THE DUAL F-SIGNATURE OF VERONESE RINGS

VINICIUS BOUÇA, ELIANA TOLOSA VILLARREAL, AND KEVIN VASCONCELLOS

Abstract

In this paper we adress the question of I. Smirnov and K. Tucker on the dual F-signature of the Veronese subrings of polynomial rings in n variables using methods of commutative algebra.

1. Introduction

Let R be a complete d-dimensional reduced Noetherian local ring with prime characteristic $p>0$ and perfect residue field $K=K^{p}$. For $e \in \mathbb{N}$, we can naturally identify the inclusion $R \subseteq R^{1 / p^{e}}$ into the p^{e}-th roots of elements of R, with the e-th iterate of the Frobenius endomorphism. The behaviour of such endomorphism characterize some singularities, called the F-singularities. Among the classes of F-singularities, three hold primordial significance: F-purity, strong F-regularity and F-rationality. To investigate and classify F-singularities, several numerical invariants have been introduced since the past four decades.

Let us decompose $R^{1 / p^{e}}$ as the direct sum of free R-modules and a non-free summand M_{e} and let a_{e} denote the largest rank of the free R-module appearing in the decomposition. That is,

$$
R^{1 / p^{e}}=R^{\oplus a_{e}} \bigoplus M_{e} .
$$

The number a_{e} is called the e-th Frobenius splitting number and it gives information on how the Frobenius endomorphism acts on R. In order to study the asymptotic behaviour of a_{e}, it was defined the F-signature as the following limit

$$
s(R)=\lim _{e \rightarrow \infty} \frac{a_{e}}{p^{e d}} .
$$

The F-signature was first implicitly mentioned in the work of K. Smith and M. Van der Bergh SdB02 in 1997 and then it was formally introduced and studied by C. Huneke and G. Leuschke [HL02] in 2002. Nonetheless, the existence of the limit was not clear until 2012, when K. Tucker prove it in general Tuc12.

This invariant carries interesting information about the singularities of R. In fact, if R is a regular ring, $R^{1 / p^{e}}$ is a free R-module of rank $p^{e d}$, meaning that the F-signature somehow measures how far is the ring R to be regular. C. Huneke and G. Leuschke HL02] proved that $s(R) \geq 1$ with equality if and only if R is regular. Furthermore, I. Aberbach and G. Leuschke AL03 showed that $s(R)>0$ if and only if R is strongly F-regular.

To study the relationship between the F - signature and F-rationality, A. Sannai San15] expanded the definition of F-signature to encompass modules, introducing the dual Fsignature and defined as follows

$$
s_{\text {dual }}(M)=\lim \sup _{q \rightarrow \infty} \frac{\max \left\{N \mid \text { there is a sujection } F_{\star}^{e} \omega_{R} \rightarrow \omega_{R}^{N}\right\}}{\operatorname{rank} F_{\star}^{e} \omega_{R}}
$$

where R is assumed Cohen-Macaulay and ω_{R} is its canonical module.
Sannai established that, for F-finite reduced Cohen-Macaulay local rings with characteristic $p>0$ and admitting canonical module ω_{R}, the condition of F-rationality is unequivocally defined: R is F-rational if and only if the dual F-signature of its canonical module is positive.

However, calculating the F-signature and the dual F-signature is not trivial. The question is still open even for well studied rings.

Our work focuses on calculating the dual F-signature of the d-th Veronese subring $S^{(d)}$ of the polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$, validating the suspicion presented by Smirnov and Tucker in [ST23]. We state our main result next.

Theorem 1.1. Let k be a perfect field of prime characteristic $p>0$ and $S^{(d)}$ the d-Veronese subring of $k\left[x_{1}, \ldots, x_{n}\right]$. Then, the dual F-signature of $S^{(d)}$ is

$$
s_{\text {dual }}\left(S^{(d)}\right)=\frac{1}{d}\left\lceil\frac{d}{n}\right\rceil
$$

The paper is organized as follows. In section 2 we recall some basic definitions about the dual F-signature of a module and stablish the notation used throughout the paper. In section 3 , we explicitly give a decomposition of the module of p^{e}-roots canonical module of the Veronese rings $S^{(d)}$ as a direct sum of $\left.S^{(} d\right)$-modules. IN section 4 we pause the discussion on the dual F-signature to prove an auxiliary result that is used Finally, in section 5 , we sate again our main question and prove it by bounding above the F -signature by counting generators and bounding it below by exhibiting explicit maps between

2. Preliminaries

Throughout what follows, (R, \mathfrak{m}, K) is a d-dimensional reduced Noetherian ring of prime characteristic $p>0$. We use the symbol q to represent a varying power of p in our notation. We set $\alpha(R)=\log _{p}\left[K: K^{p}\right]$ and assume that R is F-finite, which means that the Frobenius endomorphism is finite. Equivalently, considering $R^{1 / q}=\left\{r^{1 / q} ; r \in R\right\}$ the ring of q-th roots of elements of R, R is F-finite if $R^{1 / q}$ is a finite R-module, which implies that $\alpha(R)<\infty$. In the following we present the definition of the F-signature of R.

