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Abstract. We consider the three-dimensional parabolic-parabolic Patlak-Keller-Segel equations (PKS) sub-
ject to ambient flows. Without the ambient fluid flow, the equation is super-critical in three-dimension and

has finite-time blow-up solutions with arbitrarily small L1-mass. In this study, we show that a family of

time-dependent alternating shear flows, inspired by the clever ideas of Tarek Elgindi [39], can suppress the
chemotactic blow-up in these systems.
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1. Introduction

In this paper, we consider the parabolic-parabolic Patlak-Keller-Segel systems (PKS) on the three-
dimensional torus, which model the chemotaxis phenomena in fluid flows:

∂tn+UA(t) · ∇n+∇ · (n∇C) = ∆n,
∂tC+UA(t) · ∇C = ∆C+ n− n,
n(t = 0) = nin, C(t = 0) = Cin.

(1.1)

Here n,C denote the cell density and the chemical density, respectively. The first equation describes the time
evolution of the cell density, incorporating processes such as the chemical-triggered aggregation, diffusion,
and fluid transportation. The second equation describes the dynamics of the chemical density. We subtract
the spatial average of cell density (n) to normalize the chemical density equation. This adjustment has no
impact on the cell density dynamics, as only the chemical gradient influences the n-equation. Additionally, we
assume that the initial chemical density possesses a zero spatial average, denoted as Cin = 0. Both equations
involve strong fluid advection, characterized by time-dependent fluid vector field UA(t) that is divergence-
free, with an amplitude denoted as A := ∥UA∥L∞ . Throughout the paper, we employ the notation (x, y, z)
to represent points on the domain T3 = (−π, π]3.

It is worth mentioning that if the chemical reaches equilibrium in a much faster time scale than the fluid
transportation and nonlinear aggregation, one can derive the following important variants of the equations
(1.1), which are called the advective parabolic-elliptic PKS equations:

∂tn+ UA(t) · ∇n+∇ · (n∇C) = ∆n, −∆C = n, n(t = 0) = nin.(1.2)

It is also worth mentioning that another way to model the chemotaxis phenomena in the fluid flow is to
couple the PKS equation with the Navier-Stokes equation, the Stokes equation, or other types of fluid
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equations. The literature on this topic is vast, we refer the interested readers to the following papers,
[25, 37,42,60,64–66,73,74,79] and the references therein.

If there is no ambient fluid flows, i.e., UA(t) ≡ 0, the equation is the classical parabolic-parabolic PKS
equation. The PKS equations were first derived by C. Patlak [70], E. Keller, and L. Segel [57]. The literature
on the analysis of the classical parabolic-parabolic PKS equations and their variants is large, and we refer the
interested readers to the papers [15,17,18,23,24,31,38,71,80] and the references within. We summarize the
results on the blow-up and global regularity result of the classical parabolic-parabolic PKS equations here.
In two-dimension, the total mass of cells M := ∥n∥L1 characterizes the long time behavior of the solution.
If the total mass is strictly less than 8π, V. Calvez and L. Corrias showed that the solutions are globally
regular, [23]. On the other hand, if the total mass is large enough, singularities form in a finite time, see, R.
Schweyer [71]. In dimension three, the parabolic-parabolic PKS equations become supercritical. The total
conserved mass M becomes a supercritical quantity and is not enough to derive sufficient regularity control
over the solutions. In the classical paper [80], M. Winkler showed that there exist solutions, which have
arbitrary small masses, blow up in a finite time.

If the ambient fluid flow is present, the long time dynamics of the PKS systems change. In a series of
work initiated by [58], it was shown that by introducing passive fluid flow into the system, mixing and
fast-spreading effects of the fluid flow regularize the long time dynamics of the PKS equations. These
works are mainly focusing on the parabolic-elliptic PKS equations (1.2). In the paper [58], A. Kiselev and
X. Xu showed that if the ambient fluid flow is relaxation enhancing, which is introduced in the seminal
paper [30], and the magnitude A of the flow is large enough, then potential chemotactic blow-up ceases to
exist. Their argument was simplified and generalized in recent work by G. Iyer, X. Xu, and A. Zlatoš [52].
In the paper [10], J. Bedrossian and the author proved that the suppression of the blow-up effect persists
if the ambient fluid flow is the simple shear flow. The above works dwell on the mixing induced enhanced
dissipation properties of the passive scalar equations (advection-diffusion equations). On the other hand, in
the paper [49], E. Tadmor and the author showed that fast-spreading effect of the hyperbolic flow (−x, y) also
has the potential to suppress the blow-up of the parabolic-elliptic PKS systems (1.2). More interestingly, in a
forthcoming paper, we also observe that shear flows in the infinite long channel T×R have the fast-spreading
effect. In the advective-reaction-diffusion equation literature, it is referred to as the quenching effect, which
is closely related to L. Hörmander’s hypoellipticity [50]. For further references, see, e.g., P. Constantin, A.
Kiselev and L. Ryzhik [29] and A. Kiselev and Zlatoš [59].

On the contrary, the study of the fluid flow-induced regularization effect in the parabolic-parabolic system
(1.1) is limited. In the work [46], the author showed that the strictly monotone shear flows could suppress the
chemotactic blow-up in two-dimension. Later, L. Zeng, Z. Zhang, and R. Zi extended this result to coupled
Patlak-Keller-Segel-Navier-Stokes systems ( [82]). In both of these works, an additional smallness assumption
on the initial chemical gradient ∇Cin is employed. In a recent work [36], the authors are able to prove the
suppression of blow-up through Couette flow on R3. To understand the new challenges, we highlight the
differences between the parabolic-elliptic regime (1.2) and the parabolic-parabolic regime (1.1). It is enough
to focus on the dynamics of the chemical gradient ∇C, which determines the aggregation nonlinearity. In
the parabolic-elliptic regime, since the chemical gradient is determined through an elliptic type relation
∇c = ∇(−∆)−1n, the strong fluid advection has little impact on the aggregation nonlinearity. As a result,
it is easy to invoke various regularization mechanisms from fluid mechanics to stabilize the system. On the
other hand, the chemical density C in the parabolic-parabolic regime is governed by an advection-diffusion
type equation. A strong fluid advection can destabilize the dynamics by creating fast transient growth in
the chemical gradient. This destabilizing effect rules out most of the regularization mechanisms applicable
in the parabolic-elliptic regime. In the papers [46,82], the smallness in the initial chemical gradient is needed
to compensate for this destabilizing effect.

In this work, we prove the suppression of chemotactic blow-up for the 3-dimensional parabolic-parabolic
PKS equations.

Theorem 1.1. Consider the solutions (n,C) to the equation (1.1) subject to smooth initial data nin ∈
C∞(T3), Cin ∈ C∞(T3). There exists a family of time-dependent flows UA ∈ L∞

t C∞
x,y,z such that the

solutions are globally smooth on the time horizon [0,∞).

Our basic building blocks for the flow UA are a family of time-dependent alternating shear flows. We
extend this result to the time-dependent shear flow case in a companion paper.
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1.1. Sketch of the Proof. To motivate the idea and highlight the challenges, we first present the blow-up
mechanism of the Patlak-Keller-Segel type equations ((1.1), (1.2)). Then we introduce the regularization
effects induced by fluid advection. Finally, we highlight the obstacles in applying these regularization mech-
anisms in the parabolic-parabolic case (1.1) and our ideas to address them.

In the PKS type systems (1.1) - (1.2), there are two competing forces - the nonlinear aggregation (∇·(n∇c))
and the diffusion (∆n). On the one hand, the cells aggregate to form Dirac singularities, while on the other
hand, cell diffusion regularizes the dynamics. The solutions remain smooth when diffusion prevails over
nonlinear aggregation ( [18, 22, 23, 76] ). However, if the aggregation dominates, singularities can develop
( [17, 27, 28, 43, 53, 71, 80] ). One natural approach to suppress the blow-up is to enhance the diffusion to
counteract the nonlinear aggregation. This can be achieved by replacing the diffusion operator with porous
media type diffusion, e.g., [12, 16]. Alternatively, the presence of external fluid flow can also achieve the
same goal. The primary mechanism here is that strong fluid transportation creates fast oscillations in the
cell density, thereby improving diffusion. This regularization effect of fluid flows, commonly referred to as
the “enhanced dissipation phenomena” in the literature, is applicable to various fluid-related problems. For
instance, in the study of hydrodynamic stability, the enhanced dissipation effect is crucial in deriving the
sharp stability threshold associated with various shear flows, see, e.g., [6–9,11,13,26,33,51,56,61,63,67,68,78].
Furthermore, the enhanced dissipation phenomena find applications in a wide range of areas, ranging from
plasma physics to mathematical biology, see, e.g., [2, 3, 14,34,40,44,48,72,81].

To relate the system (1.1) to the existing theory of enhanced dissipation, we first divide the equation (1.1)
by the amplitude of the flow A = ∥UA∥L∞

t,x,y,z
, and rescale time properly to obtain

∂tn+uA · ∇n =
1

A
∆n− 1

A
∇ · (n∇C),

∂tC+uA · ∇C =
1

A
∆C+

1

A
(n− n) , uA :=

UA

∥UA∥L∞
,

n(t = 0) = nin, C(t = 0) = Cin.

(1.3)

Here we still use t to denote the new time variable. In the large amplitude A regime, we can view the
equation (1.3) as a perturbation to the passive scalar equation

∂tf + u · ∇f =
1

A
∆f.

For our purpose, it is enough to focus on the passive scalar equations on T3 subject to shear flows:

∂tf + u(t, y)∂xf =
1

A
∆f, f(t = 0) = fin, 0 < A−1 ≪ 1.(1.4)

To motivate the key regularizing mechanism, we decompose the solutions to (1.4) into the average in the
shearing direction and the remainder:

⟨f⟩(y, z) = 1

|T|

∫
f(x, y, z)dx, f̸=(x, y, z) = f(x, y, z)− ⟨f⟩(y, z).(1.5)

It is easy to see that the x-average ⟨f⟩ solves a heat equation; hence the x-average dissipates on a time scale
O(A). The time scale O(A) is long if the A is large. On the other hand, under suitable assumptions, the
remainder f̸= dissipates on a time scale much faster than O(A). This deviation in dissipative time scales,
caused by fluid advection, is called the enhanced dissipation, and it has attracted much attention in recent
years. Most analyses on the enhanced dissipation phenomenon are carried out in a 2-dimensional setting but
can be easily extended to a 3-dimensional one. We first consider the stationary shear flow, i.e., u(t, y) = u(y).
If the shear flow profile u(y) has only finitely many nondegenerate critical points, then the flow is called
nondegenerate shear flow. In the paper [5], J. Bedrossian and M. Coti Zelati showed that if the stationary
shear flows are nondegenerate, then there exist positive constants δ, C such that the following estimate holds:

∥f̸=(t)∥L2 ≤ C∥fin;̸=∥L2e−δA−1/2| logA|−2t, ∀t ≥ 0.(1.6)

If the parameter A−1 is small, the dissipation time scale O(A1/2| logA|2) is much shorter than the heat
dissipation time scale O(A). In the paper, the authors constructed explicit hypocoercivity functionals in
the spirit of C. Villani [75], and showed that these functionals decay with enhanced rate O(A−1/2). Similar
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estimates are derived for other degenerate shear flows. The result was improved in the paper [77]. By
applying resolvent estimates and a Gearhart-Prüss type theorem, D. Wei proved that

∥f ̸=(t)∥L2 ≤ C∥fin;̸=∥L2e−δA−1/2t, ∀t ≥ 0.(1.7)

In the paper [35], M. Coti-Zelati and D. Drivas applied stochastic methods to show that the A−1/2-enhanced
dissipation rate are sharp for non-degenerate stationary shear flows. We also refer the interested readers
to the works by Tarek Elgindi, M. Coti-Zelati and M. G. Delgadino [32], Y. Feng and G. Iyer [41], which
derive the explicit relationship between the mixing effect of fluid flow and their enhanced dissipation rate.
Recently, D. Albritton, R. Beekie, and M. Novack proved the estimate (1.7) on bounded channel [1]. The
enhanced dissipation phenomena also appear in fractional dissipative systems, see, e.g., [32], [47] and [62].

Note that the above enhance-dissipation estimate is sharp for stationary shear flows, which leaves open
the question that whether one can improve the dissipation rate by relaxing the stationary constraint. The
first step to prove Theorem 1.1 is to show that by introducing time dependency into the shear flow, the
enhanced dissipation rate can be improved from O(A−1/2) to O(A−1/3).

Theorem 1.2. Consider the solutions f ̸= to the passive scalar equations (1.4) subject to shear flow (u(t, y), 0, 0).
There exists a family of shear flows uA ∈ C∞

t,y such that the following enhanced dissipation estimate is satisfied

∥f̸=(s+ t)∥L2 ≤C0∥f̸=(s)∥L2e−δ0A
−1/3t,(1.8)

for all positive time s, t ≥ 0. The constants δ0 and C0 depend on the shear uA, and they are independent of
A and the solutions. Moreover, the spatial Sobolev norms of the velocity fields are bounded independent of
A, i.e., ∥∂yuA∥L∞

t WM,∞
y

≤ CM , ∀M ∈ N.

Remark 1.1. This construction is based on Tarek Elgindi’s logarithmic-shifted shear flows ( [39] ). We
reproduce all the details of his construction in Section 3. Thanks to a “rewinding” procedure, the resulting
shear flows uA have a mild dependence on the amplitude A. However, this dependence will not alter the
spacial Sobolev norm of the shear. The construction is general in the sense that for most shear profile
functions, we can design time-dependent flows that achieve the enhanced dissipation (1.8).

Compared to existing enhanced dissipation flows in the literature, Theorem 1.2 provides time-dependent
shear flows on T3 that balance the enhanced dissipation and the transient growth of the passive scalar
solutions. We first recall that there are many freedoms in choosing fluid flows to suppress the blow-ups
in the parabolic-elliptic PKS system (1.2). For example, one can choose shear flows with an enhanced
dissipation estimate (1.6) ( [10] ) or flows with sufficiently short dissipation time ( [4, 52, 58] ). However,
the story changes drastically for coupled systems. Here, we provide a heuristic argument to show that the
flows constructed in Theorem 1.2 are optimal in a certain sense. Motivated by the parabolic-parabolic PKS
systems (1.1), we introduce a toy model,

∂tρ+ u · ∇ρ =
1

A
∆ρ− 1

A
∆g, ∂tg + u · ∇g =

1

A
∆g.

Here ρ plays the role of the cell density, and g is the chemical density, respectively. The linear forcing term

− 1

A
∆g in the ρ-equation mimics the aggregation nonlinearity. We assume suitable average-free conditions

on the data and focus on the growth of the solution ρ. It is enough to estimate the net contribution from

the forcing − 1

A
∆g. We expect the higher derivatives of the solution g to undergo transient growth, and

enhanced dissipation, which can be summarized as follows

∥∆g(t)∥∞ ≤ G(t) exp{−Rt}.

We start by considering the stationary nondegenerate shear flows, which have enhanced dissipation rate
R = O(A−1/2) (1.7) and transient growth G(t) = O(t2). If we employ this type of flow, the contribution
from the chemical might not be negligible, i.e.,

1

A

∫ ∞

0

∥∆g(t)∥∞dt ≤ C

A

∫ ∞

0

t2 exp

{
− t

CA1/2

}
dt = CA1/2.
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Similarly, we can consider the stochastic enhanced dissipation flows constructed in [4,19]. Here, the growth
rate of the gradients and the enhanced dissipation rate are G(t) = eC1t, R = | logA|−1/C2. Hence the net
contribution of the chemicals to the system can be large for A ≫ 1,

1

A

∫ ∞

0

∥∆g(t)∥∞dt ≤ 1

A

∫ ∞

0

exp

{
C1t−

t

C2| logA|

}
dt = ∞.

For the time-dependent shear flows u constructed in Theorem 1.2, the growth factor is G(t) = O(t2) and the
enhanced dissipation rate R = O(A−1/3). In this case, the gradient of g has bounded contribution to the
ρ-dynamics, i.e.,

1

A

∫ ∞

0

∥∆g(t)∥∞dt ≤ C

A

∫ ∞

0

t2 exp

{
− t

CA1/3

}
dt ≤ C.

In conclusion, constructing a smooth flow that balances the transient growth of gradients and enhanced
dissipation is crucial for our analysis. Theorem 1.2 achieves this goal.

As a result of Theorem 1.2, if we introduce the strong shear flow A(uA(t, y), 0, 0) to the system, the
remainder n ̸=, ∇C̸= decay fast. Hence it is reasonable to expect that after a short amount of time, the
remainders become small and the solutions become quasi-two-dimensional.

This is the content of the next main theorem.

Theorem 1.3. Consider the solutions (n,C) to the equation (1.3) initiated from the data nin ∈ HM(T3),
Cin ∈ HM+1(T3), M ≥ 5. Define a parameter

ζ(M) =
1

108(2 +M)
.(1.9)

Further assume that the shear flows uA in the equation (1.3) are the ones constructed in Theorem 1.2. There
exists a threshold A0 = A0(∥nin∥HM , ∥Cin∥HM+1 , ∥uA∥L∞

t WM+3,∞ ,M) such that if A ≥ A0, then there exists a

universal constant C such that the following estimate holds at time instance A1/3+ζ(M),

∥n ̸=(A
1/3+ζ)∥2HM−1 + ∥C̸=(A

1/3+ζ)∥2HM ≤ C exp

{
−Aζ

C

}
.(1.10)

Moreover, the x-average is bounded as follows

∥⟨n⟩(A1/3+ζ)∥2HM−1 + ∥⟨C⟩(A1/3+ζ)∥2HM ≤ B(∥nin∥HM , ∥Cin∥HM+1 , ∥uA∥L∞
t WM+3,∞ ,M).(1.11)

Remark 1.2. We highlight that we obtain a fast decay of the remainder in a rougher Sobolev space. On the
other hand, obtaining enhanced dissipation for the top-order Sobolev norm is challenging.

The final step to prove Theorem 1.1 is understanding the long-time dynamics. If we continue to use
the shear flows constructed in Theorem 1.2, the nonlinear aggregation will eventually kick in through the
x-averages ⟨n⟩, ⟨C⟩-dynamics after the time-scale O(A). To get control over the solutions, one has to assume
the subcritical mass constraint M = ∥n∥1 < 8π|T|. We address this case in a companion paper [45].
In Theorem 1.1, the total mass M is arbitrary, and one cannot expect that the x-averages ⟨n⟩, ⟨C⟩ stay
bounded for all time. To overcome the nonlinearity effect, we introduce the last ingredient of the proof. It is
an alternating construction of time-dependent flows from the paper [48]. If one alternates the shear direction
of the flow in a particular time scale, the enhanced dissipation can dampen all the information fast. By
carefully implementing this idea, we can complete the proof. It is worth mentioning that alternating shear
flows have found applications in various field of fluid mechanics, see, e.g., [20, 21,48,54,55].

In Section 2, we lay down the structure of the proof.

1.2. Notation. Throughout the paper, the constants C can change from line to line. Moreover, to avoid
cumbersome notation, we allow the implicit constant C to depend on the L∞

t WM,∞
x,y,z -norm of the velocity and

regularity level M . We recall that the velocity field uA we construct has the property that ∥uA∥L∞
t WM,∞

x,y,z
≤

CM , ∀M ∈ N. Hence this notation convention will not cause confusion.
To avoid complicated notation, we will reuse the notion Ti. For the proof of each individual lemma, we

are going to define different “local” quantities Ti’s. Once the proof is finished, the current Ti’s will no longer
be in use.
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For ι ∈ {x, y, z}, we use ⟨f⟩ι, f ι
̸= to denote the ι-average and ι-remainder:

⟨f⟩ι := 1

|T|

∫
T
f(x, y, z)dι, f ι

̸=(x, y, z) := f(x, y, z)− ⟨f⟩ι.(1.12)

The following double average notation (and its natural analogues) is also applied in the text:

⟨⟨f⟩⟩x,y(z) := ⟨⟨f⟩x⟩y(z) = 1

|T|2

∫∫
f(x, y, z)dxdy.(1.13)

The following vector field (and its natural analogues) and multi-index notation are used:

Γy;t = ∂y +

∫ t

0

∂yu(T + s, y)ds∂x, Γijk
y;t := ∂i

xΓ
j
y;t∂

k
z , |i, j, k| := i+ j + k.

The choice of the reference time T will be specified in a case-by-case scenario. If the t is clear from the text,
we will also drop the ‘; t’ in the subscript, i.e., Γy, Γ

ijk
y .

In Section 3 of the paper, we apply Fourier transformation in the x-variable or in the (x, z) variables.

The frequency variables corresponding x and z are denoted by k and ℓ, respectively. The notation (̂·) is
used to denote the Fourier transform and the (·)∨ is used to denote the inverse transform. If we consider
the transformation only in the x-variable, the Fourier transform and its inverse has the following form

f̂α(y, z) :=
1

2π

∫ π

−π

e−
√
−1αxf(x, y, z)dx, ǧ(x, y, z) =

∞∑
α=−∞

gα(y, z)e
√
−1αx.

The Fourier variables corresponding to x, y, z are α, β, γ, respectively. Recall the classical Lp norms and
Sobolev Hm norms:

∥f∥Lp =∥f∥p =

(∫
|f |pdV

)1/p

; ∥f∥Lq
t ([0,T ];Lp) =

(∫ T

0

∥f(t)∥qLpdt

)1/q

;

∥f∥Hm =

 M∑
|i,j,k|=0

∥∂i
x∂

j
y∂

k
z f∥2L2

1/2

; ∥f∥Ḣm =

 ∑
|i,j,k|=m

∥∂i
x∂

j
y∂

k
z f∥2L2

1/2

.

Throughout the paper, we use the notation Str+τ
tr to denote the semigroup corresponding to the passive

scalar equation initiating from time tr

∂τρ+ u(tr + τ, y)∂xρ =
1

A
∆ρ.

Adopting this notation, Str+τ
tr ρ ̸= is the solution to the passive scalar subject to the initial data ρ ̸=(tr) at

time tr. We will also use the notation Sα
tr,tr+τ to denote the solution semigroup corresponding to the α-by-α

equation

∂τ ρ̂α + u(tr + τ, y)iαρ̂α =
1

A
(−|α|2 + ∂yy + ∂zz)ρ̂α, ∀(y, z) ∈ T2,

which is initiating from t = tr.
The notation tr is the reference time and is defined in (2.12a).

