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Abstract

We say that a digraph is a (t, λ)-liking digraph if every t vertices have exactly λ

common out-neighbors. In 1975, Plesńık [Graphs with a homogeneity, 1975. Glasnik

Mathematicki 10:9-23] proved that any (t, 1)-liking digraph is the complete digraph
on t+1 vertices for each t ≥ 3. Choi et al. [A digraph version of the Friendship The-
orem, 2023. arXiv preprint arXiv:2305.04058] (to appear in Discrete mathematics)
showed that a (2, 1)-liking digraph is a fancy wheel digraph or a k-diregular digraph
for some positive integer k. In this paper, we extend these results by completely
characterizing the (t, λ)-liking digraphs with t ≥ λ + 2 and giving some equivalent
conditions for a (t, λ)-liking digraph being a complete digraph on t+ λ vertices.
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Complete digraph; Diregular digraph; t-design.
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1 Introduction

In this paper, for graph-theoretical terminology and notations not defined, we follow [1]
and [2]. Neither graphs nor digraphs in this paper have loops, multiple edges, or multiple
arcs.

This paper was motivated by the Friendship Theorem introduced by Erdös et al. [7]
in 1966. Using graph-theoretical terminology, the Friendship Theorem can be described
as follows: if any pair of vertices in a graph has exactly one common neighbor, then there
exists a vertex adjacent to the others. A graph that satisfies the hypothetical part of the
Friendship Theorem is called a “friendship graph”, that is, a friendship graph is a graph
such that every pair of vertices has exactly one common neighbor. Many variants of a
friendship graph have been studied (see [3, 4, 6, 8, 9, 10, 12, 13, 14, 16]).
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A digraph version of the Friendship Theorem was introduced and studied as a vari-
ant ([5, 13, 14]). A digraph is called a (t, λ)-liking digraph if every t vertices have ex-
actly λ common out-neighbors for some positive integers t and λ. In 1974, Müller and
Pelant [13] studied the case where tournaments are (t, λ)-liking digraphs and showed the
non-existence of such tournament for t ≥ 3. In 1975, Plesńık [14] characterized the (t, 1)-
liking digraphs for each integer t ≥ 3 by proving that every (t, 1)-liking digraph with t ≥ 3
is the complete digraph on t+ 1 vertices, which is a generalization of the result given by
Müller and Pelant. He proposed as an open question to take care of the case t = 2. In
2023, Choi et al. [5] settled the question by completely characterizing the (2, 1)-liking
digraphs.

In this paper, we extend the results of Plesńık and Choi et al. by completely charac-
terizing the (t, λ)-liking digraphs for any positive integers t and λ satisfying t ≥ λ+ 2 as
follows.

Theorem 1.1. If t ≥ λ + 2, then the complete digraph on t + λ vertices is the only
(t, λ)-liking digraph.

Indeed, we give some equivalent conditions for a (t, λ)-liking digraph being the com-
plete digraph on t+ λ vertices.

Theorem 1.2. Let D be a (t, λ)-liking digraph for some positive integers t, λ with t ≥ 2.
Then the following are equivalent.

(a) D is complete on t + λ vertices, that is, D ∼=
←→
K t+λ.

(b) D is a (t− 1, λ+ 1)-liking digraph.

(c) d+(v) = t+ λ− 1 for each vertex v.

Furthermore, (a) is equivalent to the condition (d) if (t, λ) 6= (2, 1); (e) if t ≥ 3, where

(d) there is a vertex v satisfying N+(v) = V (D) \ {v};

(e) D is diregular.

We will prove the above two theorems in Section 3.

There is a variant of a friendship graph, called a “generalized friendship graph”. A
generalized friendship graph is a graph if any t vertices have exactly λ common neighbors
for some positive integers t and λ. It can be said that a (t, λ)-liking digraph is a digraph
version of a generalized friendship graph. Considering this observation, we refer this graph
as a (t, λ)-friendship graph to make the concept clearer. The structure of (t, λ)-friendship
graph is well-known. In [4] and [16], it was shown that a (t, λ)-friendship graph is the
complete graph on t+ λ vertices if t ≥ 3. Theorem 1.1 shows that the digraph version of
this theorem is true if t ≥ λ+ 2.
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2 Preliminaries

This section describes the existing results needed to prove Theorems 1.1 and 1.2 and the
results that can be simply derived from them.

Lemma 2.1 ([14]). Let D be a (t, λ)-liking digraph. Then |V (D)| ≥ t + λ and δ+(D) ≥
t + λ− 1.

