when 

understanding the most desirable mechanisms of action is prioritized.1 

Among phenotypic screening strategies, High Content Screening (HCS) technologies have 

proven to be both effective and efficient, allowing multiple parameters to be measured at the 

single-cell level simultaneously.1 HCS enables cellular complexity and heterogeneity to be 

captured in response to a range of perturbations, such as genetic modifications, 

environmental stressors, or small molecule treatments. At the core of these technologies is 

cellular morphology—the visual appearance of cells, usually stained for cell structures or 

biomarkers—which is intricately linked to cell physiology, health, and function.8 HCS has a 

broad spectrum of applications in biological and drug discovery research. For example, 

CRISPR-Cas9, siRNA, and cDNA screens are used to identify genes and proteins involved in 

specific pathways and processes and are also applied in academia and pharmaceutical 

companies for target identification.9,10 HCS is also used in drug discovery to screen for novel 

compounds, and to better understand the biological effects of compounds. For example, 

compounds identified through traditional screening could be profiled further using 

phenotypic assays to investigate selectivity and toxicity, such as in-vitro micronuclei 

formation assays to identify compounds that could potentially damage DNA.11,12 These assays 

investigate specific endpoint(s) and require a careful experimental design; many parameters 

need to be considered, such as the selection of cell model or cell line, growth conditions, 

biomarkers, dyes, or antibodies.11 

A major development came on the scene in 2004, when Perlman et al. demonstrated that 

instead of tailoring an image-based assay to a particular biology of interest, images might be 

used in an relatively unbiased way (besides choice of experimental conditions) to group drug 
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treatments based on having similar impacts on cell morphology.13 This finding, in combination 

with other developments such as the building momentum of transcriptional profiling14 and 

the technology push to generate more biological data, resulted in the launching of the field 

of image-based profiling and the development of image assays aiming to maximize 

information content. The most popular among them is the Cell Painting assay, first described 

by Gisladóttir et al. in 201315. The Cell Painting assay generates a holistic "painting" of the cell 

that reflects its phenotypic state and cellular responses to perturbations. The Cell Painting 

assay (Figure 1a) involves staining cells with a combination of fluorescent dyes, each labeling 

distinct cellular components or organelles. The most widely used dyes to perform this assay 

are Hoechst 33342 (DNA), concanavalin A (endoplasmic reticulum), SYTO 14 (nucleoli and 

cytoplasmic RNA), phalloidin (f-actin) and what germ agglutinin (WGA) (Golgi apparatus and 

plasma membrane), and Mito Tracker Deep Red (mitochondria).16 The Cell Painting assay was 

designed to be easy and inexpensive to implement in any high throughput screening facility, 

relying solely on dyes rather than antibodies, which can be more costly and involve multiple 

labor-intensive steps. This multiplex staining approach is followed by processing with 

automated imaging pipelines (such as CellProfiler17) that can then extract morphological 

profiles and standardize them against reference and control compounds (Figure 1b). This 

yields a high-dimensional dataset for each cell and captures over a thousand morphological 

features (including measures of size, shape, texture and intensity, among many others). This 

is then followed by normalization/pre-processing, and batch effect corrections. The 

morphological profiles can then be used for further downstream analysis by distinguishing 

perturbations based on their phenotypic responses (Figure 1c). Cell Painting profiles can also 

be used with unsupervised machine learning models, for example, to detect clusters with 
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similar MoAs, or with supervised machine learning models (for example, to predict the MoA 

or toxicity of new compounds). 
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Figure 1. Morphological profiling using the Cell Painting assay. a) Schematic representation of Cell Painting assay; cells are incubated and 
perturbed and a set of six stains is applied. Images are then obtained by automated microscopy followed by nucleus and cell body segmentation. 
b) Appropriate software or deep learning-based methods are applied to measure or calculate morphological features from the images. c) After 
feature pre-processing, downstream analysis is performed. This includes a variety of methods, including supervised and unsupervised machine 
learning, to better elucidate the biological effects of a compound, such as its MoA or safety profile. 



 

 

 

The Cell Painting assay has seen increasing adoption in academic and industry research and 

here we aim to comprehensively examine the advancements and impacts of Cell Painting in 

drug discovery and related areas over the past decade (2013–2023), following a systematic 

review format. We explore the methodological advancements that have improved the 

robustness of the assay and discuss how Cell Painting has deepened understanding of disease 

processes and shaped therapeutic discovery. Importantly, we discuss the integration of Cell 

Painting with machine learning and other -omics data. Moreover, we explore the role of Cell 

Painting in predictive toxicology and its significance in improving the safety and efficacy of 

drugs. Overall, we provide a comprehensive perspective on the potential of the Cell Painting 

assay and its impact in drug discovery. 
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RESULTS 

Study Selection 

For our systematic review, we retrieved 340 articles from three sources: PubMed18, Scopus19, 

and ScienceDirect20 (accessed June 2023). Among these, 207 duplicates were removed, and 

41 review articles were further removed during the screening process. A total of 92 articles 

were eligible for a full-text analysis and of these 21 studies were further removed (18 

irrelevant and 3 poster/thesis/news articles). To augment this, a manual search contributed 

an additional 18 studies, acknowledging the rapidly evolving nature of this field. Some of 

these studies were published after the initial cut-off date (i.e., after June 2023) but were still 

included during the review process due to their significant contribution to Cell Painting 

research. Overall, this yielded 89 studies for systematic review, as shown in the Preferred 

Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) flow chart in Figure 2 

(for a list of the 89 studies, see Supplementary Table S1 ; excluded studies in Supplementary 

Table S2 released at https://github.com/srijitseal/CellPainting_SystematicReview).  

https://github.com/srijitseal/CellPainting_SystematicReview
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Figure 2. the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) 
flow chart diagram on the selection of the 89 studies included in this systematic review. 
Records from manual search included some articles published the June 2023 cut-off date. 

Extracted Data 

The extracted data included authors, year of publication, keywords, and the journal where 

the article was published. We manually identified the research question and the major 

outcome and categorized the results into major and sub-categories (where possible). Figure 

3a shows the number of publications per year. Imaging-based profiling assays such as the Cell 

Painting assay are increasingly being used, as the majority of the studies were published 

within the last three years (2021–2023). This also indicates that, as with other new 

technologies such as transcriptomics data, it takes about a decade for scientists to make use 

of it on a larger scale. Figure 3b shows the number of publications from each journal in this 

study. The majority of papers were published in SLAS Discovery, which indicates that the assay 

was quickly accepted by the drug profiling and screening community. Computational journals, 
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for example related to cheminformatics, and bioArxiv preprints (which maybe currently in 

review process at other journals) have also been a preferred dissemination route for findings 

from Cell Painting datasets. Journals for the fields of chemical biology and toxicology are 

among the other top publication choices, where Cell Painting data has been used for drug 

discovery. 

 

Figure 3. (a) The growth in publications reviewed in this systematic review between 2013 and 
2023 and (b) the journals where the publications were published.  
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DISCUSSION 

1. Assay Development 

The Cell Painting protocol was first developed by Gustafsdottir et al. in 2013. It was designed 

to be a low-cost single assay capable of capturing many biologically relevant phenotypes with 

high throughput.15 As shown in Figure 1b, six stains were selected and imaged in five channels 

to reveal morphological changes for eight cellular components or organelles. Gustafsdottir's 

publication did not name the assay; however, an updated protocol (v2) published in 2016 by 

Bray et al. established the moniker “Cell Painting”, while also making minor adjustments such 

as stain concentrations.16 A recent effort optimized the assay’s stability and reproducibility, 

culminating in Cell Painting v3 in 2022.21 To create the updated protocol, the JUMP-CP (Joint 

Undertaking for Morphological Profiling – Cell Painting) Consortium, led by the Broad 

Institute, used a positive control plate of 90 compounds covering 47 diverse mechanisms of 

action to, for the first time, quantitatively optimized staining reagents, as well as experiment 

and imaging conditions.21 These included reducing steps (such as no media removal before 

MitoTracker), decreasing dye concentrations to save reagent costs (such as the reduction of 

Phalloidin), and increasing SYTO 14 concentration to enhance signal-to-noise ratios. Another 

study included conditions such as time point and image acquisition conditions.22 

1.1 Cell Line Selection 

For image-based assays, flat cells that rarely overlap are best – most cell lines meet this 

criteria. In general, dozens of cell lines have been used and have performed well for Cell 

Painting experiments, and thus the selection often depends on the purpose of the 

experiment. For example, A549 (lung adenocarcinoma) and U2OS (osteosarcoma) were 

considered for the JUMP-CP data, and both could have been suitable but U2OS was selected 
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due to fewer restrictions related to sharing with partners.21,22 In a recent study, the selection 

of optimal cell lines for high content screening was investigated because different cell lines 

can result in different sensitivities to detect different MoAs.23 In total 3,214 small molecule 

annotated (i.e. containing information about their putative target and MoA) compounds 

(including FDA approved drugs) were profiled with Cell Painting on six different cell lines. 