2. Road Map

To present the main ideas involved in the proof of Theorem 1.1, we need several preparations. First, we
prove the linear enhanced dissipation estimate for a special family of time-dependent shear flows. These
time-dependent shear flows have optimized the balance between enhanced dissipation and gradient creation.
Moreover, we can upgrade the linear estimates to include higher-order gliding regularity norms based on
this balance. These preparations will be accomplished in subsection 2.1. Secondly, we develop the nonlinear
theory for the system (1.3) in subsection 2.2. A functional is introduced to characterize various components
of the system in higher order gliding regularity norms. We can show that if the initial chemical gradient
is moderately small, then nonlinear enhanced dissipation holds. On the other hand, if the initial chemical
gradient is large, the function is still bounded for a sufficiently long time. After these preparations, we
introduce an alternating construction in subsection 2.3 to show that the solutions to equation (1.3) are
globally regular if the flow is strong enough.
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2.1. Linear Theory of Time-dependent Shear Flows. The starting point of the analysis is the enhanced
dissipation phenomena induced by a special family of time dependent shear flows. We consider the passive
scalar equations subject to small viscosity:

∂tf ̸= + uA(t, y)∂xf ̸= =
1

A
∆f̸=, f̸=(t = 0) = fin;̸=,

1

|T|

∫
T
fin;̸=(x, y, z)dx ≡ 0.(2.1)

If we do the Fourier transform in the (x, z)-variables, we obtain that

∂tf̂α,γ(t, y) + uA(t, y)iαf̂α,γ(t, y) =
1

A
(−|α|2 + ∂yy − |γ|2)f̂α,γ(t, y), α ̸= 0.(2.2)

Since the passive scalar equations (2.1) is linear, we can consider each Fourier mode independently. Hence
the theorem below directly implies Theorem 1.2.

Theorem 2.1. Consider solution fα,γ to the equation (2.2). Given any shear profile U ∈ C∞(T), such that
U ′ is not identically zero. There exist time dependent shear flows uA(t, y) = ΨA(t)U(y +ΦA(t)) ∈ C∞

t,y such
that the following enhanced dissipation estimate holds

∥f̂α,γ(s+ t)∥2 ≤C∥f̂α,γ(s)∥2e
−δ0

1

A1/3
t
.

Here δ0 ∈ (0, 1), C ≥ 1 are constants that depend only on the shear profile U . Moreover, the Sobolev norms
of the velocity fields is bounded independent of A, i.e., ∥∂yuA∥L∞

t WM,∞
y

≤ CM , ∀M ∈ N.

Let us present the main idea of the construction.
The main obstacle for a smooth stationary shear flow (u(y), 0, 0) on the torus to achieve the enhanced

dissipation rate A−1/3 is that its profile function u always contains critical points. Near the critical points,
the enhanced dissipation effect will slow down ( [35]). By introducing time dependence, we can ensure that
the critical point of the profile moves around and will not occupy a specific region for a long time. As a
result, the flow can induce a faster dissipation in the time-average sense.

Let us start by considering time-dependent shears taking the form (u(y + log(1 + t)), 0, 0), which are
logarithmic-in-time shifts of general smooth functions u ∈ C∞

y . We first show that the L2-norm of the

solution to (2.2) decays by a fixed amount on the time interval [0, A1/3], see, e.g., Lemma 3.1. Hence, it is
tempting to believe that the solutions decay exponentially. However, the logarithmic shifts of the shear flow
profiles slow down as time progresses. Hence we will smoothly truncate the flows and restart them after
an appropriately chosen time interval. This smooth rewinding procedure will not alter the Sobolev norm
∥∂yuA∥L∞

t WM+3,∞ . After the rewinding process, our proof is complete.

The next object of study the higher L2-based Sobolev norms. The starting point is the following obser-
vation. There exists a vector field that commute with the transport part of (2.1), i.e.

Γy;t := ∂y +

∫ t

0

∂yu(s, y)ds∂x, [Γy;t, ∂t + u∂x] = 0.(2.3)

As a result, the advection term (u∂x) in the equation (2.1) does not drive a transient growth of the H1-
norm induced by the Γy;t-vector field, ∥Γy;tf̸=∥2. On the contrary, direct energy estimates yields that the
canonical H1-norm ∥f̸=∥H1 undergoes a transient linear growth (∼ O(t)) thanks to the advection in (2.1).
In conclusion, Sobolev norms induced by the vector fields ∂x, Γy;t, ∂z are well-adapted to the passive scalar
equations (2.1). From now on, we call these norms “gliding regularity norms” as in the celebrated work [69].
To simplify the notation, we also use the following variants throughout the text

Γijk
y;t = Γijk

y = ∂i
xΓ

j
y;t∂

k
z .

An obstacle in analyzing these gliding regularity norms comes from the diffusion operator 1
A∆. When

one applies Γy;t-derivative to the equation (2.1), the commutator term 1
A [Γy,∆] arises. This term involves

growth of the form O( t
2

A ). Nevertheless, we can use the following time weight to control the commutator
terms,

Φ(t) =
1

1 + t3

A

.(2.4)
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Combining all these considerations, we obtain the norm

∥f ̸=(t, ·)∥2ZM
G,Φ

:=

M∑
|i,j,k|=0

G2iΦ(t)2j∥Γijk
y;t f ̸=(t, ·)∥2L2 :=

M∑
i+j+k=0

G2iΦ(t)2j
∥∥∥∂i

xΓ
j
y;t∂

k
z f ̸=(t, ·)

∥∥∥2
L2

.(2.5)

We apply the notations Γijk
y;t := ∂i

xΓ
j
y;t∂

k
z , and |i, j, k| := i+ j+k. Moreover, the argument of the time weight

Φ(t) is always the time variable of the target function f ̸=(t, ·) throughout the paper. Here G is a constant
depending only on the norm ∥uA∥L∞

t WM+2,∞ and the regularity level M , but independent of A. We note that
the higher gliding regularity norm will slowly deplete over time. However, an enhanced dissipation estimate
is enough to compensate for the decay. Later, we simplify the notation to ZM . The enhanced dissipation
estimates of the gliding regularity norms are summarized in the following theorem.

Theorem 2.2. Consider solutions to the equation (2.1). There exists a threshold GM := GM (∥uA∥L∞
t WM+2,∞)

such that for any parameter G that is above the threshold GM , the following enhanced dissipation estimate
holds

∥f ̸=(s+ t)∥2ZM
G,Φ

≤ 2e2 ∥f ̸=(s)∥2ZM
G,Φ

exp

{
−2δZ

t

A1/3

}
, ∀ s, t ∈ [0,∞);(2.6)

δZ :=δ0 (log(8C0))
−1

.(2.7)

Here the parameters δ0, C0 are defined in the estimate (1.8). Moreover, there exists a constant C, which
depends only on the M, δ−1

Z such that the following estimate holds

M∑
|i,j,k|=0

G2i∥Γijk
y;t f ̸=(t)∥2L2 ≤ C

M∑
|i,j,k|=0

G2i∥∂i
x∂

j
y∂

k
z f ̸=(0)∥2L2 exp

{
−δZ

t

A1/3

}
, ∀t ≥ 0.(2.8)

Remark 2.1. We observe that even though the Z-norm depletes over time, it still grants us enough enhanced
dissipation as specified in (2.8). Another comment is that the parameter δZ can be chosen independent of
the regularity level M.

This concludes the linear theory.

2.2. Nonlinear Theory for the Time-dependent Shear Flows. In this subsection, we discuss the
nonlinear theory associated with the parabolic-parabolic PKS system (1.3) subject to time dependent shear
flows. The goal is to prove Theorem 1.3.

First of all, we specify the main set of equations and their local existence theory. We rewrite the equation
(1.3) as follows

∂tn+uA∂xn+
1

A
∇ · (n∇C) =

1

A
∆n,(2.9a)

∂tC+uA∂xC =
1

A
∆C+

1

A
n− 1

A
n,(2.9b)

n(t =0) = nin, C(t = 0) = Cin, (x, y, z) ∈ T3.

The fluid velocity drift is normalized, i.e., ∥uA∥L∞
t,x,y,z

= 1. To prove Theorem 1.3, it is enough to consider

the time horizon t ∈ [0, A1/3+ζ ], where ζ = ζ(M) is defined in (1.9). To rigorous capture the transient
growth of the chemical gradient, we decompose the time horizon into two parts:

[0, A1/3+ζ ] = [0, A1/3+ζ/2) ∪ [A1/3+ζ/2, A1/3+ζ ] =: [0, Th) ∪ [Th, A
1/3+ζ ] =: Pgr ∪ Pdc.(2.10)

Here Pgr is the transient growth phase, and Pdc represents the decaying phase.
Next, to characterize the enhanced dissipation, we decompose the solution n, C into the x-average part

⟨n⟩, ⟨C⟩ and the remainder part n ̸=, C ̸= (1.5). Taking the x-average of (2.9a), (2.9b) yields the (⟨n⟩, ⟨C⟩)-
equations, i.e.,

∂t⟨n⟩+
1

A
∇y,z · (⟨n⟩∇y,z⟨C⟩) +

1

A
⟨∇y,z · (n ̸=∇y,zC̸=)⟩ =

1

A
∆y,z⟨n⟩,(2.11a)

∂t⟨C⟩ =
1

A
∆y,z⟨C⟩+

1

A
⟨n⟩ − 1

A
n,(2.11b)

⟨n⟩(t =0) = ⟨nin⟩, ⟨C⟩(t = 0) = ⟨Cin⟩, (y, z) ∈ T2.
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Then we observe that since the chemical equation is linear, it is possible to decompose the remainder C ̸= as
follows:

C ̸=(tr + τ) = ctr̸= (τ)+dtr̸= (τ),(2.12a)

∂τ c
tr
̸= + uA(tr + τ, y)∂xc

tr
̸= =

1

A
∆ctr̸= +

1

A
n ̸=, ctr̸= (τ = 0) = 0,(2.12b)

∂τd
tr
̸= + uA(tr + τ, y)∂xd

tr
̸= =

1

A
∆dtr̸= , dtr̸= (τ = 0) = C ̸=(t = tr).(2.12c)

Here tr is a reference time taking values in {0, Th} (2.10). If tr = 0, then the initial data for dtr̸= is Cin;̸=. In

the text, we also use the notation Str+τ
tr C ̸= to represent the passive scalar solution dtr̸= (τ) that initiated from

(tr,C ̸=(tr)) (2.12c). We view dtr̸= (τ) as the main part of the chemical remainder and ctr̸= (τ) as the deviation.
Both of these components undergo transient growth. However, thanks to the zero initial condition, the
deviation ctr̸= is small. Here we emphasize that the definition of ctr̸= and dtr̸= is sensitive to the reference time

tr, and we only choose tr ∈ {0, Th} (2.10). Finally, the equation for the remainders n ̸= reads as follows

∂tn ̸= + uA∂xn ̸=+
1

A
∇y,z · (n ̸=∇y,z⟨C⟩) +

1

A
∇ · (⟨n⟩∇C ̸=) +

1

A
∇ · (n ̸=∇C̸=) ̸= =

1

A
∆n̸=, n ̸=(t = 0) = nin;̸=.

(2.12d)

First of all, we present the following local well-posedness result, which can be proven through standard
argument.

Theorem 2.3. Consider solutions (n,C) to the equation (2.9) subject to initial data nin ∈ HM (T3), Cin ∈
HM+1(T3), M ≥ 3 and regular flow u ∈ L∞

t WM+3,∞
x,y,z . There exists a small constant Tε(∥nin∥HM , ∥Cin∥HM+1)

such that the unique solution exists on the time interval [0, Tε].

Next, we specify the norms that we use to measure the solutions. Motivated by the functional introduced
in the linear setting, we consider the following coupled functional for the nonlinear system (2.12):

Ftr;M
G,Q [tr + τ, n ̸=, C̸=](2.13)

=

M∑
|i,j,k|=0

Φ2jG4+2i
∥∥∥ ∂i

xΓ
j
y;tr+τ∂

k
z n ̸=(tr + τ)

∥∥∥2
L2

+

M+1∑
|i,j,k|=0

Φ2j+2G2i (A2/3
1j<M+1 + 1j=M+1)

∥∥∥ ∂i
xΓ

j
y;tr+τ∂

k
z

[
C̸=(tr + τ)− Str+τ

tr (C̸=(tr))
]∥∥∥2

L2

+Q2
M+1∑

|i,j,k|=0

∥∥∥ ∂i
xΓ

j
y;tr∂

k
z C̸=(tr)

∥∥∥2
L2

exp

{
− δZ
2A1/3

τ

}
, Φ = Φ(tr + τ).

Here we make several comments concerning the functional. The reference time is tr, which takes values at two
time instances, i.e., tr = 0 and tr = Th (2.10). The parameter τ ≥ 0 is the time increment. If the reference
time tr is zero, τ is nothing but the current time t. Here the parameter G ≥ 1 will be chosen depending on
{∥uA∥L∞

t WM+3,∞
y

,M} and the parameter Q ≥ 1 depends on the initial conditions ∥nin∥HM , ∥⟨Cin⟩∥HM+1 ,

i.e., Q = Q(∥nin∥HM , ∥⟨Cin⟩∥HM+1). The parameter δZ is defined in Theorem 2.2. Similar to the Z-norm,

a fast decay of the functional Ftr;M
G,Q corresponds to the enhanced dissipation (2.8). Moreover, thanks to the

extra A2/3-weight in the chemical component, boundedness of the functional can be translated to smallness
of the chemical deviation ctr̸= = C̸= − Str+τ

tr C̸= in lower order gliding regularity spaces.
Finally, we specify the scheme to prove Theorem 1.3. We consider two variants of the prototype functional

F, i.e.,

HM+1
G [t, n̸=, C̸=] := Ftr=0;M+1

G,1 [t, n̸=, C̸=], t ∈ Pgr = [0, Th = A1/3+ζ/2];(2.14)

LM
G [t, n̸=, C̸=] := Ftr=Th;M

G,A1/4 [t, n̸=,C ̸=], t ∈ Pdc = [A1/3+ζ/2, A1/3+ζ ].

The transient growth phase Pgr and the decaying phase Pdc are defined in (2.10). In the transient growth
phase, we propagate the functional H. The boundedness of H is translated to smallness of the chemical
deviation ctr=0

̸= = C̸= − St
0Cin;̸= (2.12a) in a lower order regularity space. This smallness, when combined
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with the linear enhanced dissipation (2.8) of the passive scalar solution St
0Cin;̸=, yields that the chemical

gradient ∇C̸= is small at the transition time Th. In the decaying phase Pdc, we capitalize the smallness of
∇C ̸=(Th) into the enhanced dissipation of the lower norm L. We explicitly spell out these heurisitics in the
following two propositions.
Growth Phase Pgr: Propagation of the higher regularity norm H. In the growth phase, we apply
energy method to prove the following proposition.

Proposition 2.1. Consider the solutions to the equation (2.9) initiated from initial data nin ∈ HM (T3), Cin ∈
HM+1(T3), M ≥ 5. Assume that the ambient shear flow uA is the one defined in Theorem 1.2. Recall the
definition of ζ (1.9), Th = A1/3+ζ/2 (2.10), and consider the functional H (2.14). There exist thresholds
GH, AH such that if the following constraints are satisfied,

G ≥GH(∥uA∥L∞
t WM+3

y
,M), A ≥ AH(M, ∥uA∥L∞

t WM+3
y

, G, nin,Cin),

the following estimate holds for all t ∈ [0, Th],

HM
G [t] + ∥⟨n⟩(t)∥2HM + ∥⟨C⟩(t)∥2HM+1 ≤B

(
M, ∥uA∥L∞

t WM+3,∞ , δ−1
Z , ∥Cin∥HM+1 , ∥nin∥HM

)
.(2.15)

Remark 2.2. Throughout the paper, the regularity index M will be changing. But they will be smaller than
the M in Theorem 1.3 and Theorem 2.4.

Decaying Phase Pdc: Enhanced dissipation of the lower regularity norm L.
To prove the enhanced dissipation of L, we use a bootstrap argument, see, e.g., [10], [46]. We set the

reference time tr = Th = A1/3+ζ/2 (2.10). Assume that [tr, T⋆] is the largest interval on which the following
hypotheses hold:

1) Remainders’ enhanced dissipation estimates:

LM
G [tr + τ, n ̸=,C ̸=] ≤2CED LM

G [tr, n̸=, C̸=] exp

{
− 2δτ

A1/3

}
, ∀ tr + τ ∈ [tr, T⋆];

2) Uniform-in-time estimates of the x-averages:

∥⟨n⟩∥L∞
t ([tr,T⋆];HM

y,z)
≤2B⟨n⟩;HM ;

∥⟨C⟩∥L∞
t ([tr,T⋆];H

M+1
y,z ) ≤2B⟨C⟩;HM+1 .

The parameter δ is chosen depending only on the constants δ0, C0 (1.8) and δZ (2.7),

δ = δ(δ0, C0, δZ).(2.17)

By the local well-posedness of the equation (2.9) in HM , M ≥ 3 (Theorem 2.3), we have that the interval
[tr, T⋆] is non-empty.

The nonlinear enhanced dissipation is the consequence of the following proposition. We recall that M is
the regularity level specified in Theorem 1.3.

Proposition 2.2. Consider the solutions to the equation (2.9) initiated from the initial data nin ∈ HM (T3), Cin ∈
HM+1(T3), 3 ≤ M ≤ M. Assume that the ambient shear flow uA is the one defined in Theorem 1.2, and the
following “gluing” constraint is satisfied at time tr = Th = A1/3+ζ/2 (1.9), (2.10),

M∑
|i,j,k|=0

Φ(Th)
2j∥∂i

xΓ
j
y;Th

∂k
zn ̸=(Th)∥2L2 +

M+1∑
|i,j,k|=0

A2/3Φ(Th)
2j+2∥∂i

xΓ
j
y;Th

∂k
z C̸=(Th)∥2L2(T3) ≤ B2

1.(2.18)

Here the bound B1 is independent of A and Γy;Th
= ∂y +

∫ Th

0
∂yuA(s, y)ds∂x.

Let [tr, T⋆] be the maximal time interval on which the hypotheses (2.16) hold. There exist thresholds
GL, AL, QL such that if the following constraints are satisfied,

G ≥GL(C0, δ0, δ
−1
Z , ∥uA∥L∞

t WM+3
y

,M),

A ≥AL(C0, δ0,M, δ−1
Z , ∥uA∥L∞

t WM+3
y

, G,B1, ∥⟨n⟩(Th)∥HM , ∥⟨C⟩(Th)∥HM+1),

then the following stronger estimates can be developed:
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1) Remainders’ enhanced dissipation estimates:

LM
G [Th + τ ] ≤ CED LM

G [Th] exp

{
−2

δτ

A1/3

}
, ∀ Th + τ ∈ [Th, T⋆].(2.19a)

2) Uniform-in-time estimates of the x-averages:

∥⟨n⟩∥L∞
t ([Th,T⋆];HM

y,z)
≤B⟨n⟩;HM := 2∥⟨n⟩(Th)∥HM + 2;(2.19b)

∥⟨C⟩∥L∞
t ([Th,T⋆];H

M+1
y,z ) ≤B⟨C⟩;HM+1 :=

1

A1/5
+ ∥⟨C(Th)⟩∥HM+1 .(2.19c)

As a consequence of the bootstrap argument, the estimates (2.19a), (2.19b), (2.19c) hold on the time horizon
[Th, A

1/3+ζ ].

The proof of Theorem 1.3 is completed once we combine the two propositions above:

Proof of Theorem 1.3. We decompose the time horizon as in (2.10). On the time interval [0, Th], we apply
Proposition 2.1 and obtain that∑

|i,j,k|≤M

Φ(Th)
2j+2∥∂i

xΓ
j
y;Th

∂k
zC ̸=(Th)∥2L2(T3) ≤

C

A2/3
B
(
M, ∥uA∥L∞

t WM+3,∞ , δ−1
Z , ∥Cin∥HM+1 , ∥nin∥HM

)
.

This is the gluing condition (2.18) in Proposition 2.2 with regularity level M = M− 1. Now an application
of Proposition 2.2 yields (1.10) and (1.11). This concludes the proof. □

To prepare ourselves for the alternating shear construction, we present the following proposition, which
is in the same vein as Proposition 2.2.

Proposition 2.3. Consider the solutions to the equation (2.9) initiated from initial data nin ∈ HM (T3), Cin ∈
HM+1(T3), M ≥ 3. Assume that the ambient shear flow uA is the one defined in Theorem 1.2, and the initial
chemical remainder is small in the sense that

∥Cin; ̸=∥HM+1(T3) ≤ ϵ.(2.20)

There exist thresholds G0, ϵ0, A0, Q0 such that if the following constraints are satisfied,

G ≥G0(∥uA∥L∞
t WM+3

y
,M), ϵ−1 ≥ ϵ−1

0 (nin,Cin),(2.21)

A ≥A0(M, ∥uA∥L∞
t WM+3

y
, G, ϵ−1,nin,Cin), Q ≥ Q0(M, ∥uA∥L∞

t WM+3
y

, G, ϵ−1, nin,Cin),

the following set of conclusions hold
1) Remainders’ enhanced dissipation estimates:

Ftr=0;M
G,Q [t, n̸=, C̸=] ≤ CEDFtr=0;M

G,Q [0, n̸=,C ̸=] exp

{
− 2δt

A1/3

}
(2.22a)

≤ C(∥nin;̸=∥2HM + ∥Cin;̸=∥2HM+1 + 1) exp

{
− 2δt

A1/3

}
;

2) Uniform-in-time estimates of the x-averages:

∥⟨n⟩∥L∞
t ([0,T⋆];HM

y,z)
≤2∥⟨nin⟩∥HM

y,z
+ 2;(2.22b)

∥∇⟨C⟩∥L∞
t ([0,T⋆];HM

y,z)
≤A−1/5 + 2∥∇⟨Cin⟩∥HM

y,z
.(2.22c)

Remark 2.3. We highlight that the derivation of the enhanced dissipation estimate (2.22a) requires smallness
of the chemical gradient ∇C (2.20). This is the main obstacle to overcome in the alternating construction.

This concludes Section 2.2.
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2.3. Suppression of Blow-up with Alternating Shear Flows. In this section, we sketch the idea of
suppression of chemotactic blow-up through alternating shear flows. Several lemmas will be presented along
with the argument. The proof of these technical lemmas will be postponed to Section 5. We consider the
following time-dependent alternating shear flows acting on the system:

Phase a : ũA :=(uA(t, y), 0, 0)
⊤, ∀t ∈ [0, A1/3+ζ ];

Phase b : ũA :=(0, 0, uA(t, x))
⊤, ∀t ∈ (A1/3+ζ , 2A1/3+ζ ];

Phase c : ũA :=(0, uA(t, z), 0)
⊤, ∀t ∈ (2A1/3+ζ , 3A1/3+ζ ].