Lemma 2.2 ([14]). Let D be a (t, λ)-liking digraph. Then the following hold.

(1)
∑

v∈V (D)

(

d−(v)

t

)

= λ

(

|V (D)|

t

)

.

(2) For each v ∈ V (D),
(

d−(v)

t− 1

)

≤

(

d+(v)

λ

)

.

Proposition 2.3 ([14]). Let D be a (t, λ)-liking digraph. Then for any 1 ≤ i < t
and {v1, . . . , vi} ⊆ V (D), the subdigraph of D induced by the common out-neighbors of
v1, . . . , vi is a (t− i, λ)-liking digraph.

We make a meaningful observation from Lemma 2.1 and Proposition 2.3.

Proposition 2.4. Let D be a (t, λ)-liking digraph. For each 1 ≤ i < t, every t− i vertices
have at least λ+ i common out-neighbors in D.

Proof. Fix i ∈ {1, . . . , t−1}. Take t−i vertices. Then the subdigraph of D induced by the
common out-neighbors of the t − i vertices is a (i, λ)-liking digraph by Proposition 2.3,
and so it has at least λ+ i vertices by Lemma 2.1. Thus every t− i vertices have at least
λ+ i common out-neighbors in D.

Given a digraph D and vertices u and v of D, we use the expression u → v when
(u, v) ∈ A(D). When representing negation, add a slash (/) to the symbol.

A k-diregular digraph is a digraph in which each vertex has outdegree k and indegree
k for a positive integer k. A digraph is said to be diregular if it is a k-diregular digraph
for some positive integer k.

Let v, k, λ, and t be positive integers such that v > k ≥ t. A t-(v, k, λ) design
D = (X,B) consists of a set X of elements, called varieties, and a collection B of subsets
of X , called blocks, such that the following conditions are satisfied:

• |X| = v;

• Each block consists of exactly the same number k of varieties;
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• Every set of t distinct varieties appears simultaneously in exactly the same number
λ of blocks.

The general term t-design is used to indicate any t-(v, k, λ) design.

It is a well-known fact that the number of blocks in a t-(v, k, λ) design is λ
(

v

t

)

/
(

k

t

)

and

each variety appears exactly the same number λ
(

v−1
t−1

)

/
(

k−1
t−1

)

of blocks. A t-(v, k, λ) design
is said to be symmetric if the number of its blocks is equal to the number of its varieties.
That is,

v =
λ
(

v

t

)

(

k

t

) .

Then each variety of a symmetric t-(v, k, λ) appears in exactly k blocks. [15]

Lemma 2.5. If a k-diregular (t, λ)-liking digraph of order n exists, then there is a sym-
metric t-(n, k, λ) design.

Proof. Suppose that there is a k-diregular (t, λ)-liking digraph D of order n. To form a
symmetric t-(n, k, λ) design, we take the vertices ofD as varieties and the in-neighborhoods
of the vertices as blocks. Since D is k-diregular, each block has size k. Moreover, since D
is a (t, λ)-liking digraph, each t-subset of varieties appears in exactly λ blocks. Thus we
have obtained a symmetric t-(n, k, λ) design.

Proposition 2.6 ([11]). If a t-(v, k, λ) design with t ≥ 3 is symmetric, then k ≥ v − 1.

A digraph D is complete if, for every pair x, y of distinct vertices of D, both x → y

and y → x. The complete digraph on n vertices is denoted by
←→
K n.

By Lemma 2.5 and Proposition 2.6, the following holds.

Proposition 2.7. Let D be a diregular (t, λ)-liking digraph with t ≥ 3. Then D is the
complete digraph on t+ λ vertices.

Proof. Suppose thatD is k-diregular for some positive integer k. Then, sinceD has neither
loops nor multiple arcs, k < |V (D)|. By Lemma 2.5 and Proposition 2.6, k ≥ |V (D)| − 1.
Thus k = |V (D)| − 1. That is, N+(v) = V (D) − {v} for each vertex v. Therefore D is
complete. Since D is a (t, λ)-liking digraph, |V (D)| = t + λ.

3 Proofs of Theorems 1.1 and 1.2

The case where t = 1 for both Theorems 1.1 and 1.2 is excluded, so we only consider
(t, λ)-liking digraphs with t ≥ 2 and λ ≥ 1.
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Lemma 3.1. Let D be a (t, λ)-liking digraph. If d+(v) ≤ d−(v) for a vertex v, then

0 ≤ (d+(v)− t− λ+ 1)(λ− t+ 1).