Definition 2.1. Let (R, \mathfrak{m}, k) be a ring as above. For each $q=p^{e}$, decompose $R^{1 / q}$ as a direct sum of finite R-modules $R^{a_{q}} \oplus M_{q}$, where M_{q} does not contain non-zero free direct summands. The F-signature of R is

$$
s(R)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d+\alpha(R)}}
$$

For any positive integer e, we define the ring endomorphism F^{e} through the composition of the Frobenius endomorphism applied e times. Consequently, for an R-module M, this endomorphism induces on M a new R-module structure on M, denoted as $F_{\star}^{e} M$. Sannai San15 extended the concept of F-signature for R-modules, introducing what he referred to as the dual F-signature.

Definition 2.2. Let (R, \mathfrak{m}, k) be a ring as above and M an R-module. For each q, let b_{q} be the F-surjective number of M defined by

$$
b_{q}=\max \left\{n \in \mathbb{N} ; \exists F_{*}^{e}: M \longrightarrow M^{n} \text { surjective }\right\} .
$$

We define the dual F-signature of M by

$$
s_{d u a l}(M)=\lim \sup _{q \rightarrow \infty} \frac{b_{q}}{q^{d+\alpha(R)}}
$$

Let K be a perfect field with a prime characteristic $p>0$. Consider $S=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over K with n indeterminates and equipped with the standard grading. Let's denote by S_{i} the i-th homogeneous component of the polynomial ring S. This component is spanned over K by all monomials of S that possess a degree i. This leads us the following direct sum decomposition

$$
S=\bigoplus_{i=0}^{\infty} S_{i} .
$$

The d-th Veronese ring of S, commonly denoted as $S^{(d)}$, is the graded subring generated over K by all monomials of degree d, that is

$$
S^{(d)}=\bigoplus_{i=0}^{\infty} S_{i d} .
$$

Observe that S can be regarded as a finite module over $S^{(d)}$. With this structure, S decomposes into a direct sum of S_{d}-modules

$$
S=\bigoplus_{j=0}^{d-1} S_{[j]}
$$

where

$$
S_{[j]}=\bigoplus_{i=0}^{\infty} S_{j+i d}
$$

for $j=0,1, \ldots, d-1$. Notice that we can think of $S_{[j]}$ as the polynomials with degree j modulo d. Lastly, the superscript ${ }^{1 / p^{e}}$ shall symbolize the ring (or module) resulting from taking p-th roots.

Remark 2.3. Note that, if $S=K\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring over K with n indeterminates over a perfect field of prime characteristic $p>0$, then its d-Veronese subring $S^{(d)}$ is a reduced F-finite ring.

3. The Structure of the Canonical Module of Veronese Rings

In this section we will explain the structure of the canonical module of the Veronese ring $S^{(d)}$. Recall that the canonical module of the polynomial ring S is $S(-n)$. Hence the canonical module $\omega_{S^{(d)}}$ is given by

$$
\omega_{S^{(d)}}=\left(\omega_{S}\right)^{(d)}=\bigoplus_{i=0}^{\infty} S_{-n+i d}=S_{[k]},
$$

where k is the remainder of n when divided by d.
Proposition 3.1. Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a standard graded polynomial ring over a perfect field K of characteristic $p>0$ a non-negative integer e and $d=p^{e} q$ a positive integer with $\operatorname{gcd}(p, q)=1$. Then the p^{e}-th root of canonical module $\left(\omega_{S^{(d)}}\right)^{\frac{1}{p^{e}}}$ of the d-Veronese subring decomposes as a direct sum

$$
\left(\omega_{S^{(d)}}\right)^{\frac{1}{p^{e}}}=S_{[0]}^{\oplus n_{0}} \oplus \cdots \oplus S_{[d-1]}^{\oplus n_{d-1}},
$$

with $n_{i}=\frac{p^{n e}-k_{e}}{d}$ or $\frac{p^{n e}-k_{e}}{d}+1$ and k_{e} is the remainder of $p^{n e}$ when divided by d.