These were the A549, OVCAR4, DU145, 786-O, HEPG2 and a noncancer patient-derived 

fibroblast cell line (FB). The cell lines were ranked based on their ability to infer compound 

activity termed “phenoactivity” (also “phenotypic activity”) of the compound and MoA 

termed “phenosimilarity” (also “phenotypic consistency”) of the mechanism groups). Here, 

compound activity refers to the observable effects a compound has on biological systems, 

such as inhibiting or promoting cellular processes in assays, while MoA describes the specific 

biochemical interaction through which a compound produces its effect, such as binding to a 

receptor or inhibiting an enzyme. Results showed that the best performing cell line in terms 

of detecting phenotypic activity may have poor sensitivity for compounds with the same MoA 

and vice versa. This discrepancy could be attributed to the diverse genetic landscapes of 

different cell lines, which may influence the expression of targets and the cellular pathways 

involved. For example, HEPG2 cell line's tendency to grow in highly compact colonies was 

identified as a factor impeding its ability to produce clear phenotypic distinctions between 

compound-treated and control groups. This growth pattern complicates the analysis of 

cellular organelles like mitochondria and actin—critical markers in the study—since 

alterations in these densely packed cells become harder to detect.  

Another study showed that Cell Painting sample preparation protocol was effective without 

any cell line-specific adjustment for 16 reference chemical across six biologically diverse and 
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morphologically distinct human-derived cell lines (U-2 OS, MCF7, HepG2, A549, HTB-9 and 

ARPE-19) that originate from various tissues and exhibiting distinct growth patterns and 

cellular characteristics.24 It was only necessary to optimize image acquisition and analysis 

parameters to account for differences in the size and 3D shape of each cell line when cultured 

in monolayers. The maximum ranges for the in vitro point-of-departure (concentration at 

which chemicals begin to perturb cellular biology) differed by 1.05 log10 units across cell types, 

and the smallest ranges differed by 0.35 log10 units. Most of the chemicals tested showed a 

pronounced phenotypic effect across all cell lines, often below cytotoxic and cytostatic 

concentrations. However, for all chemicals except one, the most sensitive features were 

different in each cell line. This indicates that, even though the concentration at which 

chemicals alter cellular morphology is consistent across cell types, the way these effects 

manifest depends on the biological context of the cells. Over the past decade, the basic Cell 

Painting protocol has been used on dozens of additional cell lines without adjustment based 

on our survey of literature and personal communications (Personal Communications, March 

15, 2024, Dr. Anne Carpenter). 

1.2 Adaptations of the Cell Painting Assay 

Adaptations of the Cell Painting assay have begun to appear, which replace some of the 

original dyes with alternative fluorescent dyes to increase the spectral range and facilitate 

delineation of other cellular compartments and structures.25 One such assay, the HighVia 

assay, uses direct single-cell analysis to evaluate mechanisms of cell death (such as apoptosis 

and necrosis), as well as determine in vitro IC50, a measure of potency, for compound 

perturbations.25 Another study replaced one dye (MitoTracker) with an antibody against a 

viral protein introducing the possibility of multiplexing Cell Painting with specific targets.26 
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Another adaptation of Cell Painting is LipocyteProfiler, which incorporates BODIPY to mark 

lipid droplets - this metabolic disease-oriented phenotypic profiling system is used for lipid-

accumulating cells.27 

1.3 Improvements in the Choice of Perturbations  

In addition to the improvements made to the assay protocol, there are also recommendations 

that can help researchers tailor the screen’s conditions and parameters with respect to 

downstream analysis. In addition to compound perturbation, Singh et al. first explored RNAi-

induced knockdown using the Cell Painting assay in 2015.28 They showed that the 

morphological signatures are highly sensitive and reproducible but there were off-target 

‘seed’ effects of RNA interference reagents that dominated the signatures. These ‘seed’ 

effects occur when a short region of the RNAi molecule, known as the 'seed' sequence, binds 

non-specifically to multiple messenger RNAs. More successful technologies include open 

reading frame (ORF) constructs that allow for gene/protein overexpression29 and CRISPR 

knockout to deplete expression.30 One challenge with a target agnostic assay, such as Cell 

Painting, is that compounds active in the assay can act by on- and/or off-target effects, which 

in turn results in the difficult interpretation of a given bioactivity.31 Hence, one practical 

solution is to include known reference compounds. Most recently, Chandrasekaran et al. and 

Jamali et al. introduced various sets of recommended control and landmark perturbations — 

including two compound plates and ORF and CRISPR perturbations plates.22,32 Dahlin et al. 

generated a set of Cell Painting and cellular health profiles for 218 prototypical cytotoxic and 

prototypical ‘nuisance’ compounds in U2OS cells in a concentration-response format.31 

‘Nuisance’ compounds, in this context, are substances that frequently show up as hits in 

screening assays but are ultimately considered undesirable because their effects are often 
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nonspecific, artifactual, or due to properties that interfere with the assay rather than a 

specific biological activity of interest. The exploration and analysis of this dataset highlighted 

relationships between different types of cellular injury with Cell Painting activity. Robust Cell 

Painting phenotypes were observed with compound-mediated cellular damage (e.g. tubulin 

poisons). This reference dataset thus serves as a valuable resource for comparing and triaging 

novel compounds, especially when they exhibit phenotypes similar to reference compounds 

with undesirable MoAs. 

1.4 Development of Microscopy Imaging  

Although high-throughput imaging platforms have advanced over the past decade resulting 

in improved speed and resolution, Jamali et al. found that various microscope imaging 

systems performed similarly and changing acquisition settings only minimally affected Cell 

Painting profile strengths.32 Key setting alterations that improved morphological signatures 

included decreasing magnification, which increases the number of cells imaged. Jamali et al. 

concluded with a general set of recommendations for Cell Painting, applicable to several 

microscopes, suggesting that cells should be imaged at 20x magnification across four to nine 

sites (fields of view), or approximately 2,500 cells per well for the cell types considered in the 

study. 

2.1 Extraction of Morphological Features from Fluorescent Images  

Cell Painting images are often analyzed using software to extract morphological features, 

enabling the precise segmentation of cellular and subcellular structures. The open-source 

CellProfiler17 software is one example; however, other solutions are also used, including 

proprietary ones (for a detailed review see Smith et al.33). Some alternative analytical 
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approaches use deep learning (such as the recently published DeepProfiler34), where models 

are trained to recognize features directly from raw images to optimize Cell Painting profiles, 

increasing their sensitivity and robustness, and in some cases skipping the single-cell 

segmentation step. Steps to further process the Cell Painting data, from morphological 

feature extraction to profile normalization to batch effect correction discussed in Section 3.1 

and 3.2, are also continuously improving.  

