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The isothermal compressibility (i.e., the asymptotic number variance) of equilibrium liquid water as a function
of temperature is minimal near ambient conditions. This anomalous non-monotonic temperature dependence
is due to a balance between thermal fluctuations and the formation of tetrahedral hydrogen-bond networks.
Since tetrahedrality is a many-body property, it will also influence the higher-order moments of density fluctu-
ations, including the skewness and kurtosis. To gain a more complete picture, we examine these higher-order
moments that encapsulate many-body correlations using a recently developed, advanced platform for local
density fluctuations. We study an extensive set of simulated phases of water across a range of temperatures
(80K to 1600K) with various degrees of tetrahedrality, including ice phases, equilibrium liquid water, su-
percritical water, and disordered nonequilibrium quenches. We find clear signatures of tetrahedrality in the
higher-order moments, including the skewness and excess kurtosis, that scale for all cases with the degree
of tetrahedrality. More importantly, this scaling behavior leads to non-monotonic temperature dependencies
in the higher-order moments for both equilibrium and non-equilibrium phases. Specifically, at near-ambient
conditions, the higher-order moments vanish most rapidly for large length scales, and the distribution quickly
converges to a Gaussian in our metric. However, at non-ambient conditions, higher-order moments vanish
more slowly and hence become more relevant especially for improving information-theoretic approximations
of hydrophobic solubility. The temperature non-monotonicity that we observe in the full distribution across
length-scales could shed light on water’s nested anomalies, i.e., reveal new links between structural, dynamic,
and thermodynamic anomalies.

I. INTRODUCTION

Physical properties of many-particle systems can be
greatly influenced by their density fluctuations.1–9 The
relationship between the isothermal compressibility and
infinite-wavelength density fluctuations in thermal equi-
librium is a classic example.3,10 More generally, in any
many-particle system both in and out of equilibrium, lo-
cal density fluctuations can be comprehensively quan-
tified via the probability distribution P [N(R)], where
N(R) is the number of particles in a spherical observation
window of radius R;11,12 see Fig. 1. The variance of this
probability distribution, i.e., the number variance σ2

N (R),
and its large-R scaling is a key determinant of the phys-
ical and structural properties of many-body systems,
including elastic moduli, electronic transport proper-
ties, and electromagnetic properties.1,3,10,13–15 Control-
ling σ2

N (R) can lead to optimal mechanical responses,16
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optimal transport properties,17–19 and superior strategies
for sensing20 or learning.21

The fact that water is so abundant and of critical im-
portance in biological and industrial contexts has moti-
vated many investigators to understand and quantify re-
lationships between its complex physical properties and
structure, especially its density fluctuations.22–32 Wa-
ter’s intricate local structure exhibits temperature- and
pressure-dependent shifts in a generally tetrahedral hy-
drogen bond network, which strongly affects the density
fluctuations of water. A balance between thermal fluctu-
ations and the formation of such a tetrahedral network
is believed to be the reason for liquid water to anoma-
lously exhibit extrema in thermodynamic response func-
tions upon cooling at constant pressure.33 For example,
the isothermal compressibility of liquid water in equi-
librium as a function of temperature is minimal near
ambient conditions, which directly translates into a cor-
responding minimum of the large-R asymptotic number
variance. Another example where the analysis of den-
sity fluctuations, specifically σ2

N (R), has proven useful
to predict the physical properties of water (mediated by
its tetrahedral nature) is the solubility of hydrophobic
solutes in water.34–42 Finally, two-body information and
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tetrahedrality have also been used to study density fluc-
tuations in amorphous ices as well as transitions between
their different forms.43–46

Tetrahedrality is inherently a many-body property, in-
volving at least one molecule and its four neighbors.
It, therefore, affects not only second-order properties,
like σ2

N (R), but also higher-order moments of P [N(R)],
specifically, its skewness and kurtosis. To better under-
stand the complex and anomalous behaviors in the phys-
ical properties of water, there is much to be gained via
a complete description of the dependence of water’s den-
sity fluctuations on its tetrahedrality. While there have
been previous efforts to understand such effects by using
typical two-body statistics,47,48 (see also Fig. 8 in Ap-
pendix A) these approaches may provide an incomplete
picture because they lack the effects of tetrahedrality on
three- and four-body properties. Thus, it is desired to
extract information from the higher-order moments and
full distribution P [N(R)] on local length scales, i.e., to
go beyond the two-body statistics contained in σ2

