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TIME-DEPENDENT FLOWS AND THEIR APPLICATIONS IN
PARABOLIC-PARABOLIC PATLAK-KELLER-SEGEL SYSTEMS
PART I: ALTERNATING FLOWS

SIMING HE

Dedicated to Eitan Tadmor on occasion of his 70th birthday

ABSTRACT. We consider the three-dimensional parabolic-parabolic Patlak-Keller-Segel equations (PKS) sub-
ject to ambient flows. Without the ambient fluid flow, the equation is super-critical in three-dimension and
has finite-time blow-up solutions with arbitrarily small L'-mass. In this study, we show that a family of
time-dependent alternating shear flows, inspired by the clever ideas of Tarek Elgindi , can suppress the
chemotactic blow-up in these systems.
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1. INTRODUCTION

In this paper, we consider the parabolic-parabolic Patlak-Keller-Segel systems (PKS) on the three-
dimensional torus, which model the chemotaxis phenomena in fluid flows:

On+UA(t) - Vn+V - (nVC) = An,
(1.1) BCHUA(L) - VE = AC +n — 7,
n(t=0) =nip, <CEt=0)=C,.

Here n, € denote the cell density and the chemical density, respectively. The first equation describes the time
evolution of the cell density, incorporating processes such as the chemical-triggered aggregation, diffusion,
and fluid transportation. The second equation describes the dynamics of the chemical density. We subtract
the spatial average of cell density (%) to normalize the chemical density equation. This adjustment has no
impact on the cell density dynamics, as only the chemical gradient influences the n-equation. Additionally, we
assume that the initial chemical density possesses a zero spatial average, denoted as €, = 0. Both equations
involve strong fluid advection, characterized by time-dependent fluid vector field Uy (t) that is divergence-
free, with an amplitude denoted as A := ||Ua||p~. Throughout the paper, we employ the notation (z,y, z)
to represent points on the domain T? = (-, 7]>.

It is worth mentioning that if the chemical reaches equilibrium in a much faster time scale than the fluid
transportation and nonlinear aggregation, one can derive the following important variants of the equations
7 which are called the advective parabolic-elliptic PKS equations:

(1.2) on+Uxs(t) - Vn+ V.- (nVE) =An, —AC=n, n(t=0)=niy.

It is also worth mentioning that another way to model the chemotaxis phenomena in the fluid flow is to
couple the PKS equation with the Navier-Stokes equation, the Stokes equation, or other types of fluid
1



2 SIMING HE

equations. The literature on this topic is vast, we refer the interested readers to the following papers,
[25,37,/42,/60,64-66,,73,/74L/79] and the references therein.

If there is no ambient fluid flows, i.e., Ua(t) = 0, the equation is the classical parabolic-parabolic PKS
equation. The PKS equations were first derived by C. Patlak [70], E. Keller, and L. Segel [57]. The literature
on the analysis of the classical parabolic-parabolic PKS equations and their variants is large, and we refer the
interested readers to the papers [15}[17L[18][23|241/311/38\/71,/80] and the references within. We summarize the
results on the blow-up and global regularity result of the classical parabolic-parabolic PKS equations here.
In two-dimension, the total mass of cells 9 := ||n||p: characterizes the long time behavior of the solution.
If the total mass is strictly less than 87, V. Calvez and L. Corrias showed that the solutions are globally
regular, [23]. On the other hand, if the total mass is large enough, singularities form in a finite time, see, R.
Schweyer [71]. In dimension three, the parabolic-parabolic PKS equations become supercritical. The total
conserved mass 9t becomes a supercritical quantity and is not enough to derive sufficient regularity control
over the solutions. In the classical paper [80], M. Winkler showed that there exist solutions, which have
arbitrary small masses, blow up in a finite time.

If the ambient fluid flow is present, the long time dynamics of the PKS systems change. In a series of
work initiated by [58], it was shown that by introducing passive fluid flow into the system, mizing and
fast-spreading effects of the fluid flow regularize the long time dynamics of the PKS equations. These
works are mainly focusing on the parabolic-elliptic PKS equations . In the paper [58], A. Kiselev and
X. Xu showed that if the ambient fluid flow is relaxation enhancing, which is introduced in the seminal
paper [30], and the magnitude A of the flow is large enough, then potential chemotactic blow-up ceases to
exist. Their argument was simplified and generalized in recent work by G. Iyer, X. Xu, and A. Zlatos [52].
In the paper [10], J. Bedrossian and the author proved that the suppression of the blow-up effect persists
if the ambient fluid flow is the simple shear flow. The above works dwell on the mizing induced enhanced
dissipation properties of the passive scalar equations (advection-diffusion equations). On the other hand, in
the paper [49], E. Tadmor and the author showed that fast-spreading effect of the hyperbolic flow (—z,y) also
has the potential to suppress the blow-up of the parabolic-elliptic PKS systems . More interestingly, in a
forthcoming paper, we also observe that shear flows in the infinite long channel T x R have the fast-spreading
effect. In the advective-reaction-diffusion equation literature, it is referred to as the quenching effect, which
is closely related to L. Hormander’s hypoellipticity [50]. For further references, see, e.g., P. Constantin, A.
Kiselev and L. Ryzhik [29] and A. Kiselev and Zlatos [59].

On the contrary, the study of the fluid flow-induced regularization effect in the parabolic-parabolic system
is limited. In the work [46], the author showed that the strictly monotone shear flows could suppress the
chemotactic blow-up in two-dimension. Later, L. Zeng, Z. Zhang, and R. Zi extended this result to coupled
Patlak-Keller-Segel-Navier-Stokes systems ( [82]). In both of these works, an additional smallness assumption
on the initial chemical gradient V&, is employed. In a recent work [36], the authors are able to prove the
suppression of blow-up through Couette flow on R3. To understand the new challenges, we highlight the
differences between the parabolic-elliptic regime and the parabolic-parabolic regime . It is enough
to focus on the dynamics of the chemical gradient V€, which determines the aggregation nonlinearity. In
the parabolic-elliptic regime, since the chemical gradient is determined through an elliptic type relation
Ve = V(—A)"!n, the strong fluid advection has little impact on the aggregation nonlinearity. As a result,
it is easy to invoke various regularization mechanisms from fluid mechanics to stabilize the system. On the
other hand, the chemical density € in the parabolic-parabolic regime is governed by an advection-diffusion
type equation. A strong fluid advection can destabilize the dynamics by creating fast transient growth in
the chemical gradient. This destabilizing effect rules out most of the regularization mechanisms applicable
in the parabolic-elliptic regime. In the papers [46,[82], the smallness in the initial chemical gradient is needed
to compensate for this destabilizing effect.

In this work, we prove the suppression of chemotactic blow-up for the 3-dimensional parabolic-parabolic
PKS equations.

Theorem 1.1. Consider the solutions (n,€) to the equation (1.1) subject to smooth initial data ni, €
C>(T?), € € C=(T?). There exists a family of time-dependent flows Uy € L°CgS, . such that the
solutions are globally smooth on the time horizon [0, c0).

Our basic building blocks for the flow Uy are a family of time-dependent alternating shear flows. We
extend this result to the time-dependent shear flow case in a companion paper.
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1.1. Sketch of the Proof. To motivate the idea and highlight the challenges, we first present the blow-up
mechanism of the Patlak-Keller-Segel type equations (7 ) Then we introduce the regularization
effects induced by fluid advection. Finally, we highlight the obstacles in applying these regularization mech-
anisms in the parabolic-parabolic case and our ideas to address them.

In the PKS type systems - , there are two competing forces - the nonlinear aggregation (V-(nVc))
and the diffusion (An). On the one hand, the cells aggregate to form Dirac singularities, while on the other
hand, cell diffusion regularizes the dynamics. The solutions remain smooth when diffusion prevails over
nonlinear aggregation ( [18,22}23|76] ). However, if the aggregation dominates, singularities can develop
( |17,/27.128,|43,[53L/71,/80] ). One natural approach to suppress the blow-up is to enhance the diffusion to
counteract the nonlinear aggregation. This can be achieved by replacing the diffusion operator with porous
media type diffusion, e.g., [12,[16]. Alternatively, the presence of external fluid flow can also achieve the
same goal. The primary mechanism here is that strong fluid transportation creates fast oscillations in the
cell density, thereby improving diffusion. This regularization effect of fluid flows, commonly referred to as
the “enhanced dissipation phenomena” in the literature, is applicable to various fluid-related problems. For
instance, in the study of hydrodynamic stability, the enhanced dissipation effect is crucial in deriving the
sharp stability threshold associated with various shear flows, see, e.g., [6H9,111{13}/26.(33})511/56},611/63},67./68},78].
Furthermore, the enhanced dissipation phenomena find applications in a wide range of areas, ranging from
plasma physics to mathematical biology, see, e.g., |2[3L{14}[34L|40L|44}|48L|72L[81].

To relate the system to the existing theory of enhanced dissipation, we first divide the equation
by the amplitude of the flow A = ”UAHL?,%,@,,zv and rescale time properly to obtain

1 1
ontuas-Vn=—An— —V - (nVe),

A A
(1.3) 9Ctun - VE = SACH S (n—m), wuy= DA
p=TRA A Al ), ua EAT

Tl(t = 0) = Nin, Q:(t = 0) = Q:in-

Here we still use t to denote the new time variable. In the large amplitude A regime, we can view the
equation (1.3 as a perturbation to the passive scalar equation

1
Of+u-Vf= ZAf'
For our purpose, it is enough to focus on the passive scalar equations on T? subject to shear flows:
1
(1.4) Oif +u(t,y)o.f = ZAf, ft=0)=fn, 0<A'x1

To motivate the key regularizing mechanism, we decompose the solutions to (1.4]) into the average in the
shearing direction and the remainder:

(1.5) )y 2) = ﬁ / fay, 2)de, oy, 2) = fe.9,2) — ) 2).

It is easy to see that the ax-average (f) solves a heat equation; hence the z-average dissipates on a time scale
O(A). The time scale O(A) is long if the A is large. On the other hand, under suitable assumptions, the
remainder f. dissipates on a time scale much faster than O(A). This deviation in dissipative time scales,
caused by fluid advection, is called the enhanced dissipation, and it has attracted much attention in recent
years. Most analyses on the enhanced dissipation phenomenon are carried out in a 2-dimensional setting but
can be easily extended to a 3-dimensional one. We first consider the stationary shear flow, i.e., u(t,y) = u(y).
If the shear flow profile u(y) has only finitely many nondegenerate critical points, then the flow is called
nondegenerate shear flow. In the paper [5], J. Bedrossian and M. Coti Zelati showed that if the stationary
shear flows are nondegenerate, then there exist positive constants ¢, C' such that the following estimate holds:

_ -1/2) 14 -2
(1.6) 1f2)|z2 < Ol fingellpze ™04 oAy > 0,

If the parameter A~! is small, the dissipation time scale O(A/?|log A|?) is much shorter than the heat
dissipation time scale O(A). In the paper, the authors constructed explicit hypocoercivity functionals in
the spirit of C. Villani [75], and showed that these functionals decay with enhanced rate O(A~1/2). Similar
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estimates are derived for other degenerate shear flows. The result was improved in the paper [77]. By
applying resolvent estimates and a Gearhart-Priiss type theorem, D. Wei proved that

_saA—1/2
(L.7) 1£20)llze < Cllfinpllzze™ 7, Wiz 0.

In the paper [35], M. Coti-Zelati and D. Drivas applied stochastic methods to show that the A~'/2_enhanced
dissipation rate are sharp for non-degenerate stationary shear flows. We also refer the interested readers
to the works by Tarek Elgindi, M. Coti-Zelati and M. G. Delgadino [32], Y. Feng and G. Iyer |41], which
derive the explicit relationship between the mixing effect of fluid flow and their enhanced dissipation rate.
Recently, D. Albritton, R. Beekie, and M. Novack proved the estimate on bounded channel [1]. The
enhanced dissipation phenomena also appear in fractional dissipative systems, see, e.g., |32], [47] and [62].

Note that the above enhance-dissipation estimate is sharp for stationary shear flows, which leaves open
the question that whether one can improve the dissipation rate by relaxing the stationary constraint. The
first step to prove Theorem [I.] is to show that by introducing time dependency into the shear flow, the
enhanced dissipation rate can be improved from O(A~1/2) to O(A~1/3).

Theorem 1.2. Consider the solutions f to the passive scalar equations (1.4]) subject to shear flow (u(t,y),0,0).

There exists a family of shear flows ua € CFY, such that the following enhanced dissipation estimate is satisfied

_ —1/3
(1.8) 1 £(s + )2 <Coll f(s)ll gz,

for all positive time s,t > 0. The constants g and Cy depend on the shear ua, and they are independent of
A and the solutions. Moreover, the spatial Sobolev norms of the velocity fields are bounded independent of
A, i,e., ||ayuAHLtooW’&M,oo S CM, VM € N.

Remark 1.1. This construction is based on Tarek Elgindi’s logarithmic-shifted shear flows ( [39] ). We
reproduce all the details of his construction in Section[3 Thanks to a “rewinding” procedure, the resulting
shear flows ua have a mild dependence on the amplitude A. However, this dependence will not alter the
spacial Sobolev norm of the shear. The construction is general in the sense that for most shear profile
functions, we can design time-dependent flows that achieve the enhanced dissipation .

Compared to existing enhanced dissipation flows in the literature, Theorem provides time-dependent
shear flows on T3 that balance the enhanced dissipation and the transient growth of the passive scalar
solutions. We first recall that there are many freedoms in choosing fluid flows to suppress the blow-ups
in the parabolic-elliptic PKS system . For example, one can choose shear flows with an enhanced
dissipation estimate (1.6)) ( [10] ) or flows with sufficiently short dissipation time ( [4;52,/58] ). However,
the story changes drastically for coupled systems. Here, we provide a heuristic argument to show that the
flows constructed in Theorem are optimal in a certain sense. Motivated by the parabolic-parabolic PKS
systems 7 we introduce a toy model,

ks
A

Here p plays the role of the cell density, and g is the chemical density, respectively. The linear forcing term

1 1
Op+u-Vp=—208p——Ag, Ohgt+u Vg=—Ag.

_ZAg in the p-equation mimics the aggregation nonlinearity. We assume suitable average-free conditions

on the data and focus on the growth of the solution p. It is enough to estimate the net contribution from
1

the forcing ——Ag. We expect the higher derivatives of the solution g to undergo transient growth, and

enhanced dissipation, which can be summarized as follows
[Ag(t)]loo < B(t) exp{—Rt}.

We start by considering the stationary nondegenerate shear flows, which have enhanced dissipation rate
R = O(A~Y/?) (I.7) and transient growth &(t) = O(t?). If we employ this type of flow, the contribution
from the chemical might not be negligible, i.e.,

1 o0 C o 5 t 1/2
A < e e = .
A/o ” g(t)”OOdt —A /0 ! eXp{ CA1/2}dt CA
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Similarly, we can consider the stochastic enhanced dissipation flows constructed in [4L]19]. Here, the growth
rate of the gradients and the enhanced dissipation rate are &(t) = e“1t, 9% = |log A|~!/C,. Hence the net
contribution of the chemicals to the system can be large for A > 1,

Ty A e e s

For the time-dependent shear flows u constructed in Theorem the growth factor is ®(t) = O(¢?) and the
enhanced dissipation rate R = O(A_l/ 3). In this case, the gradient of g has bounded contribution to the

p-dynamics, i.e.,
1 [ C [ ) t
i< § [T een{- i ba<e

In conclusion, constructing a smooth flow that balances the transient growth of gradients and enhanced
dissipation is crucial for our analysis Theorem [I.2] achieves this goal.

As a result of Theorem (1.2} if we introduce the strong shear flow A(ua(t,y),0,0) to the system, the
remainder ny, V&, decay fast. Hence it is reasonable to expect that after a short amount of time, the
remainders become small and the solutions become quasi-two-dimensional.

This is the content of the next main theorem.