Here uA is the flow defined in Theorem 1.2. The explicit form of ũA can be found in Figure 1. We define

Figure 1. The alternating shear flows

the following switching time instances:

TIa =3IA1/3+ζ , TIb = (1 + 3I)A1/3+ζ , TIc = (2 + 3I)A1/3+ζ , I ∈ {0, 1, 2, ....} = N.
The subscripts a, b, c indicate the phase of the shear flows and the subscript I indicates which period the
system is in. Since the shearing direction changes over time, we consider three distinct gliding regularity
norms induced by the following vector fields:

Phase a : ∂x, Γy;t, ∂z, Γy;t := ∂y +

∫ t

0

∂yu(TIa + s, y)ds∂x, Γijk
y;t := ∂i

xΓ
j
y;t∂

k
z , t ∈ [0, A1/3+ζ ];

Phase b : Γx;t, ∂y, ∂z, Γx;t := ∂x +

∫ t

0

∂xu(TIb + s, x)ds∂z, Γijk
x;t := Γi

x;t∂
j
y∂

k
z , t ∈ [0, A1/3+ζ ];

Phase c : ∂x, ∂y, Γz;t, Γz;t := ∂z +

∫ t

0

∂zu(TIc + s, z)ds∂y, Γijk
z;t := ∂i

x∂
j
yΓ

k
z;t, t ∈ [0, A1/3+ζ ].

With all the notation introduced, we are ready to present the main theorems in the alternating construc-
tion. As it turns out, there are two distinct time phases in the system, i.e.,

Phase # 1 : I = 0, t ∈ [T0a, T1a] = [0, 3A1/3+ζ);(2.24)

Phase # 2 : I ≥ 1, t ∈ ∪∞
I=1[TIa, T(I+1)a] = [3A1/3+ζ ,∞).

In Phase # 1, the solutions undergo transient growth. However, by paying three derivatives, one can show
that the chemical gradient ∇C decays to a low level. The following theorem summarized the state of the
system at the end of Phase # 1:

Theorem 2.4. Consider solutions to (1.3) subject to the initial data (nin,Cin) ∈ HM+3 × HM+4, M ≥ 5.
There exists a threshold A0 = A0(M, ∥∇ũA∥L∞

t WM+4,∞ , ∥nin∥HM+3 , ∥Cin∥HM+4) such that if the parameter
A ≥ A0, then the following bounds hold at the time instance t = T1a,

∥n(T1a)∥2HM ≤ B(∥nin∥HM+3 , ∥Cin∥HM+4), ∥C(T1a)∥2HM+1 ≤ B(∥nin∥HM+3 , ∥Cin∥HM+4)

A1/3
.(2.25)
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Moreover, ∥n(t)∥HM + ∥C(t)∥HM+1 < ∞ for all t ∈ [0, 3A1/3+ζ ].

As a result, we observe that at the end of Phase # 1, the chemical gradient becomes small. Hence,
Proposition 2.3 becomes applicable. By repeatedly applying Proposition 2.3 in Phase # 2, we expect the
following conclusion:

Theorem 2.5. Consider solution to the equation (1.3) in Phase # 2, i.e., t ∈ ∪∞
I=1[TIa, T(I+1)a] =

[3A1/3+ζ ,∞). Further assume that the condition (2.25) holds at time T1a. Then there exists a threshold

A0 = A0(M, ∥∇ũA∥L∞
t WM+1,∞ , ∥n(T1a)∥HM , ∥C(T1a)∥HM+1)

such that if A ≥ A0, then the following enhanced dissipation holds

∥(n− n)(T1a + t)∥2HM + ∥C(T1a + t)∥2HM+1 ≤C(∥n(T1a)∥2HM + ∥C(T1a)∥2HM+1)e
−δt/A1/3+ζ

, ∀t ≥ 3A1/3+ζ .

Here C, δ are constants that depends on M, ∥∇ũA∥L∞
t WM+1,∞ .

With these two theorems, we are ready to prove Theorem 1.1:

Proof of Theorem 1.1. Combining Theorem 2.4 and Theorem 2.5, we observe that the Sobolev norms of the
solution is bounded globally in time and the well-posedness follows from Theorem 2.3. □

The remaining part of the paper is organized as follows: in Section 3, we prove the Theorem 1.2; in Section
4, we prove the enhanced dissipation of the remainder nι

̸=, ∇cι̸=; in Section 5, we prove the theorems and
lemmas in subsection 2.3.

3. Linear Theory

In this section, we present the proof of Theorem 1.2 and Theorem 2.2.

3.1. Time-dependent Shear Flows with Logarithmic Shift. In this section, we recall the equations
(2.1), (2.2) subject to diffusion coefficient 1

A . Before proving Theorem 1.2, we present a lemma which captures

the decay of the L2 norm.

Lemma 3.1. Consider the equation (2.2) subject to the shear flow u(t, y) = U(y + log(t+ 1)). Assume that
the profile U ∈ C∞ is not constant, i.e., there exists y∗ ∈ T such that U ′(y∗) ̸= 0. Then the solutions to (2.2)
satisfy the estimate

∥f̂α,γ(|α|−2/3A1/3)∥L2
y
≤ (1− κ)∥f̂α,γ(0)∥L2

y
, ∀α ̸= 0,(3.1)

for a constant 0 < κ < 1 that depends only on U .

Proof. We organize the proof in several steps.
Step #1: General setup. First of all, we identify the range of the wave number |α| on which we focus.
If |α| ≥ A1/2/K for some universal constant K, direct application of the non-expansive property of the L2

norm of solutions to (2.2) yields

∥f̂α,γ(t)∥2 ≤ ∥f̂α,γ(0)∥2e
− |α|2/3

K4/3A1/3
t
, |α| ≥ A1/2/K.(3.2)

Hence at time instance |α|−2/3A1/3, the L2 norm decays as in (3.1) with κ = 1 − e−1/K4/3

. Hence in the
remaining proof, we always assume that |α| ≤ A1/2/K. Without loss of generality, we assume α ≥ 1. We
choose the constant K such that

A1/3|α|−2/3 ≥ K2/3 ≥ e100π.(3.3)

We are going to refine the choice of K in (3.24) and (3.27).
Rearranging the terms in (2.2) yields that

∂t

(
f̂α,γ(t, y)e

1
A (|α|2+|γ|2)t

)
+ iu(t, y)α

(
f̂α,γ(t, y)e

1
A (|α|2+|γ|2)t

)
=

1

A
∂yy

(
f̂α,γ(t, y)e

1
A (|α|2+|γ|2)t

)
.

As a result, we define F = f̂α,γ(t, y)e
1
A (|α|2+|γ|2)t and consider the following equation

∂tF (t, y) + iuαF (t, y) =
1

A
∂yyF (t, y).(3.4)
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We show that for t = |α|−2/3A1/3, the solutions to (3.4) must decrease in L2 by a fixed amount. Assume
without loss of generality that ∥F (0)∥L2

y
= 1. Observe that we have the following energy identities:

∥F (t)∥2L2
y
=1− 2

A

∫ t

0

∥∂yF (s)∥2L2
y
ds,(3.5)

∥∂yF (t)∥2L2
y
+

2

A

∫ t

0

∥∂yyF (s)∥2L2
y
ds ≤ 2∥∂yu∥L∞

t,y
|α|
∫ t

0

∥∂yF (s)∥L2
y
ds+ ∥∂yF (0)∥2L2

y
.(3.6)

To derive the second inequality, we also use the fact that ∥F (s)∥L2 ≤ ∥F (0)∥L2 = 1. Assume then, that

2

A

∫ |α|−2/3A1/3

0

∥∂yF (s)∥2L2
y
ds < κ.(3.7)

Here κ is a small constant to be chosen later in (3.28). Thanks to (3.5), we have

∥F (t)∥2L2
y
≥ 1− κ, ∀t ∈ [0, A1/3|α|−2/3].

Next, we identify a time instance τ0 with the property that:

∥∂yF (τ0)∥2L2
y
< (2∥∂yu∥L∞

t,y
+ 1)H

√
κ|α|2/3A2/3, ∥∂yyF (τ0)∥2L2

y
< (2∥∂yu∥L∞

t,y
+ 1)H2

√
κ|α|4/3A4/3,(3.8)

2

A

∫ |α|−2/3A1/3

τ0

∥∂yF (s)∥2L2
y
ds < κ, τ0 ∈

[
0,

4

H
|α|−2/3A1/3

]
.

Here H ≥ 4e16π is a large constant to be chosen later in (3.24), (3.27). The last inequality is a direct
consequence of (3.7). The explicit argument involves an application of the Chebyshev inequality. First we
note that by the assumption (3.7),∣∣∣∣ {t ∈ [0, |α|−2/3A1/3

] ∣∣∣∣ ∥∂yF (t)∥2L2
y
> Hκ|α|2/3A2/3

} ∣∣∣∣ ≤ κA

Hκ|α|2/3A2/3
=

A1/3

H|α|2/3
,

so on the time interval [0, |α|−2/3A1/3], a fraction of 1 − 1
H points have the Ḣ1 bound ∥∂yF (t)∥2L2

y
≤

Hκ|α|2/3A2/3. Now we choose τ ′0 as the minimum of all these points, i.e.

τ ′0 = min
{
t
∣∣∥∂yF (t)∥2L2

y
≤ Hκ|α|2/3A2/3

}
.

We observe that τ ′0 ≤ 2
H |α|−2/3A1/3. Now on the interval [τ ′0, |α|−2/3A1/3), we apply the estimate (3.6)

subject to initial time τ ′0 and the assumption (3.7) to obtain that

∥∂yF (t)∥2L2
y
+

2

A

∫ t

τ ′
0

∥∂yyF (s)∥2L2
y
ds(3.9)

≤2∥∂yu∥L∞
t,y
|α|A1/2

√
t
( 1

A

∫ t

τ ′
0

∥∂yF (s)∥2L2
y
ds
)1/2

+Hκ|α|2/3A2/3 ≤ (2∥∂yu∥L∞
t,y

+ 1)H
√
κ|α|2/3A2/3

=:C1(∥∂yu∥L∞
t,y
)H

√
κ|α|2/3A2/3, ∀t ∈

[
τ ′0, |α|−2/3A1/3

]
.

Now the Chebyshev inequality yields that∣∣∣∣{t ∈ [τ ′0, |α|−2/3A1/3
] ∣∣∣∣∥∂yyF (t)∥2L2

y
> H2C1

√
κ|α|4/3A4/3

}∣∣∣∣ ≤ C1H
√
κ|α|2/3A5/3

H2C1
√
κ|α|4/3A4/3

≤ 1

H
|α|−2/3A1/3.

Therefore, by (3.9), we can find τ0 ∈ [τ ′0, τ
′
0 +

2
HA1/3|α|−2/3] ⊂ [0, 4

HA1/3|α|−2/3] such that

∥∂yF (τ0)∥2L2
y
< C1(u)H

√
κ|α|2/3A2/3, ∥∂yyF (τ0)∥2L2

y
< C1(u)H

2
√
κ|α|4/3A4/3.

This is (3.8).
We denote the solution to the corresponding inviscid problem by η, i.e., η solves

∂tη(t, y) + iuαη(t, y) = 0, η(τ0, y) = F (τ0, y).(3.10)

Step # 2: Quantitative estimates. In the second step, we provide some necessary estimates.
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First of all, we present some upper bounds for the viscous/inviscid solutions. The starting point is the
following claim

∥∂yyη(τ0 + t, y)∥L2
y
+ ∥∂yyF (τ0 + t, y)∥L2

y
(3.11)

≤C|α|2t2∥F (τ0, y)∥L2
y
+ C|α|t

(
∥∂yF (τ0, y)∥L2

y
+ ∥F (τ0, y)∥L2

y

)
+ ∥∂yyF (τ0, y)∥L2

y
, ∀t ≥ 0.

Here the constant C depends on the L∞
t W 2,∞

y -norm of the shear u. To prove this bound, we observe that a

direct L2-based energy estimate on the solutions to (3.4) and (3.10) yields that

{
∥F∥L2 ≤ ∥F (τ0)∥L2 , d

dt∥∂yF∥L2 ≤ C|α|∥F∥L2 , d
dt∥∂yyF∥L2 ≤ C|α|(∥∂yF∥L2 + ∥F∥L2);

∥η∥L2 = ∥F (τ0)∥L2 , d
dt∥∂yη∥L2 ≤ C|α|∥η∥L2 , d

dt∥∂yyη∥L2 ≤ C|α|(∥∂yη∥L2 + ∥η∥L2).

(3.12)

Now a direct integration in time yields the upper bound (3.11).
If we focus on the time interval

[
τ0, |α|−2/3A1/3

]
, finer estimates can be obtained. The energy estimate

(3.12), together with the initial configuration (3.8), yields that

∥∂yη(t)∥L2
y
≤ C(∥∂yu∥L∞

t,y
)
√
H|α|1/3A1/3, ∀t ∈

[
τ0, |α|−2/3A1/3

]
.(3.13)

Combining the upper bounds of the Ḣ2-norms (3.11) and the fact that the solutions F and η are initiated
from identical data at the initial time τ0, we obtain

∥∂yyη(t)∥L2
y
+ ∥∂yyF (t)∥L2

y
(3.14)

≤C|α|2t2∥F (τ0, y)∥L2
y
+ C|α|t

(
∥∂yF (τ0, y)∥L2

y
+ ∥F (τ0, y)∥L2

y

)
+ ∥∂yyF (τ0, y)∥L2

y

≤CH|α|2/3A2/3 + CH|α|1/3A1/3 ≤ CH|α|2/3A2/3, ∀t ∈
[
τ0, |α|−2/3A1/3

]
.

The remaining part of step # 2 is devoted to the proof of the following lower bound for all smooth
solutions to the inviscid equation (3.10):

(3.15)

∫ A1/3|α|−2/3

τ0

∥∂yη(s)∥2L2
y
ds ≥ δA∥η(τ0)∥2L2

y
− Ct∥∂yη(τ0)∥2L2

y
, 0 < |α| ≤ A1/2/K.

To prove the lower bound (3.15), we first rewrite the solution to (3.10) as

η(t, y) = exp

{
−iα

∫ t

τ0

u(s, y)ds

}
η(τ0, y), ∀t ≥ τ0.

The ∂y-derivative reads,

∂yη(t, y) = exp

{
−iα

∫ t

τ0

u(s, y)ds

}
∂yη(τ0, y)− iα

(∫ t

τ0

∂yu(s, y)ds

)
exp

{
−iα

∫ t

τ0

u(s, y)ds

}
η(τ0, y).

Thus, there exists a universal constant C so that the following estimate holds

∥∂yη(t)∥2L2
y
≥ 1

C
|α|2

∥∥∥∥∫ t

τ0

∂yu(s, ·)η(τ0, ·)ds
∥∥∥∥2
L2

y

− C∥∂yη(τ0, ·)∥2L2
y
.

Integration in time yields that for all t ≥ τ0,∫ t

τ0

∥∂yη(s)∥2L2
y
ds ≥ 1

C
|α|2

∫ t

τ0

∥∥∥∥∫ s

τ0

∂yu(τ, ·)η(τ0, ·)dτ
∥∥∥∥2
L2

y

ds− Ct∥∂yη(τ0, ·)∥2L2
y
.

Recalling the explicit form of the flow u(t, y) = U(y+ log(1+ t)), we will establish (3.15) once we show that∫ A1/3|α|−2/3

τ0

∣∣∣∣ ∫ s

τ0

U ′(y + log(1 + τ))dτ

∣∣∣∣2ds ≥ A

C∗(U)|α|2
, ∀y ∈ T.(3.16)

Now we use the change of variable h := log(1 + τ) to rewrite the above inequality∫ A1/3|α|−2/3

τ0

∣∣∣∣ ∫ log(1+s)

log(1+τ0)

U ′(y + h)ehdh

∣∣∣∣2ds ≥ A

C∗(U)|α|2
, ∀y ∈ T.
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Here we assume that U ′(y) is not identically zero on the interval [0, 2π]. Then we prove the following claims:
a) There exists a point y0 on T such that

R0 :=

∣∣∣∣ ∫ 2π

0

U ′(y0 + h)ehdh

∣∣∣∣ > 0.(3.17)

b) there exist a point a0 ∈ [0, 2π) such that for ∀h0 ∈ [a0, 2π], the integral has the following lower bound∣∣∣∣ ∫ h0

0

U ′(y0 + h)ehdh

∣∣∣∣ ≥ R0/2 > 0, ∀h0 ∈ [a0, 2π].(3.18)

Here a0 depends only on the profile U . We further define

τa;0 := ea0 − 1 < e2π − 1.(3.19)

The proof of (3.17) is through contradiction argument. Assume that the claim (3.17) is false, then we
have that

∂y

∫ 2π

0

U ′(y + h)ehdh = 0 ⇒
∫ 2π

0

−U ′′(y + h)ehdh = 0, ∀y ∈ T.

Now we apply the integration by parts and the vanishing conditions above to derive that∫ 2π

0

U ′(y + h)ehdh =

∫ 2π

0

U ′(y + h)
d

dh
ehdh = U ′(y + h)eh

∣∣∣∣2π
h=0

−
∫ 2π

0

U ′′(y + h)ehdh, ∀y ∈ T.

Since U is smooth and periodic, U ′ is periodic. Hence,

U ′(y)(e2π − 1) = 0, ∀y ∈ T.

This is a contradiction to the assumption that U ′(y) is not identically zero and hence yields (3.17).
The claim (3.18) is a natural corollary of (3.17) through a continuity argument. Without loss of generality,

we assume that

∫ 2π

0

U ′(y0 + h)ehdh = R0 > 0. Since the function

∫ z

0

U ′(y0 + h)ehdh is continuous with

respect to z, there exists a small neighborhood of z = 2π such that the function is aboveR0/2. This concludes
the proof of the claim.

Now we consider the following integral (m ∈ N\{0}) and apply the periodicity of U ′(·) and the claim
(3.17) to get ∣∣∣∣ ∫ 2(m+1)π

2mπ

U ′(y0 + h)ehdh

∣∣∣∣ =∣∣∣∣ ∫ 2mπ

2(m−1)π

U ′(y0 + h)eh+2πdh

∣∣∣∣(3.20)

=e2mπ

∣∣∣∣ ∫ 2π

0

U ′(y0 + h)ehdh

∣∣∣∣ = e2mπR0 > 0.

Now we find the smallest L ∈ N\{0} and largest U ∈ N such that

U⋃
m=L

[e2mπ, e2(m+1)π] ⊂ [τ0 + 1, A1/3|α|−2/3 + 1].

The definition of L,U yields that

L =

⌈
log(τ0 + 1)

2π

⌉
⇒ τ0 + 1 ≤ e2Lπ ≤ e2π(τ0 + 1);

U =

⌊
log(A1/3|α|−2/3 + 1)

2π

⌋
− 1 ⇒ e−4π(A1/3|α|−2/3 + 1) ≤ e2Uπ ≤ A1/3|α|−2/3 + 1.(3.21)

Since the time interval is long, i.e., (3.3), and the H is large, i.e., H ≥ 4e16π (3.8), we have that

L ≤ log(τ0 + 1)

2π
+ 1 ≤ log(e−16πA1/3|α|−2/3 + 1)

2π
+ 1

≤− 7 +
log(A1/3|α|−2/3 + e16π)

2π
≤ log(A1/3|α|−2/3 + 1)

2π
− 6 ≤ U − 4.
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Further recall the quantity H in (3.8) and the constraint on K (3.3). We have that

e2Lπ

e2Uπ
≤ e2π(τ0 + 1)

e−4π(A1/3|α|−2/3 + 1)
≤ e6π

(
4

H
+

1

K2/3 + 1

)
.(3.22)

We focus on the point y0 ∈ T and prove estimate (3.16) for y0. On the interval [a0, 2π],(∫ h0

0

U ′(y0 + h)ehdh

)
×
(∫ 2π

0

U ′(y0 + h)ehdh

)
≥ 0, ∀h0 ∈ [a0, 2π].(3.23)

Now we use the sign property (3.23) to derive the following estimate with q ∈ [log(τa;0+1)+2Uπ, (1+U)2π],∣∣∣∣ ∫ q

log(1+τ0)

U ′(y0 + h)ehdh

∣∣∣∣
≥

U−1∑
m=L

e2mπ

∣∣∣∣ ∫ 2π

0

U ′(y0 + h)ehdh

∣∣∣∣−
∣∣∣∣∣
∫ 2Lπ

log(1+τ0)

U ′(y0 + h)ehdh

∣∣∣∣∣+ e2Uπ

∣∣∣∣ ∫ q−2Uπ

0

U ′(y0 + h)ehdh

∣∣∣∣.
Recall the quotient bound (3.22). Now we implement a similar argument as in (3.20) and choose the H in

(3.8) and K in (3.3) to be large compared to R0 and max
z∈[0,2π]

∣∣∣∣∫ 2π

z

U ′(y0 + h)ehdh

∣∣∣∣ to derive that∣∣∣∣ ∫ q

log(1+τ0)

U ′(y0 + h)ehdh

∣∣∣∣(3.24)

≥ R0e
2Uπ

2(e2π − 1)
− e2(L−1)π max

z∈[0,2π]

∣∣∣∣ ∫ 2π

z

U ′(y0 + h)ehdh

∣∣∣∣
≥e2Uπ

(
R0

2(e2π − 1)
− e6π

(
4

H
+

1

K2/3

)
max

z∈[0,2π]

∣∣∣∣ ∫ 2π

z

U ′(y0 + h)ehdh

∣∣∣∣)
≥ e2UπR0

4(e2π − 1)
, ∀q := log(1 + s) ∈ [log(τa;0 + 1) + 2Uπ, (1 + U)2π].

We note that q ∈ [log(τa;0+1)+2Uπ, (1+U)2π] corresponds to s ∈ [(τa;0+1)e2Uπ −1, e2(U+1)π −1]. Hence,
we have that by (3.24),∫ A1/3|α|−2/3

τ0

∣∣∣∣ ∫ s

τ0

U ′(y0 + log(1 + τ))dτ

∣∣∣∣2ds
≥
∫ e2(U+1)π−1

(τa;0+1)e2Uπ−1

∣∣∣∣ ∫ s

τ0

U ′(y0 + log(1 + τ))dτ

∣∣∣∣2ds ≥ (e2π − τa;0 − 1)
e6Uπ

16(e2π − 1)2
R2

0.