N (R).
Here, we study in detail the higher-order moments

of density fluctuations in water using a recently devel-
oped, advanced “platform” or “toolset” for local den-
sity fluctuations.11 Thus, we gain a refined physical and
structural understanding of the impact of tetrahedrality.
This approach highlights the fundamental importance of
higher-order structural information to fully characterize
density fluctuations across length scales. The analysis is
applicable to generic many-particle systems and is based
on explicit closed-form integral expressions for structural
information up to three- and four-body correlations, rig-
orous bounds, and high-precision numerical techniques.

We apply this new toolset to an extensive set of wa-
ter states across the phase diagram with various degrees
of tetrahedrality, simulated via the TIP4P/2005 model.49

For this reason, we also consider water states far from am-
bient conditions, which often have been neglected in pre-
vious studies about water’s density fluctuations. Specifi-
cally, we consider (i) liquid water in equilibrium at ambi-
ent temperature (300K), close to the liquid-vapor critical
point (646.4K), and in a supercritical state (1600K); see
Fig. 1 for a snapshot of water molecules at T = 300K;
(ii) supercooled liquid water at T = 200K; (iii) hexago-
nal ice Ih and cubic ice Ic just below this model’s melt-
ing temperature at T = 250K; and (iv) nonequilibrium
quenches of water at T = 80, 180, 190, 200K. Such di-
verse phases of water, some far from ambient, are rele-
vant for applications such as biopreservation50, climate
modeling51,52, astrobiology/space exploration53, and un-
derstanding life near hydrothermal vents.54 We compare
our states of water to two further reference systems with
low or high degrees of tetrahedral order, respectively:
equilibrium hard spheres (as a prototypical example of
a simple liquid)55,56 and a continuous random network
(as a classical model of amorphous silicon).57

Our key findings are briefly summarized as follows:

• We show that higher-order moments contain many-
body information and hence detect tetrahedrality,

FIG. 1. Snapshot of water molecules in the TIP4P/2005
model in the equilibrium liquid at T = 300K. Density fluc-
tuations are evaluated by the number distribution of oxygen
atoms within a spherical observation window, here with ra-
dius R = 7 Å.

i.e., they exhibit distinct features that scale with
the degree of tetrahedrality;

• While lower-order moments work best close to room
temperatures, we demonstrate that higher-order
moments are needed at both higher and lower tem-
peratures;

• We show that higher-order moments improve
information-theoretic approximations of the hy-
drophobic solubility at far-from-ambient condi-
tions.

More specifically, our results reveal how the degree of
tetrahedrality is captured by explicit features in the skew-
ness and excess kurtosis at specific radii R; see Sec. IIIA
and Figs. 2–5. These features scale for all of our phases
with the degree of tetrahedrality and thus offer an addi-
tional, statistically robust characterization of tetrahedral
order in disordered phases of water both in and out of
equilibrium.
More importantly, in Sec. III B, we find that the

tetrahedrality also leads to non-monotonic temperature
dependencies in the higher-order moments and conse-
quently a Gaussian distance metric. Whereas the well-
known minimum in the isothermal compressibility as a
function of temperature only predicts a minimal asymp-
totic variance, we here observe a non-monotonic behavior
also in the higher-order moments in local density fluctu-
ations. For intermediate to large radii, the distance to
a Gaussian distribution vanishes most rapidly at near-
ambient conditions. At both higher and lower tempera-
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tures, the decay slows down; see Fig. 6. Hence, higher-
order moments are more relevant at non-ambient than
at ambient conditions. As discussed below, we surmise
that this non-monotonicity again results from a balance
between tetrahedrality and thermal fluctuations, but in
our case this trade-off affects the higher-order moments.
The observed tendency of slower convergence cannot be
predicted solely from the number variance or other two-
body information.11