Proof: Since $\omega_{S^{(d)}}$ is given by

$$
\omega_{S^{(d)}}=\left(\omega_{S}\right)^{(d)}=\bigoplus_{i=0}^{\infty} S_{-n+i d}=S_{[k]},
$$

where k is the remainder of n when divided by d, one has that

$$
\left(\omega_{S^{(d)}}\right)^{\frac{1}{p^{e}}}=\left(S_{[k]}\right)^{\frac{1}{p^{e}}}=\bigoplus_{\sum c_{i} \equiv_{d} k} K \cdot x_{1}^{\frac{c_{1}}{p^{e}}} \ldots x_{n}^{\frac{c_{n}}{p^{e}}}
$$

Now observe that each of the c_{i} can be written uniquely as a sum $a_{i} p^{f}+b_{i}$ with $0 \leq b_{i}<p^{f}$. Hence

$$
\left(\sum_{i=1}^{n} a_{i}\right) p^{e}+\sum_{i=1}^{n} b_{i}=\sum_{i=1}^{n} c_{i} \equiv_{d} k
$$

Since we are interested in the asymptotic behavior of p^{e} we can suppose that $e>f$. Therefore by the Chinese Remainder Theorem, one has

$$
\begin{equation*}
\left(\sum a_{i}\right) p^{e}+\sum b_{i} \equiv_{p^{f}} k \quad \text { and } \quad\left(\sum a_{i}\right) p^{e}+\sum b_{i} \equiv_{q} k \tag{1}
\end{equation*}
$$

which is

$$
\begin{equation*}
\sum b_{i} \equiv_{p^{f}} k \quad \text { and } \quad\left(\sum a_{i}\right) p^{e}+\sum b_{i} \equiv_{q} k \tag{2}
\end{equation*}
$$

Let

$$
S_{[k, l]}=\bigoplus_{g \in G} S_{g}
$$

where G is the set of all elements g such that $g \equiv_{p^{e}} k$ and $g \equiv_{q} l$. Notice that this is a refinement of $S_{[h]}$ in the sense that

$$
S_{[h]} \cong \bigoplus_{j=0}^{p^{e}-1} S_{[j, h]}
$$

for the piece of degree congruent to h module q.
Let $\widetilde{\sum a_{i}}$ and $\widetilde{\sum b_{i}}$ be the congruence classes of $\sum a_{i}$ and $\sum b_{i}$ in $\mathbb{Z} / p^{e} \mathbb{Z}$ respectively; and let $\overline{\sum a_{i}}$ and $\overline{\sum b_{i}}$ be the congruence classes in $\mathbb{Z} / q \mathbb{Z}$ respectively. By Equation $2, \widetilde{\sum b_{i}}$ is fixed and there is no constraint on $\widetilde{\sum a_{i}}$. Then, we only have to consider how $\overline{\sum a_{i}}$ and $\overline{\sum b_{i}}$ change.

Let us fix $\overline{\sum b_{i}}$ and $\left(b_{1}, \ldots, b_{n}\right) \in\left\{0, \ldots, p^{e}-1\right\}^{n}$. Then, we have a unique $\overline{\sum a_{i}}$, say $\sum a_{i} \equiv_{q} k_{b}$, that can be reached with different vector values $\left(a_{1}, \ldots, a_{n}\right)$.

Consider the direct sum of all the K-modules such that $\sum a_{i} \equiv_{q} k_{b}$,

$$
\underset{\sum a_{i}=q^{k} k_{b}}{ } K \cdot x_{1}^{\frac{a_{n} p^{e}+b_{n}}{p^{e}}} \ldots x_{n}^{\frac{a_{1} p^{e}+b_{1}}{p^{e}}} \cong \bigoplus_{j=0}^{p^{e}-1} S_{\left[j, k_{b}\right]} \cong S_{\left[k_{b}\right]} .
$$

We have this direct sum for each $\left(b_{1}, \ldots, b_{n}\right) \in\left\{0, \ldots, p^{e}-1\right\}^{n}$, then we have to count how many vectors $\left(b_{0}, \ldots, b_{n}\right)$ we have such that $\sum b_{i} \equiv_{d} \alpha$ to see how many copies of $S_{\left[k_{b}\right]}$ we obtain:
There are $\left(p^{e}\right)^{n}$ vectors $\left(b_{1}, \ldots, b_{n}\right)$. We have to divide this total in the amount of congruence classes, that is $\frac{p^{n e}}{d}$. But as it has to be an integer we obtain

$$
\begin{equation*}
\frac{p^{n e}-k_{e}}{d} \quad \text { or } \quad \frac{p^{n e}-k_{e}}{d}+1, \tag{3}
\end{equation*}
$$

where k_{e} is the reminder of $p^{n e}$ divided by d.
Finally we obtain

$$
\bigoplus_{0 \leq k_{b} \leq q}\left[\bigoplus_{\sum a_{i}=q k_{b}} K \cdot x_{1}^{\frac{a_{n} p^{e}+b_{n}}{p^{e}}} \ldots x_{n}^{\frac{a_{1} p^{e}+b_{1}}{p^{e}}}\right]^{n_{i}}
$$

where $n_{i}=\frac{p^{n e}-k_{e}}{d}$ or $\frac{p^{n e}-k_{e}}{d}+1$. Hence We can conclude that if $d=p^{e} q$,

$$
\left(\omega_{S^{(d)}}\right)^{\frac{1}{p^{e}}}=S_{[0]}^{\oplus n_{0}} \oplus \cdots \oplus S_{[d-1]}^{\oplus n_{d-1}},
$$

with $n_{i}=\frac{p^{n e}-k_{e}}{d}$ or $\frac{p^{n e}-k_{e}}{d}+1$ and this proves (2).