Now we recall the relations (3.19), (3.21), and obtain that∫ A1/3|α|−2/3

τ0

∣∣∣∣ ∫ s

τ0

U ′(y0 + log(1 + τ))dτ

∣∣∣∣2ds ≥ A

C∗(U)|α|2
.

This is (3.16)y=y0
.

To generalize the result to ∀y ∈ T, we note that for any point y ∈ T, there exists a δy ∈ [0, 2π] so that
y = y0 + δy(mod 2π). Hence∫ A1/3|α|−2/3

τ0

∣∣∣∣∣
∫ log(1+s)

log(1+τ0)

U ′(y + h)ehdh

∣∣∣∣∣
2

ds =

∫ A1/3|α|−2/3

τ0

∣∣∣∣∣
∫ log(1+s)

log(1+τ0)

U ′(y0 + δy + h)ehdh

∣∣∣∣∣
2

ds(3.25)

=

∫ A1/3|α|−2/3

τ0

∣∣∣∣∣
∫ log(1+s)+δy

log(1+τ0)+δy

U ′(y0 + h)eh−δydh

∣∣∣∣∣
2

ds.

Now we identify the smallest integer Ly ∈ N and largest integer Uy ∈ N such that

[2Lyπ, 2(Uy + 1)π] ⊂ [log(1 + τ0) + δy, log(1 +A1/3|α|−2/3) + δy].
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Thanks to the bound 0 ≤ δy ≤ 2π, we have that,

Ly =

⌈
log(1 + τ0) + δy

2π

⌉
∈ [L,L+ 1], Uy =

⌊
log(1 +A1/3|α|−2/3) + δy

2π

⌋
− 1 ∈ [U,U + 1].(3.26)

Now we focus on specific points q ∈ [log(τa;0+1)+2Uyπ, (1+Uy)2π], and carry out the estimate with (3.23),

∣∣∣∣ ∫ q

log(1+τ0)+δy

U ′(y0 + h)ehdh

∣∣∣∣e−δy

≥e−δy

Uy−1∑
m=Ly

e2mπ

∣∣∣∣ ∫ 2π

0

U ′(y0 + h)ehdh

∣∣∣∣− ∣∣∣∣ ∫ 2Lyπ

log(1+τ0)+δy

U ′(y0 + h)ehdh

∣∣∣∣+ e2Uyπ

∣∣∣∣ ∫ q−2Uyπ

0

U ′(y0 + h)ehdh

∣∣∣∣
 .

Now we recall the definition (3.17), the estimate (3.22), the fact that U ≥ L+ 4, and the relation (3.26) to
obtain the estimate∣∣∣∣ ∫ q

log(1+τ0)+δy

U ′(y0 + h)ehdh

∣∣∣∣e−δy(3.27)

≥R0e
2Uyπe−δy

2(e2π − 1)
− e2(Ly−1)π max

z∈[0,2π]

∣∣∣∣ ∫ 2π

z

U ′(y0 + h)ehdh

∣∣∣∣e−δy

≥e2Uπ

(
R0

2e2π(e2π − 1)
− e6π

(
4

H
+

1

K2/3

)
max

z∈[0,2π]

∣∣∣∣ ∫ 2π

z

U ′(y0 + h)ehdh

∣∣∣∣)
≥ R0

4e2π(e2π − 1)
e2Uπ, ∀q := log(1 + s) + δy ∈ [log(τa;0 + 1) + 2Uyπ, (1 + Uy)2π].

The remaining part of the proof is similar to the y = y0 case. We have that by (3.25) and (3.26),∫ A1/3|α|−2/3

τ0

∣∣∣∣∣
∫ log(1+s)

log(1+τ0)

U ′(y + h)ehdh

∣∣∣∣∣
2

ds

≥
∫ e2(Uy+1)π−δy−1

(τa;0+1)e2Uyπ−δy−1

∣∣∣∣∣
∫ log(1+s)+δy

log(1+τ0)+δy

U ′(y0 + h)eh−δydh

∣∣∣∣∣
2

ds

≥(e2π − τa;0 − 1)
e6Uπ

16e6π(e2π − 1)2
R2

0 ≥ A

C∗(U)|α|2
.

This is (3.16).
Step # 3: Decay estimates. To prove the decay estimate, we consider the difference between the viscous
solution and the inviscid solution, which solves the equation

∂t(F − η) + iuα(F − η) =
1

A
∂yyF.

Recalling the estimate of ∂yη (3.13), the hypothesis (3.7), and the time constraint t ≤ A1/3|α|−2/3, we have
that the L2-difference is bounded as follows

∥η − F∥2L2
y
(t) ≤ 1

A

∫ t

τ0

∥∂yη(s)∥L2
y
∥∂yF (s)∥L2

y
ds

≤C(∥∂yu∥L∞
t,y
)A−2/3|α|1/3

√
H
√
t

√∫ t

τ0

∥∂yF (s)∥2L2
y
ds < C

√
Hκ.

Now, by interpolation and the H2-estimate (3.14), we obtain the bound

∥η − F∥Ḣ1
y
≤ C∥η − F∥1/2L2

y
∥η − F∥1/2

Ḣ2
y

< C
√
H5/4κ1/4|α|2/3A2/3 = CH5/8κ1/8|α|1/3A1/3.

Thus, the triangular inequality yields that

∥F∥Ḣ1
y
≥ ∥η∥Ḣ1

y
− ∥η − F∥Ḣ1

y
≥ ∥η∥Ḣ1

y
− CH5/8κ1/8|α|1/3A1/3.
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Hence,

∥F (t)∥2
Ḣ1

y
≥ 1

2
∥η∥2

Ḣ1
y
− CH5/4κ1/4|α|2/3A2/3, ∀t ∈ [τ0, A

1/3|α|−2/3].

Now we integrate from τ0 to |α|−2/3A1/3 and apply the lower bound (3.15) to obtain that

1

A

∫ |α|−2/3A1/3

τ0

∥F (s)∥2
Ḣ1

y
ds ≥ δ

16
− C

√
κH − CH5/4κ1/4,

Combining it with (3.7), we then see that:

CH5/4(κ1/2 + κ1/4) ≥ δ.

It follows that 1 ≥ κ ≥ δ4/(CH5). By choosing the κ to be

κ <
δ4

CH5
,(3.28)

we obtain a contradiction. As a result, there exists a constant κ > 0 such that

2

A

∫ |α|−2/3A1/3

0

∥∂yF (s)∥2L2
y
ds ≥ κ, |α| ≤ A1/2

K
.

By (3.5), we have the decay (3.1) for |α| ≤ 1
KA1/2. Combining it with the estimate in the high modes (3.2),

we have completed the proof of the lemma. □

Proof of Theorem 1.2. We first make the observation that the shear flow u(y + log(t+ 1)) is not uniformly
enhanced dissipation in time. As time becomes larger and larger, the shear flow changes slower and slower.
Hence the decay rate might deplete over time. To obtain the uniform-in-time version, we introduce the
rewinding of the flow. Recall that A1/3 is the time when significant decay (1 − κ) happens, then we define
the following flow

U(t, y) = u(y + ϕ(t)), ϕ(t) =

∞∑
J=0

χJ(t) log(1 + (t− J(A1/3 + 1))), t ≥ 0,

where the χJ(t) is smooth cut-off function such that

χJ(t) =

 1, t ∈
[
2JA1/3, (2J + 1)A1/3

]
;

monotone, t ∈
[
(2J − 1)A1/3, 2JA1/3

)
∪
(
(2J + 1)A1/3, 2(J + 1)A1/3

]
,

0, others.

For this time periodic flow with period 2A1/3, we show the estimate (1.8). If s, t ∈ 2A1/3N, then by Lemma
3.1, we have the estimate (1.8). In the general case, we find the largest integer N1 ∈ N so that 2A1/3N1 ≤ s+t
and the smallest integer N2 ∈ N such that 2A1/3N2 ≥ s. Further note that if t < 4A1/3, then the result
(1.8) is direct, i.e.,

∥f(s+ t)∥2 ≤ ∥f(s)∥2 ≤ (1− κ)−2∥f(s)∥2e
− 1

2 | log(1−κ)| t

A1/3 , ∀t ∈ [0, 4A1/3).

Hence we assume that t ≥ 4A1/3. As a consequence, t− (N1 −N2)2A
1/3 ≤ 4A1/3. Thanks to the dissipative

nature of the L2-norm and the enhanced dissipation estimate for s, t ∈ 2A1/3N obtained before, we have

∥f(s+ t)∥2 ≤∥f(2N1A
1/3)∥2 ≤ ∥f(2N2A

1/3)∥2(1− κ)(N2−N1) ≤ ∥f(2N2A
1/3)∥2e−

1
2A

−1/3(t−4A1/3) log(1−κ)−1

≤(1− κ)−2∥f(s)∥2e
− 1

2 | log(1−κ)| t

A1/3 , ∀s ∈ [0,∞), t ∈ [4A1/3,∞).

This concludes the proof of (1.8). □
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3.2. Enhanced Dissipation in the Gliding Regularity Spaces. In this subsection, we prove Theorem
2.2. The proof develops a general framework to upgrade the L2 enhanced dissipation to the higher gliding
regularity spaces. The main obstacle to derive the enhanced dissipation estimates stem from the commutator
terms involving the Γ vector field and the diffusion operator 1

A∆. These challenges are addressed by the key
Lemma 3.2.

The remaining part of the subsection is devoted to the proof of Theorem 2.2. We organize the proof in
four main steps.
Step # 1: General Setup. We fix an arbitrary starting time t⋆ ∈ [0,∞), and observe that Theorem 1.2,
together with the choice of δZ (2.7), yields that∥∥∥∥St⋆+δ−1

Z A1/3

t⋆ P̸=

∥∥∥∥
L2→L2

≤ 1

8
.(3.29)

Here P̸= is the projection operator such that P̸=f = f̸=. Next we observe that the following regularity and
decay estimates guarantee the enhanced dissipation (2.6),

∥f̸=(t⋆ + τ)∥2ZM
G,Φ

≤ 2 ∥f ̸=(t⋆)∥2ZM
G,Φ

, ∀τ ∈ [0, δ−1
Z A1/3];(3.30)

∥f ̸=(t⋆ + δ−1
Z A1/3)∥2ZM

G,Φ
≤ 1

e2
∥f ̸=(t⋆)∥2ZM

G,Φ
.(3.31)

The explicit argument is a variant to the one applied in the proof of Theorem 1.2. Consider general s, t ∈
[0,∞). If the time instance t in (2.6) take values in the set δ−1

Z A1/3N, iterative application of the decay
estimate (3.31) yields the result (2.6). In the general case, we find the largest integer N1 ∈ N so that
δ−1
Z A1/3N1 ≤ t. As a consequence, we obtain the relation t − N1δ

−1
Z A1/3 < δ−1

Z A1/3 ⇒ δZA
−1/3(t −

δ−1
Z A1/3) < N1. Combining the regularity estimate (3.30) and the decay estimate (3.31) yields that,

(3.32)

∥f̸=(s+ t)∥2ZM
G,Φ(s+t)

≤ 2 ∥f̸=(s+N1δ
−1
Z A1/3)∥2ZM

G,Φ(s+N1δ
−1
Z A1/3)

≤ 2 ∥f ̸=(s)∥2ZM
G,Φ(s)

e−2N1

≤ 2 ∥f̸=(s)∥2ZM
G,Φ(s)

exp

{
−2δZ

t− δ−1
Z A1/3

A1/3

}
≤ 2e2 ∥f̸=(s)∥2ZM

G,Φ(s)
exp

{
−2δZ

t

A1/3

}
.

This is the result (2.6). Hence, it is enough to prove the estimates (3.30) and (3.31).
Step # 2: Proof of the Regularity Estimate (3.30). The Step # 2 and Step # 3 are mainly
devoted to estimating commutator terms. The following key lemma plays a major role.

Lemma 3.2. Consider function Hijk ∈ H1 and the family {Gijk}|i,j,k|=m ⊂ H1, where 0 ≤ m≤ M . Further
assume that the family of functions {Gijk} satisfies the following relations

∂xGijk = G(i+1)jk, ΓyGijk = Gi(j+1)k, ∂zGijk = Gij(k+1).(3.33)

Then there exists a constant C, which depends only on M and ∥u∥L∞
t WM+2,∞ , such that the following estimate

holds

∣∣∣∣G2iΦ2j

A

∫
Hijk[∂yy,Γ

j
y]Gi0kdV

∣∣∣∣
(3.34)

≤G2iΦ2j

8A
∥∇Hijk∥22 +

(
CΦ

A1/3G2
+

C

G(A2/3 + t2)

)G2iΦ2j∥Hijk∥22 +
∑

i′+j′+k′≤m
j′≤j−1

G2i′Φ2j′∥Gi′j′k′∥22

 .

Proof. The proof of the lemma is postponed to the end of the subsection. □

To prove the regularity estimate (3.30), we express the time evolution of ∥f ̸=∥2ZM
G,Φ

as follows

d

dτ

1

2

M∑
|i,j,k|=0

G2iΦ2j∥∂i
xΓ

j
y∂

k
z f ̸=∥22(3.35)
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≤−
M∑

|i,j,k|=0

G2iΦ2j

A
∥∇(∂i

xΓ
j
y∂

k
z f̸=)∥22 +

M∑
|i,j,k|=0

G2i

A
Φ2j

∫
∂i
xΓ

j
y∂

k
z f ̸= [Γj

y, ∂yy]∂
i
x∂

k
z f ̸=dV

=:−
M∑

|i,j,k|=0

G2iΦ2j

A
∥∇(∂i

xΓ
j
y∂

k
z f̸=)∥22 + TL;R

cm .

Here “L” stands for “linear” and “R” stands for “regularity”.
By setting Hijk = ∂i

xΓ
j
y∂

k
z f̸= and Gijk = ∂i

xΓ
j
y∂

k
z f ̸= in Lemma 3.2 and checking that the condition (3.33)

holds, we reach the conclusion that the commutator term TL;R
cm in (3.35) is bounded as follows

|TL;R
cm | ≤ 1

8A

M∑
|i,j,k|=0

G2iΦ2j∥∇(∂i
xΓ

j
y∂

k
z f̸=)∥22 +

(
CΦ

G2A1/3
+

C

G(A2/3 + t2)

)
∥f ̸=∥2ZM

G,Φ
.

Here C’s are constants depending only on M, ∥uA∥L∞
t WM+2,∞ . Hence, for all τ ∈ [0, δ−1

M A1/3],

d

dτ
∥f ̸=(t⋆ + τ)∥2ZM

G,Φ
≤ C

(
1

G(A2/3 + (t⋆ + τ)2)
+

1

A1/3G2(1 + (t⋆ + τ)3/A)

)
∥f ̸=(t⋆ + τ)∥2ZM

G,Φ
.

Now by solving the differential relation and choosing the threshold GM > 0 large enough compared to M ,
δ−1
Z (as defined in (3.29)), and ∥u∥L∞

t WM+2,∞ , we reach the result (3.30). This concludes the Step # 2.
Step # 3: Proof of the Decay Estimate (3.31). Next we prove the decay estimate (3.31). The handle

we apply is the passive scalar solution St⋆+τ
t⋆ (∂i

xΓ
j
y;t⋆∂

k
z f ̸=(t⋆)), whose ZM

G,Φ-norm naturally decays to 1/8 of

its value at t⋆ after time δ−1
M A1/3 (3.29). To avoid lengthy notation, we use the simplified notions

Γijk
y;t = ∂i

xΓ
j
y;t⋆+τ∂

k
z , St⋆+τ

t⋆ Γijk
y;t⋆ f̸= = St⋆+τ

t⋆

(
∂i
xΓ

j
y;t⋆∂

k
z f ̸=(t⋆)

)
.

The remaining task is to show that the deviation between the solution Γijk
y;t f̸= and the passive solution

St⋆+τ
t⋆ Γijk

y;t⋆f ̸= is small. To this end, we express the time evolution of the ZM
G,Φ-norm of the difference as

follows

d

dτ

1

2

M∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t f̸= − St⋆+τ

t⋆ Γijk
y;t⋆f ̸=∥

2
2

=−
M∑

|i,j,k|=0

G2i

A
Φ2j∥∇(Γijk

y;t f ̸= − St⋆+τ
t⋆ Γijk

y;t⋆ f̸=)∥
2
2

+

M∑
|i,j,k|=0

G2ijΦ2j−1Φ′∥Γijk
y;t f̸= − St⋆+τ

t⋆ Γijk
y;t⋆f ̸=∥

2
2

+

M∑
|i,j,k|=0

G2iΦ2j

A

∫
(Γijk

y;t f̸= − St⋆+τ
t⋆ Γijk

y;t⋆f ̸=)[Γ
j
y, ∂yy]∂

i
x∂

k
z f̸=dV

=:−D1 −D2 + TL;D
cm .

Here “L” stands for “linear” and “D” stands for “decay”. To estimate the commutator term, we set

Hijk = Γijk
y;t f̸= − St⋆+τ

t⋆ Γijk
y;t⋆ f̸= and Gijk = Γijk

y;t f ̸= in Lemma 3.2. The condition (3.33) can be checked
directly. Hence an application of Lemma 3.2 yields that

|TL;D
cm | ≤1

8
D1 +

(
CΦ(t⋆ + τ)

A1/3G2
+

C

G(A2/3 + (t⋆ + τ)2)

) M∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t f ̸= − St⋆+τ

t⋆ Γijk
y;t⋆ f̸=∥

2
2

+

(
CΦ(t⋆ + τ)

A1/3G2
+

C

G(A2/3 + (t⋆ + τ)2)

)
sup

τ∈[0,δ−1
Z A1/3]

∥f ̸=(t⋆ + τ)∥2ZM
G,Φ

.
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Here the constant C depends only on the regularity level M and the norm ∥uA∥L∞
t WM+2,∞ . Combining this

bound with the regularity estimate (3.30), and the decomposition (3.34) yields that

d

dτ

M∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t f ̸= − St⋆+τ

t⋆ Γijk
y;t⋆f ̸=∥

2
L2

≤C

(
Φ(t⋆ + τ)

A1/3G2
+

1

G((t⋆ + τ)2 +A2/3)

)

×

 M∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t f̸= − St⋆+τ

t⋆ Γijk
y;t⋆f ̸=∥

2
L2 + ∥f ̸=(t⋆)∥2ZM

G,Φ

 .

By applying a Grönwall-type estimate, and choosing the threshold G ≥ GM > 1 large enough compared to
∥u∥L∞

t WM+2,∞ , M and δ−1
M (as defined in (3.29)), we achieve the following bound

M∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t f ̸= − St⋆+τ

t⋆ Γijk
y;t⋆f ̸=∥

2
L2 ≤ 1

32
∥f̸=(t⋆)∥2ZM

G,Φ
, ∀τ ∈ [0, δ−1

Z A1/3].

Since the choice of δZ (3.29) yields that

M∑
|i,j,k|=0

G2iΦ2j∥St⋆+δ−1
M A1/3

t⋆ Γijk
y;t⋆ f̸=∥

2
2 ≤ 1

64
∥f ̸=(t⋆)∥2ZM

G,Φ
,

we have obtained that

∥f ̸=(t⋆ + δ−1
Z A1/3)∥2ZM

G,Φ
≤2

M∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t f ̸=(t⋆ + δ−1

Z A1/3)− S
t⋆+δ−1

Z A1/3

t⋆ Γijk
y;t⋆f ̸=∥

2
2

+ 2

M∑
|i,j,k|=0

G2iΦ2j∥St⋆+δ−1
Z A1/3

t⋆ Γijk
y;t⋆f ̸=∥

2
2

≤
(

2

32
+

1

32

)
∥f̸=(t⋆)∥2ZM

G,Φ
≤ 1

e2
∥f ̸=(t⋆)∥2ZM

G,Φ
.

At this point, we have obtained (3.31). Hence, the enhanced dissipation (2.6) is achieved. This concludes
the Step # 3.
Step # 4: Proof of (2.8). Thanks to the definition of the Z-norm (2.5) and the estimate (2.6), we have
that

M∑
|i,j,k|=0

G2i∥∂i
xΓ

j
y∂

k
z f ̸=(t)∥2L2 ≤C(M)

(
Φ−2Me

−δZ
t

A1/3

) M∑
|i,j,k|=0

G2i∥∂i
x∂

j
y∂

k
z fin;̸=∥2L2e

−δZ
t

A1/3

≤C(M, δ−1
Z )

M∑
|i,j,k|=0

G2i∥∂i
x∂

j
y∂

k
z fin;̸=∥2L2e

−δZ
t

A1/3 .

This concludes the proof of Theorem 2.2. The only remaining task is to prove Lemma 3.2. We collect the
proof below.

Proof of Lemma 3.2. Since the result (3.34) is trivially true for j = 0, we always assume that j ≥ 1 through-
out the proof. According to the commutator relation (B.2d) and the computation rule (3.33), we can rewrite
the left hand side of (3.34) in the following fashion,∣∣∣∣G2iΦ2j

A

∫
Hijk [Γj

y, ∂yy]Gi0kdV

∣∣∣∣
=

∣∣∣∣G2iΦ2j

A

∫
Hijk

j−1∑
ℓ=0

(
j

ℓ

)(
−2B(j−ℓ+1)∂xΓy + ∂(j−ℓ)

y (B(1))2∂xx −B(j−ℓ+2)∂x

)
GiℓkdV

∣∣∣∣
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= :

∣∣∣∣T1 + T2 + T3

∣∣∣∣.
Here the quantities B(m) are defined as

B(m)(t, y) :=

∫ t

0

∂m
y u(s, y)ds.(3.36)

With this notation, the Γ-derivative can be rewritten as ∂y +B(1)∂x.
Let us start by estimating the quantity |T1 + T2|. Here we distinguish between the ℓ = j − 1 case and the

0 ≤ ℓ ≤ j − 2 case. In the first case, we expand Γ as ∂y +B(1)∂x and observe the following relation(
−2B(2)∂xΓy + ∂y(B

(1))2∂xx

)
Gi(j−1)k =− 2B(2)

(
∂xy +B(1)∂xx

)
Gi(j−1)k + 2B(2)B(1)∂xxGi(j−1)k

=− 2B(2)∂xyGi(j−1)k.