2.2 Extraction of Morphological Features from Label Free Brightfield images 

Some researchers have investigated ‘label-free’ assays replacing fluorescent images with 

brightfield (BF), which can be captured for living cells over time. Even for fixed cells, 

fluorescence imaging is typically more time-consuming, expensive and labor intensive 

compared to BF imaging. While BF imaging does not yield a clear contrast of the cellular 

compartments, the use of deep learning methods could potentially augment the information 

available in BF images. In one study, deep learning models were used to predict five Cell 

Painting fluorescent channel images from brightfield images and CellProfiler features were 

calculated from the predicted images and the ground truth images.35 The models were trained 

on approximately 3,000 images (using one field of view per well from 17 batches) and then 

tested with 273 images. The predicted images achieved a mean Pearson Correlation of 0.84 

with the ground truth at the pixel level, and the authors further calculated the Pearson 

correlation of CellProfiler features from the ground truth images and the predicted images 

from BF. Although many morphological features extracted from the generated images 

showed substantial correlation with those from the ground truth images (>0.6 correlation) 

and 30 features showed a correlation greater than 0.8, the features from the AGP and Mito 

channels were more challenging to predict, likely due to the small and subtle cellular 
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substructures they contain. They additionally performed a downstream analysis and 

investigated the ability of models in predicting compounds similar to the positive controls, 

which resulted in a sensitivity of 62.5% and specificity of 98.0% and one reason why sensitivity 

was low could be due to potential useful information missed from the Mito and AGP channels.  

Another study compared the abilities of deep learning-based features to predict ten MoA 

classes.36 The features were trained using either brightfield images (BF) or fluorescence 

images and were additionally compared to the benchmarked CellProfiler features from 

fluorescent images. The dataset consisted of 231 compounds with 10 MoAs tested at 10uM 

on U2OS cells. Models trained with features from BF images, fluorescent images and 

CellProfiler features predicting the class labels for 11 classes (10 MoAs and the DMSO control 

class) showed comparable results.37 Using activation maps, they further determined which 

areas in the images were most activated and this revealed that the models focused on 

different cellular features depending on the image type used for training. For example, when 

predicting the MoA for the compound, 4SC-202, the models had an accuracy of 0.89, 0.04 and 

0.29 when using BF, fluorescent images and CellProfiler features respectively. The better 

performance of BF might be due to the fact that in the BF heatmap, there was a strong 

activation for the small vesicles that are visible in the BF images but these are not stained in 

the Cell Painting protocol (the FL heatmap focuses is on the full cell body). Despite the limited 

number and range of MoAs tested, this study suggests that deep learning applied to 

brightfield images holds great promise to augment or replace fluorescent stains in Cell 

Painting assays in the future. This change could lead to significant time and cost savings in 

future experiments by leveraging the vast imaging resources already available from 

brightfield microscopy, which is more widely used than fluorescence imaging. Early reports 
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from the techbio company Recursion indicate a transition from fluorescent to brightfield 

imaging.38 

3.1 Feature Selection for Cell Painting Profiles  

Not all morphological features extracted from cell images, using e.g. CellProfiler, are 

informative. For a given task or even for a general representation of cell phenotype, feature 

selection methods are generally used to filter them and are available from virtually all data 

analysis libraries (e.g. scikit learn).39 Pycytominer, a software package designed for analyzing 

Cell Painting data, incorporates feature selection methods that reduce redundancy and 

increase informativeness of features40. Other approaches, such as AutoML (automated 

machine learning) in Siegismund et al, enable the most informative features from Cell Painting 

datasets to be identified faster.41 The AutoML approach presented in Siegismund et al showed 

that a subset of only 20–30 features was sufficient to represent the most relevant information 

from the morphological signature and successfully differentiate between the control class and 

perturbations; although this will likely depend on the endpoint being classified and the 

amount of data and the diversity of phenotypes in the profiled dataset.41 

3.2 Normalization and Batch Corrections for Cell Painting Profiles  

The importance of experimental design in Cell Painting assays should not be underestimated 

because it can substantially impact the efficacy of normalization methods.42 For example, it is 

important to minimize confounding factors related to batch effect variability within the 

morphological features. For example, Janosch et al. explored the selection of unbiased 

features solely using dimensionality reduction methods on images from negative controls.43 

For Cell Painting datasets, the Pycytominer tool normalizes data for individual plates, either 
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by using all wells or solely the negative control wells (using the RobustMAD method).40 

Pycytominer also implements the sphering transformation (also termed as “whitening”) of 

morphological signatures which can be viewed as a multivariate standardization strategy.30,44 

Sphering the profiles increased the percent replicating score – a measure of reproducibility of 

replicates of each sample – from 18–37% to 83–84% (for compounds at 10uM), although 

these results have not been consistently high across studies, and may be confounded by plate 

layout effects.44 

As part of the JUMP Cell Painting Consortium, Arevalo et al. conducted a comprehensive 

analysis of seven batch effect correction methods selected from a single-cell mRNA profiling 

benchmark study.45 They used qualitative visualizations in combination with 10 metrics to 

assess performance on image-based profiles, focusing on batch effect reduction and 

preservation of biological signals. These methods were applied to JUMP Cell Painting 

Consortium data for five scenarios of increasing complexity: batches from within and between 

different laboratories, within and between different imaging equipment, and with low and 

high numbers of replicates.  

Recent studies have begun to explore the potential of deep learning models for batch 

correction, aiming to separate noise from true biological signals in Cell Painting data. Yang et 

al. investigated a mean teacher-based model called DeepNoise, which was tested on the 

RxRx1 dataset consisting of 125,510 fluorescent microscopy images from Recursion for the 

CellSignal competition.46 The study found that DeepNoise effectively distinguished biological 

phenotypes from technical variations, achieving a multiclass accuracy of 99.60% compared to 

74.58% using plate-based normalization. However, the evaluation of the method had 

limitations due to the inaccessibility of the test dataset labels, which prevented extensive 
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comparisons with other models and further analysis of predictions on each of the four cell 

types, as well as the calculation of additional metrics such as specificity and sensitivity. 

Despite these limitations, the study indicates that deep learning methods may be more 

effective at learning batch-effect patterns in Cell Painting datasets compared to standard 

normalization approaches. 

4. Publicly Available Datasets 

Over the past decade, Cell Painting has been used to screen chemical compounds and genetic 

perturbation libraries to facilitate the extraction of phenotypic information from cells. The 

resulting datasets have provided invaluable insights into multiple areas of the life sciences. 

Image sets of varying sizes have been made available publicly in different locations, including 

the Image Data Resource47, the Broad Bioimage Benchmark Collection48, and university 

websites. Recently, the Cell Painting Gallery was launched to provide a central location for 

datasets of interest, hosted through Amazon Web Service’s Registry of Open Data.49 

Currently, three large Cell Painting datasets are publicly available for compound and/or 

genetic perturbations (Table 2), which contain many thousands of perturbations and are 

being used to study morphology signatures. 

Table 2: Large Publicly Available Cell Painting Datasets covering Compound or Genetic 
Perturbations 

Dataset  Release 

Date 

Type of Perturbations Cell Line  Number of unique 

perturbations 

(compounds or 

genetic) 

References 
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Bray et al. 