Consequently, the accuracy of any second-order ap-
proximation that assumes Gaussian density fluctuations
will deteriorate as the temperature moves away from am-
bient conditions. As a prominent example, we study this
effect for the information-theoretic approximations of hy-
drophobic solubility;23 see Sec. III C. Previous studies at
ambient conditions found that higher-order moments do
not improve upon the second-order approximation.23,58

While we confirm this finding for equilibrium water at
T = 300K, we show that for all other state points we
consider, higher-order moments indeed improve the ap-
proximation, i.e., equilibrium water around room tem-
perature is again an exception. More specifically, we find
that the approximation is accurate only for a range of
radii where the number of constrained moments essen-
tially determines the entire probability distribution; the
higher the number of moments, the larger this range of
radii; see Fig. 7.

The structural differences revealed by our analysis of
the higher-order moments directly translate into differ-
ent solvation behaviors. For example, we show that for
strongly negative values of the skewness, the information-
theoretic prediction of the hydrophobic solubility tends
to overestimate the excess chemical potential. For a
review of the far-reaching chemical implications of hy-
drophobic solubility; see Rego and Patel 42 . Moreover,
our structural characterization of water at all length
scales and the non-monotonic temperature dependence
that we discovered in the higher-order moments may re-
veal, in future work, structural links between the known
structural, dynamic, and thermodynamic anomalies of
water59, as briefly discussed in Sec. IV.

Even though experimentally accessible pair correla-
tions might look similar for two liquid-like states of wa-
ter, there can be distinct structural differences between
these states. Distinguishing those states by their higher-
order moments improves the accuracy of information-
theoretic approximations of hydrophobic solubility far
from ambient conditions. Moreover, the non-monotonic
temperature dependence of the higher-order moments
could shed light on water’s nested anomalies (structural,
dynamic, and thermodynamic).59 Thus, our study fur-
ther motivates the need for experimental methods to
ascertain three- and higher-body correlations in water
systems.60–62

We provide details on the models, phases and struc-
tural characteristics (together with their mathematical
definitions) in Sec. II, before we present our results in
III (as described above). Finally, we provide concluding

remarks in Sec. IV.

II. METHODS

We use extensive, state-of-the-art simulations to repre-
sent a broad range of water phases and reference states.
We then analyze these samples with the methods devel-
oped by Torquato, Kim, and Klatt.11

A. Models and phases

We performed isothermal-isochoric (NVT) molecu-
lar dynamics (MD) simulations of water using the
TIP4P/2005 potential, one of the most widely used wa-
ter models.49 TIP4P/2005 is a rigid 4-site classical water
model that faithfully reproduces water’s properties and
phase diagram across a broad range of states.63 We used
GROMACS v2018.464, integrated the equations of mo-
tion with a leap-frog algorithm with time step 2 fs, and
used a stochastic velocity-rescaling thermostat with re-
laxation time 0.1 ps for temperature control. We enforced
bond and angle constraints with a sixth-order LINCS al-
gorithm, and the Van der Waals and real-space Coulomb
cutoff distances were 1.2 nm. We used a particle-mesh
Ewald scheme to treat long-range electrostatics with a
Fourier grid spacing of 0.16 nm. We prepared disordered
initial configurations using the gmx solvate method at
the given simulation density.
For liquid water at T = 300K, we equilibrated the

system for 1 ns and collected frames for analysis every
subsequent 100 ps. For T = 200K metastable super-
cooled liquid water, we equilibrated the system for 400
ns and collected frames for analysis every subsequent
200 ps. For both liquid water systems the mass density
was 1.0 g/cm3. We note that while at T = 200K, liq-
uid water is metastable to ice I, due to the separation of
timescales between structural equilibration and ice nucle-
ation in finite-size simulations, it is possible to prepare
structurally equilibrated liquid water even at deep su-
percoolings. For supercritical water at T = 646.4K (1.01
times the liquid-vapor critical temperature of 640K65) we
equilibrated the system for 100 ns and collected frames
for analysis every subsequent 100 ps. For supercritical
water at T = 1600K we used a smaller time step size
of 1 fs, equilibrated the system for 10 ns and collected
frames for analysis every subsequent 100 ps. The su-
percritical systems were performed at the critical den-
sity of 0.31 g/cm3.65 For ice Ic and Ih, we prepared
proton-disordered initial configurations using the GenIce
package66 at densities of 0.944 g/cm3 for ice Ic and 0.921
g/cm3 for ice Ih.49,67 We equilibrated the ice systems for
100 ps and collected frames for analysis every subsequent
100 ps. The ice simulations were performed at T = 250K,
just below their melting temperature of T ≈ 252 K.49