Furthermore, if the conditional inequality is strict, then the resulting inequality is also
strict.

Proof. Suppose that a vertex v satisfies

d+(v) ≤ d−(v).

Then
(

d+(v)

t− 1

)

≤

(

d−(v)

t− 1

)

.

Thus, by Lemma 2.2(2),
(

d+(v)

t− 1

)

≤

(

d+(v)

λ

)

and so
∣

∣

∣

∣

d+(v)

2
− λ

∣

∣

∣

∣

≤

∣

∣

∣

∣

d+(v)

2
− t + 1

∣

∣

∣

∣

.

Therefore

0 ≤

(

d+(v)

2
− t+ 1

)2

−

(

d+(v)

2
− λ

)2

= (d+(v)− t− λ+ 1)(λ− t+ 1).

The “furthermore” part is obvious.

Lemma 3.2. Let D be a (t, λ)-liking digraph. If t ≥ λ+ 1 or d+(v) = t + λ− 1 for each
vertex v, then d+(v) = d−(v) for every vertex v in D.

Proof. Assume t ≥ λ+1. To the contrary, suppose that there is a vertex whose outdegree
and indegree are different. Then there is a vertex v such that d+(v) < d−(v). Thus

0 < (d+(v)− t− λ+ 1)(λ− t+ 1)

by the “furthermore” part of Lemma 3.1. Then d+(v) 6= t+λ−1. Since d+(v) ≥ t+λ−1
by Lemma 2.1, λ+ 1 > t.

Lemma 3.3. Let D be a (t, λ)-liking digraph. If d+(v) = t+ λ− 1 for each vertex v, then
D is the complete digraph on t+ λ vertices.
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Proof. Suppose that d+(v) = t+ λ− 1 for each vertex v. Then d−(v) = t+ λ− 1 for each
vertex v by Lemma 3.2. Therefore

∑

v∈V (D)

(

d−(v)

t

)

=
∑

v∈V (D)

(

t+ λ− 1

t

)

= |V (D)|

(

t + λ− 1

t

)

.

Now, by Lemma 2.2(1),

t

|V (D)|

(

|V (D)|

t

)

=
t

λ

(

t+ λ− 1

t

)

.

We note that
(

|V (D)| − 1

t− 1

)

=
t

|V (D)|

(

|V (D)|

t

)

and
t

λ

(

t+ λ− 1

t

)

=

(

t+ λ− 1

t− 1

)

.

Thus
(

|V (D)| − 1

t− 1

)

=

(

t+ λ− 1

t− 1

)

.

and so |V (D)| = t + λ. Since d+(v) = t + λ − 1 for each vertex v, N+(v) = V (D) \ {v}.

Therefore D ∼=
←→
K t+λ.

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that D is a (t, λ)-liking digraph with t ≥ λ+ 2 and take
a vertex v. By Lemma 3.2,

d+(v) = d−(v).

Then, by Lemma 3.1,
0 ≤ (d+(v)− t− λ+ 1)(λ− t+ 1).

Since t ≥ λ + 2 by the hypothesis, λ − t + 1 < 0 and so d+(v) ≤ t + λ − 1. Thus, by
Lemma 2.1, d+(v) = t+ λ− 1. Since v was arbitrarily chosen, d+(u) = t+ λ− 1 for each

vertex u. Therefore D is isomorphic to
←→
K t+λ by Lemma 3.3.

To prove Theorem 1.2, we go further to derive more results.

Lemma 3.4. Let D be a (t, λ)-liking digraph. If D is a (t− 1, λ+ 1)-liking digraph, then
D is the complete digraph on t+ λ vertices.

Proof. Suppose that D is a (t− 1, λ+ 1)-liking digraph. We first claim the following.

Claim A. Let S be a set of t − 1 vertices in D. Then the subdigraph of D induced by
the common out-neighbors of the vertices in S is complete.
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Proof of Claim A. Since D is a (t− 1, λ+ 1)-liking digraph and |S| = t− 1,
∣

∣

∣

∣

∣

⋂

u∈S

N+(u)

∣

∣

∣

∣

∣

= λ+ 1. (1)

We take a common out-neighbor v of the vertices in S. Then v 6∈ S and so |S ∪ {v}| = t.
Thus, since D is a (t, λ)-liking digraph,

∣

∣

∣

∣

∣

(

⋂

u∈S

N+(u)

)

∩N+(v)

∣

∣

∣

∣

∣

= λ.