Cell Painting 

Dataset 

January 

2017 

Compounds U2OS 30,616 bioactive 

compounds 

50 

Recursion 

RxRx3 

dataset 

January 

2023 

CRISPR/Cas9-

mediated gene 

knockouts and 

compounds with 

dose-response 

HUVEC 17,063 CRISPR/Cas9-

mediated gene 

knockouts (most 

anonymized) and 

1,674 compounds at 

8 concentrations 

each 

51 

JUMP-CP 

dataset 

March 

2023 

Over-expression of 

genes, knockout of 

genes using CRISPR-

Cas9, and compounds 

U2OS Over-expression of 

12,602 genes, 

knockout of 7,975 

genes using CRISPR-

Cas9, 116,750 unique 

compounds 

22 

 

Wawer at al. from the Broad Institute released the first large public Cell Painting dataset in 

2014; the same data was further refined and re-released in Bray et al. 2017, covering over 

30,616 compounds in human U2OS cells.50,52 More recently, Recursion Pharmaceuticals 

released their RxRx3 dataset, their largest to date.51 Rxrx3 consists of approximately 2.2 

million multi-channel microscopy images, representing over 1,674 unique compounds and 

17,000 genes profiled in the HUVEC cell line. They gathered this data through their efforts to 

develop treatments for various diseases; however, there is one caveat: most genes are 



 

 

 24 

anonymized to protect their business interests. The JUMP-Cell Painting Consortium recently 

released a large-scale dataset involving the U2OS cell line, perturbed with over 116,750 

different molecules, 12,602 gene overexpression reagents, and 7,975 gene knockouts using 

CRISPR-Cas9.22 A comparison of the chemical space of compounds from these three large 

datasets is shown in Figure 4. Several studies have also released smaller datasets (derived 

from the Broad Institute’s large public datasets) that provide different modalities of data 

along with Cell Painting. One recent study by Haghighi et al. provided a collection of four 

datasets covering 28,000 genetic and compound perturbations in both the Cell Painting and 

L1000 (for gene expression) assays.53 Another study by Dafniet et al. released a 

chemogenomic library of 5,000 small molecules by integrating drug target-pathway-disease 

relationships with morphological profiles.54 This dataset includes 2,473 chemical-target 

interactions covering diverse biological contexts that can be used in combination with Cell 

Painting morphological signatures accessible from the Broad Institute’s datasets to facilitate 

target identification. Most recently, several pooled, genome-wide CRISPR perturbation 

screens’ data were released, in which Cell Painting was adapted to an optical barcoding 

scheme.55 



 

 

 25 

 

Figure 4. The physicochemical space of compounds in the three publicly available Cell Painting 
datasets. The physicochemical space was defined by using t-distributed Stochastic Neighbor 
Embedding (t-SNE) embeddings from six descriptors: molecular weight, topological polar 
surface area, number of rotatable bonds, hydrogen bond acceptors, hydrogen bond donors, 
and log P. 

 

5. Applications of Cell Painting Data  

As in most scientific domains, the processing and downstream analysis of Cell Painting data 

(Figure 1c), often using Machine Learning (ML) and statistical approaches, have enabled 

complex patterns in such data to be identified and accurate predictions to be made. ML 

models used in biological sciences research offer new frameworks for understanding 

biological systems through the lenses of information compression, qualitative intelligibility, 

and dependency relation modelling.56 These algorithms are particularly well-explored for 

analyzing morphological profiles to predict the safety or toxicity of unknown compounds, 
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both in vitro and in vivo, and to predict MOAs and targets.57–59 Supervised methods are used 

when labeled datasets are available (that is, the "correct answer", or ground truth, is known 

for each sample), enabling the algorithms to be trained to predict specific outcomes and 

patterns from feature representations. Unsupervised methods are used to investigate the 

similarities among samples in the feature space itself without needing labelled data. Such 

clustering can be based on similarity, distance, or density metrics. Deep learning-based 

methods have also been applied to Cell Painting data, both to train predictive models and to 

calculate morphological features directly from raw images (rather than using classical 

algorithms). In the following sections we discuss the different applications of Cell Painting 

data, using ML and statistical approaches, to aid drug discovery. 

5.1 Predicting Mechanisms of Action 

The Cell Painting assay offers a comprehensive view of cellular responses to compound 

perturbations, enabling the identification of mechanisms of action (MoA) for compounds that 

induce morphological changes detectable by the assay. This identification process involves 

comparing the phenotype of a query compound to those of 'landmark compounds' with 

known MoAs. However, defining a compound's MoA is complex, as compounds can have 

multiple targets with varying affinities, and genes and proteins downstream of the direct 

targets may be altered differently in various cell types (e.g., expression levels, 

phosphorylation levels). As a result, binary labels for MoAs in datasets often oversimplify the 

reality (see Trapotsi et al. for more details).60 Moreover, the resolution of MoAs that can be 

adequately described by any profiling assay, including Cell Painting, transcriptomics, or 

proteomics, is limited because these assays, individually or collectively, do not capture every 

possible cellular response. While they provide valuable insights into some MoAs, the 
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applicability of Cell Painting data for each MoA must be established separately. It is important 

to note that 'Mechanism of Action' is a broad term, and studies in this section may discuss 

target-related MoA predictions, such as drug-target interactions, or biological process-related 

MoA predictions. 

5.1.1 Predicting Biological-process-related Mechanisms of Action  

Early studies in the field initially focused on exploring the efficacy of data derived from the 

Cell Painting assay to distinguish compounds’ MoA under different experimental conditions, 

such as the number of channels and multiple cell lines. Cimini et al. analyzed 90 compounds 

and found that collected data are robust to changes in the measured channels, however 

datasets are small and specific phenotype(s) of interest may depend on compartments that 

are less critical for the compounds in the study.21 Therefore, it would be interesting to 

reassess this with newer and larger publicly available datasets. A study by Rose et al. 

investigated the impact of using multiple fluorescent dyes for DNA, actin and tubulin, which 

partially overlap with the Cell Painting dyes, and 453 CellProfiler features were extracted in 

total to predict the MoAs of different compounds.61 First, they investigated 38 drugs from the 

BBBC021 dataset which included 12 relatively distinguishable MoA labels (including actin 

disruptors, DNA damage, kinase inhibitors, and others), achieving up to 83% MoA prediction 

accuracy with three staining channels (DNA, actin, tubulin). Accuracy remained at 68% using 

the DNA channel alone. Rose et al. next determined whether using multiple cell lines with 

fewer markers could be more effective than using multiple dyes on a single cell line.61 To do 

this, they used 10 cell lines with fewer markers to test 614 compounds, which targeted 113 

gene products. By using an ensemble voting method (target within the top five predictions), 

they achieved an accuracy of 25% compared to a random classifier (accuracy 0.09%). They 
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found that incorporating additional cell lines incrementally increased the overall prediction 

accuracy; however, as nine of the ten cell lines were biologically similar to each other, it would 

be useful to test whether including a more diverse set of cell lines could further improve 

prediction accuracies. A few years later, Cox et al screened 1,008 approved drugs and well 

characterized compounds (218 unique MoAs) at four concentrations in a high content screen 

against a panel of 15 reporter cell lines (three cell lineages, 12 organelle and pathway 

markers; grouped in five combinations).62 Morphological profiles of these compounds 

(generated using PerkinElmer Acapella/Columbus software) were used for MoA prediction, 

and the treatments with active reference compounds were ranked based on their 

mechanisms of action. This ranking involved calculating the area under the receiver operating 

characteristic curve (AUC-ROC) for each MoA and a high AUC-ROC value (≥ 0.9) indicated that 

the MoA could be clearly distinguished from others. Results showed that 20 out of 83 MoAs 

were readily distinguished in the best single cell line. The number of distinguishable MoAs 

increased with the addition of each cell line but this effect quickly plateaued around 41 MoAs, 

that is, 41 out of 83 MoAs were readily distinguished across all 15 reporter cell lines.  

The selection of channels and cell lines are not the only parameters that were investigated to 

improve MoA classification accuracy. For example, using the BBBC021 and the BBBC022 

(U2OS cells treated with 1,600 known bioactive compounds) datasets, Janosch et al. explored 

the selection of unbiased features using images from negative controls, using only 

dimensionality reduction methods to improve compound MoA classifications.43 They 

hypothesized that if a feature remains reproducible within all negative control wells, any 

significant changes would likely be due to a perturbation rather than a technical variation. 

They compared their method with a benchmarked dimensionality reduction method (L1-
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norm) and then classified MoAs using the reduced features. In both the BBBC021 and the 

BBBC022 datasets, their proposed method using binned, stable parameters produced the 

second-highest accuracy. Removal of the noisiest parameters improved MoA classification 

accuracies (from 17.66% to 20.19% for the BBBC022). However, their proposed method 

showed better generalization when they trained models without seeing a class, for example 

with 180 compounds as dopamine receptor antagonists, 118 compounds were misclassified 

by L1-norm, whereas 115 were misclassified by their proposed method. Therefore, this 

method can be used to further select features for downstream analysis and authors suggest 

that the method could be further improved by applying deep learning methodologies.  