Theorem 1.3. Consider the solutions (n,€) to the equation (1.3)) initiated from the data ni, € HY(T3),
Cin € HYH(T3), M > 5. Define a parameter

1
108(2 + M)

Further assume that the shear flows ua in the equation (1.3) are the ones constructed in Theorem . There
evists a threshold Ao = Ao(||ninll g, [|Cinll masr, [ual|Looywrivs. o, M) such that if A > Ao, then there exists a

(1.9) ¢(M) =

universal constant C' such that the following estimate holds at time instance AY/3+¢(M)

AS
(1.10) I (A5 s + (A5 < Coxp {5 |

Moreover, the x-average is bounded as follows
(L11) () (AYP ) s + QA2 G < Bllminl| e, || €inll e, wall Lo wess.oo, M).

Remark 1.2. We highlight that we obtain a fast decay of the remainder in a rougher Sobolev space. On the
other hand, obtaining enhanced dissipation for the top-order Sobolev norm is challenging.

The final step to prove Theorem is understanding the long-time dynamics. If we continue to use
the shear flows constructed in Theorem the nonlinear aggregation will eventually kick in through the
x-averages (n), (€)-dynamics after the time-scale O(A). To get control over the solutions, one has to assume
the subcritical mass constraint M = |n||; < 8«|T|. We address this case in a companion paper [45].
In Theorem the total mass 90t is arbitrary, and one cannot expect that the z-averages (n), (€) stay
bounded for all time. To overcome the nonlinearity effect, we introduce the last ingredient of the proof. It is
an alternating construction of time-dependent flows from the paper [48]. If one alternates the shear direction
of the flow in a particular time scale, the enhanced dissipation can dampen all the information fast. By
carefully implementing this idea, we can complete the proof. It is worth mentioning that alternating shear
flows have found applications in various field of fluid mechanics, see, e.g., |20,[21}[48L|54L[55].

In Section [2| we lay down the structure of the proof.

1.2. Notation. Throughout the paper, the constants C' can change from line to line. Moreover, to avoid
cumbersome notation, we allow the implicit constant C' to depend on the LOOW%OO—norm of the velocity and
regularity level M. We recall that the velocity field ua we construct has the property that ||jual| Leew e <
Cy, VM € N. Hence this notation convention will not cause confusion.

To avoid complicated notation, we will reuse the notion T;. For the proof of each individual lemma, we
are going to define different “local” quantities T;’s. Once the proof is finished, the current 7;’s will no longer

be in use.
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For v € {z,y, 2}, we use (f)", f; to denote the t-average and ¢-remainder:

(112) =iy [f@u i fulans) = f@ns) - )
The following double average notation (and its natural analogues is also applied in the text:
(113) UN™(2) 1= (07 = o [ v oy,

The following vector field (and its natural analogues) and multi-index notation are used:
t
Ly = 0, +/0 Oyu(T + s,y)dsdy, T3y =000, 05 |i,jkl:==i+j+k

The choice of the reference time T will be specified in a case-by-case scenario. If the t is clear from the text,
we will also drop the ‘;#’ in the subscript, i.e., T'y, Ti%.

In Section [3| of the paper, we apply Fourier transformation in the z-variable or in the (z, z) varia/k_)\les.
The frequency variables corresponding x and z are denoted by k and ¢, respectively. The notation (-) is
used to denote the Fourier transform and the (-)V is used to denote the inverse transform. If we consider
the transformation only in the xz-variable, the Fourier transform and its inverse has the following form

oo

Faly,2) / Ve (g 2w, G5y, = Y galy, 2)eV I,

a=—00
The Fourier variables corresponding to z,y, z are «, 3,7, respectively. Recall the classical LP norms and
Sobolev H™ norms:

1/p T 1/q
Ifllze =l fll, = </ |fpdV) i W llzaqomysey = (/o |f(t)||%pdt> ;

y 1/2 1/2
fllem = | > 10,0505 f117a s Ml = Y 1050505 f 112
|4,4,k|=0 4,4, k|=m
Throughout the paper, we use the notation Stt:” to denote the semigroup corresponding to the passive

scalar equation initiating from time t,
1
Orp+ ulty + 7,y)0up = ZAp.

Adopting this notation, Sf:"'Tp# is the solution to the passive scalar subject to the initial data px(t,) at
time ¢,. We will also use the notation Sy® ;, . to denote the solution semigroup corresponding to the a-by-a
equation

~ P 1 ~
O0rPo + ulty + 7, y)iap, = Z(—|a|2 + Oyy + 022)Pas  V(y,2) € T?,

which is initiating from ¢ =¢,.
The notation ¢, is the reference time and is defined in ([2.12a)).

2. RoAD MAP

To present the main ideas involved in the proof of Theorem we need several preparations. First, we
prove the linear enhanced dissipation estimate for a special family of time-dependent shear flows. These
time-dependent shear flows have optimized the balance between enhanced dissipation and gradient creation.
Moreover, we can upgrade the linear estimates to include higher-order gliding regularity norms based on
this balance. These preparations will be accomplished in subsection 2.1} Secondly, we develop the nonlinear
theory for the system in subsection A functional is introduced to characterize various components
of the system in higher order gliding regularity norms. We can show that if the initial chemical gradient
is moderately small, then nonlinear enhanced dissipation holds. On the other hand, if the initial chemical
gradient is large, the function is still bounded for a sufficiently long time. After these preparations, we
introduce an alternating construction in subsection to show that the solutions to equation are
globally regular if the flow is strong enough.



TIME-DEPENDENT FLOWS AND THEIR APPLICATIONS 7

2.1. Linear Theory of Time-dependent Shear Flows. The starting point of the analysis is the enhanced
dissipation phenomena induced by a special family of time dependent shear flows. We consider the passive
scalar equations subject to small viscosity:

(21) atf?é + uA(t’y)(‘a‘"fo?"é = %Avf?é’ f?'é(t = O) = fin;#, T%Afin;#(xay>z)d$ =0.

If we do the Fourier transform in the (z, z)-variables, we obtain that

(2.2) O fary(ty) + ua(t, y)icfo(t,y) = %(—Ial2 +0yy — W) far(ty), a#0.

Since the passive scalar equations (2.1)) is linear, we can consider each Fourier mode independently. Hence
the theorem below directly implies Theorem

Theorem 2.1. Consider solution fo ~ to the equation (2.2)). Given any shear profile U € C*°(T), such that
U' is not identically zero. There exist time dependent shear flows ua(t,y) = Va()U(y + Pa(t)) € O, such
that the following enhanced dissipation estimate holds

f. 7 —8o L5t
[ Far (s + )|z SC|farq(s) 26”37,

Here 6o € (0,1), C > 1 are constants that depend only on the shear profile U. Moreover, the Sobolev norms
of the velocity fields is bounded independent of A, i.e., ||Oyual|oopyr00 < Car, VM € N.
t Y

Let us present the main idea of the construction.

The main obstacle for a smooth stationary shear flow (u(y),0,0) on the torus to achieve the enhanced
dissipation rate A~1/3 is that its profile function u always contains critical points. Near the critical points,
the enhanced dissipation effect will slow down ( [35]). By introducing time dependence, we can ensure that
the critical point of the profile moves around and will not occupy a specific region for a long time. As a
result, the flow can induce a faster dissipation in the time-average sense.

Let us start by considering time-dependent shears taking the form (u(y + log(1 + t)),0,0), which are
logarithmic-in-time shifts of general smooth functions v € Cy°. We first show that the L?-norm of the
solution to decays by a fixed amount on the time interval [0, A1/3], see, e.g., Lemma Hence, it is
tempting to believe that the solutions decay exponentially. However, the logarithmic shifts of the shear flow
profiles slow down as time progresses. Hence we will smoothly truncate the flows and restart them after
an appropriately chosen time interval. This smooth rewinding procedure will not alter the Sobolev norm
|0yuallpoowri+s.oc. After the rewinding process, our proof is complete.

The next object of study the higher L2-based Sobolev norms. The starting point is the following obser-
vation. There exists a vector field that commute with the transport part of , i.e.

¢
(2.3) Ly =0y +/ Oyu(s,y)dsdy, [Ty, 0 + udy] = 0.
0

As a result, the advection term (ud,) in the equation (2.1)) does not drive a transient growth of the H1l-
norm induced by the I'y,;-vector field, ||T'y;;fx[|2. On the contrary, direct energy estimates yields that the
canonical H'-norm || f.| g1 undergoes a transient linear growth (~ O(t)) thanks to the advection in (2.1).
In conclusion, Sobolev norms induced by the vector fields 9, I'y;, 0, are well-adapted to the passive scalar
equations (2.1)). From now on, we call these norms “gliding regularity norms” as in the celebrated work [69].
To simplify the notation, we also use the following variants throughout the text

L)y =T)% =0,Ty.,07.

An obstacle in analyzing these gliding regularity norms comes from the diffusion operator %A. When
one applies I'y;-derivative to the equation (2.1)), the commutator term %[Fy, A] arises. This term involves
growth of the form O(%). Nevertheless, we can use the following time weight to control the commutator
terms,

1

(2.4) D(t) = e
A
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Combining all these considerations, we obtain the norm

2
25) It )y, = S RPN el Y @) Ol AT AOS]

|%,4,k]=0 i+j+k=0

We apply the notations I‘iy{k : (’“);1"; 0% and |i, j, k| := i+ 7+ k. Moreover, the argument of the time weight
®(t) is always the time variable of the target function fx(¢,-) throughout the paper. Here G is a constant
depending only on the norm [[ua||scyym+2.0 and the regularity level M, but independent of A. We note that
the higher gliding regularity norm will slowly deplete over time. However, an enhanced dissipation estimate
is enough to compensate for the decay. Later, we simplify the notation to Z™. The enhanced dissipation

estimates of the gliding regularity norms are summarized in the following theorem.

Theorem 2.2. Consider solutions to the equation (2.1). There exists a threshold G = G (|[ua|peowri+2.00)
such that for any parameter G that is above the threshold Gy, the following enhanced dissipation estimate
holds

(26) 2064 Oy, <26 140y, oxp {202

(2.7) 8z :=00 (log(8Cp)) ™"

Here the parameters 6o, Cy are defined in the estimate (1.8). Moreover, there exists a constant C, which
depends only on the M, 551 such that the following estimate holds

t

M}) Vs,t € [0,00);

M
, 13 7 t
ey Y GIPLOR<C Y GHlots T v ST
/1,7, ]=0 /1,7, k1=0

Remark 2.1. We observe that even though the Z-norm depletes over time, it still grants us enough enhanced
dissipation as specified in (2.8). Another comment is that the parameter 0z can be chosen independent of
the reqularity level M.

This concludes the linear theory.

2.2. Nonlinear Theory for the Time-dependent Shear Flows. In this subsection, we discuss the
nonlinear theory associated with the parabolic-parabolic PKS system subject to time dependent shear
flows. The goal is to prove Theorem

First of all, we specify the main set of equations and their local existence theory. We rewrite the equation

(1.3) as follows

1 1
(2.9a) On+usd.n + ZV - (nVE) = ZAn,
1 1 1_

n(t =0) = nin, €t =0)=C,, (z,y,2) €T
The fluid velocity drift is normalized, i.e., |ual g, , . = 1. To prove Theorem it is enough to consider
the time horizon ¢t € [0, AY/3+¢], where ¢ = ¢(M) is defined in . To rigorous capture the transient
growth of the chemical gradient, we decompose the time horizon into two parts:
(2.10) [0, AY/3HC]) = [0, AL/3HC/2) Y [AY/3+C/2 AV3HC) =1 [0, Ty) U [Th, AY3FC] =: Py U Pye.

Here Pg, is the transient growth phase, and Py, represents the decaying phase.

Next, to characterize the enhanced dissipation, we decompose the solution n, € into the x-average part
(n), (€) and the remainder part n, € (L.F). Taking the z-average of (2.9, yields the ((n), (€))-
equations, i.e.,

1 1

(2.11a) DU 2Ty (V= () + 1 (V- (124,2€2)) = T, (n),
(2.11b) OUE) =78y (O + 1 n) — T,

(n)(t =0) = (nin), ()t =0)=(Cw), (y,2) €T
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Then we observe that since the chemical equation is linear, it is possible to decompose the remainder € as
follows:

(2.12a) Cr(ty+7) = c;r (T)—i—d;* (1),

1 1
(2.12b) 87022' +ualt, + 1, y)@wc';g :ZA(:;;' + e c;g (r=0)=0,
(2.12¢) Ordy + ualty +7,y)0pds ZAdt d (T =0)=CL(t =t,).

Here t, is a reference time taking values in {0, Ty} (2.10] . If t, = 0, then the initial data for dig is €ip;2. In
the text, we also use the notation Sf:+7€¢ to represent the passive scalar solution d’; (7) that initiated from

(tr, €x(t,)) (212d). We view dtr( ) as the main part of the chemical remainder and c';g(T) as the deviation.
Both of these components undergo transient growth. However thanks to the zero initial condition, the
deviation c; is small. Here we emphasize that the definition of ¢’ ” and dtT is sensitive to the reference time

t., and we only choose ¢, € {0,T),} - Finally, the equation for the remalnders n reads as follows

(2.12d)
1 1 1 1
Oing +uaenz+—-Vyz - (12Vy(€)) + 2V - () V) + 5V - (02 VEs) 2 = S Ang, np(t = 0) = Ning.

First of all, we present the following local well-posedness result, which can be proven through standard
argument.

Theorem 2.3. Consider solutions (n,€) to the equation (2.9) subject to initial data ni, € HM(T?), &, €

HMTY(T3), M > 3 and regular flow u € LW 32 There exzsts a small constant T, (||nin|| g, || Cinl| gar+1)

such that the unique solution exists on the time mterval [0, T:].

Next, we specify the norms that we use to measure the solutions. Motivated by the functional introduced
in the linear setting, we consider the following coupled functional for the nonlinear system (2.12]):

(213) F GQ [t + 7ong, €4

M
_ Z P2i A+2i

2
aird OF ny(t, +1) HL2

A TH A
|4,5,k|=0
M+1 ) ‘ o 2
Y OTIRGH (A i + Limarn) || 03T 0F [ €l +7) = ST ]||
|4,5,k|=0
M+1 9 63
Q2 Y | oy, 0k et | exp{—wr} =Bty +7).
|%,4,k|=0

Here we make several comments concerning the functional. The reference time is ¢,., which takes values at two
time instances, i.e., t, = 0 and ¢, =T}, . The parameter 7 > 0 is the time increment. If the reference
time ¢, is zero, 7 is nothing but the current time ¢. Here the parameter G > 1 will be chosen depending on
{||uA||L?QWéu+s,oc,M} and the parameter @ > 1 depends on the initial conditions il zae, {Cin) || gar+1,

ie, @ = Qnnllgm, |{€in)||gm+1). The parameter dz is defined in Theorem [2.2] Similar to the Z-norm,

a fast decay of the functional Fgé\f corresponds to the enhanced dissipation (2.8] . Moreover7 thanks to the
extra A2/3-weight in the chemical component, boundedness of the functional can be translated to smallness
of the chemical deviation c;’g =C; — St”'TQf# in lower order gliding regularity spaces.

Finally, we specify the scheme to prove Theorem[I.3] We consider two variants of the prototype functional
F, i.e.,

(2.14) Hl\éﬂﬂ[t, ny, €yl = ]Ftr:O;MJrl[t’ N €], tePu=[0T)= Al/?’“/?];
L&t ng, €4 = ]Ft(]::‘f’;;1 £, €4], ¢ € Pao = [AV/3HC/2, A1/3+(],

The transient growth phase Py, and the decaying phase Pyc are defined in (2.10). In the transient growth
phase, we propagate the functional H. The boundedness of H is translated to smallness of the chemical
deviation Cz:o = €, — S{€in~ (2.124) in a lower order regularity space. This smallness, when combined
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with the linear enhanced dissipation of the passive scalar solution S§€;,,», yields that the chemical
gradient V€ is small at the transition time 7}. In the decaying phase Pq., we capitalize the smallness of
V¢&.(T}) into the enhanced dissipation of the lower norm L. We explicitly spell out these heurisitics in the
following two propositions.

Growth Phase P,,: Propagation of the higher regularity norm H. In the growth phase, we apply
energy method to prove the following proposition.