By (1),
(

⋂

u∈S

N+(u)

)

∩N+(v) =
⋂

u∈S

N+(u)− {v}.

Since
(

⋂

u∈S

N+(u)

)

∩N+(v) ⊆ N+(v),

we have
⋂

u∈S

N+(u)− {v} ⊆ N+(v).

Therefore the vertices in
⋂

u∈S N
+(u) other than v are out-neighbors of v. Since v was

arbitrarily chosen from
⋂

u∈S N
+(u), the subdigraph of D induced by

⋂

u∈S N
+(u) is

complete.

Let T = {u1, u2, . . . , ut} be a t-element vertex set of D. Since D is a (t, λ)-liking
digraph,

∣

∣

∣

∣

∣

⋂

u∈T

N+(u)

∣

∣

∣

∣

∣

= λ. (2)

We let
Ti = T − {ui}

for each 1 ≤ i ≤ t. Then |Ti| = t− 1 for each 1 ≤ i ≤ t. Since D is a (t− 1, λ+ 1)-liking
digraph, |

⋂

u∈Ti
N+(u)| = λ+ 1. Thus, by (2), there exists a unique vertex vi such that

{vi} =

(

⋂

u∈Ti

N+(u)

)

−

(

⋂

u∈T

N+(u)

)

(3)

for each 1 ≤ i ≤ t. To the contrary, suppose that vj = vk for some distinct integers
j, k ∈ {1, . . . , t}. We note that, by (3),

vj ∈
⋂

u∈Tj

N+(u) and vk ∈
⋂

u∈Tk

N+(u) ⊆ N+(uj).
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Therefore

vj ∈





⋂

u∈Tj

N+(u)



 ∩N+(uj) =
⋂

u∈T

N+(u),

which contradicts (3). Thus v1, . . . , vt are all distinct.

We will show that the subdigraph of D induced by
⋂

u∈T N+(u)∪ {v1, . . . , vt} is com-
plete. By (3) and Claim A, the subdigraph of D induced by

⋂

u∈T N+(u) ∪ {vi} is com-
plete for each 1 ≤ i ≤ t. Thus {v1, . . . , vt} ⊆ N+(v) for any vertex v ∈

⋂

u∈T N+(u),
and it remains to show that the subdigraph of D induced by {v1, . . . , vt} is complete. Fix
v ∈

⋂

u∈T N+(u) and take vp and vq for some distinct integers p, q ∈ {1, . . . , t}. Then

{vp, vq} ⊆ N+(v).

By (3),

{vp, vq} ⊆
⋂

u∈T−{up,uq}

N+(u).

Thus vp and vq are common out-neighbors of v and the vertices in T − {up, uq}. Since
|{v} ∪ (T − {up, uq})| = t − 1, by Claim A, vp → vq and vq → vp. Since the pair {vp, vq}
was arbitrarily chosen, we conclude that the subdigraph of D induced by {v1, . . . , vt}
is complete. Thus we have shown that the subdigraph of D induced by

⋂

u∈T N+(u) ∪
{v1, . . . , vt} is complete.

Now, we will complete the proof by showing V (D) =
⋂

u∈T N+(u) ∪ {v1, . . . , vt}. For
notational convenience, let

U =
⋂

u∈T

N+(u) ∪ {v1, . . . , vt}.

Then, by (2) and (3),
|U | = t+ λ.

To reach a contradiction, suppose V (D) 6= U . Then there exists a vertex x in V (D)− U .
To the contrary, suppose |N+(x) ∩ U | ≥ λ+1. Then, since |U | = t+λ, |U−N+(x)| ≤ t−1.
Thus we may add more vertices, if necessary, to form a subset W of U such that

|W | = t− 1 and U −W ⊆ N+(x).

Since the subdigraph of D induced by U is complete,

U −W ⊆
⋂

w∈W

N+(w)

and so
∣

∣

∣

∣

∣

∣

⋂

w∈W∪{x}

N+(w)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N+(x) ∩
⋂

w∈W

N+(w)

∣

∣

∣

∣

∣

≥
∣

∣N+(x) ∩ (U −W )
∣

∣ = |U −W | = λ+ 1.
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Since |W ∪ {x}| = t, we reach a contradiction to the hypothesis that D is a (t, λ)-liking
digraph. Thus

∣

∣N+(x) ∩ U
∣

∣ ≤ λ.