5.1.2 Identifying Biological-process-related Mechanisms of Action using similarity based 

approaches 

Moreover, the similarity of query compounds to reference compounds has been extensively 

used as a strategy to better understand MoA. Svenningsen et al. used this strategy to 

investigate the MoA of 9-methylstreptimidone63 They calculated the Pearson correlation 

between the Cell Painting profiles of 9-methylstreptimidone and reference compounds 

known for their effects on protein synthesis inhibition, DNA synthesis, and tubulin dynamics 

modulation. 9-methylstreptimidone had the highest similarity to cycloheximide, a known 

protein synthesis inhibitor. Further validation confirmed that 9-methylstreptimidone acts as 

dose-dependent protein synthesis inhibitor. 

Other studies have used the same “guilt-by-association” strategy to assign the MoA, that is, 

by comparing test compounds with reference compounds to understand their biological 

processes. Autoquin, a previously uncharacterized autophagy inhibitor compound, was found 

to be similar to iron chelators and to induce S-phase arrest. 64,65 Similarly, diaminopyrimidine 



 

 

 30 

DP68 was identified as a Sigma 1 (σ1) receptor antagonist.66 Cell Painting-based similarity 

approaches have also led to the discovery of several unexplored small molecules that 

modulate microtubules67, inhibitors of pyrimidine biosynthesis, and three novel scaffolds 

targeting dihydroorotate dehydrogenase (DHODH).68 The most commonly detected MoAs in 

Cell Painting readouts include microtubule modulation67,69, DNA damaging agents30, 

mitochondrial membrane depolarisation69–71, and inhibitors of the plasma membrane Na+ 

pump69, among others. It is important to note that the ‘guilt-by-association’ strategy is limited 

by the number of compounds with known MoA annotations, making the development of 

comprehensive reference sets crucial for their success. 

5.1.3 Identifying Biological-process-related Mechanisms of Action using Deep Learning 

approaches  

Apart from using pre-defined classical Cell Painting features as described in most studies 

above, another way to use imaging data involves using convolutional neural networks (CNNs), 

a type of deep learning architecture, directly on images of cells generated from Cell Painting 

assays. CNNs are adept at identifying correlations between objects and extracting meaningful 

information from images and can therefore be used to classify cellular phenotypes (Figure 5).  
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Figure 5. Summary of Convolutional Neural Network Analyses of Cell Painting Images. The 
input image consists of a matrix with pixel values. The convolution filters (smaller weight 
matrices) slide over the input image, detecting patterns such as edges, textures, and shapes, 
resulting in a feature map. An activation function (e.g., ReLU) is then applied element-wise, 
which introduces non-linearity into the model. Pooling then reduces the spatial dimensions 
of the feature maps (Step 1). Finally, the high-level features extracted from the image are 
flattened into a one-dimensional vector and arranged into fully connected layers to produce 
final classification scores for each category (Step 2).  

 

One of the earliest studies by Durr et al. developed a CNN that classified single-cell 

phenotypes based on images generated from Cell Painting assays.72 They trained CNNs to 

classify MoAs (including tubulin modulation, modulation of neuronal receptors, and cytotoxic 

MoAs) using approximately 40,000 single-cell images for 75 bioactive compounds and a 

DMSO negative control.72 The CNN models misclassified 6.6% of all cells while models trained 

on numerical features from CellProfiler misclassified 8.9%, suggesting limited value in using 

CNNs compared to CellProfiler features. Applying CNNs to more challenging tasks, where 

traditional approaches do not perform well, will be useful to understand the potential added 

value of CNNs.  

While the study by Durr et al. focused on using CNNs for directly classifying MoAs, another 

important aspect of deep learning in the context of Cell Painting is learning meaningful 
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representations from the image data. These learned representations can capture important 

phenotypic features and confounding factors, which can then be used to improve 

downstream analyses, such as predicting MoAs or matching biological compounds. Several 

studies have explored various approaches to representation learning using deep learning in 

Cell Painting assays. 

One such study by Moshkov et al. introduced a novel approach to learning representations 

from Cell Painting data. They trained a deep convolutional neural network architecture 

(known as EfficientNet) using only phenotypically strong compounds from three Cell Painting 

datasets. The features computed by EfficientNet accounted for both confounding factors and 

phenotypic features within the learned representation. This approach improved downstream 

analysis for matching biological compounds by 30% compared to using classical features. 

Studies such as Moshkov et al. highlight the potential of self-supervised learning strategies to 

learn meaningful representations that can enhance various downstream tasks, including MoA 

prediction.34 Given the field's rapid expansion in 2023-24, a detailed examination of 

representation learning strategies exceeds the scope as we confined our systematic review 

to articles published prior to the June 2023 cut-off date, making select exceptions for some 

articles published during to the time of writing. There is an ever-growing scope of 

representation learning in Cell Painting with the availability of large datasets. 

5.2 Cell Painting in Hit Discovery  

Cell Painting can also be used to potential 'hits'—compounds showing targeted biological 

activity—and to identify novel active compounds with therapeutic potential. While 

supervised ML models learn from previously defined categories, an outlier test such as 

novelty detection (ND) instead recognizes ‘novel’ (unknown) patterns, thus predicting 
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whether compounds exhibit any biological activity.73 For this, they used Cell Painting features 

for 641 validated and highly selective pharmaceutically relevant inhibitors over 123 targets to 

train models and they further used two additional validation sets (one for compounds that 

affect cell cycle and another with staurosporines). They found that a ND algorithm with an 

ensemble of classical ML algorithms was suitable to search for new active compounds. The 

ND method (LocalOutlierFactor from scikit-learn39) learns patterns of the data and compares 

the new samples with the learnt pattern by using a density function to determine whether 

new samples belong to the known dataset or not. Two NDs were trained; one with the 

bioactive compounds and another with the control groups and for a compound to be 

classified as “novel” both NDs should agree. Results on the two validation sets showed that 

for the cell cycle data, accuracy increased by 15% to 93% compared to not using ND, while 

specificity and precision remained the same and recall improved from 82% to 100%. For the 

other validation set, the performance of the model remained the same. This approach can be 

useful to identify bioactive compounds with ‘novel’ phenotypic responses. In addition, 

Nyffeler et al. compared various computational strategies to determine bioactivity hits using 

a Cell Painting assay and showed that nine out of ten approaches were highly concordant for 

82% of the tested chemicals.74 This indicates that Cell Painting assays contain a signal for 

bioactivity that can be used to predict assay hit calls via different approaches.  

Cell Painting assays have also been used to elucidate the biological targets or actions of 

previously uncharacterized Dark Chemical Matter (DCM). These DCM compounds are usually 

analogs of bioactive compounds with drug-like features that lack biological activity in assays 

used to characterize the equivalent analogue structures. Pahl et al. profiled 7,700 DCM 

compounds with the Cell Painting assay and showed that 12% of them resulted in significant 
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morphological changes (compared to a DMSO neutral control).75 They selected 371 

compounds and performed a cluster sub-profile analysis to identify their MoAs, comparing 

them with compounds with known MoAs (DNA synthesis inhibition, tubulin, and uncoupling 

of the mitochondrial proton gradient, among others). This analysis identified compounds 

associated with microtubule modulation, DNA synthesis, and pyrimidine biosynthesis.  

5.3 Cell Painting in Assay Activity Prediction 

Cell Painting data have proven useful in bioactivity prediction and drug-target interactions. 