Proposition 2.1. Consider the solutions to the equation (2.9) initiated from initial data ny, € HM (T?), &, €
HMA1(T3), M > 5. Assume that the ambient shear flow u, is the one defined in Theorem . Recall the

definition of ¢ 7 T, = AY/3+¢/2 , and consider the functional H . There exist thresholds
Gu, Ay such that if the following constraints are satisfied,
G ZGH(”UAHLchvaM)a A > Ag(M, ||UA||L§°WyM+3’G’ Nin, Cin),
the following estimate holds for all t € [0,T}],
(2.15)  HF[t] + [{n) ()70 + )01 Farsr <B (M, Juallpeewssace, 620 [|€inll grarer, [ninll ) -

Remark 2.2. Throughout the paper, the regularity index M will be changing. But they will be smaller than
the M in Theorem and Theorem [27)

Decaying Phase P4.: Enhanced dissipation of the lower regularity norm L.

To prove the enhanced dissipation of L, we use a bootstrap argument, see, e.g., [10], [46]. We set the
reference time t, = T}, = AL/3+¢/2 . Assume that [t,, T}] is the largest interval on which the following
hypotheses hold:

1) Remainders’ enhanced dissipation estimates:

207

LY [ty + 7,0y, €] <20pp L¥ [t,,nz, €4 exp {—Al/S

}, Vit € [t T;

2) Uniform-in-time estimates of the x-averages:

H <n> HL?O([t,,-,T*];HéV{Z) SQB(R),Hny

|| <Q:> ||L§O([tr,T*];HM+1) §28<¢>;HM+1 .

Y,z

The parameter ¢ is chosen depending only on the constants &g, Co (1.8) and 5z (2.7)),
(2.17) § = 6(do, Co, 0z).

By the local well-posedness of the equation in H™, M > 3 (Theorem , we have that the interval
[t;, Ty] is non-empty.

The nonlinear enhanced dissipation is the consequence of the following proposition. We recall that M is
the regularity level specified in Theorem

Proposition 2.2. Consider the solutions to the equation (2.9) initiated from the initial data ny, € HM (T3), &, €
HMA1(T3), 3 < M <M. Assume that the ambient shear flow u, is the one defined in Theorem and the

following “gluing” constraint is satisfied at time t, = T), = AY/3+¢/2 (1.9), (2.10),

M M+1
(218) Y QT)YIOT) g, Enps(T)llFe + D AYPR(TH)H2 LTS, 054 (Th) 3oy < BE.
|4,5,k|=0 |4,5,k|=0

Here the bound By is independent of A and I'y,p, = 0y + fOTh Oyun(s,y)dsOy.
Let [t.,Ty] be the mazimal time interval on which the hypotheses (2.16)) hold. There exist thresholds
GL, AL, QL such that if the following constraints are satisfied,

G ZG]L(COa 6075217 ||uAHLtOCWé”+37 M)a
A >A1(Co, 80, M, 62" [luall poeyyarss, G, Bu, () (T) | s, () (Th) | o),

then the following stronger estimates can be developed:
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1) Remainders’ enhanced dissipation estimates:

ot

Al/3

(2.19a) LY [Ty, + 7] < Cep L¥[Th] exp {2 } , VYT +7€ [Ty, T

2) Uniform-in-time estimates of the x-averages:

(2.19b) K N pge (1,100 ) SBysrrm = 2[[(n) (Th) | gar + 25
1
(2.19¢) H<€>”L§°([Th,T*];Hé‘fIz“) SB(C);HMJA = a5 + [KE(Tu) [ prar-+-

As a consequence of the bootstrap argument, the estimates (2.19a]), (2.19b)), (2.19¢) hold on the time horizon
[T, AY/3+¢].

The proof of Theorem [I.3]is completed once we combine the two propositions above:

Proof of Theorem[1.3 We decompose the time horizon as in (2.10). On the time interval [0,T},], we apply
Proposition [2.1] and obtain that

. Py C -
Y B(TW)PPOLT g, 05 (Th) |2 ey < 2733 (M uallgewseace, 00, [|Cinll e, [Imin 1) -
i,5,k| <M
This is the gluing condition (2.18]) in Proposition with regularity level M = M — 1. Now an application
of Proposition [2.2] yields (1.10) and (1.11]). This concludes the proof. O

To prepare ourselves for the alternating shear construction, we present the following proposition, which
is in the same vein as Proposition |2.2

Proposition 2.3. Consider the solutions to the equation ([2.9) initiated from initial data ny, € HM (T?), &, €
HMH1(T3), M > 3. Assume that the ambient shear flow u, is the one defined in Theorem|1.2, and the initial
chemical remainder is small in the sense that

(2.20) ||Q:in;7§||H1\4+1(']1‘3) S €.
There exist thresholds Gy, €g, Ao, Qo such that if the following constraints are satisfied,
(221) G ZG0(||UA||L?W;J+3’M)7 6_1 > €al(nin;€in)7

A ZAO(M; ||uA||L<t>owyM+3»G,5717nin>€in)» Q Z QO(M, ||7-’4AHL<t>cwyM+3>Gaeil,ninvgin),

the following set of conclusions hold
1) Remainders’ enhanced dissipation estimates:

—0; —o; 26t
(2.22a) FZ’QO’M[t,n#C#] < CEDFE’QO’M[O77’L¢7¢¢} exp {_/11/3}

20t
< C(”nin;#”%{M + ||¢in;;ﬁ||§{M+1 +1)exp {_A1/3 } ;

2) Uniform-in-time estimates of the x-averages:

(2.22b) H<n>HL;’°([O,T*];H§ffz) §2||<nin>||H;\{z +2
(2.22¢) IV{ | Lge (0,711, <ATHE 4 2[| V(&) 1 -

Remark 2.3. We highlight that the derivation of the enhanced dissipation estimate (2.22al) requires smaliness
of the chemical gradient V€ (2.20). This is the main obstacle to overcome in the alternating construction.

This concludes Section
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2.3. Suppression of Blow-up with Alternating Shear Flows. In this section, we sketch the idea of
suppression of chemotactic blow-up through alternating shear flows. Several lemmas will be presented along
with the argument. The proof of these technical lemmas will be postponed to Section |5} We consider the
following time-dependent alternating shear flows acting on the system:

Phase a: U4 :=(ua(t,y),0,0)", Vte [0, A3+
Phase b : G4 :=(0,0,ua(t,z))", Vte (AY3+C 2413+,
Phase ¢ : g :=(0,ux(t, 2),0)", Vte (241/3+¢ 341/3+¢],
Here w4 is the flow defined in Theorem The explicit form of w4 can be found in Figure [} We define

Az A A
[ pod
/’ ™~
¥ X
Phase a Phase b Phase ¢

FIGURE 1. The alternating shear flows

the following switching time instances:
Tro =3IAY3+C, Ty = (14 30)AY3HS,  Tpo = (2+30AY3*, T1€{0,1,2,...} =N.

The subscripts a, b, ¢ indicate the phase of the shear flows and the subscript I indicates which period the
system is in. Since the shearing direction changes over time, we consider three distinct gliding regularity
norms induced by the following vector fields:

T+ y;t

¢
Phase a : O, Tyt, 02, Ty := 0y —|—/ Oyu(Tra + s,y)dsOy, I”y]f =0T 0F, teo, A3,
0

t .. . .
Phase b : Loty Oy, 02y Tayp = Os Jr/ Ozu(Trp + s,2)ds0;, Iy = F;;taglafv te [0,A1/3+<]5
0

xit T

YY"zt

¢
Phase ¢ : g, Oy, Ty, Toyp =0, —|—/ Ou(Tre + 8, 2)dsdy, F?f = 9L HITk te [0,A1/3+C].
0

With all the notation introduced, we are ready to present the main theorems in the alternating construc-
tion. As it turns out, there are two distinct time phases in the system, i.e.,

(2.24) Phase # 1: I =0, t¢€ [Toa,Tia) = [0,3A4/3+C);
Phase # 2: 1 > 1, t € U, [Tra, T(r11)a) = [BAY/3¢, 00).

In Phase # 1, the solutions undergo transient growth. However, by paying three derivatives, one can show
that the chemical gradient V€& decays to a low level. The following theorem summarized the state of the
system at the end of Phase # 1:

Theorem 2.4. Consider solutions to (1.3)) subject to the initial data (niy, €n) € HYH3 x M+ M > 5.

There exists a threshold Ao = Ao(M, ||Vua psowmsace, |[inllgass, [|€inll grusa) such that if the parameter

A > Ay, then the following bounds hold at the time instance t = T,

B ([|rn || zr+s, || Cin || o4
AL/3

(225)  [In(Taa)llFpe < Bllnnll s, [ Cinllppea),  1€(Tha) [Fpean <
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Moreover, ||n(t)|| g + [|€(t)|| grsr < oo for all t € [0,3A1/3+¢].

As a result, we observe that at the end of Phase # 1, the chemical gradient becomes small. Hence,
Proposition becomes applicable. By repeatedly applying Proposition in Phase # 2, we expect the
following conclusion:

Theorem 2.5. Consider solution to the equation (1.3) in Phase # 2, i.e., t € U2 [Tra,T(141)a] =
[3AY/3+C 00). Further assume that the condition (2.25)) holds at time Ti,. Then there exists a threshold

Ao = Ao(M, [[Vuall pgewmsrco, [n(Tia)l g, [|€(T1a) | e )
such that if A > Ag, then the following enhanced dissipation holds
_ _St/AL/3HC
|0 = 7)(Tha + D2 + €T30 + s CUINTaa) B+ [€(T10) )04 v > 341734,
Here C, § are constants that depends on M, ||[Vua || gyt
With these two theorems, we are ready to prove Theorem [I.1

Proof of Theorem[I.1, Combining Theorem [2:4 and Theorem [2.5] we observe that the Sobolev norms of the
solution is bounded globally in time and the well-posedness follows from Theorem O

The remaining part of the paper is organized as follows: in Section 3] we prove the Theorem[I.2} in Section
E we prove the enhanced dissipation of the remainder n;, Vc;é; in Section [5| we prove the theorems and
emmas in subsection 2.3l

3. LINEAR THEORY
In this section, we present the proof of Theorem [I.2] and Theorem [2.2]

3.1. Time-dependent Shear Flows with Logarithmic Shift. In this section, we recall the equations
(2.1), (2.2) subject to diffusion coefficient %. Before proving Theorem we present a lemma which captures
the decay of the L? norm.

Lemma 3.1. Consider the equation (2.2]) subject to the shear flow u(t,y) = U(y + log(t + 1)). Assume that
the profile U € C° is not constant, i.e., there exists y. € T such that U'(y.) # 0. Then the solutions to (2.2))
satisfy the estimate

(3.1) 1 Far (10 =23 A3 113 < (1 = 1) Fay O]z, VY 0,
for a constant 0 < k < 1 that depends only on U.

Proof. We organize the proof in several steps.

Step #1: General setup. First of all, we identify the range of the wave number |«| on which we focus.
If |af > Al/2 /K for some universal constant K, direct application of the non-expansive property of the L?
norm of solutions to yields

N = —_lal?/3
(3:2) 1feur Oz < [ oy (026 ®727°, o > A2/ K.

Hence at time instance |a|=2/3A'/3, the L? norm decays as in (3.1) with k = 1 — e=1/K"° Hence in the
remaining proof, we always assume that |o| < Al/? /K. Without loss of generality, we assume o > 1. We
choose the constant K such that

(3.3) AV3|o|72/3 > g?/3 > (1007,

We are going to refine the choice of K in (3.24) and (3.27).
Rearranging the terms in (2.2)) yields that

~ 1 (a2 2 . ~ 1 (1al? 2 1 -~ 1 (lal? 2
0 (Far (e T it e (Fuy (6, 9)e K1) =20y (Fos () (4010
As a result, we define F' = J?Ow (t, y)e%“a'z‘*‘hﬁ)t and consider the following equation

. 1
(3.4) O F (t,y) + iuaF (t,y) :Zany(u Y).
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We show that for ¢t = \a|_2/ 3A/3 the solutions to (3.4) must decrease in L? by a fixed amount. Assume
without loss of generality that [ /°(0)[|zz = 1. Observe that we have the following energy identities:

¢
(3.5) 1FOI3; =1 - 5 [ 10,F(s)1 ;s
9 ft ’ ¢
(3.6) I, F @y +5 | 100 P)Egds < 210l ol [ 10,F)luzds + [0,FO)F;.
To derive the second inequality, we also use the fact that ||F(s)||z2 < ||F(0)|| 2 = 1. Assume then, that
9 |a\’2/3A1/3
(3.7) 2 /0 10, F(s) 3 ds < r.

Here & is a small constant to be chosen later in (3.28). Thanks to (3.5]), we have
IF@)7: > 1 -k, Vte0,AY%|a| /7],
Y
Next, we identify a time instance 7o with the property that:

(S.abayF(To)H%g < (2l10yullLgs, + 1) H\/k|a|?/3A%/3, ||3ny(7'o)H%§ < (2[0yullLg=, + 1) H2\/k|af*/3AY3,
9 |a\’2/3A1/3 4
— 10, F(s)|[32ds < k, o€ {0, |a|_2/3A1/3} .
A /7_0 v Y H

Here H > 4e'5™ is a large constant to be chosen later in (3.24), (3.27). The last inequality is a direct
consequence of ([3.7)). The explicit argument involves an application of the Chebyshev inequality. First we
note that by the assumption (3.7)),

1/3
Ht € [0,la2/341/%] rA A

2 2/3 42/3 _
HayF(t)”Lg > Hk|a|”?A } ’ < Hr|a|2/3A42/3 — H|al2/3’

so on the time interval [0,|a|"2/2A'/3], a fraction of 1 — - points have the H' bound [|9,F(t)|2. <
Y

Hek|a|?/3A?/3. Now we choose 7 as the minimum of all these points, i.e.
= min {t]10, F(£)|3 < Hrla/*4%/%} .

We observe that 7, < Z|a|72/34Y3. Now on the interval [r(, |a|=2/3A'/3), we apply the estimate (3.6)
subject to initial time 7} and the assumption (3.7)) to obtain that

2 t
B9 10,F O + 5 [ 10,F )3
7o
1 rt 1/2
<200,uluzs [0l AV2VE(G [ 10,PO35ds) " + HrlaPP A < (20,0l sz, + 1 H VR A
To

=C1(18yull e, ) HV/RIa/2 A3, Vit [7’6,|a|_2/3A1/3} .

Now the Chebyshev inequality yields that

) CLHARla2/345/5 1,
{re [lat2 0] o, P01 > HCwRIal v )| < SEVARTCEE < Lo,

Therefore, by (3.9), we can find 7 € [}, 7 + ZAY3|a|7%/3] C [0, £ AY3|a|~%/?] such that
10, F (10172 < Cr(w)HV/wlal*P A%, |19, F(ro)l|72 < Ci(u)H?Vk|a/2AY2,

This is (3.8]).

We denote the solution to the corresponding inviscid problem by 7, i.e., n solves

(3.10) an(t,y) +iuan(t,y) =0, n(70,y) = F(70,9).

Step # 2: Quantitative estimates. In the second step, we provide some necessary estimates.
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First of all, we present some upper bounds for the viscous/inviscid solutions. The starting point is the
following claim

(311) [9yyn(ro + t,9) 122 + 19y F (70 + £, )12
<Claf* | F(m, )13 + Clalt (10,F (ro,w)ll 3 + (70, 9)lz2 ) + 100y F 0,9l 3, ¥t > 0.
Here the constant C depends on the L$° Wy2’°°—n0rm of the shear u. To prove this bound, we observe that a

direct L2-based energy estimate on the solutions to (3.4) and (3.10) yields that

(3.12)
{ [1Fl|z2 < [1F(70)ll 2, %ClilayFlle < Clal||Fllze,  F 0y Fllrz < Cla|(10,Fllzz + || Fllz2);
Inllz2 = [1F(70) |2, allOynlliee < Clalllnllze,  ZlyynlliLe < Claf(l[0ynllzz + lInllz2)-

Now a direct integration in time yields the upper bound (3.11)).
If we focus on the time interval [TO, \04|’2/ 341/ 3], finer estimates can be obtained. The energy estimate
(3-12)), together with the initial configuration (3.8)), yields that

(3.13) 18,n(t)] < WH|a|/3AY3, vt [To, |a|_2/3A1/3].

t,y
Combining the upper bounds of the H2-norms (3.11)) and the fact that the solutions F' and 7 are initiated
from identical data at the initial time 7y, we obtain

(3.14) 110,ym(Olz + 18, F (D)l
<ClaP | F(m0,9)l13 + Clalt (10, F(ro,5)l1z3 + 1F (o, 9)llz3 ) + 18y F (o, )13

<CH|a|/3A%/3 + CH|a|V3AY? < CH|o|?3A%3, Vite [TO, |a|*2/3A1/3].