Hence we can simplify the T1 + T2 with the property ∂xGijk = G(i+1)jk and integration by parts,

|T1 + T2|1ℓ=j−1 =

∣∣∣∣G2iΦ2j

A
j

∫
Hijk 2B(2) ∂x∂yGi(j−1)kdV

∣∣∣∣
=

∣∣∣∣G2iΦ2j

A
j

∫
∂yHijk 2B(2) G(i+1)(j−1)kdV +

G2iΦ2j

A
j

∫
Hijk 2B(3) G(i+1)(j−1)kdV

∣∣∣∣.
Now applications of the Hölder inequality, the Young’s inequality and the definition Φ(t) = 1+ t3

A (2.4) yield
that

|T1 + T2|1ℓ=j−1 ≤ G2iΦ2j

12A
∥∂yHijk∥22 +

CG2i+2Φ2j−2(Φ2t2)

AG2
∥G(i+1)(j−1)k∥22(3.37)

+
G2iΦ2j

G(A2/3 + t2)
∥Hijk∥22 +

CG2i+2Φ2j−2Φ2

GA2/3

(A2/3t2 + t4)

A4/3
∥G(i+1)(j−1)k∥22

=
G2iΦ2j

12A
∥∂yHijk∥22 +

CG2i+2Φ2j−2

A1/3G2

t2/A2/3

(1 + t3/A)2
∥G(i+1)(j−1)k∥22

+
G2iΦ2j

G(A2/3 + t2)
∥Hijk∥22 +

CG2i+2Φ2j−2

GA2/3

(t2/A2/3 + t4/A4/3)

(1 + t3/A)2
∥G(i+1)(j−1)k∥22

≤ G2iΦ2j

12A
∥∂yHijk∥22 +

G2iΦ2j

G(A2/3 + t2)
∥Hijk∥22

+

(
C

A1/3G2(1 + t3/A)
+

C

G(A2/3 + t2)

)
G2(i+1)Φ2(j−1)∥G(i+1)(j−1)k∥22.

For the 0 ≤ ℓ ≤ j − 2 case, we estimate the two terms individually. For the T1 term, we have that

|T1|10≤ℓ≤j−2 =

∣∣∣∣2G2iΦ2j

A

j−2∑
ℓ=0

(
j

ℓ

)∫
Hijk B(j−ℓ+1)∂xΓyGiℓkdV

∣∣∣∣(3.38)

≤
j−2∑
ℓ=0

C

A2/3G

(
Φj−ℓ−1t

A1/3

)(
GiΦj∥Hijk∥2

) (
Gi+1Φℓ+1∥G(i+1)(ℓ+1)k∥2

)
≤ C

(A2/3 + t2)G
G2iΦ2j∥Hijk∥22 +

C

(A2/3 + t2)G

∑
i′+j′+k′≤m

j′≤j−1

G2i′Φ2j′∥Gi′j′k′∥22.

Next we estimate the T2 term as follows

|T2|10≤ℓ≤j−2 ≤ C

G2A1/3

j−2∑
ℓ=0

(
j

ℓ

)
Φj−ℓt2

A2/3
(GiΦj∥Hijk∥2) (Gi+2Φℓ∥G(i+2)ℓk∥2)(3.39)

≤ C

G2A1/3

j−2∑
ℓ=0

t2/A2/3

(1 + t3/A)2
(GiΦj∥Hijk∥2) (Gi+2Φℓ∥G(i+2)ℓk∥2)
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≤ C

A1/3G2(1 + t3/A)

G2iΦ2j∥Hijk∥22 +
∑

i′+j′+k′≤m
j′≤j−1

G2i′Φ2j′∥Gi′j′k′∥22

 .

The estimate of the T3 is as follows:

|T3| ≤C

j−1∑
ℓ=0

G2iΦ2j

A

∫
|Hijk| |B(j−ℓ+2)| |G(i+1)ℓk|dV(3.40)

≤ C

A2/3G

j−1∑
ℓ=0

(GiΦj∥Hijk∥2)
(
Φj−ℓt

A1/3

)
(Gi+1Φℓ∥G(i+1)ℓk∥2)

≤ C

(A2/3 + t2)G

G2iΦ2j∥Hijk∥22 +
∑

i′+j′+k′≤m
j′≤j−1

G2i′Φ2j′∥Gi′j′k′∥22

 .

Combining (3.37), (3.38), (3.39), and (3.40) yields (3.34). □

4. Nonlinear Theory

In this section, we develop the nonlinear theory for the system (1.3). We will prove the propositions stated
in Section 2.2.

First of all, we observe that to derive the estimates in Proposition 2.3 (or other propositions in Section
2.2), there are two types of quantities to consider, namely, the x-average of the unknowns ⟨n⟩, ⟨C⟩, and the
remainders of the solutions n ̸=, c

tr
̸= , dtr̸= . In Subsection 4.1, we collect the lemmas which provide bounds to

the x-averages. In Subsections 4.2 - 4.3, we collect estimates of the remainder. The main goal is to prepare
necessary bounds to derive the nonlinear enhanced dissipation. As in the linear case, our general scheme is
to fix an arbitrary time t⋆ on the time horizon, and then derive the following regularity estimate and the
decay estimate on the time intervals [t⋆, t⋆ + δ−1A1/3], i.e.,

Ftr;M
G,Q [t⋆ + τ ] ≤ 2Ftr;M

G,Q [t⋆], ∀τ ∈ [0, δ−1A1/3];(4.1)

Ftr;M
G,Q [t⋆ + δ−1A1/3] ≤ 1

2
Ftr;M
G,Q [t⋆].(4.2)

We recall that the parameter δ is chosen as δ = δ(δZ) (2.17), and δZ is defined in (2.7). We collect theorems
involving (4.1) in Subsection 4.2 and decay estimates associated with (4.2) in Subsection 4.3. Finally, in
Subsection 4.4, we combine results in previous sections to derive Propositions 2.1, 2.2, and 2.3.

4.1. The x-average Estimates. In this section, we present two lemmas concerning the x-average ⟨n⟩, ⟨C⟩.

Theorem 4.1. Consider solutions to the system (2.11a), (2.11b) subject to initial conditions (⟨nin⟩, ⟨Cin⟩) ∈
HM ×HM+1, M ≥ 3. There exists a constant C depending only on M and ∥∂yuA∥L∞

t WM,∞ such that the

following estimates hold for all t ∈ [0, A1/3+ζ ],

d

dt

 M∑
|j,k|=0

∥∂j
y∂

k
z ⟨n⟩(t)∥2L2

y,z

(4.3)

≤C

A
∥⟨n⟩(t)∥2HM

y,z

(
sup

τ∈[0,A1/3+ζ ]

∥⟨n⟩(τ)∥2HM
y,z

+ ∥∇⟨Cin⟩∥2HM
y,z

)

+
C

A

 M+1∑
|i,j,k|=0

∥Γijk
y;t C ̸=∥2L2

x,y,z
+ t2

M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t C̸=∥2L2

x,y,z

 M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2

x,y,z

 .
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Proof. We recall the equation (2.11a) and implement direct energy estimate of the Sobolev norm to derive
that

d

dt

1

2

M∑
|j,k|=0

∥∂j
y∂

k
z ⟨n⟩∥2L2 =− 1

A

M∑
|j,k|=0

∥∇∂j
y∂

k
z ⟨n⟩∥2L2 +

1

A

M∑
|j,k|=0

∫
∇y,z∂

j
y∂

k
z ⟨n⟩ · ∂j

y∂
k
z (⟨n⟩∇⟨C⟩) dV(4.4)

+
1

A

M∑
|j,k|=0

∫
∇y,z∂

j
y∂

k
z ⟨n⟩ · ∂j

y∂
k
z ⟨n ̸=∇y,zC ̸=⟩ dV

=− 1

A

M∑
|j,k|=0

∥∇∂j
y∂

k
z ⟨n⟩∥2L2 + T1 + T2.

To estimate T1 term in (4.4), we apply the Sobolev product estimate (M ≥ 2) and the integral estimate
(A.1) to obtain

|T1| ≤
1

4A

M∑
|j,k|=0

∥∇∂j
y∂

k
z ⟨n⟩∥2L2

y,z
+

C

A
∥⟨n⟩∥2HM

y,z
∥∇⟨C⟩∥2HM

y,z
(4.5)

≤ 1

4A

M∑
|j,k|=0

∥∇∂j
y∂

k
z ⟨n⟩∥22 +

C

A
∥⟨n⟩∥2HM

y,z

(
sup

τ∈[0,t]

∥⟨n⟩(τ)∥2HM
y,z

+ ∥∇⟨Cin⟩∥2HM
y,z

)
.

To estimate the T2 term in (4.4), we invoke the product estimate (B.6), and the fact that ∂j
y⟨f⟩x = ⟨Γj

y;tf⟩x
to estimate

|T2| =
∣∣∣∣ 1A

M∑
|j,k|=0

∫
∇y,z∂

j
y∂

k
z ⟨n⟩ · ⟨Γ

j
y;t∂

k
z (n ̸=∇y,zC ̸=)⟩dV

∣∣∣∣
≤ 1

8A

M∑
|j,k|=0

∥∇∂j
y∂

k
z ⟨n⟩∥2L2

y,z
+

C

A

M∑
|j,k|=0

∥Γj
y;t∂

k
z (n ̸=∇y,zC ̸=)∥2L2

x,y,z

≤ 1

8A

M∑
|j,k|=0

∥∇∂j
y∂

k
z ⟨n⟩∥2L2

y,z
+

C

A

 M∑
|i,j,k|=0

∥Γijk
y;t∇y,zC̸=∥2L2

x,y,z

 M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2

x,y,z

 .

Now we apply the estimate of the gradient (B.7) to obtain that

|T2| ≤
1

4A

∑
|j,k|≤M

∥∇∂j
y∂

k
z ⟨n⟩∥2L2

y,z
(4.6)

+
C

A

( M+1∑
|i,j,k|=0

∥Γijk
y;t C ̸=∥2L2

x,y,z
+ t2

M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t C̸=∥2L2

x,y,z

) M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2

x,y,z

 .

Now combining the decomposition (4.4), and the estimates (4.5), (4.6), we end up with the result (4.3).
□

To conclude this section, we present a technical lemma involving the double average of the cell density n,
which will be applied in the alternating construction.

Theorem 4.2. Consider solutions to the system (2.11a), (2.11b)subject to initial conditions (⟨nin⟩, ⟨Cin⟩) ∈
HM × HM+1, M ≥ 3. Further recall the double average ⟨⟨f⟩⟩·,· (1.13). There exists constant C such that
following estimates hold for all t ∈ [0, A1/3+ζ ],

d

dt

 M∑
j=0

∥∂j
y⟨⟨n⟩⟩x,z(t)∥2L2

y

(4.7)

≤− 1

A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2

y
+

C

A
∥⟨n⟩x(t)∥2HM

y,z

(
sup

s∈[0,A1/3+ζ ]

∥⟨n⟩x(s)∥2HM
y,z

+ ∥∂y⟨Cin⟩x∥2HM
y,z

)
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+
C

A

 M+1∑
|i,j,k|=0

∥Γijk
y;t C ̸=∥2L2

x,y,z
+ t2

M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t C̸=∥2L2

x,y,z

 M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2

x,y,z

 .

Similarly,

d

dt

(
M∑
k=0

∥∂k
z ⟨⟨n⟩⟩x,y(t)∥2L2

z

)

≤− 1

A

M∑
k=0

∥∂k+1
z ⟨⟨n⟩⟩x,y∥2L2

z
+

C

A
∥⟨n⟩x(t)∥2HM

y,z

(
sup

s∈[0,A1/3+ζ ]

∥⟨n⟩x(s)∥2HM
y,z

+ ∥∂z⟨Cin⟩x∥2HM
y,z

)

+
C

A

( M+1∑
|i,j,k|=0

∥Γijk
y;t C̸=∥2L2

x,y,z
+ t2

M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t C ̸=∥2L2

x,y,z

) M∑
|i,j,k|=0

∥Γijk
y;t n̸=∥2L2

x,y,z

 .

Proof. We focus on the proof of estimate (4.7). The proof of the other inequality is similar. First, we
decompose the solution n, C into three parts:

n = ⟨⟨n⟩⟩x,z + (⟨n⟩x)z̸= + nx
̸=, C = ⟨⟨C⟩⟩x,z + (⟨C⟩x)z̸= + Cx

̸=.

Next, we take the x, z-average of the nonlinearity in the equation (2.11a)

⟨⟨∇ · (n∇C)⟩⟩x,z =⟨∇y,z · ⟨n∇y,zC⟩x⟩z = ∂y⟨⟨n∂yC⟩⟩x,z

=∂y
〈〈 [

⟨⟨n⟩⟩x,z + (⟨n⟩x)z̸= + nx
̸=
] [

∂y⟨⟨C⟩⟩x,z + ∂y(⟨C⟩x)z̸= + ∂yC
x
̸=
] 〉〉x,z

=∂y (⟨⟨n⟩⟩x,z ∂y⟨⟨C⟩⟩x,z) + ∂y
〈
(⟨n⟩x)z̸= ∂y(⟨C⟩x)z̸=

〉z
+ ∂y

〈〈
nx
̸=∂yC

x
̸=
〉〉x,z

.

Hence we end up with the following ⟨⟨n⟩⟩x,z-equation:

∂t⟨⟨n⟩⟩x,z =
1

A
∂yy⟨⟨n⟩⟩x,z −

1

A
∂y (⟨⟨n⟩⟩x,z ∂y⟨⟨C⟩⟩x,z)−

1

A
∂y
〈
(⟨n⟩x)z̸= ∂y(⟨C⟩x)z̸=

〉z − 1

A
∂y
〈〈
nx
̸=∂yC

x
̸=
〉〉x,z

.

We implement direct energy estimate of the Sobolev norm to derive that

d

dt

1

2

M∑
j=0

∥∂j
y⟨⟨n⟩⟩x,z∥2L2

y
(4.8)

=− 1

A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2

y
+

1

A

M∑
j=0

∫
∂j+1
y ⟨⟨n⟩⟩x,z ∂j

y

(
⟨⟨n⟩⟩x,z ∂y⟨⟨C⟩⟩x,z

)
dy

+
1

A

M∑
j=0

∫
∂j+1
y ⟨⟨n⟩⟩x,z ∂j

y

〈
(⟨n⟩x)z̸= ∂y(⟨C⟩x)z̸=

〉z
dy +

1

A

M∑
j=0

∫
∂j+1
y ⟨⟨n⟩⟩x,z ⟨⟨nx

̸= ∂yC
x
̸=⟩⟩x,zdy

=:− 1

A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2

y
+ T1 + T2 + T3.

The estimates for the T1 term and T2 term are similar to the estimate (4.5). We apply the Hölder inequality,
Young’s inequality, Sobolev product estimate (M ≥ 2), the integral estimate (A.1) and Lemma A.1 to
obtain

|T1 + T2| ≤
1

4A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2

y
+

C

A
∥⟨⟨n⟩⟩x,z∥2HM

y
∥∂y⟨⟨C⟩⟩x,z∥2HM

y
+

C

A
∥(⟨n⟩x)z̸=∥2HM

y,z
∥∂y(⟨C⟩x)z̸=∥2HM

y,z

(4.9)

≤ 1

4A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2

y
+

C

A
∥⟨n⟩x∥2HM

y,z

(
sup

s∈[0,t]

∥⟨n⟩x(s)∥2HM
y,z

+ ∥∂y⟨Cin⟩x∥2HM
y,z

)
.
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The estimate of the T3 term in (4.8) is similar to (4.6). We invoke the product estimate (B.6), the fact that

∂j
y⟨⟨f⟩⟩x,z = ⟨⟨Γj

y;tf⟩⟩x,z, and the gradient estimate (B.7) to estimate

|T3| =
∣∣∣∣ 1A

M∑
j=0

∫
∂j+1
y ⟨⟨n⟩⟩x,z ⟨⟨Γj

y;t(n
x
̸=∂yC

x
̸=)⟩⟩x,zdy

∣∣∣∣ ≤ 1

8A

M∑
j=0

(
∥∂j+1

y ⟨⟨n⟩⟩x,z∥2L2 + C∥Γj
y;t(n

x
̸=∂yC

x
̸=)∥2L2

)(4.10)

≤ 1

8A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2 +

C

A

 M∑
|i,j,k|=0

∥Γijk
y;t ∂yC ̸=∥2L2

 M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2



≤ 1

8A

M∑
j=0

∥∂j+1
y ⟨⟨n⟩⟩x,z∥2L2 +

C

A

( M+1∑
|i,j,k|=0

∥Γijk
y;t C ̸=∥2L2 + t2

M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t C ̸=∥2L2

) M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2

 .

Now combining the decomposition (4.8), and the estimates (4.9), (4.10), we end up with the result
(4.7). □

4.2. The Regularity Estimates of the Remainder. The goal of this subsection is to derive the following
theorem which provides the necessary regularity estimates.

Theorem 4.3. Consider the solutions n ̸=(tr + τ), ctr̸= (τ) = C ̸=(tr + τ)− Str+τ
tr C̸=, d

tr
̸= (τ) = Str+τ

tr C ̸= to the

equations (2.12) initiated from the reference time tr ∈ {0, Th = A1/3+ζ/2}. Then the following estimate holds

for all t = tr + τ ∈ [tr, A
1
3+ζ ],

d

dτ
Ftr;M
G,Q [tr + τ, n ̸=, c

tr
̸= ](4.11)

≤ C

GA1/3

(
G

A1/6
+

Φ(tr + τ)

G
+

A1/3

A2/3 + (tr + τ)2
+ exp

{
− δZ
4A1/3

τ

})
Ftr;M
G,Q

+
CG

A1/3

Ftr;M
G,Q

A1/2Φ(tr + τ)4M+4

(
1 + Ftr;M

G,Q + ∥⟨n⟩∥2HM + ∥∇⟨C⟩∥2HM

)

+
CG

A1/3Q2

exp
{
− δZ

A1/3 τ
}

Φ(tr + τ)4M+4

Q2
M+1∑

|i,j,k|=0

G2iΦ(tr)
2j∥∂i

xΓ
j
y;tr∂

k
z C̸=(tr)∥2L2

(Ftr;M
G,Q + ∥⟨n⟩∥2HM

)
.

Here the constant C only depends on M, ∥uA∥L∞
t WM+3,∞ and CG only depends on G, M, ∥uA∥L∞

t WM+3,∞ .

Before presenting the proof of the theorem, we first decompose the time derivative d Ftr;M
G,Q [tr + τ ]/dτ and

identify the terms to be estimated. Then we provide several lemmas to provide necessary bounds on these
terms. The proofs of these lemmas will be postponed to the end of this subsection. Finally, after all the
preparations are ready, the proof of Theorem 4.3 is straightforward.

The time evolution of the functional Ftr;M
G,Q (2.13) on t = tr + τ ∈ [tr, T⋆] ⊂ [0, A1/3+ζ ] has three compo-

nents:

d

dτ
Ftr;M
G,Q =

d

dτ

 M∑
|i,j,k|=0

Φ2jG4+2i∥Γijk
y;tr+τn ̸=(tr + τ)∥2L2

(4.12)

+
d

dτ

 M+1∑
|i,j,k|=0

Φ2j+2G2i(A2/3
1j<M+1 + 1j=M+1)∥Γijk

y;tr+τ (C ̸=(tr + τ)− Str+τ
tr C̸=)∥2L2


− δZQ

2

2A1/3

M+1∑
|i,j,k|=0

∥Γijk
y;tr C̸=(tr)∥2L2 exp

{
− δZτ

2A1/3

}
=: ∂F1 + ∂F2 − ∂F3.

For the sake of simplicity, we use the notation Γy to represent Γy;tr+τ and Γijk
y;t to represent ∂i

xΓ
j
y;tr+τ∂

k
z .

We begin by considering the ∂F1 term in (4.12). The equation for the higher gliding derivatives of n ̸= can
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be expressed as follows with the help of the equation (2.12d),

∂τΓ
ijk
y;t n ̸= + uA(tr + τ, y)∂i+1

x Γj
y∂

k
zn ̸= − 1

A
∆Γijk

y;t n ̸=

=
1

A
[Γj

y, ∂yy]∂
i
x∂

j
zn ̸= − 1

A
Γijk
y;t (∇ · (n ̸=∇⟨C⟩) +∇ · (⟨n⟩∇C ̸=) +∇ · (n ̸=∇C ̸=)̸=) , t = tr + τ.

Combining the equation and a direct L2-energy estimate yields that

1

2
∂F1 ≤− 1

A

M∑
|i,j,k|=0

G4+2iΦ2j∥∇(Γijk
y;t n ̸=)∥22 +

M∑
|i,j,k|=0

G4+2i

A
Φ2j

∫
Γijk
y;t n ̸= [Γj

y, ∂yy]∂
i
x∂

k
zn ̸=dV(4.13)

+

M∑
|i,j,k|=0

G4+2i

A
Φ2j

∫
∇Γijk

y;t n ̸= · ∂i
xΓ

j
y∂

k
z (n∇C ̸= + n ̸=∇⟨C⟩)dV

−
M∑

|i,j,k|=0

G4+2i

A
Φ2j

∫
Γijk
y;t n ̸= [Γj

y, ∂y]∂
i
x∂

k
z (n∇C ̸= + n ̸=∇⟨C⟩)dV

=:−Dn + TNL;R
n;1 + TNL;R

n;2 + TNL;R
n;3 .

Next we recall the definition ctr̸= (τ) = C̸=(tr + τ) − Str+τ
tr C̸=(tr) together with (2.12b), and express the

equation satisfied by Γijk
y;t c

tr
̸= as follows,

∂τΓ
ijk
y;t c

tr
̸= + uA(tr + τ, y)Γ

(i+1)jk
y;t ctr̸= − 1

A
∆Γijk

y;t c
tr
̸= =

1

A
[Γj

y;t, ∂yy]∂
i
x∂

k
z c

tr
̸= +

1

A
Γijk
y;t n ̸=,

∂i
x∂

j
y;tr∂

k
z c

tr
̸= (τ = 0) =0, t = tr + τ.

Now a direct computation yields an expression for the ∂F2 term in (4.12):

1

2
∂F2 ≤

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)

(
− Φ2j+2G2i

A
∥∇Γijk

y;t c
tr
̸=∥22(4.14)

+
G2iΦ2j+2

A

∫
Γijk
y;t c

tr
̸= [Γj

y, ∂yy]∂
i
x∂

k
z c

tr
̸=dV +

G2iΦ2j+2

A

∫
Γijk
y;t c

tr
̸= Γijk

y;t n ̸=dV

)
=:−Dc + TNL;R

c;1 + TNL;R
c;2 .

We note that the proof of Theorem 4.3 is completed once suitable estimates are provided for the TNL;R
n;1 , TNL;R

n;2 , TNL;R
n;3

terms in (4.13), and the TNL;R
c;1 , TNL;R

c;2 terms in (4.14). Next we collect two lemmas that provides bounds
for these terms. The proof of these two lemmas will be postponed to the end of this subsection.