For example, a landmark study by Simm et al. (2018) investigated using a three-channel 

glucocorticoid receptor (GCR) high-throughput imaging assay (in contrast to five-channel Cell 

Painting assays), which produced an 842-dimensional morphological fingerprint.76 The 

multitask models developed in this study to predict assay activity performed highly 

(AUC>0.90) for a small subset, namely 31 out of 535 assays. Selecting two projects for 

prospective follow-up, they improved hit rates by 50-fold for a kinase target in an oncology 

project (from 0.725% to 36.3% hit rate) and by 289-fold for a non-kinase enzyme in a CNS 

project (from 0.088% to 25.5% hit rate). Both targets had no obvious connections to the 

glucocorticoid receptor for which the imaging assay was developed. This landmark study 

showed that these imaging assays generated broadly useful features that could then be used 

to predict activity on a wider range of biological targets.  

Hofmarcher et al. then explored the ability of CNNs to predict the bioactivity of compounds 

in 209 biological assays.77 They compared CNN models trained directly using Cell Painting 

images with fully connected neural networks (FNNs) trained using classically extracted 

numerical features and concluded that the former (mean AUC=0.73) were better than the 

latter (mean AUC=0.675). This highlighted that the raw-image CNN models could capture 
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information, such as morphological characteristics, from Cell Painting images that may be 

overlooked by predefined CellProfiler features.77 In addition to CNNs, transfer learning—

where the knowledge of a pre-trained model (e.g., image-based knowledge) is transferred or 

fine-tuned to another model to perform a similar task (e.g. Cell Painting data)—is useful, 

reducing the need to train Deep Neural Network (DNN) models from scratch; this is being 

increasingly explored for cell imaging data especially when there is less data for the training 

of a DNN model.78  

Various indicators of cell state or cell health can be detected using specific hypothesis-based 

dyes that reveal specific toxicity or anti-tumorigenic effects, such as apoptosis, DNA damage, 

and Reactive Oxygen Species (ROS) generation, among others. In contrast to the less 

expensive, hypothesis-free morphology signatures obtained in Cell Painting, indicators of cell 

state provide insight into exact cellular responses. That said, many aspects of cell health can 

be inferred from Cell Painting data (beyond a simple cell count), including the percentage of 

dead cells (R2=0.62), number of S-phase cells (R2=0.64), level of DNA damage in G1-phase cells 

(R2=0.51), and percentage of apoptotic cells (R2=0.37).30 Aside from providing insights into cell 

health, Cell Painting can also be used to study effects on individual sub-cellular 

compartments. For example, with multiple drugs where the endoplasmic reticulum (ER) was 

a downstream target, expectedly 80% of ER-related features were affected compared to 

other organelles.79  

Other studies using similar ML methodologies compared bioactivity predictions based on Cell 

Painting and chemical structure information.80,81 Prediction accuracies for targets like β-

catenin (usually assayed using a specific stain) were better when using a BMF Macau model 

with Cell Painting profiles as side information (F1 score = 0.87) compared to a model using 
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only chemical structural data (F1 score = 0.48).80 Another study showed that the models that 

combined structural information and Cell Painting profiles, using similarities to training data, 

improved the AUC by 16.3% compared to models that only used chemical structure 

information.81  

5.5 Phenotypic profiling of structurally diverse compounds  

Considering structural diversity when creating small molecule libraries ensures the coverage 

of a vast spectrum of biological and functional relevance, facilitating the discovery of small 

molecules that can modulate specific targets. One way to generate a wide array of structurally 

distinct compounds is diversity-oriented synthesis (DOS).82 These libraries could involve 

compounds that are structurally similar to known drugs or natural products. Phenotypic 

profiling, particularly with the Cell Painting assay, is increasingly being used to evaluate and 

characterize compounds generated through diversity-oriented synthesis. For example, in 

2016, Nelson et al. explored the use of Cell Painting-based phenotypic profiling to compare 

the biological activity of certain sp3-rich (carbon atoms with four single bonds) chemical 

compounds known as tetrahydrocyclopenta[c]pyranone derivatives.83 They found that two of 

the epoxy ketone diastereomers synthesized caused striking cellular responses and induced 

consistent morphological changes for all doses, prompting studies to compare their 

morphological signatures to reference compounds. Studies using structurally diverse, 

reduced flavones and their Cell Painting profiles have shown that the fraction of sp3 

hybridized atoms is not the only factor for enhanced biodiversity, but stereochemistry and 

appendage diversity are also contributors.84,85 More recently, biology-oriented synthesis has 

focused on pseudo-natural products, and to this end, Christoforow et al. characterized the 

potential bioactivity of novel classes of pyrano-furo-pyridone (PFP) pseudo-natural 

products.86 They found that among the five initial hits (exhibiting bioactivity in the assay), the 
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morphological profiles exhibited more than 70% similarity to the reference compound 

profiles; this then helped them to decipher their MoAs. Other studies have explored the use 

of target agnostic (hypothesis-free) Cell Painting to determine the phenotypic roles of novel 

compounds compared to reference compounds, including indocinchona alkaloids87, a natural-

product inspired flavonoid library88; spiroindane pyrrolidines89; pyrroquinoline pseudo-

natural products90; and indofulvin pseudo-natural products91. Recently in 2023, a study by Liu 

et al. identified the mitotic kinesin, Eg5, as the molecular target for spirooxindoles—unique 

inhibitors of the kinesin Eg5 chemotype.92 Overall, phenotypic profiling enables the bioactivity 

and MoA of diversity-oriented synthesized compounds to be predicted based on their 

similarities with reference compound activity profiles, which in many cases, can reveal new 

chemical scaffolds of interest. 

5.6 Predicting Compounds Toxicity 

More recently, Cell Painting assays have been used to predict multiple safety/toxicity-related 

assay outcomes, including effects on the cell cycle, cytokinesis, and cytoskeletal morphology. 

The Cell Painting assay was found sensitive enough to detect cell growth and viability at sub-

lethal concentrations of podophyllotoxin, microtubule destabilizer, which resulted in a 50% 

reduction in cell count, even at the lowest tested concentration of 0.3 nM. 93 In addition, Seal 

et al. predicted the outcomes of 12 cytotoxicity- and proliferation-related in vitro assays using 

Cell Painting data profiles.94 These models achieved an AUC of 0.71 compared with an AUC of 

0.56 achieved by models using only chemical data (when using Morgan fingerprints). Using 

Cell Painting data to predict in vitro activity is not only limited to cell-based toxicity. Trapotsi 

et al. successfully predicted mitochondrial toxicity with an AUC = 0.93 when using Cell Painting 

profiles.95. In addition, in the same study they included both small molecule compounds and 

PROteolysis Targeting Chimeras (PROTACs), which have garnered attention due to their 
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unique bifunctional nature and potential ability to degrade ‘undruggable’ targets.95 Trapotsi 

et al. showed that Cell Painting could be used to identify PROTAC phenotypic signatures, but 

that these did not necessarily correlate with the Cell Painting profiles of their individual 

components (i.e., the POI ligand and the E3 ligase ligand). This further highlights the 

advantages of using Cell Painting for safety assessment of new therapeutic modalities where, 

as opposed to small molecules, no decades of experience and best practice have been 

established.  

5.7 Phenotypic profiling of compound mixtures 

Cell Painting has also been used to profile compound mixtures. For example, Pierozan et al. 

examined the responses of human breast epithelial cells to low-concentration mixtures of 

perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA), two widely used 

industrial chemicals.96 Through Cell Painting, they were able to demonstrate the synergistic 

effects of these compounds on cell proliferation, even at very low concentrations (500 pM). 