2 < C([10yullz

The remaining part of step # 2 is devoted to the proof of the following lower bound for all smooth
solutions to the inviscid equation (3.10)):
A1/3|a\_2/3
e 19ym(s)23ds > 5AIn(ro)[35 — CHld,n(ro) 3. 0 < la] < AY2/K.
70

To prove the lower bound (3.15)), we first rewrite the solution to (3.10) as

t
n(t,y) = exp {—ia/ U(s,y)dS} n(10,y), Vt>10.

0

The 0y-derivative reads,

dyn(tsy) = exp {—m /Tt u(s, y)ds} dy1(70. 1) — ia (/t By uls, y)ds) exp {—z’a /: us, y)ds} n(70,3)-

0 [6)
Thus, there exists a universal constant C' so that the following estimate holds
¢ 2
| duuts.ntro. s
70

1
9y > laf? = Cllayn(ro,)|I72-

2
L'y

Integration in time yields that for all ¢ > g,

t t
1

[ 1 lizas = glaf [

T0 ‘ To .

Recalling the explicit form of the flow u(t,y) = U(y + log(1 +t)), we will establish (3.15]) once we show that

2
ds — Ctl|a,n(ro, 3s.

/T: Oyu(r, )n(ro,-)dr

2
L?

2
ds >

A1/3|a\*2/3

A
(3.16) / .o

Now we use the change of variable b :=log(1 + 7) to rewrite the above inequality

log(1+s)
[ wwenea
1

og(1+70)

vy € T.

/ U'(y +log(1+ 7))dr

AY/3|q|2/3 9 A
ds > ——— T.
/m 52 G Y
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Here we assume that U’(y) is not identically zero on the interval [0, 27]. Then we prove the following claims:
a) There exists a point yo on T such that

2m
(3.17) Ro := ‘/ U'(yo + b)ebdb’ > 0.
0
b) there exist a point ag € [0, 27) such that for Vhy € [ag, 2], the integral has the following lower bound

ho
(3.18) ‘/ Z/{/(yo + f))ebdb > Ro/Q >0, Vbhoe [0,0,271'].
0

Here ay depends only on the profile /. We further define
(3.19) Ta0 =€ — 1 < e*™ — 1.

The proof of (3.17) is through contradiction argument. Assume that the claim (3.17)) is false, then we
have that

27 27
ay/ U'(y+h)evdh =0 = / ~U"(y+b)ebdh =0, VyeT.
0 0

Now we apply the integration by parts and the vanishing conditions above to derive that
27

2 2
/ w@+m&%=/ Wy +b) L ehdh = U/ (y + b)e”
0 0

2
—/ U'(y+h)eddh, VyeT.
db o Jo

h=
Since U is smooth and periodic, U’ is periodic. Hence,
Uy)(e*™ —1)=0, VyeT.

This is a contradiction to the assumption that U’(y) is not identically zero and hence yields (3.17)).

The claim ([3.18) is a natural corollary of (3.17) through a continuity argument. Without loss of generality,
27

we assume that U'(yo + h)e"dh = Ry > 0. Since the function / U'(yo + h)eVdh is continuous with

0 0
respect to z, there exists a small neighborhood of z = 27 such that the function is above R /2. This concludes
the proof of the claim.
Now we consider the following integral (m € N\{0}) and apply the periodicity of U’(-) and the claim

(3.17) to get

2(m+1)m 2mm
(3.20) [ wm e <] [ ey
2mm 2(m—1)m
2m
=e*mT U (yo + b)ehdh’ = "™ Rg > 0.

Now we find the smallest L € N\{0} and largest U € N such that

U
U [eQmTr,eZ(m—&-l)ﬂ] C [7_0 + l,Al/S‘a|_2/3 + 1].

m=L

The definition of L, U yields that
I Fog(ro +1)
2
log(AY3|a|=2/3 + 1)
27

Since the time interval is long, i.e., (3.3), and the H is large, i.e., H > 4e'5™ (3.8)), we have that

—16m A1/3],|—2/3
I Slog(To +1) 1< log(e 1™ A3 | +1)
s 27
<74 10g(A1/3|a\_2/3 4 61671') - 10g(A1/3|a|_2/3 4 1)
27 27

—‘ = 7+ 1< <P (g 4 1);

(3:21) U:{ TJ = A Al 4 1) < U7 < AVYal 2 4 1,

+1

-6<U -4
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Further recall the quantity H in (3.8)) and the constraint on K (3.3)). We have that

e S S
e2Um = o=4n(AL/3|q|=2/3 £ 1) = H  K234+1)°

We focus on the point yo € T and prove estimate (3.16) for yo. On the interval [ag, 27],

(3.22)

o 2m
(3.23) ( Uy + h)e”dh> x ( U'(yo+ h)e"db) >0, Vho € a0, 21].
0 0
Now we use the sign property (3.23) to derive the following estimate with ¢ € [log(7,.0+1)+2Um, (14+U)27],

q
‘ / U'(yo+b)e"dh’
log(1+70)
U—-1
> Z 62m7r
m=L

Recall the quotient bound (3.22). Now we implement a similar argument as in (3.20) and choose the H in

2Lm q—2Umr
/ U (yo + b)ehdb| + 2 / U (yo + b)edb|.
1 0

og(1+470)

2
/O U (yo + b)e"dh‘ —~

27
(3.8) and K in (3.3)) to be large compared to Ry and H[10a§{ | / U'(yo + h)eVdh| to derive that
z€(0,27m P
q
(3.24) ‘ / U'(yo + h)e"dh’
log(1+70)
Roe?U™ 2(L—1) L
_ m u hd
=92 — 1) R /Z (yo + b)e’dh
Ro 4 1 o
> 2Um _ 6w [ * 1 hd
=€ (2(@2” —1) € <H + K2/3) ax ) Ulotbe bD
eQU‘n'RO
zm, Vg :=log(1+ s) € [log(ra;0 + 1) + 2U, (1 + U)27].
We note that g € [log(7a.0 +1) +2Un, (1+U)27] corresponds to s € [(Ta0 4+ 1)e2U™ —1,2U+D™ 1], Hence,
we have that by (3.24)),
A1/3|q|—2/3 s 2

U (yo +log(1 + 7))dr| ds

70
22U+ _q

/.

S 2 6Um
e
=z U (yo +log(1 + 7))d7| ds > (e*™ — 70 — 1) ———RE.
/(Ta;o+1)e2U"—1 /7'0 16(e?™ — 1)2 0
Now we recall the relations (3.19)), (3.21), and obtain that
AV/3)q|72/3 s 9 4
u log(1 dr| ds > ————.
/. [, -+ sty 2

This is (3.16)),_,, -
To generalize the result to Yy € T, we note that for any point y € T, there exists a J,, € [0, 27] so that
y = yo + dy(mod 27). Hence

2

Al/3|q|72/3 log(1+s) 2 AY/3|q|72/3 log(1+s)
(3.25) / / U (y +h)e"dh ds:/ / U (yo + 6, +b)e"dy| ds
To log(1479) To log(1479)
AY31a| 723 | log(145)+6, 2
:/ / U (yo + b)e"~%vdp| ds.
0 log(1+470)+0y

Now we identify the smallest integer L, € N and largest integer U, € N such that
[2L,7,2(U, + 1)7] C [log(1 + 70) + 8, log(1 + AY3|a|72/3) 4 §,).
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Thanks to the bound 0 < 4, < 27, we have that,

(3.26) L, = log(1 +70) +9dy log(1 + AY3|a|~2/3) + §,
. Y 21 or

Now we focus on specific points ¢ € [log(74,0+1) +2U,m, (14U, )27|, and carry out the estimate with (3.23)),

WE[L,LJrl], U,,:{ J—le[U,U—l—l].

e %

q
\ / U (o + B)edb
log(1+470)+0y

U,—1 o 2Ly q—2Uym
Semtu [ 3 g2 / U (yo + f))ebdb’ _ ‘ / U'(yo + h)ebdh‘ + 2 / U'(yo + b)e"dh
o= 0 log(1+70)+8y 0

Now we recall the definition (3.17)), the estimate (3.22)), the fact that U > L + 4, and the relation (3.26) to
obtain the estimate

q
(3.27) ’ / U (yo + B)eVdp|edv
log(1+4710)+dy

2T

Roe*Uvme™0v o ) / b | —6
- - y ™ d Y
o1 ¢ e || Ul +b)erde
R 4 1 2
S p2Un 0 e [ * / U b4
=€ (262”(62” -1) N (H + K2/3> zén[oa}%{w] . (yo +b)e’db

RO €2U7'r
Tde?m(e2m — 1) ’

The remaining part of the proof is similar to the y = yq case. We have that by (3.25) and ([3.26)),

log(1+s) 2
[ wwnea
log(1+70)

Vg :=log(1+s) + 9, € [log(ra;0 + 1) + 2Uym, (1 + Uy )27].

A1/3|a\’2/3

J,

ds

2(Uy+)m—6y 2

log(1+s)+dy
2/ / U (yo +h)e"*vdb| ds
(Ta;0+1)e2Vy™ =% —1 | Jlog(1470)+3,
U A
> 27 - -1 'R,2> .
2 =0 = D g 12 0 2 G )]al

This is (3.16)).
Step # 3: Decay estimates. To prove the decay estimate, we consider the difference between the viscous
solution and the inviscid solution, which solves the equation

1
A

Recalling the estimate of 9,n (3.13)), the hypothesis (3.7)), and the time constraint ¢ < AY3)a|2/3, we have
that the L2-difference is bounded as follows

1 t
In - Fli2(6) < / 18,1(3)122 118, F (s)l| 3 ds

Oi(F —n) +iua(F —n) = <0y, F.

t
SC’(ayu||L;>j§y)A2/3a|1/3\/ﬁ\/£\// 10, F(5)]|2.ds < CVHE.
T0 v

Now, by interpolation and the H2-estimate (3.14)), we obtain the bound

= Fllzy < Clin = Fll 2 lln = 2 < C\/HY AR 1af2/3 A%/ = CHY/PM%|al /2415,

Thus, the triangular inequality yields that
VFllgy > Inlly = 1= Flliy > lnll gy — CHY®5Y/%]af1/2 A1,
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Hence,
[P, > 3y, — CHY K140l 415, Wt € [ro, AY%a]=2/9).

Now we integrate from 7y to |a|~2/3A'/3 and apply the lower bound (3.15) to obtain that

| 72/341/3 5
il IF($) 3y ds >~ OVRH — CHY 1,
Combining it with (3.7)), we then see that:
CHYA (kY2 4 k1Y) > 6.
It follows that 1 > x > §*/(CH®). By choosing the & to be

54
(3.28) < CHS
we obtain a contradiction. As a result, there exists a constant x > 0 such that

2 |a|—2/3A1/3
i 10,7 (s) 33 ds > v, ol <
0

A1/2

By (3.5)), we have the decay (3.1)) for |a| < %Al/z. Combining it with the estimate in the high modes ([3.2)),
we have completed the proof of the lemma. |

Proof of Theorem[I.4 We first make the observation that the shear flow u(y + log(t + 1)) is not uniformly
enhanced dissipation in time. As time becomes larger and larger, the shear flow changes slower and slower.
Hence the decay rate might deplete over time. To obtain the uniform-in-time version, we introduce the
rewinding of the flow. Recall that A'/? is the time when significant decay (1 — ) happens, then we define
the following flow

Ult,y) = uly + ¢(t) ZXJ )log(1 4 (t = J(AY? +1))), >0,

where the x;(t) is smooth cut-off function such that

1, t e [2JAY3, (2] + 1)AY3];
XxJ(t) = { monotone, te [(2J —1)AY3,2JAY3) U ((2J + 1)AY3,2(J +1)AY3],
0, others.

For this time periodic flow with period 24'/3, we show the estimate . If s,t € 2A'/3N, then by Lemma
. we have the estimate (1.8]). In the general case, we find the largest 1nteger N; € Nso that 243N, < s+t
and the smallest integer Ny € N such that 2A1/3N2 > 5. Further note that if ¢ < 4A4'/3, then the result

(1.8) is direct, i.e.,
1£(s +8)lla < F()ll2 < (1= 1) 2| f(s)l|e 28150 vt € [0,441/79).

Hence we assume that ¢ > 443, As a consequence, t — (N — N2)2Al/3 < 4AY3. Thanks to the dissipative
nature of the L2-norm and the enhanced dissipation estimate for s,t € 24Y/3N obtained before, we have

||f(3 + t)||2 §||f(2N1A1/3)||2 < ||f(2N2A1/3)||2(1 _ K)(Ng—Nl) < ||f(2N2A1/3)”26—%,4*1/3(15—4,41/3)1og(1—n)*1
-2 —$llog(1—k)| 75 1/3
<1 =r)77(f(s)]l2e A Vs e [0,00), t € [4AY3 00).

This concludes the proof of (|1.8)). |
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3.2. Enhanced Dissipation in the Gliding Regularity Spaces. In this subsection, we prove Theorem
The proof develops a general framework to upgrade the L? enhanced dissipation to the higher gliding
regularity spaces. The main obstacle to derive the enhanced dissipation estimates stem from the commutator
terms involving the I' vector field and the diffusion operator %A. These challenges are addressed by the key
Lemma 32

The remaining part of the subsection is devoted to the proof of Theorem We organize the proof in
four main steps.
Step # 1: General Setup. We fix an arbitrary starting time ¢, € [0, 00), and observe that Theorem
together with the choice of dz (2.7)), yields that

to4o5 A3

(3.29) s;: Py <

ool =

L2—L?
Here P is the projection operator such that P f = f.. Next we observe that the following regularity and
decay estimates guarantee the enhanced dissipation ([2.6)),

(3.30) I+ )2y, < 2 1202y, Y7 € (0,02 AY);

_ 1
(3.31) If (e + 0 AV [T, < = @)z, -

The explicit argument is a variant to the one applied in the proof of Theorem Consider general s, t €
[0,00). If the time instance ¢t in (2.6) take values in the set (5;141/ 3N, iterative application of the decay
estimate (3.31) yields the result In the general case, we find the largest integer N7 € N so that
5§1A1/3N1 < t. As a consequence, we obtain the relation ¢ — N16§1A1/3 < 6§1A1/3 = 5ZA_1/3(t —
5;1141/3) < Nj. Combining the regularity estimate and the decay estimate (3.31) yields that,

(3.32)
el + D)0, < 2[1fals+ NudZ AV 200 < 2 fue)lEy, e

G, ®(s+ N1zt AL/3) (s)

2 t—oz'AY? 2 2 ¢
< 2 fpo)By,  expd 2022l <26 | fu(s)Zy,  exp| -~z b

This is the result (2.6)). Hence, it is enough to prove the estimates (3.30) and (3.31)).
Step # 2: Proof of the Regularity Estimate (3.30). The Step # 2 and Step # 3 are mainly

devoted to estimating commutator terms. The following key lemma plays a major role.

Lemma 3.2. Consider function $;, € H' and the family {®;ji}; jk1=m C H', where 0 < m< M. Further
assume that the family of functions {®,;} satisfies the following relations

(3.33) 0:8ijk = Gir1)jk, Ly®Gijk = Gigir1)hs  0:Bijk = Gijthy1)-

Then there exists a constant C', which depends only on M and ||U||L,°° WwM+2,00, such that the following estimate
holds

(3.34)
G2iH2 '
‘ T /g)ijk[ayyaré]ﬁiokdvl
G* % 2 ce ¢ 21 3,27 2 2i’ §25" 2
§8T||Vﬁ’bjk“2 + <A1/3G2 + G(A2/3 +t2)) G™'® J”ﬁijk?”Q + ,,+,,+Zk,< G™ ¥ ||®i’j'k’||2
K3 m
it

Proof. The proof of the lemma is postponed to the end of the subsection. O

To prove the regularity estimate (3.30)), we express the time evolution of || f£||%, as follows
G,®

i1 & o
(335) 5 Y GHOMOTOlf4|3

l4,5,k|=0
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< G%(I)2j i g k 2 M G2Z 27 i g k J i ak
l4,5,k[=0 Ival 0
M . .
G% 9% .
= > IV I + THE
l4,5,k|=0

Here “L” stands for “linear” and “R” stands for “regularity”.