Lemma 4.1. [Lemma of TNL;R
i and TNL;D

i .] Consider functions {Hijk}|i,j,k|≤M ⊂ H1(T3). The following
estimates hold∣∣∣∣∣∣

M∑
|i,j,k|=0

G4+2i

A
Φ2j

∫
∇Hijk · Γijk

y;t (n∇C̸= + n ̸=∇⟨C⟩) dV

∣∣∣∣∣∣(4.15)

≤
M∑

|i,j,k|=0

G4+2iΦ2j

4A
∥∇Hijk∥22 +

C(G)

AΦ4M+4

(
Ftr;M
G,Q

)2
+

C(G)

AΦ2M+4
(∥⟨n⟩∥2HM + ∥∇⟨C⟩∥2HM )Ftr;M

G,Q

+
C

A1/3Q2

(
Ftr;M
G,Q + ∥⟨n⟩∥2HM

)Q2
M+1∑

|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;trC ̸=(tr)∥2L2

 exp
{
− 2δZτ

A1/3

}
Φ4M+3

;

∣∣∣∣∣∣
M∑

|i,j,k|=0

G4+2i

A
Φ2j

∫
Hijk [Γj

y, ∂y]∂
i
x∂

k
z (n∇C ̸= + n ̸=∇⟨C⟩)dV

∣∣∣∣∣∣(4.16)

≤
M∑

|i,j,k|=0

CG4+2iΦ2j

A1/3

(
1

A1/6
+

exp
{
− δZ

A1/3 τ
}

G2

)
∥Hijk∥22 +

C(G)

A5/6Φ4M+4

(
Ftr;M
G,Q

)2
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+
C(G)

A5/6Φ2M+4
(∥n∥2HM + ∥∇⟨C⟩∥2HM )Ftr;M

G,Q

+
C(G) exp

{
− δZ

A1/3 τ
}

A1/3Φ2M+4

 M+1∑
|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;tr C̸=(tr)∥2L2

(Φ−2MFtr;M
G,Q + ∥⟨n⟩∥2HM

)
.

Here Φ = Φ(t) = Φ(tr + τ).

Lemma 4.2. Consider functions {Hijk}|i,j,k|≤M+1 ⊂ H1. There exists a constant C, which depends only
on M, ∥∂yuA∥L∞

t WM+2,∞ , such that the following estimates hold

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)

G2iΦ2j+2

A

∣∣∣∣ ∫ Hijk [Γj
y;t, ∂yy]∂

i
x∂

k
z c

tr
̸=dV

∣∣∣∣(4.17)

≤ 1

8A

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)G

2iΦ2j+2∥∇Hijk∥2L2

+

(
CΦ

G2A1/3
+

C

G(A2/3 + t2)

) M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)G

2iΦ2j+2(∥Hijk∥2L2 + ∥Γijk
y;t c

tr
̸=∥2L2);

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)

G2iΦ2j+2

A

∣∣∣∣∫ Hijk Γijk
y;t n ̸=dV

∣∣∣∣(4.18)

≤ 1

4A

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)G

2iΦ2j+2∥∇Hijk∥22 +
CΦ2

G2A1/3
Ftr;M
G,Q .

Here Φ = Φ(tr + τ).

With these two lemma, we can complete the proof of Theorem 4.3.

Proof of Theorem 4.3. We estimate each term in (4.13) and (4.14). We note that the commutator term

TNL;R
n;1 in (4.13) is estimated in Lemma 3.2. By setting Hijk = Γijk

y;t n ̸= in (4.15), (4.16), we obtain the

estimates for the TNL;R
n;2 and TNL;R

n;3 terms in (4.13). By setting Hijk = Γijk
y;t c

tr
̸= in (4.17) and (4.18), we

obtain the bounds for TNL;R
c;1 , TNL;R

c;2 terms in (4.14). Combining the estimates stated above and recalling

the decomposition (4.12), we obtain (4.11). □

Proof of Lemma 4.1. Proof of (4.15): We decompose the left hand side of (4.15) into four parts:

M∑
|i,j,k|=0

G4+2i

A
Φ2j

∫
∇Hijk · Γijk

y;t (n∇c̸= + n∇d̸= + n ̸=∇⟨C⟩)dV =: T1 + T2 + T3.(4.19)

Here we drop the (· · · )tr in the ctr̸= and dtr̸= .

We first estimate the T1, T2 terms with the product estimate (B.6) as follows

|T1| ≤C

M∑
|i,j,k|=0

G4+2iΦ2j

A
∥∇Hijk∥2

 M∑
|i,j,k|=0

∥Γijk
y;t∇c̸=∥2

 M∑
|i,j,k|=0

∥Γijk
y;t n∥2


Next we recall the estimate (B.7), the fact that t2

A2/3 ≤ CΦ−2/3 (2.4), and the definition of Ftr;M
G,Q (2.13) to

derive that

|T1| ≤
M∑

|i,j,k|=0

G4+2iΦ2j

12A
∥∇Hijk∥22(4.20)

+
C(G)

AΦ4M+4

 M+1∑
|i,j,k|=0

G2iΦ2j+2∥Γijk
y;t c ̸=∥22 +Φ−2/3

M∑
|i,j,k|=0

A2/3G2iΦ2j+2∥Γ(i+1)jk
y;t c ̸=∥22


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×

 M∑
|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n ̸=∥22 +Φ2M∥⟨n⟩∥2HM


≤

M∑
|i,j,k|=0

G4+2iΦ2j

12A
∥∇Hijk∥22 +

C(G)

AΦ4M+4

(
Ftr;M
G,Q

)2
+

C(G)∥⟨n⟩∥2HM

AΦ2M+4
Ftr;M
G,Q .

Next we consider the T2 term in (4.19), which contains the ∇d̸= = ∇Str+τ
tr C̸=. We apply the linear estimate

(2.6) (with G chosen large enough), and the gradient estimate (B.7) to obtain

M∑
|i,j,k|=0

∥Γijk
y;t∇Str+τ

tr C ̸=∥2 ≤ C

(Φ(tr + τ))M

(
1

Φ(tr + τ)

M+1∑
|i,j,k|=0

Gi(Φ(tr + τ))j∥Γijk
y;tr+τS

tr+τ
tr C ̸=∥2(4.21)

+ (tr + τ)

M∑
|i,j,k|=0

Gi+1(Φ(tr + τ))j∥Γ(i+1)jk
y;tr+τ Str+τ

tr C ̸=∥2
)

≤C
1 + tr + τ

(Φ(tr + τ))M+1

M+1∑
|i,j,k|=0

GiΦ(tr)
j∥Γijk

y,trC ̸=(tr)∥L2 exp

{
− δZ
A1/3

τ

}
.

Here the notation Φ(· · · ) represents the value of the function Φ at the given time. This estimate, when
combined with the product estimate (B.6) , and the Hölder, Young inequalities, yields that

|T2| ≤
M∑

|i,j,k|=0

G4+2iΦ2j

12A
∥∇Hijk∥22(4.22)

+
C

Q2A1/3

 M∑
|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n ̸=∥22 + ∥⟨n⟩∥2HM


×Q2

 M+1∑
|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;trC ̸=(tr)∥2L2

 exp

{
− 2δZ
A1/3

τ

}
(1 + tr + τ)2

A2/3
Φ−4M−2

≤
M∑

|i,j,k|=0

G4+2iΦ2j

12A
∥∇Hijk∥22

+
C(G) exp

{
− 2δZ

A1/3 τ
}

A1/3Q2Φ4M+3

Q2
M+1∑

|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;trC ̸=(tr)∥2L2

(Ftr;M
G,Q + ∥⟨n⟩∥2HM

)
.

Similar to the estimate of T1, we estimate T3 term with the product estimate (B.6) as follows

|T3| ≤
M∑

|i,j,k|=0

G4+2i

A
Φ2j∥∇Hijk∥2 ∥∇⟨C⟩∥HM

( M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2

)
(4.23)

≤
M∑

|i,j,k|=0

G4+2i

12A
Φ2j∥∇Hijk∥22 +

C(G)

AΦ2M
∥∇⟨C⟩∥2HM

 M∑
|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n̸=∥22


≤

M∑
|i,j,k|=0

G4+2i

12A
Φ2j ∥∇Hijk∥22 +

C(G)

AΦ2M
∥∇⟨C⟩∥2HMFtr;M

G,Q .

Combining (4.19) and (4.20), (4.22), (4.23), we obtain the estimate (4.15).
Proof of (4.16): Now we estimate the left hand side of (4.16). We decompose it as three terms

−
M∑

|i,j,k|=0

G4+2i

A
Φ2j

∫
Hijk [Γj

y, ∂y]∂
i
x∂

k
z (n∇c̸= + n∇d ̸= + n ̸=∇⟨C⟩)dV =:

6∑
ℓ=4

Tℓ.(4.24)
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The T4 term can be estimated with the commutator relation (B.2c), the regularity estimate (B.7), and the
product estimate (B.6) as follows:

|T4| =
∣∣∣∣ M∑
|i,j,k|=0

G4+2i

A
Φ2j

j−1∑
ℓ=0

(
j

ℓ

)∫
Hijk B(j−ℓ+1)∂xΓ

ℓ
y∂

i
x∂

k
z (n∇c̸=)dV

∣∣∣∣
≤C(G)

A

M∑
|i,j,k|=0

G4+2iΦ2j ∥Hijk∥2 (tr + τ)

j−1∑
ℓ=0

∥Γ(i+1)ℓk
y;t (n∇c̸=)∥2.

To estimate the last factor, we apply the product estimate (B.6) and the fact that ∥f ̸=∥2 ≤ ∥∂xf ̸=∥2 to
derive the following general estimate:

1|i,j,k|≤M

j−1∑
ℓ=0

∥Γ(i+1)ℓk
y;t (n∇f ̸=)∥2 ≤ 1|i,j,k|≤M

j−1∑
ℓ=0

(
∥Γiℓk

y;t (∂xn ̸=∇f ̸=)∥2 + ∥Γiℓk
y;t (n∂x∇f ̸=)∥2

)
≤ C

 M−1∑
|i,j,k|=0

∥Γijk
y;t ∂xn ̸=∥2

 M−1∑
|i,j,k|=0

∥Γijk
y;t∇f̸=∥2

+ C

 M−1∑
|i,j,k|=0

∥Γijk
y;t n∥2

 M−1∑
|i,j,k|=0

∥Γijk
y;t ∂x∇f̸=∥2


≤ C

 M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2 + ∥⟨n⟩∥HM−1

 M−1∑
|i,j,k|=0

∥Γ(i+1)jk
y;t ∇f̸=∥2

 .

Now we invoke the gradient estimate (B.7) to derive the following

1|i,j,k|≤M

j−1∑
ℓ=0

∥Γ(i+1)ℓk
y;t (n∇f ̸=)∥2 ≤ C

 M∑
|i,j,k|=0

∥Γijk
y;t n̸=∥2 + ∥⟨n⟩∥HM−1

 M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t f ̸=∥2

 (1 + t).

(4.25)

Combining the estimate (4.25), the bound ( 1+t
A1/3 )

4 ≤ CΦ−2 (2.4), and the definition of Ftr;M
G,Q (2.13) yields

the bound

|T4| ≤
M∑

|i,j,k|=0

G4+2i

A1/2
Φ2j∥Hijk∥22 +

C(G)(1 + t)4

A3/2+2/3Φ4M+2

( M∑
|i,j,k|=0

G2iΦ2j+2A2/3∥Γ(i+1)jk
y;t c̸=∥22

)
(4.26)

×
( M∑

|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n ̸=∥22 +Φ2M∥⟨n⟩∥2HM

)

≤
M∑

|i,j,k|=0

G4+2i

A1/2
Φ2j∥Hijk∥22 +

C(G)

A5/6Φ4M+4

(
Ftr;M
G,Q

)2
+

C(G)

A5/6Φ2M+4
Ftr;M
G,Q ∥⟨n⟩∥2HM .

Now we recall the estimates (4.25)f̸==d̸=
, (B.7), the enhanced dissipation (4.21), and obtain the bound

|T5| ≤
M∑

|i,j,k|=0

G4+2i

A1/3G2
Φ2j∥Hijk∥22e

− δZ
A1/3

τ
+

C(G)(1 + t)4

A5/3Φ4M+2

( M+1∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t S

tr+τ
tr C ̸=∥22

)
e

δZ
A1/3

τ
(4.27)

×
( M∑

|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n ̸=∥22 +Φ2M∥⟨n⟩∥2HM

)

≤
M∑

|i,j,k|=0

G4+2iΦ2j

G2A1/3
∥Hijk∥2L2 exp

{
− δZ
A1/3

τ

}

+
C(G) exp

{
− δZ

A1/3 τ
}

Q2A1/3Φ2M+4

Q2
M+1∑

|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;trC ̸=(tr)∥2L2

(Φ−2MFtr;M
G,Q + ∥⟨n⟩∥2HM

)
.
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Similar to the estimate of T4, we estimate the T6 as follows

|T6| ≤C

M∑
|i,j,k|=0

G4+2i

A
Φ2j∥Hijk∥2

j−1∑
ℓ=0

(
j

ℓ

)
(tr + τ) ∥∂i+1

x Γℓ
y∂

k
z (n ̸=∇⟨C⟩)∥2(4.28)

≤
M∑

|i,j,k|=0

G4+2i

A1/2
Φ2j∥Hijk∥22 +

C

A3/2
(tr + τ)2Φ−2M

 M∑
|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n̸=∥22

 ∥∇⟨C⟩∥2HM

≤
M∑

|i,j,k|=0

G4+2i

A1/2
Φ2j∥Hijk∥22 +

C(G)

A5/6Φ2M+2

 M∑
|i,j,k|=0

G4+2iΦ2j∥Γijk
y;t n ̸=∥22

 ∥∇⟨C⟩∥2HM .

Combining (4.26), (4.27), (4.28) and the decomposition (4.24), we obtain the estimate (4.16). This concludes
the proof. □

Proof of Lemma 4.2. Application of the estimates in Lemma 3.2 yield that,

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)

G2iΦ2j+2

A

∣∣∣∣ ∫ Hijk [Γj
y;t, ∂yy]∂

i
x∂

k
z c

tr
̸=dV

∣∣∣∣
≤ A2/3

8A

∑
|i,j,k|≤M+1

j≤M

G2iΦ2j+2∥∇Hijk∥2L2 +
1

8A
Φ2M+4∥∇H0(M+1)0∥2L2

+
∑

|i,j,k|≤M+1
j≤M

A2/3

(
CΦ

G2A1/3
+

C

G(A2/3 + t2)

)
G2iΦ2j+2(∥Hijk∥2L2 + ∥Γijk

y;t c
tr
̸=∥2L2)

+

(
CΦ

G2A1/3
+

C

G(A2/3 + t2)

)
Φ2M+4∥H0(M+1)0∥2L2

+
∑

|i,j,k|≤M+1
j≤M

(
CΦ

G2A1/3
+

C

G(A2/3 + t2)

)
G2iΦ2j+2∥Γijk

y;t c
tr
̸=∥2L2

≤ 1

8A

M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)G

2iΦ2j+2∥∇Hijk∥2L2

+

(
CΦ

G2A1/3
+

C

G(A2/3 + t2)

) M+1∑
|i,j,k|=0

(A2/3
1j≤M + 1j=M+1)G

2iΦ2j+2(∥Hijk∥2L2 + ∥Γijk
y;t c

tr
̸=∥2L2).

This is consistent with (4.17).
Now we focus on (4.18). We distinguish between two cases, j = M + 1 and j ≤ M . In the first case, we

recall the definitions of Φ(tr + τ) = (1 + (tr + τ)3/A)−1 (2.4) and Ftr;M
G,Q (2.13), and observe that no ∂x is

present (i = 0). Hence, the left hand side of (4.18) can be estimated as follows

∣∣∣∣Φ2M+4

A

∫
H0(M+1)0 ΓM+1

y n̸=dV

∣∣∣∣ = ∣∣∣∣− Φ2M+4

A

∫
(∂y +B(1)∂x)H0(M+1)0 ΓM

y n ̸=dV

∣∣∣∣
(4.29)

≤ Φ2M+4

12A
∥∇H0(M+1)0∥22 +

CΦ4

G4A1/3

(tr + τ)2

A2/3
(G4Φ2M∥ΓM

y n ̸=∥22) ≤
Φ2M+4

12A
∥∇H0(M+1)0∥22 +

CΦ3

G4A1/3
Ftr;M
G,Q .

In the j ≤ M case, we invoke the definitions of Φ (2.4), Ftr;M
G,Q (2.13), and distinguish between the i = 0 and

i ̸= 0 cases. As a result, the left hand side of (4.18) is bounded as follows∣∣∣∣ M+1∑
|i,j,k|=0

1j<M+1
G2iΦ2j+2

A1/3

∫ (
1i̸=0 ∂xHijk ∂

i−1
x Γj

y∂
k
zn ̸= + 1i=0 ∂zHijk ∂

i
xΓ

j
y∂

k−1
z n ̸=

)
dV

∣∣∣∣(4.30)
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≤
∑

|i,j,k|≤M+1
j<M+1

G2iΦ2j+2

12A1/3
∥∇Hijk∥22

+
C

G2A1/3
Φ2

∑
|i,j,k|≤M+1

j<M+1

(
G4+2(i−1)Φ2j∥∂i−1

x Γj
y∂

k
zn ̸=∥22 +G4+2iΦ2j∥∂i

xΓ
j
y∂

k−1
z n ̸=∥22

)

≤
M+1∑

|i,j,k|=0

G2iΦ2j+2

12A
A2/3

1j<M+1∥∇Hijk∥22 +
CΦ2

G2A1/3
Ftr;M
G,Q .

Combining (4.29) and (4.30) yields (4.18). □

4.3. The Decay Estimates of the Remainder. In this subsection, we fixed an arbitrary time t⋆ ∈
[tr, T⋆ − δ−1A1/3] and estimate the deviation between the solutions to the system (2.12) and the passive

scalar solutions
(
St⋆+τ
t⋆

(
Γijk
y;t⋆ n̸=

)
, St⋆+τ

t⋆

(
Γijk
y;t⋆c

tr
̸=

))
initiated from time t⋆ on the time interval t⋆ + τ ∈

[t⋆, t⋆ + δ−1A1/3] ⊂ [tr, T⋆]. To this end, we define the variations and the functional that measures them

Vn
ijk(t⋆ + τ) :=Γijk

y;t⋆+τn ̸= − St⋆+τ
t⋆

(
Γijk
y;t⋆ n̸=(t⋆)

)
;(4.31)

Vc
ijk(t⋆ + τ) :=Γijk

y;t⋆+τ c
tr
̸= − St⋆+τ

t⋆

(
Γijk
y;t⋆c

tr
̸= (t⋆ − tr)

)
;(4.32)

Dtr;M
G,Q [t⋆ + τ ] :=

M∑
|i,j,k|=0

G4+2iΦ2j
∥∥Vn

ijk

∥∥2
2
+

M+1∑
|i,j,k|=0

G2i
(
A2/3

1j≤M + 1j=M+1

)
Φ2j+2

∥∥Vc
ijk

∥∥2
2
.(4.33)

Here the parameter τ is the time increment from t⋆ (instead of tr). Since the argument in the function ctr̸=
is the time increment from the reference time tr, we have to write ctr̸= (t⋆ − tr) when invoking the function

value at time t⋆. To estimate the quantity Dtr;M
G,Q (4.33), we write down the equations of the variations

Vn
ijk (4.31), Vc

ijk (4.32):

∂τVn
ijk + uA(t⋆ + τ, y)∂xVn

ijk − 1

A
∆Vn

ijk =
1

A
[Γj

y, ∂yy]∂
i
x∂

k
z n̸= − 1

A
Γijk
y;t (∇ · (n∇C)) ̸= ,(4.34a)

∂τVc
ijk + uA(t⋆ + τ, y)∂xVc

ijk − 1

A
∆Vc

ijk =
1

A
[Γj

y, ∂yy]∂
i
x∂

k
z c̸= +

1

A
Γijk
y;t n ̸=(4.34b)

Vn
ijk(τ = 0) = Vc

ijk(τ = 0) =0, [t⋆, t⋆ + τ ] ⊂ [t⋆, t⋆ + δ−1A1/3].

Here δ is defined in (2.17) and the current time is t = t⋆+τ . The estimate of the functional Dtr;M
G,Q is collected

in the next theorem.

Theorem 4.4. There exist constants C and CG such that the following estimate holds

d

dτ
Dtr;M

G,Q [t⋆ + τ,Vn
ijk,Vc

ijk](4.35)

≤C

G

(
Φ

GA1/3
+

G

A1/2
+

1

A2/3 + (t⋆ + τ)2
+

1

A1/3
exp

{
− δZ
4A1/3

(t⋆ + τ − tr)

})
Dtr;M

G,Q

+
C

G

(
Φ

GA1/3
+

1

A2/3 + (t⋆ + τ)2

)
Ftr;M
G,Q

+
CG

A1/3

Ftr;M
G,Q

A1/2Φ4M+4

(
1 + Ftr;M

G,Q + ∥⟨n⟩∥2HM + ∥∇⟨C⟩∥2HM

)

+
CG

A1/3

exp
{
− δZ

A1/3 (t⋆ + τ − tr)
}

Φ4M+4

 M+1∑
|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;tr C̸=(tr)∥2L2

(Ftr;M
G,Q + ∥⟨n⟩∥2HM

)
.

Here Φ = Φ(t⋆ + τ), Ftr;M
G,Q = Ftr;M

G,Q [t⋆ + τ ], Dtr;M
G,Q = Dtr;M

G,Q [t⋆ + τ ]. Here the constant C only depends on

M, ∥uA∥L∞
t WM+3,∞ and CG only depends on G, M, ∥uA∥L∞

t WM+3,∞ .
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Proof. We first decompose the time evolution as follows

d

dτ
Dtr;M

G,Q =
d

dτ

 M∑
|i,j,k|=0

Φ2jG4+2i∥Vn
ijk∥22 +

M+1∑
|i,j,k|=0

Φ2j+2G2i
(
A2/3

1j<M+1 + 1j=M+1

)
∥Vc

ijk∥22

(4.36)

=:∂D1 + ∂D2.

Application of the Vn
ijk-equation (4.34a) yields that the ∂D1 term in (4.36) can be decomposed as follows

1

2
∂D1 ≤−

M∑
|i,j,k|=0

G4+2iΦ2j

A
∥∇Vn

ijk∥22 +
M∑

|i,j,k|=0

G4+2i

A
Φ2j

∫
Vn

ijk [Γj
y, ∂yy]∂

i
x∂

k
zn ̸=dV(4.37)

+

M∑
|i,j,k|=0

G4+2i

A
Φ2j

∫
∇Vn

ijk · ∂i
xΓ

j
y∂

k
z (n∇C ̸= + n ̸=∇⟨C⟩) dV

−
M∑

|i,j,k|=0

G4+2i

A
Φ2j

∫
Vn

ijk [Γj
y, ∂y]∂

i
x∂

k
z (n∇C ̸= + n̸=∇⟨C⟩) dV

=:−DVn + TNL;D
n;1 + TNL;D

n;2 + TNL;D
n;3 .