4. Main Theorem

In this section, we prove the conjecture by I. Smirnov and K. Tucker on the dual F signature of the Veronese rings $S^{(d)}$. For the sake of convenience, we restate here the conjecture.

Theorem 4.1. Let K be a perfect field of prime characteristic $p>0$ and $S^{(d)}$ the d Veronese subring of $K\left[x_{1}, \ldots, x_{n}\right]$. Then, the dual F-signature of $S^{(d)}$ is

$$
s_{\text {dual }}\left(S^{(d)}\right)=\frac{1}{d}\left\lceil\frac{d}{n}\right\rceil .
$$

We break the proof of the theorem in several steps. Firstly, by counting the number of generators of each module, we give an upper bound $s_{\text {dual }}\left(S^{(d)}\right)$.

Proposition 4.2. Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a perfect field K of characteristic $p>0$ and d a positive integer. Consider $S^{(d)}$ the d-th Veronese subring of S. Then,

$$
s_{\text {dual }}\left(S^{(d)}\right) \leq \frac{1}{n}\left\lceil\frac{n}{d}\right\rceil
$$

Proof: Recall that our goal is to find the largest N such that there is surjection

$$
\omega_{S^{(d)}}^{\frac{1}{p^{e}}}=S_{[0]}^{\oplus n_{0}} \oplus \cdots \oplus S_{[d-1]}^{\oplus n_{d-1}} \rightarrow \omega_{S^{(d)}}^{N}
$$

as $S^{(d)}$-modules. The $S^{(d)}$-linearity of such a surjection implies that the induced map

$$
S^{(d) \frac{1}{p^{e}}}=S_{[0]}^{\oplus n_{0}} \oplus \cdots \oplus S_{[k]}^{\oplus n_{k}} \rightarrow \omega_{S^{(d)}}^{N}=S_{[k]}^{N}
$$

also is a surjection, where k is the remainder of n when divided by d .
Now recall that the minimal number of generators of $S_{[i]}$ as a $S^{(d)}$-module is given by $\binom{n+i-1}{n-1}$. Hence, by counting the minimal number of generators on each side, we have

$$
\binom{n+k-1}{n-1} N \leq \sum_{i=0}^{k}\binom{n+i-1}{n-1} n_{i}
$$

which implies that

$$
N \leq \frac{\sum_{i=0}^{k}\binom{n+i-1}{n-1} n_{i}}{\binom{n+k-1}{n-1}}
$$

Now it is clear that

$$
\lim _{e \rightarrow \infty} \frac{n_{i}}{p^{n e}}=\frac{1}{d}
$$

Hence

$$
s_{\text {dual }}\left(S^{(d)}\right)=\lim _{e \rightarrow \infty} \frac{N}{p^{n d}} \leq \frac{\sum_{i=0}^{k}\binom{n+i-1}{n-1}}{d\binom{n+k-1}{n-1}}=\frac{\binom{n+k}{n}}{d\binom{n+k-1}{n-1}}=\frac{1}{n}\left\lceil\frac{n}{d}\right\rceil .
$$

We now establish the reverse inequality by studying the possible $S^{(d)}$-linear surjections $S_{[i]}^{e} \rightarrow S_{[j]}^{f}$ for $0 \leq i \leq j<d$. Notice that the $S^{(d)}$-linearity implies that $i \leq j$. Furthermore notice that this is equivalent to giving a homogeneous map $S(i-j)^{e} \rightarrow S^{f}$ which is surjective in degree j. To construct such maps, we have the following proposition, which proof is postponed to the next section.

Proposition 4.3. The homogeneous map $S(-1)^{n+k-1} \rightarrow S^{k}$ given by the matrix

$$
\Psi=\left[\begin{array}{cccccccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & 0 & 0 & \ldots & 0 \\
0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & 0 & \ldots & 0 \\
0 & 0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n}
\end{array}\right]
$$

is surjective in degree $j \geq k$.
When applied for $k \leq d-1$, Proposition 4.3 shows that one can construct a surjection $S_{[k-1]}^{n+k} \rightarrow S_{[k]}^{1+k}$ and the domain and target of such map has the same number of minimal generators over $S^{(d)}$. Hence the surjection constructed in Proposition 4.3 is optimal.