By setting £, = 6;F%8§f¢ and &;;, = 8;F%8§f75 in Lemma and checking that the condition (3.33))
3.35)

holds, we reach the conclusion that the commutator term T.2i% in (3.35) is bounded as follows

M
TEr <L S Gt VLot flE + <

Iw',k\:O

Co C 9
G2AL/3 + G(A2/3 1 2) ”f#Hzg{@'

Here C’s are constants depending only on M, |[ual| ey m+2.. Hence, for all 7 € [0, 5yt A3,

1 1
t* 21v[ .
GAT 1 (6 + 7)) | AVBG(1+ (s + 7-)3/A)> It iz,

d )
fplte+ By, < c(

Now by solving the differential relation and choosing the threshold Gj; > 0 large enough compared to M,
6" (as defined in (3.29)), and ‘|u||L?OWI\/I+2,oo, we reach the result (3.30). This concludes the Step # 2.

Step # 3: Proof of the Decay Estimate Next we prove the decay estimate . The handle
we apply is the passive scalar solution S;**7 (8;1% 4, Zf¢ (t+)), whose Z}4-norm naturally decays to 1/8 of

its value at t, after time (51;11141/ 3 (3.29). To avoid lengthy notation, we use the simplified notions

ToF = 00,08, SEYTIUR S = ST (0400, 05 (1))
The remaining task is to show that the deviation between the solution F;jf f+ and the passive solution

Sytr ”t f« is small. To this end, we express the time evolution of the Zé{(b—norm of the difference as

follows

d1 z 21 2j z]k te+Tigk 2

i D G ST
J,k|=0

M

G* ri i
== Y OV - ST £

|z',j7k\—0
+ Z G O™ T fr — SE TR fA3
|%,4,k|=0
M .
G2l¢2j 2, T2 7
s Y O - ST £ 000008
[1.3,K1=0

= =D — Dy + TEP,

Here “L” stands for “linear” and “D” stands for “decay”. To estimate the commutator term, we set
Nijr = ”kf — St +TF”k Jz and &, = th + in Lemma The condition can be checked
directly. Hence an apphcatlon of Lemma [3.2] ylelds that

CO(t,+7 C i i ~ T
|TLP| < 91 + < A(1/3G2 )+ G423 + ) Z GHOY DY e — S;TTYY f4113
i,5,k|=0
Co(t, +7) C ) )
n + sup | f2(te +T) 120 -
( AL/3G2 GA23 + (e +7)%) ) ceo55tara) g “a
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Here the constant C' depends only on the regularity level M and the norm ||UAHL§° wM+2,00. Combining this
bound with the regularity estimate (3.30)), and the decomposition (3.34]) yields that

M
LS G - ST
|4,5,k|=0

c (q)(t* +7) N 1 )

AT3G2 T G((t + 1) + A2/3)
M
| DD P SIS R 0] B,
|4,4,k|=0

By applying a Gronwall-type estimate, and choosing the threshold G > Gj; > 1 large enough compared to
lul| oo ypar+2,00, M and 837 (as defined in (3.29)), we achieve the following bound

Z GHOY|T)7 fe — ST, fll7e <
4,4,k]=0

Since the choice of dz (3.29) yields that

= 32Hf7é(t*)”ZM , Vre [0,5;1141/3],

M

i ottt AYE ik
> GHeY||s, Ffjt*f#IIz,64||f¢(t*)llea
|4,5,k]=0

we have obtained that

_ i i _ t+oZ AYE
If (b + 62 AV 1 <2 Z G2X DY (b + 657 AY3) — S 0= DY 113

|,5,k|=0
M s=1a1/8
2i 52| atxtoz A 13
+2 ) GHoM|s; = Uik 1
li,7,k|=0

2 1 , 1 ,
< (35 35) 1412y, < Z10EI,.

At this point, we have obtained (3.31). Hence, the enhanced dissipation (2.6) is achieved. This concludes
the Step # 3.

Step # 4: Proof of (2.8). Thanks to the definition of the Z-norm (2.5 and the estimate (2.6]), we have
that

M M
> GHITOEfAFe <CM) (7MY ST GH0,0]0 fus T2 A
|4,5,k|=0 i,5,k|=0
M t
SCOMLZY) Y. GH|00]08 finp|fwe 2 T,
l4,4,k]=0

This concludes the proof of Theorem The only remaining task is to prove Lemma We collect the
proof below.

Proof of Lemma[3.3. Since the result (3.34) is trivially true for j = 0, we always assume that j > 1 through-
out the proof. According to the commutator relation (B.2d]) and the computation rule (3.33), we can rewrite
the left hand side of ([3.34)) in the following fashion,

G2igp2i _
’ " /f)ij/c [y, 8yy]®i0kdv‘

G2 : . 4
’ / ijk Z ( ) (—2B<J—4+1>azry +0Y79(BM)?0,, — BO—M)am) @wkdv‘
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= T1+T2—|—T3.

Here the quantities B(™) are defined as

t
(3.36) B (t,y) = / (s, y)ds.
0

With this notation, the I'-derivative can be rewritten as 9, + BWy,.
Let us start by estimating the quantity |7} + T»|. Here we distinguish between the £ = j — 1 case and the
0 <¢<j—2case. In the first case, we expand I' as J, + BWy, and observe the following relation

(~2B@0,T, + 0,(BY)200 ) Sij 1y = = 2B (00 + BDOss ) S5 1y + 2BDBY0,, 8,5 1y
—723 &WGS%(] 1)k-
Hence we can simplify the T7 + T, with the property 0,85 = &(;11);; and integration by parts,
G2’(I)23

T + To|1p—j—1 = ‘ /fmgk 2B 9,0, 1)de‘

G2z 27

‘G2Z(I)23

/5 Hijr 2B Sy owdV + /S’J”k 2B & ;1) 1yrdV |-

Now applications of the Holder inequality, the Young’s inequality and the definition ®(¢) = 1 4t 5 (2.4) yield
that

G21q>2 CG2i+2q>2j—2((I)2t2)
(3.37) |Th + To|lp—jq < ——— 24 10y 9355113 + yre: 181y 1)k 12
G2z¢,2] CG21'+2(1)2j—2q)2 (A2/3t2 + t4)
+ mllmk\\% + e [TRUPRIA
GQZq)Q] CG2i2p2i—2 t2/A2/3 )
= 1o 19u9uxl + ARG (14 /A2 18 i1y -1k l2
G2ip2i ,  CG2H2p2~2 (12/A2/3 4 t4/A4/3) )
+ m”ﬁl]k‘b + GA2/3 (1 T tS/A>2 Hﬁ(i-i-l)(j—l)k”Q
G2ip2i G2ip2i
S T 18y $3:;1:113 + m”ﬁijkng

+ ¢ + ¢
ABG2(1+13/4) | G(A3 +12)

For the 0 < ¢ < j — 2 case, we estimate the two terms individually. For the T} term, we have that

) GG 641y

G2ip2i 172 j _
(3.38)  |Ti|lo<e<j—2 :‘2 1 > (6) /sa,,-k B(J”l)awI‘yc’ﬁwde‘
=0

j—2 O q)jflflt ) ) L
S; A2/3G ( A1/3 ) (G'@7 (|91 ]l2) (GRS i1y erykll2)

« C
(ARG

i 527 c i’ i’
G0 |$9:;1.]15 + (A5 L 2)G > GOV ® 5.
i'+j'+k'§m

J'<i—1

Next we estimate the 75 term as follows
C Qi—42 ;

(3.39) |T5|Lo<e<j—2 < SeAs Z ( ) YR (G'®7[|9ijkll2) (G2 S (1 42pell2)

ji t2/A2 /3

_G2A1/3 (1+13/A)2

(G 19ijkll2) (G2 B (11 2yen]|2)
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¢ 2i 5,27 2 2’ 525" 2
<amcat e | ¢ 0+ Z G O™ |G|
i +j +k'<m
i'<i-1

The estimate of the T3 is as follows:

Il q2ig2i e
(3.40) 121 <03 S [ 19l 1B 16 nylav
(=0
C RN
<ig OVl (5 ) €00l
(=0
<# G21<I>2j||53i‘k||§ + Z Gzz"(sz’H@i, k||§
i'+7 +k'<m
J'<i—1
Combining (3.37)), (3.38)), (3.39), and (3.40) yields (3.34). O

4. NONLINEAR THEORY

In this section, we develop the nonlinear theory for the system . We will prove the propositions stated
in Section

First of all, we observe that to derive the estimates in Proposition (or other propositions in Section
[2.2), there are two types of quantities to consider, namely, the z-average of the unknowns (n), (€¢), and the
remainders of the solutions n, 'z, d's. In Subsection , we collect the lemmas which provide bounds to
the x-averages. In Subsections @é— we collect estimates of the remainder. The main goal is to prepare
necessary bounds to derive the nonlinear enhanced dissipation. As in the linear case, our general scheme is
to fix an arbitrary time ¢, on the time horizon, and then derive the following regularity estimate and the
decay estimate on the time intervals [t,,t, + 5=+ AY3], i.e.,

(4.1) Faio [t + 7] < 2Fgis [t], Vre[0,671AY3;

N

. 1 .
(4.2) Fiip [t + 07 AY?] iwg;g [t.].

We recall that the parameter § is chosen as 6 = §(dz) (2.17), and dz is defined in (2.7)). We collect theorems
involving (4.1)) in Subsection and decay estimates associated with (4.2)) in Subsection Finally, in
Subsection [4.4] we combine results in previous sections to derive Propositions and [2.3]

4.1. The z-average Estimates. In this section, we present two lemmas concerning the z-average (n), (€).

Theorem 4.1. Consider solutions to the system (2.11a)), (2.11b]) subject to initial conditions ((nin), (Cin)) €
HM x HM+Y M > 3. There exists a constant C depending only on M and |0yuallpeownee such that the

following estimates hold for all t € [0, AY/3+<],

M

d .
(3) = | D I95ekm)lis

‘j7k|:0
C 2 2 2
<l Ol | sup 1)y, + 1V (€l

¥\ ref0,A1/3+¢] v® vz
C M+1 M M
ijk i+1)5k ijk

S BN L P S W | vt 1 PP I I W | -

l4,5,k|=0 |4,5,k|=0 |4,5,k|=0
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Proof. We recall the equation (2.11a)) and implement direct energy estimate of the Sobolev norm to derive
that

d1 &L .
@5y O ookl = - S 9ot W+ S [ V0505 005 ()9 (@) av
[3,k|=0 |7, k\ 0 |J k|=0

+— Z /vy, dI0% (n) - 9308 (04, .€) dV

IJ,k\ 0

= 1 Z Vo305 (n) |72 + Th + To.
Iak\ 0

To estimate 77 term in (4.4]), we apply the Sobolev product estimate (M > 2) and the integral estimate

(A.1) to obtain

C
(4.5) 7y < Z 190505 )35+ I 3rae 11V(€) 0,
\JJCI 0

)

1A Z IVo50% n) 13 + ||<n>||?13fz<s€up ||<n>(7—)|%[é\{z+||V<¢in>|%lé‘/{z>'

A 4o 104

To estimate the T5 term in (4.4)), we invoke the product estimate (B.6)), and the fact that 85 (H* = <I‘Z/;tf>gﬂ
to estimate

|T2|—’ Z /vy, &30k (n) - (1), 0% (n¢Vyz€7g))dV‘
|7 k\ 0
c M
<o S° Vo)t Wz + 5 3 0yl
‘J7k| 0 |5,k|=0
C M M
ijk ijk
< LS oot + S 2 v | [ 3 s
\J k|=0 i,5,k|=0 |4,5,k|=0
Now we apply the estimate of the gradient to obtain that
1 .
(16) 1Tl <p; 0 1900k m) 3,
L3, k|<M
oy Ml M M
ik i+1)jk ijk
LI A AR Dl A B ol
l4,5,k|=0 i,5,k|=0 |4,5,k[=0

Now combining the decomposition (4.4]), and the estimates (4.5]), (4.6), we end up with the result (4.3)).
O

To conclude this section, we present a technical lemma involving the double average of the cell density n,
which will be applied in the alternating construction.

Theorem 4.2. Consider solutions to the system (2.11d), ([2.11b)subject to initial conditions ((ni,), (€n)) €
HM x gM*1 M > 3. Further recall the double average ((f)) (1.13). There exists constant C' such that
following estimates hold for all t € [0, AY/3+¢],

@7 - Z\\3§<<n>>z’z(t)llig

M
1 j T,z c T T T
<= Y10 ) IR + ) (6B ( s g + 10, (€ |i%>

s€[0,A1/3+¢]
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C M+1 M M
7 i+1)5k %
S B L P e W | vt 1 S I I W |- [P

,5,k|=0 [3,5,k|=0 |7,5,k|=0
Similarly,
M
k
(z o nm)
k=0
M C
— 8k+1 ’y2+— n)(t)||? su nE()|1% 0 + |05 (Cin) "2
A,;” I+ GOy, (s 0y, + 102 (€,
C M+1 M M
ik +1)jk ik
ST ey, ve > e, )| Y Ik, ).
li,5,k|=0 |4,5,k|=0 li,5,k|=0

Proof. We focus on the proof of estimate (4.7). The proof of the other inequality is similar. First, we
decompose the solution n, € into three parts:

n=(m)"*+((n)")% +n%, €= ()" + (€))% + €.
Next, we take the x, z-average of the nonlinearity in the equation
(V- (V&)™ =(Vy.. - (nV,,.6)")" = 0,((nd,€))"*
=0y (( [{(n))™* + ((n)")% + nZ] [0,(4€)™* + 0, ({€)")% + 9, €%] ))
=0y (((n))™* 0,((€)™*) + 8, (((M)*)% 8,({€)")%)” + 0, {((n%0,€%))"".

Hence we end up with the following ((n))®?*-equation:

T,z

O™ = D )™ = 10, ()™ 0,((@)") = 50, {(m)™): 0, (&)%) — 1, (0,5
We implement direct energy estimate of the Sobolev norm to derive that

d 1 - x,z |2
(48) -5 > N0y [

7=0
-3 Z o5 by + Z e a§(<<n>>“ ay<<¢>>w’2)dy
M
+ Z ot 9y (s o) Z [ airt = (s 0,57 ay

Z||aﬂ+1 N"ENILs + To + T+ Ts.

The estimates for the T} term and T» term are similar to the estimate (4.5). We apply the Holder inequality,
Young’s inequality, Sobolev product estimate (M > 2), the integral estimate (A.1)) and Lemma to
obtain

(4.9)

c C

i1 Il ) (ot P (R A o (i A 72

|17 + 1| <

aJ”

IZ C T x
)™ 1 + — 1) Iy (Sup 1) () 121, + 110y {€in) II§1M>-
= \sel0,4 v v

aJ“

i
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The estimate of the T5 term in is similar to (4.6)). We invoke the product estimate , the fact that
AI((f))=* = ((Ty..f))*™*, and the gradlent estimate (B.7)) to estimate

(4.10)
. 1 M .
73] ] 5 [ ot (g mzo,e) “dy\ i 2 (195 )17 + €Ty g0, 12 )
7=0 7=0
1 M C M M
j T,z ik
<ga 2 e+ G | D T | | 3 sl
=0 |%,4,k|=0 |%,4,k|=0
1 M C M+1 M M
zz ijk i+1)jk ijk
<ga 2 o=l + 5 (D0 IEeld + 4 3o ¢¢Ili2) > ITyini:
7=0 |%,4,k|=0 |%,4,k|=0 |2,5,k|=0

Now combining the decomposition (4.8)), and the estimates (4.9)), (4.10), we end up with the result
ED. 0

4.2. The Regularity Estimates of the Remainder. The goal of this subsection is to derive the following
theorem which provides the necessary regularity estimates.