For the quench configurations, we followed exactly the
stepwise quench procedure given in Gartner et al.45 at a
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TABLE I. Simulation parameters for all water states of the TIP4P/2005 model considered here, where T is the temperature,
N is the number of oxygen atoms inside the simulation box, Nc is the number of configurations, Lx, Ly, Lz are the side lengths
of the simulation box (where ∗ indicates a cubic simulation box), and ρ is the number density.

Phases T [K] N Nc Lx [nm] Ly [nm] Lz [nm] ρ [nm−3] ρ−1/3 [nm]

Solid
Ice Ih 250.0 35 152 500 10.17 9.57 11.74 30.8 0.319

Ice Ic 250.0 32 768 500 10.21 ∗ ∗ 30.8 0.319

Equilibrium Liquid
200.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

300.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

Quench

80.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

180.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

190.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

200.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

Supercritical Fluid
646.4 36 424 500 15.20 ∗ ∗ 10.4 0.458

1600.0 36 424 500 15.20 ∗ ∗ 10.4 0.458

cooling rate of 10K/ns, except in this work we performed
the quenches at constant volume corresponding to a mass
density of 1.0 g/cm3 instead of constant pressure. Each
configuration for analysis was taken from an independent
quench simulation. System sizes for all simulations are
given in Table I.

To compare liquid water at T=300 K to a simple liq-
uid, we simulate an equilibrium hard-sphere liquid with
a packing fraction ϕ = 31.7% and a particle number
N = 105 via the Monte Carlo method68. We chose the
value of ϕ to correspond to an effective packing fraction of
liquid water near ambient conditions69,70 in the following
sense. At unit number density, the hard-sphere diameter
D is equal to the smallest distance at which the pair cor-
relation function of two oxygen atoms reaches one, i.e.,
g2(r = D) = 1; for a definition of g2(r), see Sec. II B 2.
To compare the ice phases to reference systems with high
tetrahedrality, we consider amorphous silicon represented
by a continuous random network with 100,000 vertices
from Barkema and Mousseau.57

B. Structural characterization

We quantify the density fluctuation via P [N(R)] that
incorporates many-body correlations gn at unit number
density. This structural analysis is complemented by a
tetrahedral order parameter q.

1. Probability distribution P [N(R)]

We quantify density fluctuations of many-particle sys-
tems by measuring the probability distribution func-
tion P [N(R)] via the Monte Carlo method adopted in
Torquato, Kim, and Klatt.11 Specifically, at each window
radius R, we measure the values of N(R) from Nw(R)
randomly placed windows in every sample configuration
under periodic boundary conditions. To reduce system-

atic errors due to oversampling, we choose Nw(R) such
that the union volume of observation windows of radius
R cannot exceed 50% of the volume V of the simula-
tion box, i.e., 1 − exp [−Nw(R)v1(R)/V ] < 0.5, as in
Torquato, Kim, and Klatt,11 but with the slight improve-
ment that we here optimize Nw(R) for each radius sep-
arately. From the determined P [N(R)], we then esti-
mate the first four central moments associated with num-
ber variance σ2

N (R), skewness γ1(R), and excess kurtosis
γ2(R), defined as follows, respectively:

σ2
N (R) :=

〈
[N(R)− ⟨N(R)⟩]2

〉
, (1)

γ1(R) :=
〈
[N(R)− ⟨N(R)⟩]3

〉
/
[
σ2
N (R)

]3/2
, (2)

γ2(R) :=
〈
[N(R)− ⟨N(R)⟩]4

〉
/
[
σ2
N (R)