Now we are able to count on how many copies of $S_{[i]}$ we need to build a surjection $S_{[i]}^{e_{i}} \rightarrow$ $S_{[k]}^{f_{i}}$. Obviously, if $i=k$, then $e_{i}=f_{i}=1$, while Proposition 4.3 conceives the case $e_{k-1}=$ $n+k-1$ and $f_{k-1}=k$.

Proposition 4.4. Let $0 \leq i<k<d$. Then there is a surjection

$$
S_{[i]}^{e_{i}} \rightarrow S_{[k]}^{f_{i}}
$$

such that

$$
\frac{f_{i}}{e_{i}}=\frac{\binom{n+i-1}{n-1}}{\binom{n+k-1}{n-1}} .
$$

Proof. We prove the theorem by induction on the difference $k-i$, being the case $i=1$ already discussed. Suppose then that we have a surjection

$$
\begin{equation*}
S_{i+1}^{e_{i+1}} \rightarrow S_{[k]}^{f_{i+1}} \tag{4}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{f_{i+1}}{e_{i+1}}=\frac{\binom{n+i}{n-1}}{\binom{n+k-1}{n-1}} \tag{5}
\end{equation*}
$$

Again by Proposition 4.3. there is a surjective map $S_{[i]}^{n+i} \rightarrow S_{[i+1]}^{i+1}$ and, we have a surjection

$$
\begin{equation*}
S_{[i]}^{e_{i+1}(n+i)} \rightarrow S_{[i+1]}^{(i+1) e_{i+1}} \tag{6}
\end{equation*}
$$

by taking direct sums of these maps. Also, by taking direct sums of the map (4), one has a surjection

$$
\begin{equation*}
S_{i+1}^{(i+1) e_{i+1}} \rightarrow S_{[k]}^{(i+1) f_{i+1}} \tag{7}
\end{equation*}
$$

The composing of the surjections (4) and (6) yields the surjection

$$
\begin{equation*}
S_{[i]}^{e_{i+1}(n+i)} \rightarrow S_{[k]}^{(i+1) f_{i+1}} \tag{8}
\end{equation*}
$$

For the last assertion of the proposition, notice that

$$
\begin{equation*}
\frac{f_{i}}{e_{i}}=\frac{(i+1) f_{i+1}}{(n+1) e_{i+1}}=\frac{i+1}{n+i} \frac{\binom{n+i}{n-1}}{\binom{n+k-1}{n-1}}=\frac{\binom{n+i-1}{n-1}}{\binom{n+k-1}{n-1}} \tag{9}
\end{equation*}
$$

We are now ready to prove the promised lower bound.

Proposition 4.5. Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a perfect field K of characteristic $p>0$ and d a positive integer. Consider $S^{(d)}$ the d-th Veronese subring of S. Then,

$$
s_{\text {dual }}\left(S^{(d)}\right) \geq \frac{1}{n}\left\lceil\frac{n}{d}\right\rceil \text {. }
$$

Proof. Let e be such that $p^{e} d \gg e_{i}$ as in the previous proposition. Then, with e_{i} copies of $S_{[i]}$ we surject on f_{i} copies of $S_{[k]}$. Then, if $r_{e, i}$ is the remainder of $n_{e, i}$ when divided by e_{i}, we have that $S_{[i]}^{\oplus n_{e, i}}$ can surject in

$$
\frac{f_{i}\left(n_{e, i}-r_{e, i}\right)}{e_{i}}=\frac{e_{i}\left(n_{e, i}-r_{e, i}\right)}{f_{i}}
$$

copies of $S_{[k]}$. Summing up in all i and noticing that $\lim _{e \rightarrow \infty} \frac{r_{e, i}}{p^{n e}}=0$, we have that

$$
s_{\text {dual }}\left(S^{(d)}\right)=\lim _{e \rightarrow \infty} \frac{N}{p^{n e}} \geq \lim _{e \rightarrow \infty} \sum_{i=0}^{k} \frac{\frac{e_{i}\left(n_{e, i}-r_{e, i}\right)}{f_{i}}}{p^{n e}}=\sum_{i=0}^{k} \frac{e_{i}}{d f_{i}}=\frac{\sum_{i=0}^{k}\binom{n+i-1}{n-1}}{d\binom{n+k-1}{n-1}}=\frac{\binom{n+k}{n}}{d\binom{n-k-1}{n-1}}=\frac{1}{n}\left\lceil\frac{n}{d}\right\rceil .
$$

5. Appendix: An Auxiliary Lemma

In the proof of Theorem 4.1 we invoked as an auxiliary result Proposition 4.3, that now we give a complete proof using monomial ordering techniques. For the sake of clarity, we recall the statement that we want to prove.