Theorem 4.3. Consider the solutions nx(t, + 1), c;g (1) = Cplty +7) = S;rT7E,, d;’r (1) =877, to the
equations ([2.12) initiated from the reference time t, € {0, Ty, = AY/3T¢/2Y. Then the following estimate holds

for allt =t, + 7 € [t,, As+<],

d_,.
(4.11)51@3;3 [tr + 7m0z, 2]

C G O(t, +7) Al/3 0z ¢ M

=GAs <A1/6 T Y e TP Ty Fee

C’ Ft M
G G,Q b M 2 2
A1/3 A1/2¢’(t + 7)4M+4 (1+FG,Q + ||<”>HHM + |V<Q:>||HM)

Ca exp{ Al/ST} 2 iy G2 (1) 81r] ke 2 FiriM 2
e A @ % G100, e | (R + 00 ).
‘ivj»kIZO

Here the constant C only depends on M, |[ual|pewn+s. and Cg only depends on G, M, ||ualpseyymi+s.o.

Before presenting the proof of the theorem, we first decompose the time derivative d Ft“M[ +7]/drT and
identify the terms to be estimated. Then we provide several lemmas to provide necessary bounds on these
terms. The proofs of these lemmas will be postponed to the end of this subsection. Finally, after all the
preparations are ready, the proof of Theorem is straightforward.

The time evolution of the functional Fgg[ @13) on t =t, + 7 € [t,, T,] C [0, AY/3*+¢] has three compo-
nents:

M

d i d j i ik
(412) ZFEE =2 | X @M st 4 7
|,5,k|=0
g [ Mt | ‘ )
to Z DHTEG( AL ppn + Ilj:M+1)||F;J;2}£€T+T(Q:#(tT +7) = SrtTeL)|3
li,7.k|=0
6 2 & ) (S T
- QZ?/S Z HF Jk (tr)‘&? exp{—QAzl/?)} =: 0F; 4+ 0F; — OF3.
|,5,k|=0

For the sake of simplicity, we use the notation I'y to represent I'y; 1, and I‘;ﬂ: to represent 0 I‘; ‘. +78k .
We begin by considering the 0F; term in (4.12). The equation for the higher gliding derivatives of nx can
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be expressed as follows with the help of the equation (2.12d)),

- . . 1 .
0T inz + ualty + 7, y)0H D)0k ny — — ATy
1 1 ijk

= Z[Fi)ﬁyy}@iaﬁn# = bt (V-2 V(@) + V- (m)VE) + V- (0 VEz)2), t=tr .
Combining the equation and a direct L?-energy estimate yields that
1 1 X o g M a+2i g . )
(413)  SOR <— o Y GUHEY|IVInl3+ o / Tiling [T, 0,,]0,0%ndV
|4,5,k|=0 |4,5,k|=0
M o a2 B o
+ > Tqﬂﬂ/vr;{fn#-a;r;af(nw# +nLV(C)dV
|3,4,k|=0
Mo oat2i - , ,
-y e / T, [T 0,]0004 (nVC + 1V (€)dV
|4,5,k[=0

oD, + TNER L pNER  TNER,
Next we recall the definition ¢ (7) = €.(t, +7) — SI"T7€(t,) together with (2.12D]), and express the
# # tp  ~F

equation satisfied by F;]f cig as follows,

ikt ik 6, L oamijk 4 L i ok tr L gk
O, Trcly + ualty +7y) Ty el — TATG e =70, 05]0, 08¢ + 2Ty,
0L07,, OFcy(r=0)=0, t=t,+.
Now a direct computation yields an expression for the 0F; term in (4.12)):
M+1 2§42 120
1 QUG ii
(414) §8FQ < Z (AQ/?’]ljSM + ]lj:]w+1) ( - THVF;}?CQH%
|4,5,k|=0
G2ip2i+2 3 4 ' G2ip2i+2 . .
= / ryicly [19,0,,)0.08cdV + — / ryicl F;{fn¢dV)

. NL;R NL;R
= — D+ TR+ TR,

We note that the proof of Theorem |4.3|is completed once suitable estimates are provided for the T,JL\;[ 1L ;R, T,le 2L e

terms in (4.13)), and the T C;J\QL;R, T 62 # terms in (£.14). Next we collect two lemmas that provides bounds
for these terms. The proof of these two lemmas will be postponed to the end of this subsection.

Lemma 4.1. [Lemma of TZ-NL;R and TiNL;D.] Consider functions {9ijx}i.jk1<m C H(T?).  The following
estimates hold
M

NL;R
Tn 3

)

Ga+2i y
(4.15) Z Tq>21 /Vﬁijk : ijf (nVC&s +nx V() dV
|7;7j7k7|:0
M . .
GAt2ip2i C(G A\ 2 cG .
< > TR0l + vy (F58) 4+ s (b 3 + IV P
|4,4,k|=0
c ; ™ i j (1Tid exp {— &7 }
+ gz (FEQ + 1l ) (@ 30 @)@ Ing exw)lis | —gumis
|4,5,k|=0
M o qa+2i . ) -
(16) | > L / it [09,0,)0008(nVC + 1, V(C))dV
|4,5,k|=0
M i ; [
CG4+21(I)2] 1 exp{_rz/s_T} 5 C(G) oM 2
= Z AL/3 <A1/6 + G2 19532 + A5/6pAM+4 (FG,Q )
|4,5,k|=0
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c(G) ) o
+ e Il + IV 15 )FG G
C(G) exp{f572/7.} M+1 i k ) .
A1/3@2M1—?-13 ST GE(t,)H||TE €L (t)]2 <q> 2MpEs +||<”>||§m).

l4,5,k|=0
Here ® = ®(t) = O(¢, + 7).

Lemma 4.2. Consider functions {9k }ijk|<m+1 C H'. There exists a constant C, which depends only
on M, ||0yuallpeoywm+2., such that the following estimates hold

M+1 G2i¢2j+2 .
(4.17) Z (A2/3Ilj§M+1j:M+1) /S’_')ij waayy]a;afc;rd‘/‘
|1,5,k|=0
M1
7A Z (A/ Licam + 1= M+1)GQZ‘I’2J+2||V~VJW€”L2
|4,5,k]=0
c M+1
i i 7k
<G2A1/3 G(A2/3 ¢ t2)) Y (AP Lcnr + Lo ) GHOH (|9 72 + Tyl L 1172);
l1,5,k|=0
M1
G2z(I)2]+2
(4.18) > (AP ljcn + 1j—nia) /%k ry n;,édv‘
|4,5,k|=0
1 = CP2
7 j M
<14 > (AP licnr + 1oy 1) GHO¥ 2| Va5 + C2ALB G-
\i,j,k|:0

Here ® = ®(t, + 7).
With these two lemma, we can complete the proof of Theorem

Proof of Theorem[].3 We estimate each term in and We note that the commutator term
TNL;R in (4.13)) is estimated in Lemma By setting $ijx = F”t ny in (4.15), (4.16), we obtain the
estimates for the TNL R and T,{LV:,)L;R terms in . By setting $;j, = F;ch; in - ) and -7 we
obtain the bounds for TNL R TNL R terms in . Combining the estimates stated above and recalling

the decomposition (4 , we obtaln (4.11]). |
Proof of Lemma[/.1. Proof of (4.15): We decompose the left hand side of (4.15) into four parts:
M G4+21
(4.19) P /Vﬁ”k T¥(nVey +nVdy +naV(€)dV =: Tt + Ty + T.
l4,5,k|=0

Here we drop the (---)* in the C;Z and dig.
We first estimate the 77, T terms with the product estimate as follows

M GA+2ip2i M . M ik
T <C Y T IVOuklla | Do T Vesll | | Y2 IRl

|4,4,k]=0 |4,5,k|=0 |4,4,k]=0

Next we recall the estimate (B.7)), the fact that Ag—zm < C®2/3 ([24), and the definition of Ft“M [213) to
derive that
M

G4+2i¢2j
l4,5:k|=0
C@ [ XN peige M S,
g | 0o CUETIL e 3 v YT AMAGH eI e,

|4,5,k]=0 |4,5,k|=0
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M

<X GHERUITEn s + 02| ) s
l4,,k|=0
M . .
G12ig 2, CG) (g, COIM I oo
S}%:Om”mjk”z + g (F60) + —gat F6d
1,7,k |=

Next we consider the T5 term in (4.19)), which contains the Vd = VSE:JFTC#. We apply the linear estimate
(2.6) (with G chosen large enough), and the gradient estimate (B.7]) to obtain

M+1
c _
(4.21 LyvsitTe > Gt jrik gttt
ME,; OH b =@ o\ a6, ) o +)VTE ST el

f ) S G + ) T el )

l4,5,k]=0
M+1
1+¢, i% ij 0z
SCW ’ % OG F (tr)”Lz exp{_Al/ST .
2%

Here the notation ®(---) represents the value of the function ® at the given time. This estimate, when
combined with the product estimate , and the Holder, Young inequalities, yields that

M

G4+2iq)2j 5
(4.22) \Tﬂgz o IV9unllz
‘Z7])k‘:O
T SRR T
Q2A1/3 #ll2 HM
|4,4,k|=0
M+1
. ; 20z | L+t +7)% _apr
x Q2 Z G2 D(t, )27“1—\ ijk o (tr)Hiz eXp{_A1/3T} 27 M -2
l4,5,k|=0
M . .
G4+27,(I)2J 9
< Z T”V&jkuz
|4,5,k|=0
C@exp {37} [ » N~ e ’ M
Ot (o0 S creink et ) (7 + 1ol

|4,5,k|=0

Similar to the estimate of T}, we estimate T3 term with the product estimate as follows

Mg Moo
?
(423) Bl Y TVl ||v<e:>||HM( > ||r;;tn¢||2)

‘iv.j’kIZO ‘i,j,k‘zo

S G 25 c(G) 2 = 4424 3,27 || td 2
< Y G VRl + g V@ | Y G T
|4,5,k|=0 |4,5,k|=0

M

G4 +27 C(G) )

< Y T IVulE + e IVOIENFES

l4,5,k|=0

Combining (4.19) and (4.20), (4.22), (4.23)), we obtain the estimate (4.15]).
Proof of (4.16): Now we estimate the left hand side of (4.16). We decompose it as three terms

M 4+42i ) )
(4.24) -y C e / S [19,0,)0005 (0¥ ey +nVdy, + n V(€)Y = 3 T,
lij,k|=0 t=4
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The Ty term can be estimated with the commutator relation (B.2c)), the regularity estimate (B.7)), and the
product estimate as follows:

M

44217
|Ta| = Z < ‘I)ZJZ< >/-VJ 5w BUTHD, T 0108 (nV e )dV
.3,k|=0
SC(G Z G2 1955l (8 +7) an““ *(nVey)z.
1,3,k]=0 =0

To estimate the last factor, we apply the product estimate and the fact that || fz|l2 < [|0zfx]2 to
derive the following general estimate:

-1
i+1) Zk 4 %
L) k1< Z P 0V f)ll2 < Vigagenr Y (ITEE@ene V) |l2 + [TiE (00, V £2)|2)
=0

M—-1 M—-1 M—-1 M—1
<o S0 Ardroemgle | {0 IV | | DD IrEnl | | Y D0,V 4]l
|4,3,k|=0 li,5,k|=0 |4,3,k|=0 |4,7,k|=0
M M—-1
17k +1)5k
<C | > ITZngle + 10l g ST oIrSEI L
|4,7,k|=0 |%,5,k|=0

Now we invoke the gradient estimate (B.7) to derive the following

(4.25)
M M
1 1219 i+1)5k
\kaMZHF” V2 <C D0 T nslls + ()| grar—s STorEE L | (14 8).
|7;7j’k7‘:0 ‘ivj’k‘ 0

Combining the estimate (4.25)), the bound (j}"/g )4 < C®~2 (2.4), and the definition of Ftéé\g/[ (2.13)) yields
the bound

M 4424 4
(w2) mi< Y G wnmn%m( Z GHEHI 2 AT #2)
,5,k|=0 [i,5,k|=0
M
( S RT3 4 <I>2M||<n>||%1M)
|4,5,k|=0
Mo qatai oG 2 oG
< 3 S rInult+ g (F64) + gt S8 Nl

Now we recall the estimates ([4.25) famdy B.7), the enhanced dissipation (4.21]), and obtain the bound

G+ CG)A+8) (XN i g2y pidh ctnr oz,
(427)T5| < Z 73 ¥ [9url3e” A7 +A/W+( > GreM|rgrsy @@)ew
i,5,k|=0 |4,5,k|=0

M
( DO S s @2M||<n>||zM)

|i,4,k|=0
M G4+2i(1)2j ) 62
Z W“bijk”LzGXp —iT
|%,7,k|=0
C(G) eXp{—‘SiZT} M+1 i 7]
g (@2 OM()P I eI | (27 VEGE i)

|4,4,k]=0
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Similar to the estimate of Ty, we estimate the Ty as follows

M o qatei j-1 j ‘
429) [ <0 3 S e¥lonla Y (1) o+ 7) [0 Tk T @)l

l4,4,k|=0 £=0

- G4 2 23 C 2M - 4427 32 k 2
Z AI/QCI) Hﬁz]kHZ Ag/g(t +T) o Z G+I(I)J||FJ ¢H2 ||V<Q:>||HM
1,5,k|=0 i,5,k|=0

M M

G4+21 oG ’ i
S N L D D el ) AT

1,5,k|=0 i,5,k|=0

Combining (4.26]), (4.27)), (4.28) and the decomposition (4.24)), we obtain the estimate (4.16]). This concludes
the proof. O

Proof of Lemma[{.3. Application of the estimates in Lemma [3.2] yield that,

M+1 G2ip2i+2 . ) +
Z (A2/3]1]SM+]1J:M+1)7 /f_)”k [F;’t,ayy]aiafc;zd‘/’
i,,k|=0
A2/3 % 3,25 +2 2 1 p2na 2
< Z GZ 2|V 9k 72 +87A(I) IVHoar+1)0llz2
ij k<M1
| Jj‘SM +
co C o i
+ Z A <G2A1/3 T G(A2/3 + t2)) GH ¥ T2([|91 |72 + T Jt cl=)
ig k<M
| les_M o
co C 2M 4 2
" (G2A1/3 IREVEE +t2)> & Mool
co C Y k t,.
¥ (g * ) GHa
|ijk|¥M+1 GRALS - G(A £ 1) wt Rl
Y
=34 > (APcns + Lmp) GT OV T V172
|4,5,k[=0
M1
co C 127
i (G2A1/3 T Gas +t2)) D (AP Lan + Lo ) G ¥ (| 93kl172 + T ez [172)-
Iirjvklz()

This is consistent with (4.17)).

Now we focus on (4.18). We distinguish between two cases, j = M + 1 and j < M. In the first case, we
recall the definitions of ®(t, +7) = (1 + (t, + 7)3/4)~! ([2.4) and Ftéé\f (2.13), and observe that no 9, is
present (i = 0). Hence, the left hand side of (4.18]) can be estimated as follows

(4.29)
P2M+4 Mt $2M+4 1 M
‘ /ﬁo(MH)o r,* nidV’ = ‘ - (8, + B( )0,)$o(m+1)0 Iy nedvV
M+ Co* (t, + 1) P2+ CP’
<~ 1V90arol3 + Gigs s (G4¢2M||F24n¢||§) < 5 1V900rnoll + G aFes -

In the j < M case, we invoke the definitions of ® :I) Ft“ , and distinguish between the ¢ = 0 and
1 # 0 cases. As a result, the left hand side of (4.18 is bounded as follows

M+1

Z 1]<M+1

1,5,k]=0

G2z @2] +2

(4.30) 78

/ (Ili;éo amﬁz;k ai_lriafn;é + 1;,—¢ 8zfjijk 8;1“;6;“_%;&) dV’
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G2 p2i+2
< Y T IVeuls

12A1/3
|2,5,k|<M+1
J<M+1
+ = D (G200 91 T 0k n 3 + G102 9T 0k nsl3)
|2,4,k|<M+1
J<M+1
M+1 2i g2 2
G* o+ 2/3 2 co s M
§|-§ OTA YeantlVOull + GayaaFaq
2,7 =

Combining (4.29) and (4.30]) yields - O

4.3. The Decay Estimates of the Remainder. In this subsection, we fixed an arbitrary time ¢, €
[t,, T, — 6~ 'A'/3] and estimate the deviation between the solutions to the system (2.12) and the passive

scalar solutions (St ST (Flyjf* ) LSt (F;Jf C;)) initiated from time ¢, on the time interval ¢, + 7 €

[ty,ts + 6~ LAY3] C [t,, Ty]. To this end, we define the variations and the functional that measures them
(4.31) Vi (te +7): F;Jf ong — Syt (F”t n(t )) ;

ijk T ijk
(4.32) V§(te+7) =TF by - gtet (r;t ¢ (t. t,));

M M+1
(433) D [+ i= Y GHERY ViS4 Y0 G (A Ly + Lymaren ) 92|V 5.
|4,5,k|=0 |4,5,k|=0

Here the parameter 7 is the time increment from ¢, (instead of ¢,). Since the argument in the function c';;‘
is the time increment from the reference time ¢,, we have to write c’;z (t, — t,) when invoking the function

value at time t.. To estimate the quantity Dt”M -, we write down the equations of the variations

zgk: Vzgk -

(4.34a) 0, Vi +ualte + 7,y) 0. Vi — Avwk [rg,ayy]a;afn;é _ L (V- (nVe)),

A A vt
(4.34b)  0-V§ +ua(te + 7,9) 0V, — AAV”k [r;,ayy]a;a;@ + Ap;a{;

V(T =0) = V5(r = 0) =0, [te,tu+7] C [t,t. + 5 1AV

Here 0 is defined in (2.17) and the current time is t = ¢, +7. The estimate of the functional ]D)téjg is collected
in the next theorem.