Then |U −N+(x)| ≥ t and, since t ≥ 2, we may take two vertices y and z in U −N+(x).
Since λ ≥ 1, (t+λ)−2 ≥ t−1, which guarantees the existence of a (t−1)-element subset,
say W , in U − {y, z}. Then

|U −W | = λ+ 1 and U −W ⊆
⋂

w∈W

N+(w).

Since |W | = t− 1 and D is a (t− 1, λ+ 1)-liking digraph,

U −W =
⋂

w∈W

N+(w).

Since {y, z} ∩N+(x) = ∅ by the choice of vertices y and z,

(

N+(x) ∩
⋂

w∈W

N+(w)

)

⊆ U −W − {y, z}.

By the choice of W , |U −W − {y, z}| = |U | − |W | − 2 = λ− 1 and so

∣

∣

∣

∣

∣

N+(x) ∩
⋂

w∈W

N+(w)

∣

∣

∣

∣

∣

≤ λ− 1.

Therefore the t vertices in W ∪ {x} have at most λ − 1 common out-neighbors, which
contradicts the hypothesis that D is a (t, λ)-liking digraph. Hence V (D) = U and so D is

isomorphic to
←→
K t+λ.

Lemma 3.5. Let D be a (t, λ)-liking digraph for some integers (t, λ) 6= (2, 1). If there
exists a vertex v such that N+(v) = V (D)−{v}, then D is the complete digraph on t+ λ
vertices.

Proof. Suppose that there exists a vertex v such that

N+
D(v) = V (D)− {v}.

Then D−v is a (t−1, λ)-liking digraph by Proposition 2.3. As long as v is an out-neighbor
of every other vertex, i.e.

N−
D(v) = V (D)− {v},

D − v is a (t, λ− 1)-liking digraph. Then D− v is isomorphic to
←→
K t+λ−1 by Lemma 3.4.

Therefore D is isomorphic to
←→
K t+λ. Thus it is sufficient to show N−

D(v) = V (D)− {v}.
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To this end, we suppose, to the contrary, that there is a vertex w such that w 6= v and
w 6→ v. Since |V (D)| ≥ t + λ ≥ t + 1 by Lemma 2.1, there is a subset T of V (D)− {v}
such that |T | = t− 1 and w ∈ T . Then |

⋂

u∈T N+
D(u)| ≥ λ + 1 by Proposition 2.4. Since

w 6→ v, v /∈
⋂

u∈T N+
D (u). Therefore

⋂

u∈T

N+
D (u) ⊆ V (D)− {v} = N+

D (v)

and so
∣

∣

∣

∣

∣

∣

⋂

u∈{v}∪T

N+
D (u)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N+
D(v) ∩

⋂

u∈T

N+
D (u)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋂

u∈T

N+
D (u)

∣

∣

∣

∣

∣

≥ λ+ 1.

Thus the vertices in {v}∪T have at least λ+1 common out-neighbors. However, |{v}∪T | =
t, which contradicts the hypothesis that D is a (t, λ)-liking digraph. Thus v is an out-
neighbor of every other vertex in D.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. It is obvious that (a) implies each of (b), (c), (d), and (e). By
Lemma 3.4, (b) implies (a). By Lemma 3.3, (c) implies (a). Thus (a), (b), and (c) are
equivalent. If (t, λ) 6= (2, 1), then Lemma 3.5 guarantees that (d) implies (a). If t ≥ 3,
then Proposition 2.7 guarantees that (e) implies (a). Thus the “furthermore” part is true.
This completes the proof.

4 Concluding Remarks

According to [4] and [16], a (t, λ)-friendship graph is the complete graph on t+ λ vertices
if t ≥ 3. This result is partially established for (t, λ)-liking digraphs with t ≥ λ+2 by our
result, Theorem 1.1. We would like to know if this digraph version holds in general.

Conjecture 4.1. The complete digraph on t + λ vertices is the only (t, λ)-liking digraph
if t ≥ 3.

Meanwhile, according to [3], a (2, λ)-friendship graph is regular if λ ≥ 2. Together with
the above observation, it is true that a (t, λ)-friendship graph is regular for any integers
t ≥ 2 and λ ≥ 1 with (t, λ) 6= (2, 1). It is natural to question whether this result also
holds for a (t, λ)-liking digraph for any integers t ≥ 2 and λ ≥ 1 with (t, λ) 6= (2, 1). Yet,
by an exhaustive search, we found an example given in Figure 1 that is not diregular but
a (2, 2)-liking digraph. Consequently, the answer to the given question turns out to be no.
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Figure 1: A (2, 2)-liking digraph which is not diregular
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