Proposition 5.1. The homogeneous map $S(-1)^{n+k-1} \rightarrow S^{k}$ given by the matrix

$$
\Psi=\left[\begin{array}{cccccccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & 0 & 0 & \ldots & 0 \\
0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & 0 & \ldots & 0 \\
0 & 0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n}
\end{array}\right]
$$

is surjective in degree $j \geq k$

The proposition follows immediately if we prove that $I_{k}(\Psi)=\left(x_{1}, \ldots, x_{n}\right)^{k}$. Indeed, one always has

$$
\left(x_{1}, \ldots, x_{n}\right)^{k}=\operatorname{Fitt}_{0}(\operatorname{Coker}(\Psi)) \subset \operatorname{Ann}(\operatorname{Coker}(\Psi))
$$

and this implies that $\operatorname{Coker}(\Psi)_{j}=0$ for $j \geq k$. Hence, our focus will be on proving that $I_{k}(\Psi)=\left(x_{1}, \ldots, x_{n}\right)^{k}$.

We set some notations and conventions. Equip the polynomial ring S with lexicographical monomial order $x_{1}<\cdots<x_{n}$, and given $r \geq 1$, consider the $r \times(n+r-1)$ matrix

$$
M(n, r):=\left[\begin{array}{cccccccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & 0 & 0 & \ldots & 0 \\
0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & 0 & \ldots & 0 \\
0 & 0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & x_{1} & x_{2} & x_{3} & \ldots & x_{n-1} & x_{n}
\end{array}\right] .
$$

Next, for each $\alpha_{1}, \ldots, \alpha_{n}$ non-negative integers such that $\sum_{k=1}^{n} \alpha_{k}=r$, consider the $r \times r$ $\operatorname{matrix} M_{\alpha_{1}, \ldots, \alpha_{n}}(r)$ constructed as follows:

- For $1 \leq j \leq \alpha_{1}$, the j-th column of $M_{\alpha_{1}, \ldots, \alpha_{n}}(r)$ is the column of $M(n, r)$ for which x_{1} appears on the j-th row;
- For $\left(\sum_{i=1}^{k} \alpha_{i}\right)+1 \leq j \leq \sum_{i=1}^{k+1} \alpha_{i}$, the j-th column of $M_{\alpha_{1}, \ldots, \alpha_{n}}(r)$ is the column of $M(n, r)$ for which x_{k+1} appears on the j-th row.

In order to illustrate this construction, it follows an example.

Example 5.2. Let $S=K\left[x_{1}, x_{2}, x_{3}\right]$ and $r=6$ be chosen and consider $\alpha_{1}=2, \alpha_{2}=3$ and $\alpha_{3}=1$. Then one has

$$
M(3,6)=\left[\begin{array}{cccccccc}
x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & x_{1} & x_{2} & x_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & x_{2} & x_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3}
\end{array}\right] \text { and } M_{3,2,1}(6)=\left[\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\
0 & x_{1} & x_{2} & 0 & 0 & 0 \\
0 & 0 & x_{1} & x_{3} & 0 & 0 \\
0 & 0 & 0 & x_{2} & x_{3} & 0 \\
0 & 0 & 0 & x_{1} & x_{2} & 0 \\
0 & 0 & 0 & 0 & x_{1} & x_{3}
\end{array}\right] .
$$

Notice that each $r \times r$ minor of $M(n, r)$ is determinant of $M_{\alpha_{1}, \ldots, \alpha_{n}}(r)$ for some non-negative integers $\alpha_{1}, \ldots, \alpha_{n}$ such that $\sum_{k=1}^{n} \alpha_{k}=r$. In the next proposition, denote

$$
\mathfrak{M}(n, r)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}_{0}^{n} ; \sum_{k=1}^{n} x_{k}=r\right\} .
$$

Note that x_{1}^{r} is the minimum element of $\mathfrak{M}(n, r)$.
We are now ready to prove the desired equality.

Proposition 5.3. Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n indeterminates over a field K equipped with lexicographical monomial ordering $x_{1}<\cdots<x_{n}$ and r a positive integer. Then

$$
I_{n}(M(n, r))=\left(x_{1}, \ldots, x_{r}\right)^{r}
$$

Proof:

Before starting the actual proof we first describe loosely what is the idea behind it. In the previous lines, we noticed that x_{1}^{r} belongs to the ideal $I_{n}(M(n, r))$. Our main goal is to prove that if all monomials m^{\prime} that are smaller than a given monomial m belongs to $I_{n}(M(n, r))$, then m also belongs to $I_{n}(M(n, r))$. We prove this by giving an explicit $r \times r$ minor of $M(n, r)$ consisting of a combination of m and smaller monomials. The result then follows by induction.
Now we proceed with the proof. It is clear that $I_{n}(M(n, r)) \subseteq\left(x_{1}, \ldots, x_{r}\right)^{r}$. In order to prove the other inclusion, it is enough to show that $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \in I_{r}(M(n, r))$ for any n-tuple $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of non-negative integers with $\sum_{k=1}^{n} \alpha_{k}=r$. We'll prove the following claim:

Let $m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ a monomial with $\sum_{k=1}^{n} \alpha_{k}=r$ be chosen. If $m^{\prime} \in I_{r}(M(n, r))$ for all

$$
m^{\prime}<m, \text { then } m \in I_{r}(M(n, r))
$$

As mentioned before $x_{1}^{r} \in I_{r}(M(n, r))$. Indeed, if $\alpha_{1}=r$ and $\alpha_{i}=0$ for all $1<i \leq n$, one has

$$
\operatorname{det}\left(M_{r, 0, \ldots, 0}\right)=\operatorname{det}\left[\begin{array}{ccccc}
x_{1} & x_{2} & \cdots & x_{r-1} & x_{r} \\
0 & x_{1} & \cdots & x_{r-2} & x_{r-1} \\
0 & 0 & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & x_{1} & x_{2} \\
0 & 0 & \cdots & 0 & x_{1}
\end{array}\right]=x_{1}^{r}
$$

Next let $m=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ be a monomial with $\sum_{k=1}^{n} \alpha_{k}=r$. Now let m be a degree r monomial and suppose that for any $m^{\prime}<m$ and that $m^{\prime} \in I_{r}(M(n, r))$. Observe that

$$
\operatorname{det}\left(M_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}}(r)\right)=x_{1}^{\alpha_{1}} \operatorname{det}\left(M_{0, \alpha_{2}, \ldots, \alpha_{r}}\left(r-\alpha_{1}\right)\right)
$$

and that

$$
\operatorname{det}\left(M_{0, \alpha_{2}, \ldots, \alpha_{r}}\left(r-\alpha_{1}\right)\right)=x_{2} \operatorname{det}\left(M_{0, \alpha_{2}-1, \ldots, \alpha_{r}}\left(r-\alpha_{1}-1\right)\right)-x_{1} f\left(x_{1}, \ldots, x_{n}\right)
$$

where $f\left(x_{1}, \ldots, x_{n}\right)$ is a homogeneous polynomial in S with degree $r-\left(\alpha_{1}+1\right)$. Hence

$$
\operatorname{det}\left(M_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}}(r)\right)=x_{1}^{\alpha_{1}} x_{2} \operatorname{det}\left(M_{0, \alpha_{2}-1, \ldots, \alpha_{r}}\left(r-\alpha_{1}-1\right)\right)-x_{1}^{\alpha_{1}+1} f\left(x_{1}, \ldots, x_{n}\right)
$$

Since each monomial of $x_{1}^{\alpha_{1}+1} f\left(x_{1}, \ldots, x_{n}\right)$ is smaller than m and $\operatorname{det}\left(M_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}}(r)\right)$ is a minor of $M(n, r)$, by induction hypothesis, one concludes that

$$
x_{1}^{\alpha_{1}} x_{2} \operatorname{det}\left(M_{0, \alpha_{2}-1, \ldots, \alpha_{r}}\left(r-\alpha_{1}-1\right)\right) \in I_{r}(M(n, r)) .
$$

Suppose that we have proved that $x_{1}^{\alpha_{1}} x_{2}^{i} \operatorname{det}\left(M_{0, \alpha_{2}-i, \ldots, \alpha_{r}}\left(r-\alpha_{1}-i\right)\right) \in I_{r}(M(n, r))$ for all $1 \leq i<\alpha_{2}$. Again we have

$$
\begin{gathered}
x_{1}^{\alpha_{1}} x_{2}^{i} \operatorname{det}\left(M_{0, \alpha_{2}-i, \ldots, \alpha_{r}}\left(r-\alpha_{1}-i\right)\right)=x_{1}^{\alpha_{1}} x_{2}^{i}\left(x_{2} \operatorname{det}\left(M_{0, \alpha_{2}-(i+1), \ldots, \alpha_{r}}\left(r-\alpha_{1}-(i+1)\right)\right)-x_{1} f^{\prime}(x)\right) \\
=x_{1}^{\alpha_{1}} x_{2}^{i+1} \operatorname{det}\left(M_{0, \alpha_{2}-(i+1), \ldots, \alpha_{r}}\left(r-\alpha_{1}-(i+1)\right)\right)-x_{1}^{\alpha_{1}+1} x_{2}^{i} f^{\prime}(x)
\end{gathered}
$$

where $f^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ is a homogeneous polynomial in S with degree $r-\left(\alpha_{1}+i+1\right)$. Similarly, since each monomial of $x_{1}^{\alpha_{1}+1} x_{i} f^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ is smaller than m and

$$
x_{1}^{\alpha_{1}} x_{2}^{i} \operatorname{det}\left(M_{0, \alpha_{2}-i, \ldots, \alpha_{r}}\right)\left(r-\alpha_{1}-i\right) \in I_{r}(M(n, r))
$$

by induction hypothesis, one concludes that

$$
x_{1}^{\alpha_{1}} x_{2}^{i+1} \operatorname{det}\left(M_{0, \alpha_{2}-(i+1), \ldots, \alpha_{r}}\left(r-\alpha_{1}-(i+1)\right)\right) \in I_{r}(M(n, r))
$$