Theorem 4.4. There exist constants C and Cq such that the following estimate holds

(4.35) imt“ [te + 7,V
dr

C( % G 1 1 b, Dt
Sa\gaisr T e " A2 (1, 1 7)2 T 1i7E P 4A1/3( «+ T —t) G.Q

+g @ + 1 ]FT,M
G \GAY3 = A23 4 (t, +71)2) @

Vz]k]

ijk>

tr s M
CG GQ t; M
A1/3 AL/2paM+4 1+]FG,Q + ||<n>||%{M + ||v<¢>||%IM
Ceq exp{*LZ/(t*+T—tr)} N i ik M
R B e > GHO)I T ot | (Faidy + 13 )
l3,5,k]=0

Here ® = ®(t, + 1), Fgg = IFthg [t, + 7], DG g = ]D)gjg [tx + T]. Here the constant C' only depends on
M, |luallpeewm+s. and Cg only depends on G, M, |[ua pewn+s.co.
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Proof. We first decompose the time evolution as follows

M M1
d .. d . . , .
(4.36) EDZ,’SI =7 Z PHGH| VI3 + Z PG <A2/3]1j<M+1 + ]lj:MJrl) V5115
,5,k[=0 |4,5,k|=0
::8D1 + 8D2

Application of the V7, -equation (4.34a)) yields that the 0D; term in (4.36)) can be decomposed as follows

1 M a+2ip2) M o oav2i , 4
aan  gopi<— S STV Y T [V [1.0,)00kn.dv
|4,5,k|=0 i,5,k|=0
Mo a2 o
+ Y 1 % / YV, - 9LTION (nVE, +n,V(€)) dV
li,5,k|=0
Mo oav2i ) )
-y S / n [Y0,1000% (1Y€, + npV(€)) dV
|4,5,k|=0

NL;D NL;D NL;D
= —Dyn + 1,177 + 1,57 + 1,37

Similarly, the dDs-term in (4.36) can be decomposed with the equation (4.34b)) as follows

1 M+1 P2i+22i
(438) ié)Dg < Z (A2/3]lj<M+1 + ]lj:M+1) ( — T”Vijk”%
l4,5,k|=0

ijk Yzt yYz

2ip2i+2 ) . 2ip2i+2 o
+ GT / Ve 09, 0,y]0505cedV + GT / V¢ 8ZF]8kn¢dV)

NL;D NL:D
=t — Dye + TP + TP

First of all, we invoke Lemma and Lemma to show that the commutator terms TévlL D in (4.37) and
TC;NlL;D in (4.38)) are bounded as follows:

NL:D NL:D, _ 1 1 o 1 tiM | ot M
(439) |Tn;1 | + |Tc;1 | < gQV" + ggvc + GAL/3 + A2/3 + (t* + 7_)2 (ID)G,Q +FG,Q )

Now application of Lemma yields that the TTZLV2L D T,ILV?)L D terms are bounded as follows

(4.40) TP + 105

M ; . M . . 5
GAEeY CG**20% [ 1 exp{—2Ft+7—t)}\ | . o
< A Z 4A IVVEllz + _ Z Al/3 Al/6 T G2 Vil z2
|4,4,k[=0 |%,7,k|=0
c(G) tr; M 2 Cc(G) 2 2 tes M
+ —aars (FE0) + e (ol + IV (@ P
C(G)exp{—%(t*—i—T—tr)} M+l ; R .
+ /S > GHe(t) T Cat) 3 | (Fed + 1) I3 ) -

l4,5,k[=0

This is consistent with the estimate (4.35)).
Application of Lemma yields that the |Tc;N2L;D| is bounded as follows:

Co? oM

D 1
NL;D
(4.41) T2 ™" <3®ve + e -

4
Combining the decomposition (4.37), (4.38]) and the estimates (4.39)), (4.40), (4.41), we obtain (4.35). O




TIME-DEPENDENT FLOWS AND THEIR APPLICATIONS 35

4.4. Conclusion. In this section, we prove Proposition Proposition and Proposition We start
with the proof of Proposition

Proof of Proposition[2.3 First of all, we specify the reference time t, = 0. To prove the proposition, we
use a bootstrap argument. Assume that [0,7,] C [0, AY/3+¢] is the largest interval on which the following
hypotheses hold:

. . 20t
(4.42a) Fe'oy [tnyz, €4] <2Cpp FEig [0,n4,€4] exp {—M} , Ytelo,Ty,
(4.42b) () g o, mpsrr2e )y <2By;mnes IV e o, m0) < 2B ey mrnsr.
Here,
(443) B<n);HM = 2H<nm>||HM + 2, B<Q:);H1VI+1 = AT + 2||V<Q:1n>||H1vI

The parameter § is chosen in (2.17). By the local well-posedness of the equation ([2.9) in HM, M > 3
(Theorem, we have that the interval [0, T}] is non-empty. The goal is to prove that given the assumption

(2.21) and the hypotheses (4.42al), (4.42b)), the following stronger estimates hold

(4.442)

. i 25t 26t
Fg”g[t,n# 4] <Cgp Fg”g[[o,n# €] exp {_Al/?’} < C(||ninst || 370 + 1) exp {_Al/?’} , Ytelo,1y],
(4.44D) {n g o, ;e )y SBiaymne, IVl o,7)m0) < Biey, a1

As a consequence of this bootstrap argument and Theorem the estimates (2.22a]), (2.22b)), (2.22c|) hold
on the time horizon [0, A*/3+¢].
First we prove the enhanced dissipation estimate (4.44al). We choose an arbitrary starting time ¢, €
[0, AY/3%¢] and consider a time interval t = t, + 7 € [t,,t, + 6 L AY/3] C [0, AY/3+C]. Tt is enough to derive
the regularity estimate and the decay estimate .
To prove the regularity estimate (4.1), we invoke Theorem [4.3l Combining the bootstrap hypothesis
, , we refine the estimat as follows

(4.45)
d_ 4.
& [
c (o) G AL/ 5s .
SGAI/S( G taus T s texP —qaist( ) Fea

ts M
Cq CE:Q 3 M 2 2
+A1/3 AL/2pAM+4 L+ CEDFG,Q [0] + B(ﬂ);HM + B<¢>;HM+1

M1
Ca 0z ik 0z ti M
+ Q2A1/3 P {_4A1/3t} Q@ Y ITCmzlfzexp ~5 /3" (CEDFG,Q [0] + B<2n>;HM> :
li,j,k|=0

<Fe [, by @I3),, _o

Note that the choice of ¢ (1.9 guarantees that W < —L.. We take the parameters A and

— Al/4-
t<AL/3+¢

Q@ large enough such that the following estimate holds

4.46 dprty < _C (g4 A7 Oz L L gy

(4.46) dat G,QH—GA1/3 ()+A2/3+t2+exp Y GG c.q [t

Now we have that if G is chosen larger than a constant depending only on M, |lua||fecpyar+s.0, 057, the
b z

following inequalities hold

(AT FG Y [t + 7] < 2FEN 6], Vr e (0,672 A3 Feidl[t] < 2 Fgia'[0], Ve [0,Ty) C [0, AY3H¢).

These are the regularity estimates that we are after.
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Next we derive the decay estimate (4.2)). To this end we apply Theorem [4.41 We observe that the
functional ]Ftég can be decomposed as follows:

M
(4A8)Fg iy [te + 7] <2DG [t + 7]+ (2 D G H®(t, +7)7(|S): (04T, ¥ ne(t))]3

,5,k|=0
M+1 -
+2 ) (A2/3]lj<M+1 + ]lj:MJrl) GHO(t, + 7)Y 2| ST (0 (b — )13
l6.5,k1=0
+Q° Aff 0T, 9F e .|| 2ex { 0z T}> = oD% M, + 7] + Rty + 7]
DG, U miA 1265 T 17 a.Q *

Here we recall that the reference time is ¢, = 0. We note that thanks to the L?-enhanced dissipation
estimate (1.8)), as long as we set 7 = 61 AY/3, with § € (0,6z) chosen small enough (2.17) , we have that

1 .
(4.49) R[t, +6 1AV < E}Fg;g [t.].

Hence it is enough to estimate the ]D)té;g [t. + T)-term in ([£.48)). To this end, we recall the estimate (4.35))

from Theorem Since the main portion of the terms &@ and (4.45) are similar, we choose the

parameters as in (4.46)) and apply the regularity estimate (4.47) to refine the estimate as follows

d 4.
2706 b+ 7]

dr
C G A3 0z by M b M
< GAi (<I> Tt E g O {_4,41/3 (te +7— m}) (DG,Q e+ 7]+ Fdg [t*]) :

Now we observe that as long as G = G(M, HUA||LtOOWM+3,oo,5£1) and A are chosen large enough, we have
(4.50)

Dy [t + 67T AY?

oAl c A e+ G 1 1 oz .
< ; exp | = i YOE +A1/2+A2/3+(t*+7-)2+A1/36Xp 774A1/3(t*+7'—tr) T

c G Al/3 5z M
X GAIB (@(t* + )+ /6 + 5 (1T o) + exp {_W(t* +s— tr)}> ds F¢'g [ts]

1 o
= EFtG:Q [t

Combining (4.48)), (4.49) and (4.50), we have that

. 1 .
(4.51) Feio [t + 07 1AY3] < 51@3;3’ [t].

Combining (4.47) and (4.51)), an argument as in (3.32)) yields (4.44a)).
To conclude the proof of (4.44a)), we further choose the € (2.20) to be small enough compared to @ and

recall that G = G(M, ||'U/AHLtOOWM+3,oo76§1) to obtain

M
M ol o -
Fdfo) = S G005 0 nins 2 + Q%€ < COM, Juallpowarsss 05 ) (IningslBpas +1).
|4,5,k]=0
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We conclude the proof by proving the estimates (4.44bf). Recall the main conclusions from Theorem [4.1

M

d , c
7| 2 13Oz | < IO | sup ) (s) i+ V(@) [
dt 15,k[=0 4 s€[0,A1/3+¢]

C M+1 M

1% i+1)jk
S BN L PPN D | Ve
|4,5,k|=0 l4,4,k[=0

M

-
Y ITynel.

|4,5,k|=0

Now we decompose the chemical density into two parts, i.e., €.(¢) = c2(t) +dx(t), dx(t) = S{€in;. Then
we recall the definition of the functional Fgg{ (2.13) and estimate the above expression using the fact that

2 < CP~1A2/3 as follows:

d{ &L
(4.52) - > 1050k ) (1)1

|7,k|=0

Sill(ﬂ)(ﬂl%m( sup |<n>(8)||:§1M+||V<¢m>||§w)

s€[0,A1/3+¢]
C M+1 M
2 525 +2 1kt )12 2/3 20425 2j+2 | (E+1)ik t.q12 tr; M
+ AT > GHMITIr .+ Y AMRGHRReM DU, | By
li,5,k|=0 i,5,k|=0
C M+1

T ApiiT2
l4.3,k]=0 li,,k|=0

C c )2
gA||<n><t>|i,M< sup |<n><s>||§w+||v<¢m>||%,M>+M)4M+4(Fé::?f)

M
> GRSy G+t Y0 GHM T | B

s€[0,AL/3+¢]
c M+1 3 M N
tgmrm | 2 GUYINAL)E. 8 Y GMeM g, | Fay
|4,5,k|=0 [4,5,k|=0

Now we apply the linear enhanced dissipation estimate (2.6) (given that G is large enough), the smallness

assumption (2.20) and the bootstrap assumptions (4.42al), (4.42b)) to obtain that

M

2
i M
c (JFGQ )

d , C
(453) = | D0 130E N7 | < Bl (Bl + IVl ) + —

|7,k[|=0

M+1
C

+

|4,5,k|=0

B C(G,6z1)Cep Sz .
2/3 Yz 2 t M

o t
21 17k 2
g | 2 © ||ryzoeim¢|2exp{_5zw}

[0].

Here in the last line, we have invoked the facts that M < M, |®7 1| o g, 41/34+¢) < CA3¢, and 12¢(M +2) <
é (1.9). Then we choose the A to be large compared to the bootstrap bounds in (4.42al), (4.42b) and
[V€in.2||zzm to achieve the bound in ([4.53). Next we take the A~' and e small enough compared to
the bootstrap bounds Cgp, Fgg] [0] and other constants appeared in (4.53), and integrate this differential

inequality directly to obtain that

sup () [ Far < 2] (nin) [ Fas + 1.
t€[0,A1/3+¢]

Since we choose the B,y gy = 2|(nin) || gv + 2 in (4.43), the first bootstrap conclusion in (4.44b)) follows.
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The second bootstrap conclusion in (4.44b)) is a direct consequence of the bootstrap hypothesis (4.42h)),
the length of the time interval (0 < ¢ < T, < AY/3+¢ < AY/2) and the estimate (A.2)

(454)
Z [0305V (€)(t)]3
|7,k|=0
, 2 9 M t t—s . ?
<2 Z exp{ ATQ}a;af;w@(O) + > /Vexp{AATz}ai/af((n}(s)—n)ds
15,k1=0 2 li.k1=0 170 2
2 M ¢ t—s . ?
<2 Z Haaak C)|2 + 72 Z (/ Vexp{AATQ} sup ||8§8§(<n>(s)—n)||gds>
|7,k[=0 Jik|= L2— L2 s€[0,T4)
ky 9 1 [t /t—s\ "2 ?
< J —
22\88 (@)l + CBY,, <A/O(A) ds)
‘Jvk| 0
¢ CcB?, HM
<2 Z 10905V (€in) |5 + CBy . gy (A) S%lWQQH%ﬁ%.

|7,k[=0

Hence by taking A large enough, we have obtained the second bound in (4.44b)).
|

Proof of Proposition[2.4 The proof of the proposition is similar to the proof of Proposition [2.3] Hence we
only highlight the main dlfferenceb here.
First of all, we set the reference time t, = T), = AY/37¢/2 and consider the functional ]LM = FimiM G AL/

Another adjustment in the proof is that the c's 7 and d are redefined with t, being T), = AY/3+¢/2, Since we
assume M < M| the choice of ( ( . yields the followmg

1
12¢(2+ M) < g
This estimate, together with the “gluing” condition (2.18)), yields that L¥[T},] < C(B1). Now we apply the
estimate (4.11)) to obtain that

d

%Lg [Th + T]
c [(o(T,+71) G Al/3 oz N
SGAs ( ¢ Tart i@ e TP sty ) e
C(G) ng M 2 2
+ AL/3 Al/2pAM+4 1+Lg + B(ﬂ)“;HM + B(@“;HM+1
C(G) exp {—f&57} &
+ 576 ¢4MA+Zf A2 0L, 05 € (T 72 | (L& + [ (n) 1)
l4,5,k|=0
c [(®(T,+7) G Al/3 Sz M
SGAs ( ¢ Tawt @ e TP sty ) e
C(G) 1 5z
T Lg <1 + LG + By +B<2c>;HM+1> + Al/QeXp{ 241737 }LG (L& + 1)) -

Now a snnllar argument as the one in the previous proof of Proposition 2.3 yields the regularity bound. The
estimate can be derived in a similar fashion as before. When one derive the estimate for (n), the

d';g:Th —contribution in (4.52)) needs to be estimated differently. Combining the “gluing” condition (2.18)),
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the definition dQ (1) = S;:’+T[€¢ (T})], and the linear enhanced dissipation (2.6 yields that

C M+1
o | X et e S el ag |
,,k|=0 |4,5,k|=0
CA3CAEM~+2) 4 (Ty, +T)2 N s ek -
<= e Y GHOT TN, ST e AT LY

4,4,k]=0

A3C(M+3) M1 . ) . ) 0z M
<O > GFe(r )]||Fy]Th¢;é<Th)”L2eXp{ el }L

l4.5,k|=0
C(G)A3C(4M+5) M1 _ . 5z
<SR (4N e(m)P T, €T s | e~ 1Y
i,5,k|=0

52 55 1o
S5 exp{ a3 }L

Here in the last line, we have used the choice of ¢ (1.9) and M < M. Hence, by picking A large enough, we
observe that the time integral contribution from the d’;g (1) = S;*7€4(t,) is small. The other arguments
are similar and we omit the details. ]

Proof of Proposition[2.1} Here we observe that ¢, = 0, t = 0+ 7 € [0, AY/3+¢], and ||<I>*4M’4|\L$O(O)A1/s+<) <
C AWM+ < 0 A9 (T.9). Combining the estimates (@.11)), [#.52), and ([#53)), we have that

(4.55)

Q.‘Q‘

= (1) 15ae + HE) <*H< Mz (Sup]||< Y7 + ||V<€in>||?w>

s€(0,t
2
C, (& G | AP 0z C3(G) (HE)
T GaAs (G+A1/6 T2 TP T st H' + A5/6 paM+a
C4(G) Hy
AL/3 AL2pAM+4

C5(65'. @) 5z
+T exp *Wt HQ: ;

+

L+ () l7ae + sup, 1) ()17 + ||V<€in>||?1M)

s€|0,

(L& + 1)l ) -

Here in the last estimate, we employ the chemical gradient V(€) estimate . To prove the boundedness

of the solution on [0, A'/3+¢], we apply a bootstrap argument. Assume that [() T) [0, AY/3+¢] is the largest
time interval such that the following estimate holds

205(674, G
(4.56)  H ]+ [{(n) (0|7 < 2(1 + HE[0] + [[(nin)[|F7ar ) exp {1 + 5’(£)Il€in;¢|2M+l} .