]2 − 3, (3)

where ⟨·⟩ represents an ensemble average. The skew-
ness γ1(R) ∈ (−∞,∞) measures the asymmetry of the
probability distribution P [N(R)], i.e., a positive value of
the skewness γ1(R) means that the right tail is heavier
than the left tail, and vice versa, a negative γ1(R) im-
plies a heavier left than right tail. A zero value of γ1(R)
means that P [N(R)] is symmetric around the mean value
⟨N(R)⟩. The excess kurtosis γ2(R) ∈ [−3,∞) measures
how heavy the tails of P [N(R)] are compared to a Gaus-
sian distribution. Specifically, a positive value of the ex-
cess kurtosis γ2(R) means that the tails are heavier than
Gaussian, and a negative value implies that the tails are
lighter. For a Gaussian distribution, both the skewness
and excess kurtosis are identically zero. To measure the
deviations of P [N(R)] from Gaussian distribution, we
also compute the l2 distance metric,11 defined as

l2(R) :=

{[
σ2
N (R)

]−1/2
∞∑

n=0

|FG(n)− FN (n)|2
}1/2

,

(4)

where FN (n) and FG(n) are the cumulative distribution
functions of P [N(R)] and the discrete Gaussian distri-
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bution with mean value ⟨N(R)⟩ and variance σ2
N (R), re-

spectively.

2. Many-body correlation functions gn

Another route to characterize density fluctuations of
many-particle systems in Rd is to use the n-body cor-
relation functions gn(r

n) [or, n-particle probability den-
sity functions ρn(r

n)] for n ≥ 2 where rn is a short-
hand notation3,68 for the position vectors of any n points,
i.e., rn := r1, r2, . . . , rn. The quantity ρn(r

n)drn is
proportional to the probability of finding any n par-
ticles with configuration rn in volume element drn :=
dr1dr2 · · · drn (see Chiu et al.71 for a mathematical defi-
nition). When the systems are statistically homogeneous,
ρn(r

n) is translationally invariant and hence depends
only on the relative displacements, say with respect to
r1: ρn(r

n) = gn(r12, r13, . . . , r1n), where rij = rj − ri.
In particular, the one-particle function is identical to the
constant number density ρ, and thus it is convenient to
define the n-body correlation function

gn(r
n) = ρn(r

n)/ρn. (5)

In systems without long-range order, gn(r
n) → 1 when

the points rn are mutually far from one another. Thus,
the deviation of gn from unity measures the degree of
spatial correlation between the particles. As in Torquato,
Kim, and Klatt,11 we here compare all phases at unit
number density or, equivalently, rescale them by a length
scale ρ−1/3, which corresponds for most state points to
about 3 Å (except for the supercritical fluids, where it is
about 5 Å); see Table I.

The important two-body function g2(r12) is usually
called the pair correlation function. The total correla-
tion function h(r12) is defined as h(r12) = g2(r12) − 1,
and thus is a function that vanishes in the absence of
spatial correlations in the system. The structure factor
S(k) is related to the Fourier transform of h(r), denoted

by h̃(k), via the expression

S(k) = 1 + ρh̃(k), (6)

which is directly measurable via scattering intensity.72

We note that the full distribution P [N(R)] and its as-
sociated moments σ2

N (R), γ1(R) are directly related to
the many-body correlation functions gn for n ≥ 2, as
shown in Torquato, Kim, and Klatt.11 For example, the
number variance σ2

N (R) can be computed via the two-
body correlation function:

σ2
N (R) = ⟨N(R)⟩

[
1 + ρ

∫
Rd

h(r)α2(r;R)dr

]
, (7)

where α2(r;R) is the intersection volume of two spherical
windows of radius R, scaled by the sphere volume v1(R),
whose centers are separated by the distance r. Similarly,
γ1(R) is related to g2 and g3, and γ2(R) is related to g2,
g3, and g4; see Appendix B.