Proceeding until $i=\alpha_{2}-1$ and repeating the argument, one gets

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \operatorname{det}\left(M_{0,0, \alpha_{3} \ldots, \alpha_{r}}\left(r-\alpha_{1}-\alpha_{2}\right)\right) \in I_{r}(M(n, r) .
$$

In general, let $1 \leq i \leq n$ and $0 \leq e<\alpha_{i}$. Setting $\tau=r-\sum_{k=1}^{i} \alpha_{k}$, note that
$\operatorname{det}\left(M_{0, \ldots, 0, \alpha_{i}-e, \ldots, \alpha_{r}}(\tau-e)\right)=x_{i} \operatorname{det}\left(M_{0, \ldots, 0, \alpha_{i}-(e+1), \ldots, \alpha_{r}}(\tau-(e+1))\right)+\sum_{j=1}^{i-1}(-1)^{j} x_{i-j} \operatorname{det}\left(S_{j}\right)$,
where S_{j} is the submatrix $M_{0, \ldots, 0, \alpha_{i}-e, \ldots, \alpha_{r}}(\tau-e)$ obtained by omission of the first column and j row. Thus

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \cdots x_{i}^{e} \operatorname{det}\left(M_{0, \ldots, 0, \alpha_{i}-e, \ldots, \alpha_{r}}(\tau-e)\right)=x_{1}^{\alpha_{1}} \cdots x_{i}^{e+1} \operatorname{det}\left(M_{0, \ldots, 0, \alpha_{i}-(e+1), \ldots, \alpha_{r}}(\tau-(e+1))\right) \\
+\sum_{j=1}^{i-1}(-1)^{j} x_{1}^{\alpha_{1}} \cdots x_{i-j}^{\alpha_{i-j}+1} \cdots x_{i}^{e} \operatorname{det}\left(S_{j}\right)
\end{gathered}
$$

Supposing that $x_{1}^{\alpha_{1}} \cdots x_{i}^{e} \operatorname{det}\left(M_{0, \ldots, 0, \alpha_{i}-e, \ldots, \alpha_{r}}(\tau-e)\right) \in I_{r}(M(n, r))$, by induction hypothesis, one concludes that $x_{1}^{\alpha_{1}} \cdots x_{i}^{e+1} \operatorname{det}\left(M_{0, \ldots, 0, \alpha_{i}-(e+1), \ldots, \alpha_{r}}(\tau-(e+1))\right) \in I_{r}(M(n, r))$. If we repeat this process until $x_{1}^{\alpha_{1}} \cdots x_{r}^{\alpha_{r}-1} \operatorname{det}\left(M_{0, \ldots, 0,1}(1)\right)$ and argue as above, we conclude that $x_{1}^{\alpha_{1}} \cdots x_{r}^{\alpha_{r}} \in I_{r}(M(n, r))$.

Acknowledgment: This question was proposed to us during the conference PRAGMATIC 2023 at Catania (Italy), where Luis Núñez-Betancourt and Eamon QuinlanGallego were part of the mentoring team. We let our gratitude to the PRAGMATIC 2023 organization, as well as Luis Núñez-Betancourt and Eamon Quinlan-Gallego for their valuable contributions with discussions and insightful comments. Additionally, we would like to thank CAPES for funding the transportation expenses of one of the team members.

References

[AL03] Ian M. Aberbach and Graham J. Leuschke. The F-signature and strong F-regularity. Math. Res. Lett., 10(1):51-56, 2003.
[HL02] Craig Huneke and Graham J. Leuschke. Two theorems about maximal Cohen-Macaulay modules. Math. Ann., 324(2):391-404, 2002.
[San15] Akiyoshi Sannai. On dual F-signature. Int. Math. Res. Not. IMRN, (1):197-211, 2015.
[SdB02] Karen E. Smith and Michel Van den Bergh. Simplicity of rings of differential operators in prime characteristic, 2002.
[ST23] Ilya Smirnov and Kevin Tucker. The theory of F-rational signature, 2023.
[Tuc12] Kevin Tucker. F-signature exists. Inventiones mathematicae, 190(3):743-765, March 2012.
${ }^{1}$ Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil.
Email address: vbouca@im.ufrj.br
${ }^{2}$ Instituto de Matemática, Univertistà degli studi di Genova, Italy
Email address: etolosav@gmail.com
${ }^{3}$ Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil.
Email address: kevin.vasconcellos@im.ufrj.br