We first take A large compared to the right hand side of (4.56) and various constants in (4.55) to obtain
that

d SO Co Cy [(B(t) A3 6z
dt(Hg+H<n>||?{M)S(Hg+ll<n>||?w)( 21}2 tean\ @ T osre TP Tt

05 52 )
+ Al/3 exp {_Wt} ||Q:in;;é||HM+1>.

By integrating on [0, T], and taking G > Gy(M, ||'U;A||L?CW;W+3,OO), A> Ag(M, H“A||L$°W;”+3a G, |ninll g, || Cinll gar+1)
large enough, we have that

Y1+ 160} Ol < 0+ o) exp {14 22 €l |
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Since this estimate is stronger than (4.56) and G' can be chosen depending only on M, |[ua|| oy r+5.00, 5;1,
t Y

standard bootstrap argument yields the following estimate on [0, AY/3+¢]

HE [t] + 1) (O3 < C(G)(ImnllFrar + [ €inszllFyars) exp {1 +C(M, HUAIILgoWyHm,521)||¢in;¢||§11w+1} :

Combining this estimate with gradient estimate (A.1]) and the argument in (4.54) yields (2.15)).
]

5. ALTERNATING CONSTRUCTION

In this section, we prove Theorem [2.4] and Theorem [2.5] For the sake of notation simplicity, the implicit
constants C' in this section can depend on 63, 55, Co, M, [uallpsewrare,so.

To prove Theorem 2.4} we focus on Phase # 1 [2.24), i.e., t € [0,3A4'/3%¢]. As explained in Section 2.3, the
main achievement in Phase # 1 is to guarantee that at time T}, = 3A'/3%¢, the chemical gradient is small,
e, [|€(T1q)||gm+: < 1. Once the smallness is reached, application of Proposition yields the enhanced
dissipation of the solution in Phase # 2 (t > 3AY 3+C). We decompose the chemical density in the following
way

C= (@) + (€))% +¢%, T=0.

To visualize this decomposition, we can apply a Fourier transform and see that

~

(€)= =1, €,  Ri:={a#0,=0,7=0}
(€)% =1p, €, Ry:={B=0,7#0};
¢, =1n,€  Ry={8#0}
The explicit positions of the three Fourier domains can be found in Figure Now the plan is to show

T

Fourier Space

FIGURE 2. Region R;, Ra, R3

significant decay of the chemical density information in the three Fourier domains Ry, Rs, Rs3. We will show
that heuristically, the information stored in Fourier domains R;, R and R3 will undergo significant decay
in phase a, b and ¢, respectively. In Phase a (¢ € [0, A1/3+<]), the shear flow is in the z-direction, and it will
efficiently damp all the chemical information in Fourier domain {a#0} D R;. As a result, we obtain the
following lemma, which captures the main characteristics of the system at the end of Phase a, i.e., t = T1p.

Lemma 5.1. Consider the solution to the equation ([2.9)), initiated from data ny, € HM3, ¢, € HM+4,
Recall the definitions of f%, (f)® (L.12). If the parameter A is chosen large enough, then the following
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estimates hold
(5.1)
0% (Tow) 172 + €% (Too) | Fess <A™ [{0)* (Tou) 3pase + KO (Tou) Izpres < BUIninll mess, [|Cinll ).

As a consequence, the following estimate holds at Toy,

(5-2) ()= = ) (Tow) [ Fpae + 1(EN* (Tow) I3y < A

Here we recall that ((f))Y*(x) = ﬁ // f(z,y, z)dydz.

Proof of Lemma[5.1. Combining Proposition Proposition we have that at time Tpp, (5.1) holds.
Moreover, we have that

()= =) (Tow) [ Fpae + 1@ (Tow) F3ess < 0% (Tow)[Fpess + €5 (Tow) [[Fpers <A™
This is estimate ([5.2]). O

In phase b, we obtain similar estimates for nZ, (ny?, % (€)* as in phase a. Moreover, we can propagate
the smallness estimate on ((€))¥* =Pg, € (5.2]). These estimates are summarized in the following lemma:

Lemma 5.2. Consider the solution to the equation . If the parameter A is chosen large enough, then
the following estimates hold

(5.3)

0% (Toe) [ Fpess + 1€5% (Toe) [Fpesa SATY 110)* (Toe) s + Q) (Toe) | Fpere < BlIninll oess, | €inl| roess).
Moreover, the following estimates hold at Tp.,

B

(5-4) (@) (Toe) 5= < K (Toe) s> <75

Proof of Lemma[5.4 Combining Proposition Proposition we have that at time Ty, (5.3) holds.
Next we combine Proposition 23] Proposition 2.2 and Theorem [£.2] As a result of an ODE argument , we
observe that if A is chosen large enough,

[{((m))?* (Toc) | zpevs < C[[nin | s, (| €inl | proosa).
Now Lemma[A.2] yields the estimate
(5.5) (€))% (Toe) |72 SCIIUE)*(Too) | Fpure + A2 < CATYS,
Since
(&Y | vz < (I(EN)YZ [ e + [ (DY) 2l v < [[(EN)YZ | e + (| €| proese,
the estimates and imply that holds. O

The main achievement in the phases a, b is that we obtain smallness in the y-average component at the
beginning of phase ¢, i.e., (€)Y (Toc)| gtz = ||Pr,ur,€(Toc)||gm+2 < 1. Hence we have nice estimate at
time instance T7,:

Lemma 5.3. Consider the solution to the equation (2.9)). If the parameter A is chosen large enough, then
the following estimates hold at time instance Ti,

B(l[ninll s, [|€in | prros)

(5.6)  [[(n = 7)(Ta)lIzpe <Blninllmess, |Cnllmea);  1€(T0a) [ Frier < /3 :
Proof of Lemma[5.3 Combining Proposition Proposition Theorem and Lemma we have
that at time 114, (5.6 holds. O

At this point (¢ = T14), the norm of the chemical density is small, and we can derive Theorem

Proof of Theorem[2.5 Application of Proposition 2.3 and the argument (3.32) yields the result. O
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APPENDIX A. GENERAL LEMMAS

Lemma A.1. Let F be in C™(T?), and define (F)(y, z) := ﬁ Jp F(z,y, z)dx, ((F))(z):= ﬁ Jp2 F(z,y, z)dxdy.
The following estimates hold:

IKCEN e ey <H<F>IIL§ 2y < Fllze,, (T 1<p<oo,
Z 105 (CFD) |22 (my <Z 10% (F Mz r2) < Z 105 F| 2 o (T3)

Proof. Applying the Holder’s inequality yields that for p € (1, c0),

W) < (L) (frmea) ") )
<(/. |<F>|pdydz)1/p P zgcrn = ([ |y [ pdydz)l/p
([ ((forvar) ™ ([rmvar) ™) i) Y Pl

Here % + i = 1. The p = 1 case is a simple variant of the argument above. The estimate in the p = oo case

is a direct consequence of definition. We observe that 0% ((F)) = (0%(F)) = ((0XF)). Hence, the estimate
above yields that

1/p

HEW 22 =( [N [ray

ZH@'“ Mlezery = D IOEEN | pzr) < Zna’“ ey =) = ZII (OXF) Iz . (1) < Z\Ia Fllzz,, .(9)-
k=0

This finishes the proof of the lemma. (|
Lemma A.2. Consider solution to the heat equation on T¢ d=1,2,

1 1
Oc = —Ac+ —

1 A(n—n), c(t=0,X) = cn(X), /Tdcdezo.

Then the following estimate holds ,

m t % m n m
(A1) I e(t)l| ey sc(A) sup [V (n() = W)l 2oy + 97+ il 2cra):

0<7r<t

Proof. By applying the Fourier transform, and the Plancherel equality, we have that

1
2

(A2) | Ve flly < € (D 1fll2 V> 0.

Now we have that

t ‘ t—
[V le(t)]|2 < |lexp {AAW} vTHe(0)|| + / V exp { 1 SAW} V™ (n(s) —n)ds
2 0

t —
V exp {tASATd}

t _
<Iv el + € () sup 197 066) = )l

0<s<t

1
A

2

1 .
<V el + sup [[V™(n(s) —0)|[2ds

L2 1,2 s€[0,t)
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APPENDIX B. TECHNICAL LEMMAS IN LINEAR THEORY
In this subsection, we collect some technical lemmas/corollaries applied in Section

Lemma B.1. Let A and B be two linear operators. Define the operation

ad’y(B) := [A, [A, [A, ..[A,B]]...], ne{l,2,3,..}.

Then

(B.1) ;( ) ad”y “(B)A".

Proof. E|To prove the lemma, we need two extra definitions, i.e., the left multiplication £ 4 and R 4
LB =AB, RuB=BA.
Standard computation yields the following three relations:
adaB=(La—Ra)B), LARAB=ABA=RsLsB, adsR4(B)=TRadas(B).
Now we have that

[A",B] =A"B — BA" = (ada + Ra)"(B) = R4(B) =) _ <’;) ad" *RY (B) — Ry(B)
=0

5 (- (e

The follow corollary of Lemma is useful when we compute the commutators involving I'y and A.

Lemma B.2. Consider the vector field T, = Ty, ([2.3), and recall the notation (3:36): B (t,y) =
fo 9;u(s,y)ds. The following commutator relations hold

(B.2a) Ty, ] / Byyus,y)dsds — — B3,
(B.2b) Ly, 0yy) = = 2B 0,y + 8, (BY)20p — B0,
-1 ,.
(B.2c) m,0,]=—3 @) BU-D, I,
=0
j-1 .
(B.2d) [Fé, Oyy| = @) <,2B(j75+1)awry + 33(/3'7@)(3(1))233696 _ B(jferZ)ax) It
=0

Proof. The first two relations (B.2a)), (B.2b|) are direct consequences of computation. Next we use the general

relation (B.1]) to derive (B.2c), (B.2d). First, we observe that
(B.3) adr, (-B™9,) = (9, + BP9, —B™g,] = —B™Tg,.
As a result, we have the general formula

adft, (9,) = —B"Va,, ¥m e Zy.
Hence by (B.1)),

|
_

J

, i=1 .
i J j— J j—
[T 9] = (E) adjryé(ay)ri - Z (5) BUTD0, T,

‘
This concludes the proof of (B.2¢).

Il
<

LThis proof is kindly suggested to me by Yiyue Zhang.
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Finally, we derive (B.2d)). By (B.1)), it is enough to compute ad?y (Oyy). We apply the induction to prove
that
(B.4) adf (9yy) = 2B V9,1, + 0, (BM)?0,, — B0, Vm e Z,.

This relation, when combined with (B.1), implies (B.2d)). The relation (B.4) holds when m = 1 ((B.2b))).
Assume that the relation holds on the m — 1(> 1) level, then

adf? (9,,) =adr, (ad "' (9,,)) = adr, (—B<m+1>ax —2BMy,T, + a;n—l(Bﬂ))?am) .
Recalling , we have
adf (9yy) = — B0, — T, (2B"™) 0,1, + Ty (9 (BM)?) 0y
=— B9, —2BmVY,T, + 07 (BW)?0,,.
This concludes the proof of . Hence the proof of the lemma is complete. O
We also use the following lemma.

Lemma B.3. Consider the gliding vector fields I'y = 0, + fot dyu(s,y)dsd,, and functions f,g € H™(T?).
Then the following two estimate hold

(B.5) 1z, . <C D 1027505 ez, -
[i,5,k|<2

Moreover, we have that for m > 3,

1/2 1/2 1/2
B6) | D lardifolia, | <C| Do oirjakflz. Y lloirsokgli.
|4,5,k|=0 |i,4,k|=0 |4,4,k|=0

Proof. Consider the following change of variables:

t
X:a:—/ u(s,y)ds, Y=y, Z=xz.
0
The Jacobian of this change of coordinate is 1. We also check that it is one-one and onto. Define
F(X,Y,Z) = f(z,y,2), G(X,Y,Z)=g(z,y,z)

Now by classical Sobolev embedding, we have

ez, = 1Flig,, <C Y 1058505F ], -
1,5,k <2
It is direct to check that
Ox =0p, 0y =Ty, 07 =0..
Hence,
1/2 1/2
ez, . <C | Do 105K 05FI: | =C| D |8T)ofIIz: |
li,j,kl <2 ’ li,j,kl <2
This is (B.5]). Next we recall the product estimate in the (X,Y, Z)-coordinate
|FGlay, , < ClFlay, IGlg, , + CliGllay, IFlls, ,-
As a result,

M 1/2
(> 1amekialis, ) <ClIFGlug,, < CIFlug, Gl + Clclug, 1Pl .
|4,5,k[=0

M o 1/2 M o 1/2
<o S wmgotsis, ) i, +o( X 10mgeteli, ) Il
[4,5,k|=0 |7,5,k|=0

Combining this with (B.5) yields (B.6). 0
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To conclude this section, we present a lemma.

Lemma B.4. Recall the vector fieldT'y = T'y.x (2.3). The gliding regularity norms of the gradient of functions
f e HM*Y are bounded as follows,

M M+1 M ]
EORD Sl T N S 70 BRRC Sl N B e

|4,5,k|=0 i,9,k|= i,3,k|=0

Here the constant C' depends only on M, ||Oyul| sy and p € [1,00].

Proof. Recalling the definition of commutators, we have that

M M M
Yo iV felle < Y0 IVOLL O  felle + D Lzl 0410508 frll 1o
/5.5,k1=0 1.5,k =0 [5.5.k1=0

Direct applications of (B.2c) and the relation 0, = T'y;; — fot 8yu(s, y)dsO, yield that

M M+1

Y O 0EV felle < Y0 10505405 f2llee +C Z /Ilau Megds Ty 7 fell o

|4,5,k]=0 l4,5,k|=0 li,3,k|=

M .
NI Z( )( / i7"+ <,~>||L;ods> 10T 0 o

|4,5,k]=0

Now direct estimation yields the result. O
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