This illustrates that the sensitive multiparametric nature of the Cell Painting assay can reveal 

alterations in cell morphology and toxicity. In another study, Rietdijk et al. have explored using 

Cell Painting to profile the effects of combining different environmental chemicals on four cell 

lines; in one example, Bisphenol A (BPA) did not cause significant morphological changes to 

cells when screened on its own. However, it caused various synergistic effects in three out of 

four cell lines (U-2 OS, A549 and MCF7 cells) when combined with the cationic compound that 

is used as an antibacterial and antifungal surfactant called Cetyltrimethylammonium bromide 

and Dibutyltin dilaurate, which is widely used as industrial chemical, serving as an antifouling 

coating, and in pesticides and fungicides.97 In conclusion, Cell Painting assay was shown to 

elucidate biological effects exhibited by various mixtures of compounds. 
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One key Cell Painting development has been the assembly of sets of reference compounds 

with well-characterized toxic effects. These references can be used as benchmarks against 

which to compare novel compounds. Recently a study by Dahlin et al. established a reference 

set of 218 prototypical cytotoxic and nuisance compounds in U2OS using a concentration-

response format (0.6–20uM). The compounds associated with cellular injury produced 

distinct morphological clusters (e.g., a genotoxin cluster and a tubulin poisons cluster). In 

addition, nonspecific and suboptimal probes ‘historical’ KAT inhibitors (hKATIs) produced 

profound morphological profiles, and compounds associated with cell damage, such as 

genotoxins, produced robust phenotypes. Concentration was an important parameter of 

cellular injury-related phenotypes. For example, some compounds, when present at higher 

concentrations trigger cellular responses called “cytotoxicity burst”; these higher compound 

concentrations activated multiple stress responses within the cell rather than affecting a 

singular target. This dataset can be used to characterize cellular injuries.31  

Cell Painting is an in vitro assay that captures changes in cell morphology, but several studies 

have explored its ability to predict in vivo compound perturbation effects. In 2020, Nyffeler 

et al. performed an in-vitro-to-in-vivo extrapolation (IVIVE) of in vitro potency estimates 

obtained through Cell Painting.98 They used reverse dosimetry to calculate administered 

equivalent doses (AEDs) and compared them to effect values from in vivo mammalian toxicity 

studies. They observed that 68% of the Cell Painting-based AEDs were either similar to or 

more conservative than the in vivo studies.98 This shows that Cell Painting screens might be 

used to derive AEDs similar to traditional IVIVE practices. In 2023, Nyffeler et al. determined 

a phenotype altering concentration of compounds and used IVIVE to determine the 

administered equivalent doses (AEDs) to predict human exposure.99 For 18 out of 412 
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chemicals, in vivo-relevant toxicity was observed at the given exposure, that is, the AEDs 

overlapped with predicted human exposures.99 On a larger scale, the U.S. Environmental 

Protection Agency (EPA) is working towards using transcriptomics and Cell Painting data in 

their risk assessments.100 In the future, new sources of relevant in vivo toxicity annotations, 

and the inclusion of pharmacokinetic (PK) information101,102, might be used to augment Cell 

Painting data in predictive toxicology. 

Overall, leveraging Cell Painting data has the potential to enhance toxicity predictions. 

Expanding the scope of the models using high-dimensional data can enable patterns and 

relationships to be identified effectively, offering the potential to triage compounds for 

certain hypothesis-based assays in future. 

5.8 Using Cell Painting Assays to Advance Disease Understanding  

Understanding disease biology and developing potential therapeutic interventions involves 

many steps, including disease modeling and biomarker discovery. The Cell Painting assay has 

been used to functionally associate human genes and disease-associated alleles based on the 

similar morphology of cells when those genes are perturbed, or alleles are present. Rohban 

et al. used this approach to reveal a previously unknown interaction between the NF-κB 

pathway and Hippo pathways, which regulate tumorigenesis and tumor progression103, and 

furthermore to identify promising compounds that match a desired phenotypic profile 

impinging on those pathways.104 Disease-specific morphological signatures can serve as 

biomarkers for disease diagnosis or prognosis, or to monitor therapeutic responses. For 

example, Cell Painting assays have been used to model cancer cell morphologies to identify 

the distinct morphological signatures associated with esophageal adenocarcinoma and 

responses to selective modulators for these phenotypes.105,106 Cell Painting image-based data 
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of cells overexpressing specific cancer-associated variants could also be used to predict the 

functional impacts of somatic variants, including at the single-cell level.29  

Cell Painting has been used for antiviral drug discovery identifying virus-induced phenotypic 

signatures in virus-infected and non-infected cells.26 In this study, they showed that treatment 

of infected cells with a panel of various host- and virus-targeting antivirals could reverse the 

morphological profile of the host cells towards that of a non-infected cell. It was also used to 

explore novel therapies for ER stress-associated disorders  by identifying compounds that 

corrected aberrant morphological phenotypes associated with ER stress.107 Cell Painting has 

also been used to investigate transcription factor EB (TFEB) signaling and lysosomal 

dysfunction by detecting phenotypic changes in organelles in response to TFEB localization.108 

Finally, the assay was also used to investigate drug resistance in anti-cancer therapy109 by 

identifying the morphological signature of bortezomib treatment resistance in cells.  

Another application of Cell Painting aimed to investigate relationships between genetic 

variants and cellular morphology in induced pluripotent stem cells (iPSCs).110 Novel 

associations (“cell morphology quantitative trait loci” - cmQTLs) were identified between rare 

protein altering variants in WASF2, TSPAN15, and PRLR and morphological changes in the cell 

shape, nucleic granularity, and mitochondrial distribution. Further knockdown of these genes 

by CRISPRi confirmed their role in cell morphology, and hence morphological profiling can 

yield insight about the function of genes and variants. McDiarmid et al. previously used Cell 

Painting data to reveal 16 FDA-approved drugs from five mechanistic groups that were able 

to reverse morphological signatures associated with Alzheimer disease – risk gene SORL1 

variants in neural progenitor cells.111 Overall, the broad and multidimensional data generated 

by Cell Painting assays not only provides opportunities for new insights into complex cellular 
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responses but can also reveal novel therapeutic targets and strategies for drug discovery and 

repurposing.  

5.9 Integrating Cell Painting, Transcriptomics, and Proteomics Data 

Given that Cell Painting readouts describe only one category of biological phenotype, one 

possibility to improve predictive models is to integrate Cell Painting data with further 

biological data, such as gene expression and proteomic data.112 Nassiri and McCall integrated 

Cell Painting with LINCS (Library of Integrated Network-Based Cellular Signatures) gene 

expression data for improved insight into MoAs.113 They used a reference database of 9,515 

compounds to identify compounds with similar gene expression changes, followed by ‘cell 

morphology enrichment analysis’. The enrichment analysis involved identifying significant 

associations between changes in cell morphology and gene expression, and then modeling 

these associations using ML and hence generating a dataset of the associations between 

genes and each morphological feature. They investigated the regulatory mechanisms 

underlying compound-induced changes in both gene expression and cell morphology for 

three compounds by performing pathway enrichment analysis. By integrating both Cell 

Painting and LINCS data and methods, this study revealed a novel interdependence between 

gene expression and cell morphologies and proposed using these relationships to infer 

compound MoAs.  

Combining Cell Painting and gene expression data was also explored by Way et al., who 

showed that, together, they provided complementary information for mapping cell states. 44 

Individually, Cell Painting could group compounds sharing the same MOA 44% of the time and 

mRNA profiles 50% of the time (across all doses), but when combined, attained 69% when 

comparing across doses.44  
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The benefits of integrating Cell Painting data also apply to protein profiling. Particularly, 

combining nELISA protein profiling and Cell Painting profiling data can provide 

complementary information. One study explored this by testing 306 well-characterized 

compounds with established MoAs using both profiling methods. 114 They then determined 

whether the two profiling methods were able to retrieve the known MoAs based on shared 

phenotypes. Cell Painting and nELISA profiling methods successfully retrieved compounds 

that shared at least one common MoA in 21.2% and 26.7% of cases, respectively. Some 

compounds were well predicted by both platforms while each platform showed better 

predictions for distinct subsets of compounds. Tian et al. found that combining morphology 

and chemical structure data significantly improved F1 detection scores for 10 well-

represented MoA classes compared to using morphology data alone, with scores improving 

from 0.81 to 0.92, respectively.115 Another study combined morphological profiling with 

proteome analyses to reveal lysosomotropic activity leading to cholesterol homeostasis 

disruption for the natural product-inspired compound, tetrahydroindolo[2,3-a]quinolizine 

derivative.116  

Another study combined RNA-Seq and Cell Painting data to estimate the phenotype altering 

concentration of a set of 11 mechanistically diverse compounds, and found that for most of 

the compounds, the phenotype altering concentration from Cell Painting and biological 

phenotype altering concentration from RNA-Seq were within half an order of magnitude.117 