Similarly, the ∂D2-term in (4.36) can be decomposed with the equation (4.34b) as follows

1

2
∂D2 ≤

M+1∑
|i,j,k|=0

(A2/3
1j<M+1 + 1j=M+1)

(
− Φ2j+2G2i

A
∥∇Vc

ijk∥22(4.38)

+
G2iΦ2j+2

A

∫
Vc

ijk [Γj
y, ∂yy]∂

i
x∂

k
z c̸=dV +

G2iΦ2j+2

A

∫
Vc

ijk ∂i
xΓ

j
y∂

k
zn ̸=dV

)
=:−DVc + TNL;D

c;1 + TNL;D
c;2 .

First of all, we invoke Lemma 3.2 and Lemma 4.2 to show that the commutator terms TNL;D
n;1 in (4.37) and

TNL;D
c;1 in (4.38) are bounded as follows:

|TNL;D
n;1 |+ |TNL;D

c;1 | ≤ 1

8
DVn +

1

8
DVc +

(
Φ

GA1/3
+

1

A2/3 + (t⋆ + τ)2

)
(Dtr;M

G,Q + Ftr;M
G,Q ).(4.39)

Now application of Lemma 4.1 yields that the TNL;D
n;2 + TNL;D

n;3 terms are bounded as follows

|TNL;D
n;2 + TNL;D

n;3 |(4.40)

≤
M∑

|i,j,k|=0

G4+2iΦ2j

4A
∥∇Vn

ijk∥22 +
M∑

|i,j,k|=0

CG4+2iΦ2j

A1/3

(
1

A1/6
+

exp
{
− δZ

A1/3 (t⋆ + τ − tr)
}

G2

)
∥Vn

ijk∥2L2

+
C(G)

A5/6Φ4M+4

(
Ftr;M
G,Q

)2
+

C(G)

A5/6Φ2M+4
(∥n∥2HM + ∥∇⟨C⟩∥2HM )Ftr;M

G,Q

+
C(G) exp

{
− δZ

A1/3 (t⋆ + τ − tr)
}

A1/3Φ4M+4

 M+1∑
|i,j,k|=0

G2iΦ(tr)
2j∥Γijk

y;trC ̸=(tr)∥2L2

(Ftr;M
G,Q + ∥⟨n⟩∥2HM

)
.

This is consistent with the estimate (4.35).

Application of Lemma 4.2 yields that the |TNL;D
c;2 | is bounded as follows:

|TNL;D
c;2 | ≤1

4
DVc +

CΦ2

G2A1/3
Ftr;M
G,Q .(4.41)

Combining the decomposition (4.37), (4.38) and the estimates (4.39), (4.40), (4.41), we obtain (4.35). □
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4.4. Conclusion. In this section, we prove Proposition 2.3, Proposition 2.2, and Proposition 2.1. We start
with the proof of Proposition 2.3.

Proof of Proposition 2.3. First of all, we specify the reference time tr = 0. To prove the proposition, we
use a bootstrap argument. Assume that [0, T⋆] ⊂ [0, A1/3+ζ ] is the largest interval on which the following
hypotheses hold:

Ftr;M
G,Q [t, n̸=,C ̸=] ≤2CED Ftr;M

G,Q [0, n̸=,C ̸=] exp

{
− 2δt

A1/3

}
, ∀ t ∈ [0, T⋆],(4.42a)

∥⟨n⟩∥L∞
t ([0,T⋆];HM

y,z)
≤2B⟨n⟩;HM , ∥∇⟨C⟩∥L∞

t ([0,T⋆];HM
y,z)

≤ 2B⟨C⟩;HM+1 .(4.42b)

Here,

B⟨n⟩;HM := 2∥⟨nin⟩∥HM + 2, B⟨C⟩;HM+1 := A−1/5 + 2∥∇⟨Cin⟩∥HM .(4.43)

The parameter δ is chosen in (2.17). By the local well-posedness of the equation (2.9) in HM , M ≥ 3
(Theorem 2.3), we have that the interval [0, T⋆] is non-empty. The goal is to prove that given the assumption
(2.21) and the hypotheses (4.42a), (4.42b), the following stronger estimates hold

Ftr;M
G,Q [t, n̸=, C̸=] ≤ CED Ftr;M

G,Q [0, n̸=,C ̸=] exp

{
− 2δt

A1/3

}
≤ C(∥nin;̸=∥2HM + 1) exp

{
− 2δt

A1/3

}
, ∀ t ∈ [0, T⋆],

(4.44a)

∥⟨n⟩∥L∞
t ([0,T⋆];HM

y,z)
≤B⟨n⟩;HM , ∥∇⟨C⟩∥L∞

t ([0,T⋆];HM
y,z)

≤ B⟨C⟩;HM+1 .(4.44b)

As a consequence of this bootstrap argument and Theorem 2.3, the estimates (2.22a), (2.22b), (2.22c) hold
on the time horizon [0, A1/3+ζ ].

First we prove the enhanced dissipation estimate (4.44a). We choose an arbitrary starting time t⋆ ∈
[0, A1/3+ζ ] and consider a time interval t = t⋆ + τ ∈ [t⋆, t⋆ + δ−1A1/3] ⊂ [0, A1/3+ζ ]. It is enough to derive
the regularity estimate (4.1) and the decay estimate (4.2).

To prove the regularity estimate (4.1), we invoke Theorem 4.3. Combining the bootstrap hypothesis
(4.42a), (4.42b), we refine the estimate (4.11) as follows

d

dt
Ftr;M
G,Q [t]

(4.45)

≤ C

GA1/3

(
Φ(t)

G
+

G

A1/6
+

A1/3

A2/3 + t2
+ exp

{
− δZ
4A1/3

t

})
Ftr;M
G,Q

+
CG

A1/3

Ftr;M
G,Q

A1/2Φ4M+4

(
1 + CEDFtr;M

G,Q [0] + B2
⟨n⟩;HM + B2

⟨C⟩;HM+1

)

+
CG

Q2A1/3
exp

{
− δZ
4A1/3

t

} Q2
M+1∑

|i,j,k|=0

∥Γijk
y;0Cin;̸=∥2L2exp

{
− δZ
2A1/3

t

}
︸ ︷︷ ︸

≤Ftr ;M
G,Q [t], by (2.13)tr=0

(
CEDFtr;M

G,Q [0] + B2
⟨n⟩;HM

)
.

Note that the choice of ζ (1.9) guarantees that 1
A1/2Φ4M+4

∣∣∣∣
t≤A1/3+ζ

≤ 1
A1/4 . We take the parameters A and

Q large enough such that the following estimate holds

d

dt
Ftr;M
G,Q [t] ≤ C

GA1/3

(
Φ(t) +

A1/3

A2/3 + t2
+ exp

{
− δZ
4A1/3

t

}
+

1

A1/6

)
Ftr;M
G,Q [t].(4.46)

Now we have that if G is chosen larger than a constant depending only on M, ∥uA∥L∞
t WM+3,∞ , δ−1

Z , the
following inequalities hold

Ftr;M
G,Q [t⋆ + τ ] ≤ 2 Ftr;M

G,Q [t⋆], ∀τ ∈ [0, δ−1A1/3]; Ftr;M
G,Q [t] ≤ 2 Ftr;M

G,Q [0], ∀t ∈ [0, T⋆) ⊂ [0, A1/3+ζ ].(4.47)

These are the regularity estimates that we are after.
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Next we derive the decay estimate (4.2). To this end we apply Theorem 4.4. We observe that the

functional Ftr;M
G,Q can be decomposed as follows:

Ftr;M
G,Q [t⋆ + τ ] ≤2Dtr;M

G,Q [t⋆ + τ ] +

(
2

M∑
|i,j,k|=0

G2i+4Φ(t⋆ + τ)2j∥St⋆+τ
t⋆ (∂i

xΓ
j
y;t⋆∂

k
zn ̸=(t⋆))∥22(4.48)

+ 2

M+1∑
|i,j,k|=0

(
A2/3

1j<M+1 + 1j=M+1

)
G2iΦ(t⋆ + τ)2j+2∥St⋆+τ

t⋆ (Γijk
y;t⋆c

tr
̸= (t⋆ − tr))∥22

+Q2
M+1∑

|i,j,k|=0

∥∂i
xΓ

j
y;tr∂

k
zCin;̸=∥22exp

{
− δZ
2A1/3

τ

})
=: 2Dtr;M

G,Q [t⋆ + τ ] +R[t⋆ + τ ].

Here we recall that the reference time is tr = 0. We note that thanks to the L2-enhanced dissipation
estimate (1.8), as long as we set τ = δ−1A1/3, with δ ∈ (0, δZ) chosen small enough (2.17) , we have that

R[t⋆ + δ−1A1/3] ≤ 1

16
Ftr;M
G,Q [t⋆].(4.49)

Hence it is enough to estimate the Dtr;M
G,Q [t⋆ + τ ]-term in (4.48). To this end, we recall the estimate (4.35)

from Theorem 4.4. Since the main portion of the terms in (4.35) and (4.45) are similar, we choose the
parameters as in (4.46) and apply the regularity estimate (4.47) to refine the estimate as follows

d

dτ
Dtr;M

G,Q [t⋆ + τ ]

≤ C

GA1/3

(
Φ+

G

A1/6
+

A1/3

A2/3 + (t⋆ + τ)2
+ exp

{
− δZ
4A1/3

(t⋆ + τ − tr)

})(
Dtr;M

G,Q [t⋆ + τ ] + Ftr;M
G,Q [t⋆]

)
.

Now we observe that as long as G = G(M, ∥uA∥L∞
t WM+3,∞ , δ−1

Z ) and A are chosen large enough, we have

Dtr;M
G,Q [t⋆ + δ−1A1/3]

(4.50)

≤
∫ δ−1A1/3

0

exp

{
C

G

∫ δ−1A1/3

s

(
Φ(t⋆ + τ)

A1/3
+

G

A1/2
+

1

A2/3 + (t⋆ + τ)2
+

1

A1/3
exp

{
− δZ
4A1/3

(t⋆ + τ − tr)

})
dτ

}

× C

GA1/3

(
Φ(t⋆ + s) +

G

A1/6
+

A1/3

A2/3 + (t⋆ + s)2
+ exp

{
− δZ
4A1/3

(t⋆ + s− tr)

})
ds Ftr;M

G,Q [t⋆]

≤ 1

16
Ftr;M
G,Q [t⋆].

Combining (4.48), (4.49) and (4.50), we have that

Ftr;M
G,Q [t⋆ + δ−1A1/3] ≤ 1

2
Ftr;M
G,Q [t⋆].(4.51)

Combining (4.47) and (4.51), an argument as in (3.32) yields (4.44a).
To conclude the proof of (4.44a), we further choose the ϵ (2.20) to be small enough compared to Q and

recall that G = G(M, ∥uA∥L∞
t WM+3,∞ , δ−1

Z ) to obtain

Ftr;M
G,Q [0] =

M∑
|i,j,k|=0

G4+2i∥∂i
x∂

j
y∂

k
znin;̸=∥2L2 +Q2ϵ2 ≤ C(M, ∥uA∥L∞

t WM+3,∞ , δ−1
Z )(∥nin;̸=∥2HM + 1).
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We conclude the proof by proving the estimates (4.44b). Recall the main conclusions from Theorem 4.1,

d

dt

 M∑
|j,k|=0

∥∂j
y∂

k
z ⟨n⟩(t)∥2L2

 ≤C

A
∥⟨n⟩(t)∥2HM

(
sup

s∈[0,A1/3+ζ ]

∥⟨n⟩(s)∥2HM + ∥∇⟨Cin⟩∥2HM

)

+
C

A

 M+1∑
|i,j,k|=0

∥Γijk
y;t C ̸=∥2L2 + t2

M∑
|i,j,k|=0

∥Γ(i+1)jk
y;t C̸=∥2L2

 M∑
|i,j,k|=0

∥Γijk
y;t n ̸=∥2L2

 .

Now we decompose the chemical density into two parts, i.e., C ̸=(t) = c ̸=(t)+ d̸=(t), d̸=(t) = St
0Cin;̸=. Then

we recall the definition of the functional Ftr;M
G,Q (2.13) and estimate the above expression using the fact that

t2 ≤ CΦ−1A2/3 as follows:

d

dt

 M∑
|j,k|=0

∥∂j
y∂

k
z ⟨n⟩(t)∥2L2

(4.52)

≤C

A
∥⟨n⟩(t)∥2HM

(
sup

s∈[0,A1/3+ζ ]

∥⟨n⟩(s)∥2HM + ∥∇⟨Cin⟩∥2HM

)

+
C

AΦ4M+4

 M+1∑
|i,j,k|=0

G2iΦ2j+2∥Γijk
y;t c

tr
̸=∥2L2 +

M∑
|i,j,k|=0

A2/3G2i+2Φ2j+2∥Γ(i+1)jk
y;t ctr̸=∥2L2

Ftr;M
G,Q

+
C

AΦ4M+2

 M+1∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t d

tr
̸=∥2L2 + t2

M∑
|i,j,k|=0

G2iΦ2j∥Γ(i+1)jk
y;t dtr̸=∥2L2

Ftr;M
G,Q

≤C

A
∥⟨n⟩(t)∥2HM

(
sup

s∈[0,A1/3+ζ ]

∥⟨n⟩(s)∥2HM + ∥∇⟨Cin⟩∥2HM

)
+

C

AΦ4M+4

(
Ftr;M
G,Q

)2
+

C

AΦ4M+2

 M+1∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t d

tr
̸=∥2L2 + t2

M∑
|i,j,k|=0

G2iΦ2j∥Γ(i+1)jk
y;t dtr̸=∥2L2

Ftr;M
G,Q .

Now we apply the linear enhanced dissipation estimate (2.6) (given that G is large enough), the smallness
assumption (2.20) and the bootstrap assumptions (4.42a), (4.42b) to obtain that

d

dt

 M∑
|j,k|=0

∥∂j
y∂

k
z ⟨n⟩(t)∥2L2

 ≤C

A
B2
⟨n⟩;HM

(
B2
⟨n⟩;HM + ∥∇Cin;̸=∥2HM

)
+

C
(
Ftr;M
G,Q

)2
AΦ4M+4

(4.53)

+
C

A1/3Φ4M+3

 M+1∑
|i,j,k|=0

G2i∥Γijk
y;0Cin;̸=∥22 exp

{
−δZ

t

A1/3

}Ftr;M
G,Q

≤A−2/3 +
C(G, δ−1

Z )CED

A1/3
ϵ2 exp

{
− δZ
2A1/3

t

}
Ftr;M
G,Q [0].

Here in the last line, we have invoked the facts that M ≤ M, ∥Φ−1∥L∞
t (0,A1/3+ζ) ≤ CA3ζ , and 12ζ(M + 2) ≤

1
9 (1.9). Then we choose the A to be large compared to the bootstrap bounds in (4.42a), (4.42b) and

∥∇Cin;̸=∥HM to achieve the bound in (4.53). Next we take the A−1 and ϵ small enough compared to

the bootstrap bounds CED, Ftr;M
G,Q [0] and other constants appeared in (4.53), and integrate this differential

inequality directly to obtain that

sup
t∈[0,A1/3+ζ ]

∥⟨n(t)⟩∥2HM ≤ 2∥⟨nin⟩∥2HM + 1.

Since we choose the B⟨n⟩;HM = 2∥⟨nin⟩∥HM + 2 in (4.43), the first bootstrap conclusion in (4.44b) follows.
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The second bootstrap conclusion in (4.44b) is a direct consequence of the bootstrap hypothesis (4.42b),
the length of the time interval (0 ≤ t ≤ T⋆ ≤ A1/3+ζ ≤ A1/2) and the estimate (A.2)

M∑
|j,k|=0

∥∂j
y∂

k
z∇⟨C⟩(t)∥22

(4.54)

≤2

M∑
|j,k|=0

∥∥∥∥exp{ t

A
∆T2

}
∂j
y∂

k
z∇⟨C⟩(0)

∥∥∥∥2
2

+
2

A2

M∑
|j,k|=0

∥∥∥∥∫ t

0

∇ exp

{
t− s

A
∆T2

}
∂j
y∂

k
z (⟨n⟩(s)− n)ds

∥∥∥∥2
2

≤2

M∑
|j,k|=0

∥∂j
y∂

k
z∇⟨Cin⟩∥22 +

2

A2

M∑
|j,k|=0

(∫ t

0

∥∥∥∥∇ exp

{
t− s

A
∆T2

}∥∥∥∥
L2→L2

sup
s∈[0,T⋆)

∥∂j
y∂

k
z (⟨n⟩(s)− n)∥2ds

)2

≤2

M∑
|j,k|=0

∥∂j
y∂

k
z∇⟨Cin⟩∥22 + CB2

⟨n⟩;HM

(
1

A

∫ t

0

(
t− s

A

)−1/2

ds

)2

≤2

M∑
|j,k|=0

∥∂j
y∂

k
z∇⟨Cin⟩∥22 + CB2

⟨n⟩;HM

(
t

A

)
≤ 2∥∇⟨Cin⟩∥2HM +

CB2
⟨n⟩;HM

A1/2
.

Hence by taking A large enough, we have obtained the second bound in (4.44b).
□

Proof of Proposition 2.2. The proof of the proposition is similar to the proof of Proposition 2.3. Hence we
only highlight the main differences here.

First of all, we set the reference time tr = Th = A1/3+ζ/2 and consider the functional LM
G := FTh;M

G,A1/4 .

Another adjustment in the proof is that the ctr̸= and dtr̸= are redefined with tr being Th = A1/3+ζ/2. Since we

assume M ≤ M, the choice of ζ (1.9) yields the following

12ζ(2 +M) ≤ 1

9
.

This estimate, together with the “gluing” condition (2.18), yields that LM
G [Th] ≤ C(B1). Now we apply the

estimate (4.11) to obtain that

d

dτ
LM
G [Th + τ ]

≤ C

GA1/3

(
Φ(Th + τ)

G
+

G

A1/2
+

A1/3

A2/3 + (Th + τ)2
+ exp

{
− δZ
4A1/3

τ

})
LM
G

+
C(G)

A1/3

LM
G

A1/2Φ4M+4

(
1 + LM

G + B2
⟨n⟩x;HM + B2

⟨C⟩x;HM+1

)

+
C(G)

A5/6

exp
{
− δZ

A1/3 τ
}

Φ4M+4

A1/2
M+1∑

|i,j,k|=0

∥∂i
xΓ

j
y;Th

∂k
z C̸=(Th)∥2L2

(LM
G + ∥⟨n⟩∥2HM

)
≤ C

GA1/3

(
Φ(Th + τ)

G
+

G

A1/6
+

A1/3

A2/3 + (Th + τ)2
+ exp

{
− δZ
4A1/3

τ

})
LM
G

+
C(G)

A1/2
LM
G

(
1 + LM

G + B2
⟨n⟩;HM + B2

⟨C⟩;HM+1

)
+

1

A1/2
exp

{
− δZ
4A1/3

τ

}
LM
G

(
LM
G + ∥⟨n⟩∥2HM

)
.

Now a similar argument as the one in the previous proof of Proposition 2.3 yields the regularity bound. The
estimate (4.51) can be derived in a similar fashion as before. When one derive the estimate for ⟨n⟩, the
dtr=Th

̸= −contribution in (4.52) needs to be estimated differently. Combining the “gluing” condition (2.18),
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the definition dTh

̸= (τ) = STh+τ
Th

[C ̸=(Th)], and the linear enhanced dissipation (2.6) yields that

C

AΦ4M+2

 M+1∑
|i,j,k|=0

G2iΦ2j∥Γijk
y;t d

tr
̸=∥2L2 + t2

M∑
|i,j,k|=0

G2iΦ2j∥Γ(i+1)jk
y;t dtr̸=∥2L2

LM
G

≤CA3ζ(4M+2)

A1/3

1 + (Th + τ)2

A2/3

M+1∑
|i,j,k|=0

G2iΦ(Th + τ)2j∥Γijk
y;Th+τS

Th+τ
Th

[C̸=(Th)]∥2L2LM
G

≤C
A3ζ(4M+3)

A1/3

M+1∑
|i,j,k|=0

G2iΦ(Th)
2j∥Γijk

y;Th
C̸=(Th)∥2L2 exp

{
− δZ
A1/3

τ

}
LM
G

≤C(G)A3ζ(4M+5)

A

A2/3
M+1∑

|i,j,k|=0

Φ(Th)
2j+2∥Γijk

y;Th
C̸=(Th)∥2L2

 exp

{
− δZ
A1/3

τ

}
LM
G

≤ B2
1

A2/3
exp

{
− δZ
A1/3

τ

}
LM
G .

Here in the last line, we have used the choice of ζ (1.9) and M ≤ M. Hence, by picking A large enough, we
observe that the time integral contribution from the dtr̸= (τ) = Str+τ

tr C̸=(tr) is small. The other arguments
are similar and we omit the details. □

Proof of Proposition 2.1. Here we observe that tr = 0, t = 0+ τ ∈ [0, A1/3+ζ ], and ∥Φ−4M−4∥L∞
t (0,A1/3+ζ) ≤

CA12ζ(M+1) ≤ CA1/9 (1.9). Combining the estimates (4.11), (4.52), and (4.53), we have that

d

dt

(
∥⟨n⟩∥2HM +HM

G

)
≤C1

A
∥⟨n⟩∥2HM

(
sup

s∈[0,t]

∥⟨n⟩(s)∥2HM + ∥∇⟨Cin⟩∥2HM

)
(4.55)

+
C2

GA1/3

(
Φ

G
+

G

A1/6
+

A1/3

A2/3 + t2
+ exp

{
− δZ
4A1/3

t

})
HM

G +
C3(G)

A5/6

(
HM

G

)2
Φ4M+4

+
C4(G)

A1/3

HM
G

A1/2Φ4M+4

(
1 + ∥⟨n⟩∥2HM + sup

s∈[0,t]

∥⟨n⟩(s)∥2HM + ∥∇⟨Cin⟩∥2HM

)
+
C5(δ

−1
Z , G)

A1/3
exp

{
− δZ
2A1/3

t

}
∥Cin;̸=∥2HM+1

(
HM

G + ∥⟨n⟩∥2HM

)
.

Here in the last estimate, we employ the chemical gradient ∇⟨C⟩ estimate (A.1). To prove the boundedness

of the solution on [0, A1/3+ζ ], we apply a bootstrap argument. Assume that [0, T̃ ) ∈ [0, A1/3+ζ ] is the largest
time interval such that the following estimate holds

HM
G [t] + ∥⟨n⟩(t)∥2HM ≤ 2(1 +HM

G [0] + ∥⟨nin⟩∥2HM ) exp

{
1 +

2C5(δ
−1
Z , G)

δZ
∥Cin;̸=∥2HM+1

}
.(4.56)

We first take A large compared to the right hand side of (4.56) and various constants in (4.55) to obtain
that

d

dt

(
HM

G + ∥⟨n⟩∥2HM

)
≤
(
HM

G + ∥⟨n⟩∥2HM

)(∑4
ℓ=1 Cℓ

A1/2
+

C2

GA1/3

(
Φ(t)

G
+

A1/3

A2/3 + t2
+ exp

{
− δZ
4A1/3

t

})
+

C5

A1/3
exp

{
− δZ
2A1/3

t

}
∥Cin;̸=∥2HM+1

)
.

By integrating on [0, T̃ ], and takingG ≥ GH(M, ∥uA∥L∞
t WM+3,∞

y
), A ≥ AH(M, ∥uA∥L∞

t WM+3
y

, G, ∥nin∥HM , ∥Cin∥HM+1)

large enough, we have that

HM
G [t] + ∥⟨n⟩(t)∥2HM ≤ (HM

G [0] + ∥⟨nin⟩∥2HM ) exp

{
1 +

2C5

δZ
∥Cin;̸=∥2HM+1

}
.
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Since this estimate is stronger than (4.56) and G can be chosen depending only on M, ∥uA∥L∞
t WM+3,∞

y
, δ−1

Z ,

standard bootstrap argument yields the following estimate on [0, A1/3+ζ ]

HM
G [t] + ∥⟨n⟩(t)∥2HM ≤ C(G)(∥nin∥2HM + ∥Cin; ̸=∥2HM+1) exp

{
1 + C(M, ∥uA∥L∞

t WM+3,∞
y

, δ−1
Z )∥Cin;̸=∥2HM+1

}
.

Combining this estimate with gradient estimate (A.1) and the argument in (4.54) yields (2.15).
□

5. Alternating Construction

In this section, we prove Theorem 2.4 and Theorem 2.5. For the sake of notation simplicity, the implicit
constants C in this section can depend on δ−1

Z , δ−1
0 , C0, M, ∥uA∥L∞

t WM+6,∞ .

To prove Theorem 2.4, we focus on Phase # 1 (2.24), i.e., t ∈ [0, 3A1/3+ζ ]. As explained in Section 2.3, the
main achievement in Phase # 1 is to guarantee that at time T1a = 3A1/3+ζ , the chemical gradient is small,
i.e., ∥C(T1a)∥HM+1 ≪ 1. Once the smallness is reached, application of Proposition 2.3 yields the enhanced
dissipation of the solution in Phase # 2 (t ≥ 3A1/3+ζ). We decompose the chemical density in the following
way

C = ⟨⟨C⟩⟩y,z + (⟨C⟩y)z̸= + Cy
̸=, C ≡ 0.

To visualize this decomposition, we can apply a Fourier transform and see that

̂⟨⟨C⟩⟩y,z =1R1
Ĉ, R1 := {α ̸= 0, β = 0, γ = 0};

̂(⟨C⟩y)z̸= =1R2 Ĉ, R2 := {β = 0, γ ̸= 0};

Ĉy
̸= =1R3 Ĉ, R3 := {β ̸= 0}.

The explicit positions of the three Fourier domains can be found in Figure 2. Now the plan is to show

R1

R2

R2

α

β

γ

R3

Fourier Space

Figure 2. Region R1, R2, R3

significant decay of the chemical density information in the three Fourier domains R1, R2, R3. We will show
that heuristically, the information stored in Fourier domains R1, R2 and R3 will undergo significant decay
in phase a, b and c, respectively. In Phase a (t ∈ [0, A1/3+ζ ]), the shear flow is in the x-direction, and it will
efficiently damp all the chemical information in Fourier domain {α ̸=0} ⊃ R1. As a result, we obtain the
following lemma, which captures the main characteristics of the system at the end of Phase a, i.e., t = T1b.

Lemma 5.1. Consider the solution to the equation (2.9), initiated from data nin ∈ HM+3, Cin ∈ HM+4.
Recall the definitions of fx

̸=, ⟨f⟩x (1.12). If the parameter A is chosen large enough, then the following
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estimates hold

∥nx
̸=(T0b)∥2HM+2 + ∥Cx

̸=(T0b)∥2HM+3 ≤A−1, ∥⟨n⟩x(T0b)∥2HM+2 + ∥⟨C⟩x(T0b)∥2HM+3 ≤ B(∥nin∥HM+3 , ∥Cin∥HM+4).

(5.1)

As a consequence, the following estimate holds at T0b,

∥(⟨⟨n⟩⟩y,z − n)(T0b)∥2HM+2
y,z

+ ∥⟨⟨C⟩⟩y,z(T0b)∥2HM+3
y,z

≤ A−1.(5.2)

Here we recall that ⟨⟨f⟩⟩y,z(x) = 1

|T|2

∫∫
f(x, y, z)dydz.

Proof of Lemma 5.1. Combining Proposition 2.1, Proposition 2.2, we have that at time T0b, (5.1) holds.
Moreover, we have that

∥(⟨⟨n⟩⟩y,z − n)(T0b)∥2HM+2
y,z

+ ∥⟨⟨C⟩⟩y,z(T0b)∥2HM+3
y,z

≤ ∥nx
̸=(T0b)∥2HM+2 + ∥Cx

̸=(T0b)∥2HM+3 ≤A−1.

This is estimate (5.2). □

In phase b, we obtain similar estimates for nz
̸=, ⟨n⟩z, Cz

̸=, ⟨C⟩z as in phase a. Moreover, we can propagate

the smallness estimate on ⟨⟨C⟩⟩y,z = PR1C (5.2). These estimates are summarized in the following lemma:

Lemma 5.2. Consider the solution to the equation (2.9). If the parameter A is chosen large enough, then
the following estimates hold

∥nz
̸=(T0c)∥2HM+1 + ∥Cz

̸=(T0c)∥2HM+2 ≤A−1; ∥⟨n⟩z(T0c)∥2HM+1 + ∥⟨C⟩z(T0c)∥2HM+2 ≤ B(∥nin∥HM+3 , ∥Cin∥HM+4).

(5.3)

Moreover, the following estimates hold at T0c,

∥⟨⟨C⟩⟩y,z(T0c)∥2HM+2 ≤ ∥⟨C⟩y(T0c)∥2HM+2 ≤ B
A1/3

.(5.4)

Proof of Lemma 5.2. Combining Proposition 2.1, Proposition 2.2, we have that at time T0c, (5.3) holds.
Next we combine Proposition 2.1, Proposition 2.2, and Theorem 4.2. As a result of an ODE argument , we
observe that if A is chosen large enough,

∥⟨⟨n⟩⟩y,z(T0c)∥HM+1 ≤ C(∥nin∥HM+3 , ∥Cin∥HM+4).

Now Lemma A.2 yields the estimate

∥⟨⟨C⟩⟩y,z(T0c)∥2HM+2 ≤C∥⟨⟨C⟩⟩y,z(T0b)∥2HM+2 +A−1/3 ≤ CA−1/3.(5.5)

Since

∥⟨C⟩y∥HM+2 ≤ ∥⟨⟨C⟩⟩y,z∥HM+2 + ∥(⟨C⟩y)z̸=∥HM+2 ≤ ∥⟨⟨C⟩⟩y,z∥HM+2 + ∥Cz
̸=∥HM+2 ,

the estimates (5.3) and (5.5) imply that (5.4) holds. □

The main achievement in the phases a, b is that we obtain smallness in the y-average component at the
beginning of phase c, i.e., ∥⟨C⟩y(T0c)∥HM+2 = ∥PR1∪R2C(T0c)∥HM+2 ≪ 1. Hence we have nice estimate at
time instance T1a:

Lemma 5.3. Consider the solution to the equation (2.9). If the parameter A is chosen large enough, then
the following estimates hold at time instance T1a

∥(n− n)(T1a)∥2HM ≤B(∥nin∥HM+3 , ∥Cin∥HM+4); ∥C(T1a)∥2HM+1 ≤ B(∥nin∥HM+3 , ∥Cin∥HM+4)

A1/3
.(5.6)

Proof of Lemma 5.3. Combining Proposition 2.1, Proposition 2.2, Theorem 4.2 and Lemma A.2, we have
that at time T1a, (5.6) holds. □

At this point (t = T1a), the norm of the chemical density is small, and we can derive Theorem 2.5.

Proof of Theorem 2.5. Application of Proposition 2.3 and the argument (3.32) yields the result. □
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Appendix A. General Lemmas

Lemma A.1. Let F be in Cm(T3), and define ⟨F ⟩(y, z) := 1
|T|
∫
T F (x, y, z)dx, ⟨⟨F ⟩⟩(z) := 1

|T|2
∫
T2 F (x, y, z)dxdy.

The following estimates hold:

∥⟨⟨F ⟩⟩∥Lp
z(T) ≤∥⟨F ⟩∥Lp

y,z(T2) ≤ ∥F∥Lp
x,y,z(T3), 1 ≤ p ≤ ∞,

m∑
k=0

∥∂k
z ⟨⟨F ⟩⟩∥L2

z(T) ≤
m∑

k=0

∥∂k
z ⟨F ⟩∥L2

y,z(T2) ≤
m∑

k=0

∥∂k
zF∥L2

x,y,z(T3).

Proof. Applying the Hölder’s inequality yields that for p ∈ (1,∞),

∥⟨⟨F ⟩⟩∥Lp
z(T) =

(∫
T

∣∣∣∣ 1

|2π|

∫
T
⟨F ⟩dy

∣∣∣∣pdz)1/p

≤

(∫
T

((∫
T
|⟨F ⟩|pdy

)1/p(∫
T
|2π|−p′

dy

)1/p′)p

dz

)1/p

≤
(∫

T2

|⟨F ⟩|pdydz
)1/p

= ∥⟨F ⟩∥Lp
y,z(T2) =

(∫
T2

∣∣∣∣ 1

|2π|

∫
T
Fdx

∣∣∣∣pdydz)1/p

≤

(∫
T2

((∫
T
|F |pdx

)1/p(∫
T
|2π|−p′

dx

)1/p′)p

dydz

)1/p

≤ ∥F∥Lp
x,y,z

.

Here 1
p + 1

p′ = 1. The p = 1 case is a simple variant of the argument above. The estimate in the p = ∞ case

is a direct consequence of definition. We observe that ∂k
z ⟨⟨F ⟩⟩ = ⟨∂k

z ⟨F ⟩⟩ = ⟨⟨∂k
zF ⟩⟩. Hence, the estimate

above yields that

m∑
k=0

∥∂k
z ⟨⟨F ⟩⟩∥Lp

z(T) =

m∑
k=0

∥⟨∂k
z ⟨F ⟩⟩∥Lp

z(T) ≤
m∑

k=0

∥∂k
z ⟨F ⟩∥Lp

y,z(T2) =

m∑
k=0

∥⟨∂k
zF ⟩∥Lp

y,z(T2) ≤
m∑

k=0

∥∂k
zF∥Lp

x,y,z(T3).

This finishes the proof of the lemma. □

Lemma A.2. Consider solution to the heat equation on Td, d = 1, 2,

∂tc =
1

A
∆c+

1

A
(n− n) , c(t = 0, X) = cin(X),

∫
Td

cindX = 0.

Then the following estimate holds ,

∥∇m+1c(t)∥L2(Td) ≤ C

(
t

A

) 1
2

sup
0≤τ≤t

∥∇m(n(τ)− n)∥L2(Td) + ∥∇m+1cin∥L2(Td).(A.1)

Proof. By applying the Fourier transform, and the Plancherel equality, we have that

∥∇e
t
A∆Td f∥2 ≤ C

(
t

A

)− 1
2

∥f∥2, ∀t > 0.(A.2)

Now we have that

∥∇m+1c(t)∥2 ≤
∥∥∥∥exp{ t

A
∆Td

}
∇m+1c(0)

∥∥∥∥
2

+
1

A

∥∥∥∥∫ t

0

∇ exp

{
t− s

A
∆Td

}
∇m(n(s)− n)ds

∥∥∥∥
2

≤∥∇m+1cin∥2 +
1

A

∫ t

0

∥∥∥∥∇ exp

{
t− s

A
∆Td

}∥∥∥∥
L2→L2

sup
s∈[0,t)

∥∇m(n(s)− n)∥2ds

≤∥∇m+1cin∥2 + C

(
t

A

) 1
2

sup
0≤s≤t

∥∇m(n(s)− n)∥2.

□
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Appendix B. Technical Lemmas in Linear Theory

In this subsection, we collect some technical lemmas/corollaries applied in Section 3.

Lemma B.1. Let A and B be two linear operators. Define the operation

adnA(B) := [A, [A, [A, ...[A︸ ︷︷ ︸
n

,B]]...], n ∈ {1, 2, 3, ...}.

Then

[An,B] =
n−1∑
ℓ=0

(
n

ℓ

)
adn−ℓ

A (B)Aℓ.(B.1)

Proof. 1 To prove the lemma, we need two extra definitions, i.e., the left multiplication LA and RA

LAB = AB, RAB = BA.

Standard computation yields the following three relations:

adAB = (LA −RA)(B), LARAB = ABA = RALAB, adARA(B) = RAadA(B).

Now we have that

[An,B] =AnB − BAn = (adA +RA)
n(B)−Rn

A(B) =
n∑

ℓ=0

(
n

ℓ

)
adn−ℓ

A Rℓ
A(B)−Rn

A(B)

=

n−1∑
ℓ=0

(
n

ℓ

)
Rℓ

Aad
n−ℓ
A (B) =

n−1∑
ℓ=0

(
n

ℓ

)
adn−ℓ

A (B)Aℓ.

□

The follow corollary of Lemma B.1 is useful when we compute the commutators involving Γy and ∆.

Lemma B.2. Consider the vector field Γy = Γy;t (2.3), and recall the notation (3.36): B(m)(t, y) :=∫ t

0
∂m
y u(s, y)ds. The following commutator relations hold

[Γy, ∂y] =−
∫ t

0

∂yyu(s, y)ds∂x = −B(2)∂x,(B.2a)

[Γy, ∂yy] =− 2B(2)∂xΓy + ∂y(B
(1))2∂xx −B(3)∂x,(B.2b)

[Γj
y, ∂y] =−

j−1∑
ℓ=0

(
j

ℓ

)
B(j−ℓ+1)∂xΓ

ℓ
y,(B.2c)

[Γj
y, ∂yy] =

j−1∑
ℓ=0

(
j

ℓ

)(
−2B(j−ℓ+1)∂xΓy + ∂(j−ℓ)

y (B(1))2∂xx −B(j−ℓ+2)∂x

)
Γℓ
y.(B.2d)

Proof. The first two relations (B.2a), (B.2b) are direct consequences of computation. Next we use the general
relation (B.1) to derive (B.2c), (B.2d). First, we observe that

adΓy
(−B(m)∂x) = [∂y +B(1)∂x,−B(m)∂x] = −B(m+1)∂x.(B.3)

As a result, we have the general formula

admΓy
(∂y) = −B(m+1)∂x, ∀m ∈ Z+.

Hence by (B.1),

[Γj
y, ∂y] =

j−1∑
ℓ=0

(
j

ℓ

)
adj−ℓ

Γy
(∂y)Γ

ℓ
y = −

j−1∑
ℓ=0

(
j

ℓ

)
B(j−ℓ+1)∂xΓ

ℓ
y.

This concludes the proof of (B.2c).

1This proof is kindly suggested to me by Yiyue Zhang.



44 SIMING HE

Finally, we derive (B.2d). By (B.1), it is enough to compute admΓy
(∂yy). We apply the induction to prove

that

admΓy
(∂yy) = −2B(m+1)∂xΓy + ∂m

y (B(1))2∂xx −B(m+2)∂x, ∀m ∈ Z+.(B.4)

This relation, when combined with (B.1), implies (B.2d). The relation (B.4) holds when m = 1 ((B.2b)).
Assume that the relation holds on the m− 1(≥ 1) level, then

admΓy
(∂yy) =adΓy

(adm−1
Γy

(∂yy)) = adΓy

(
−B(m+1)∂x − 2B(m)∂xΓy + ∂m−1

y (B(1))2∂xx

)
.

Recalling (B.3), we have

admΓy
(∂yy) =−B(m+2)∂x − Γy(2B

(m))∂xΓy + Γy(∂
m−1
y (B(1))2)∂xx

=−B(m+2)∂x − 2B(m+1)∂xΓy + ∂m
y (B(1))2∂xx.

This concludes the proof of (B.4). Hence the proof of the lemma is complete. □

We also use the following lemma.

Lemma B.3. Consider the gliding vector fields Γy = ∂y +
∫ t

0
∂yu(s, y)ds∂x, and functions f, g ∈ Hm(T3).

Then the following two estimate hold

∥f∥L∞
x,y,z

≤C
∑

|i,j,k|≤2

∥∂i
xΓ

j
y∂

k
z f∥L2

x,y,z
.(B.5)

Moreover, we have that for m ≥ 3, M∑
|i,j,k|=0

∥∂i
xΓ

j
y∂

k
z (fg)∥2L2

x,y,z

1/2

≤C

 M∑
|i,j,k|=0

∥∂i
xΓ

j
y∂

k
z f∥2L2

x,y,z

1/2 M∑
|i,j,k|=0

∥∂i
xΓ

j
y∂

k
z g∥2L2

x,y,z

1/2

.(B.6)

Proof. Consider the following change of variables:

X = x−
∫ t

0

u(s, y)ds, Y = y, Z = z.

The Jacobian of this change of coordinate is 1. We also check that it is one-one and onto. Define

F (X,Y, Z) = f(x, y, z), G(X,Y, Z) = g(x, y, z).

Now by classical Sobolev embedding, we have

∥f∥L∞
x,y,z

= ∥F∥L∞
X,Y,Z

≤ C
∑

|i,j,k|≤2

∥∂i
X∂j

Y ∂
k
ZF∥L2

X,Y,Z
.

It is direct to check that

∂X = ∂x, ∂Y = Γy, ∂Z = ∂z.

Hence,

∥f∥L∞
x,y,z

≤ C

 ∑
|i,j,k|≤2

∥∂i
X∂j

Y ∂
k
ZF∥2L2

X,Y,Z

1/2

= C

 ∑
|i,j,k|≤2

∥∂i
xΓ

j
y∂

k
z f∥2L2

x,y,z

1/2

.

This is (B.5). Next we recall the product estimate in the (X,Y, Z)-coordinate

∥FG∥Hm
X,Y,Z

≤ C∥F∥Hm
X,Y,Z

∥G∥L∞
X,Y,Z

+ C∥G∥Hm
X,Y,Z

∥F∥L∞
X,Y,Z

.

As a result,( M∑
|i,j,k|=0

∥∂i
xΓ

j
y∂

k
z (fg)∥2L2

x,y,z

)1/2

≤ C∥FG∥Hm
X,Y,Z

≤ C∥F∥Hm
X,Y,Z

∥G∥L∞
X,Y,Z

+ C∥G∥Hm
X,Y,Z

∥F∥L∞
X,Y,Z

≤C

( M∑
|i,j,k|=0

∥∂i
xΓ

j
y∂

k
z f∥2L2

x,y,z

)1/2

∥g∥L∞
x,y,z

+ C

( M∑
|i,j,k|=0

∥∂i
xΓ

j
y∂

k
z g∥2L2

x,y,z

)1/2

∥f∥L∞
x,y,z

.

Combining this with (B.5) yields (B.6). □
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To conclude this section, we present a lemma.

Lemma B.4. Recall the vector field Γy = Γy;t (2.3). The gliding regularity norms of the gradient of functions
f ∈ HM+1 are bounded as follows,

M∑
|i,j,k|=0

∥∥∥Γijk
y;t∇f

∥∥∥
Lp

≤
M+1∑

|i,j,k|=0

∥∥∥Γijk
y;t f

∥∥∥
Lp

+ Ct

M∑
|i,j,k|=0

∥∥∥Γ(i+1)jk
y;t f

∥∥∥
Lp

, Γijk
y;t = ∂i

xΓ
j
y;t∂

k
z .(B.7)

Here the constant C depends only on M, ∥∂yu∥L∞
t WM,∞ and p ∈ [1,∞].

Proof. Recalling the definition of commutators, we have that

M∑
|i,j,k|=0

∥∂i
xΓ

j
y;t∂

k
z∇f ̸=∥Lp ≤

M∑
|i,j,k|=0

∥∇∂i
xΓ

j
y;t∂

k
z f ̸=∥Lp +

M∑
|i,j,k|=0

1j≥1∥[Γj
y;t, ∂y]∂

i
x∂

k
z f ̸=∥Lp .

Direct applications of (B.2c) and the relation ∂y = Γy;t −
∫ t

0
∂yu(s, y)ds∂x yield that

M∑
|i,j,k|=0

∥∂i
xΓ

j
y;t∂

k
z∇f̸=∥Lp ≤

M+1∑
|i,j,k|=0

∥∂i
xΓ

j
y;t∂

k
z f̸=∥Lp + C

M∑
|i,j,k|=0

∫ t

0

∥∂yu(s, ·)∥L∞
y
ds∥Γ(i+1)jk

y;t f̸=∥Lp

+ C

M∑
|i,j,k|=0

1j≥1

j−1∑
j′=0

(
j

j′

)(∫ t

0

∥∂j−j′+1
y u(s, ·)∥L∞

y
ds

)
∥∂i+1

x Γj′

y;t∂
k
z f̸=∥Lp .

Now direct estimation yields the result. □
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Non Linéaire, Vol. 28, pages 643–652, 2011.

[65] A. Lorz. Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci., Vol. 20, 2010.

[66] A. Lorz. A coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay. Communications
in Mathematical Sciences, Vol. 10, pages 555–574, 2012.

[67] N. Masmoudi and W. Zhao. Enhanced dissipation for the 2D Couette flow in critical space. Comm. Partial Differential

Equations, 45(12):1682–1701, 2020.
[68] N. Masmoudi and W. Zhao. Stability threshold of two-dimensional Couette flow in Sobolev spaces. Ann. Inst. H. Poincaré
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