Furthermore, they found that combining both modalities provided the best potency 

estimates, particularly for compounds with strong morphological signatures that did not 

affect expression of target genes (ATRA in this study).  
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Morphological features and gene expression data were also used by Cerisier et al. to explore 

associations between chemicals and disease by developing a biological network combining 

chemical-gene-pathway-morphological perturbation and disease relationships.118 They 

investigated two chemicals (amiodarone and prochlorperazine) because both showed a risk 

for drug induced liver injury (DILI) in humans and thus, they assessed if they share common 

information in Cell Painting and L1000 dataset. They found a direct relation between 

deregulated genes and cell morphology observations. This was one of the examples that the 

authors used to demonstrate that some compounds shared similar genes, pathways, and 

morphological profiles. Previously, combining proxy-DILI labels with chemical and 

pharmacokinetic features, achieving improved detection accuracy and differentiation 

between animal and human DILI sensitivity and it remains to be seen if -omics datasets such 

as Cell Painting, gene expression and proteomics data can be used for DILI prediction, which 

is one of the aims of the recently established OASIS consortium.119,120 Overall, where multiple 

modalities can be considered together, that could help in elucidating chemical-phenotype 

observations. 

In another study, Seal et al. combined gene expression and Cell Painting data to predict 

mitochondrial toxicity using machine learning models.69 Their model, which incorporated 

information on gene expression, cell morphology, and chemical structure, improved F1 

detection scores to 0.40 (from 0.25 using chemical structures alone). This was explored 

further with the recently developed similarity-based merger model, which increases the 

applicability domain as well as the diversity of assays that would be well predicted.81 

Similarity-based merger models combine the outputs of individual models trained on Cell 

Painting data and chemical structure information based on the structural and morphological 
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similarities of the compounds in the test dataset to compounds in the training dataset. 

Models were trained for 177 assays to predict assay hit calls and the similarity-based merger 

models outperformed other models by an additional 20% assays (79 out of 177 assays) having 

an AUC > 0.70 compared to 65 out of 177 assays using chemical structure information alone 

and 50 out of 177 assays using Cell Painting information alone. 

Most recently, Sanchez-Fernandez et al. developed CLOOME, a multi-modal contrastive 

learning algorithm, to combine chemical structure data and Cell Painting images into a unified 

space. Their retrieval system correctly identified the image corresponding to a given 

compound with an accuracy approximately 70 times higher than a random baseline model; 

this system was also used to predict compound activity (in a similar setting as Hofmarcher et 

al.) and CLOOME achieved an AUC of 0.714+0.20 across all prediction tasks.121 This result 

indicates that the learned representations are transferable to different tasks (in this case 

bioactivity prediction) since no activity data were used to train the CLOOME encoders. Using 

images directly therefore enables unbiased insight into information contained within that 

image without requiring classical feature extraction algorithms. Overall, the integration of Cell 

Painting with diverse and complementary -omics modalities such as transcriptomics and 

proteomics can offer more comprehensive insights into the biological impacts of compounds 

and improve the accuracy of MoA predictions.
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CHALLENGES AND FUTURE DIRECTIONS  

There are many avenues for improving image-based profiling in the future. One major 

challenge is the interpretation of morphological profiles. While sophisticated image analysis 

algorithms and machine learning methods can extract and analyze complex morphological 

signatures, interpreting these computational/statistical signatures can be challenging, even 

for classical algorithms where features are precisely defined mathematically. The BioMorph 

space attempts to address this by linking 827 Cell Painting features to 412 descriptive terms, 

based on mapping to assays capturing phenotypes of cell health122. However, for broad utility, 

mapping to more assay data would be needed.  

A second challenge relates to data handling and storage.123 The high-content nature of the 

Cell Painting assay generates vast amounts of data, which can be challenging to store, 

manage, and share, and the data requires considerable computational resource to process 

and analyze. Cloud-based solutions and open-source software tools are emerging to address 

these challenges124, but increasing their user-friendliness would expand the use of this data 

type.  

Another challenge is relevant to larger Cell Painting studies and common to all high-

throughput assays: the adoption of assay miniaturization in academic and small company 

settings, to enable higher throughput and more cost-effective screening. 384-well format is 

commonly used for Cell Painting but requires high-throughput equipment as does the 1536-

well format microplate recently demonstrated for Cell Painting assays in the industry.125,126  

We see great promise in extending the Cell Painting assay (originally developed with 2D cell 

cultures) for use with more physiologically relevant systems such as 3D cell cultures, 

organoids127, tissue slices, and live cell imaging.128 
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Finally, improvements in deep learning methods have dramatically altered the landscape in 

many fields of scientific research and we expect the same for Cell Painting data. Already, 

promising improvements have been made but there remains much room for improvement, 

particularly in batch correction methods that can extract biologically meaningful signals from 

technical noise.45  

To conclude, over the past decade, the Cell Painting assay has evolved from a promising 

concept to a widely used tool for drug discovery and cellular biology. It has provided insights 

into the complex world of cellular morphology, expanding our understanding of disease 

mechanisms, and enhancing drug discovery processes. Continued advancements in Cell 

Painting (and advances towards extracting similar information from brightfield images) offer 

promising prospects, particularly for characterizing cellular responses, developing 

personalized medicine strategies, and providing deeper insights into complex biological 

processes. 

SIGNIFICANCE 

The adoption of Cell Painting and related technologies within the pharmaceutical industry and 

academic has been steadily growing. The availability of large Cell Painting datasets has 

empowered the exploration of machine learning methods on a wide range of biological 

endpoints. This expanded scope opens new possibilities for predictive modeling and 

comprehensive assessments of compound toxicity. However, transitioning from the 

introduction of a novel assay to achieving widespread implementation is not without its 

challenges, as recently noted for both image-based and transcriptional profiling.129 It takes 

time to fund and conducting large-scale experiments, and accumulate experience. As 

observed with Connectivity Map—a genomic database released in 2006 that links drug 
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compounds to gene expression profiles—launching a new tool or technique requires 

considerable time and evaluation under different contexts before it is widely adopted. 

Consortia can serve a valuable role in evaluation, offering several advantages, including 

pooling resources to increase sample sizes and the potential for experimental design to 

encompass a broader range of applications and chemical space. The involvement of multiple 

companies, organizations, and societies can foster collaborations and ensure the success of 

these endeavors. In summary, with the availability of larger datasets, increased industry 

interest, and the potential for collaboration through consortia, the future looks promising.  

METHODS 

Literature Search 

The literature search was conducted using three major databases: ScienceDirect20, 

PubMed18,and Scopus19, and completed in June 2023. All searches required the words “Cell 

Painting” to be present in the title, abstract, and subject terms/keyword headings. While 

writing this systematic review, we also searched the literature manually, which resulted in the 

addition of some articles published after June 2023 (listed in Supplementary Tables S1 and S2 

released at https://github.com/srijitseal/CellPainting_SystematicReview). 

Inclusion and exclusion criteria 

Studies that used Cell Painting assays were included. Studies were excluded when they were 

not primarily in English, had been published before 2013 (before the Cell Painting assay was 

formally introduced), and had not been peer-reviewed (except in a few cases where we felt 

they were significant or included them during a manual search). Reviews, news articles, 

https://github.com/srijitseal/CellPainting_SystematicReview
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posters, thesis abstracts, and perspective papers were not included as primary research 

articles (these are instead listed in Supplementary Table S2 and referenced where applicable). 

Supplementary information 

The Supplementary Datasets are available as Supplementary Table S1: 89 studies included in 

this study (XLSX); Supplementary Table S2: 65 studies excluded from this study (XLSX) at 

https://github.com/srijitseal/CellPainting_SystematicReview  

Data availability 

No new datasets were used in this study.  

Code availability 

No code was used in this study. 
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