The probability distribution P [N(R) = m] can be
expressed as a series expansion involving gn for n =
2, 3, . . .73,74. Truncating such series at the two- and three-
body levels yields sharp bounds on P [N(R) = m]. In par-
ticular, we obtained two- and three-body bounds on the
void probability P [N(R) = 0], respectively, as follows11:

P [N(R) = 0] ≤ [1− ⟨N(R)⟩]
[
1− ⟨N(R)⟩

2

]
+
σ2
N (R)

2
(8)

P [N(R) = 0] ≥ [1− ⟨N(R)⟩]
[
1− ⟨N(R)⟩

2

]
×

[
1− ⟨N(R)⟩

3

]
+

[
1− ⟨N(R)⟩

2

]
σ2
N (R)

− σ3(R)

6
γ1(R) . (9)

3. Tetrahedral order parameter q

We characterize the degree of tetrahedrality of each
of our state points by the tetrahedral order parameter
q from Errington and Debenedetti59 that was motivated
by Chau and Hardwick.75 This quantity is defined as

q := 1− 3

8

3∑
j=1

4∑
k=j+1

(
1

3
+ cosψjk

)2

, (10)

where ψjk is the angle formed by the lines joining the
oxygen atom of a given molecule to those of its (nearest)
neighbors j and k. Equation (10) is rescaled so that its
average ⟨q⟩ is 0 for an ideal gas without any orientational
order and 1 for a perfect tetrahedral network.

III. RESULTS

We begin with comparisons of classical two-body
statistics and distributions of q for all of our states.
Strong differences in ⟨q⟩ lead to only a few distinguish-
ing features in the two-body statistics. Then, we turn to
the higher-order moments with clear features of tetrahe-
drality that point towards a non-monotonic temperature
dependence of the speed of convergence to a Gaussian
number distribution. This non-monotonicity is confirmed
via l2(R). Its direct physical implications are discussed,
among others, in the exemplary case of hydrophobic sol-
ubility.
Figure 2 shows the two-body statistics for all states

considered here, i.e., the pair correlation function g2(r)
in real space, the corresponding structure factor S(k)
in Fourier space, and the number variance σ2

N (R) that
directly quantifies density fluctuations at the two-body
level. The pair correlation function of equilibrium water
at room temperature compared to those of the nonequi-
librium quenches (down to 180K) differ primarily in the
height of the first two peaks and the depth of the first
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FIG. 2. Two-body statistics for all states considered here: (a) pair correlation function g2(r), (b) structure factor S(k), (c)
number variance σ2

N (R). In the legend, the states are sorted such that their mean values of tetrahedrality ⟨q⟩ increase from
top to bottom. As noted in Sec. II B, all quantities are estimated at unit number density ρ = 1.

minimum (as a function of the radial distance r), indi-
cating the development of more structured local envi-
ronments as the temperature decreases. The ice phases
clearly exhibit Bragg peaks in S(k) (dotted lines), but
at large scales, their number variance σ2

N (R) has quali-
tatively the same scaling as the other non-hyperuniform
phases. At the critical point, the state of water becomes
anti-hyperuniform, i.e., σ2

N (R) grows faster than the vol-
ume, and S(k) diverges at the origin. In contrast, at
high temperatures (above 1600K), water becomes hypo-
surfical, i.e., the surface term in the scaling of the number
variance σ2

N (R) vanishes,13 i.e., σ2
N (R) exhibits a volume-

like scaling even for local fluctuations.
Figure 3 compares the probability density P (q) of the

tetrahedral order parameter q for all of our states. As ex-
pected, the ice phases and the amorphous silicon have the
highest degree of tetrahedrality, followed by the quenches
(the higher the final temperature, the lower the degree
of tetrahedral order) and finally the equilibrium water

0.0 0.2 0.4 0.6 0.8 1.0
Tetrahedral order q

10−3

10−2

10−1

100

101

P
ro

b
ab

il
it

y
d

en
si

ty
P

(q
)

FIG. 3. Semi-log plot of the probability density P (q) of the
tetrahedral order parameter q for all states considered here;
for the legend, see Fig. 2.

at T = 300K. The high-temperature phases exhibit no
explicit tetrahedral order, neither does the hard-sphere
liquid.

A. Signatures of tetrahedrality in higher-order moments

We begin our analysis of the higher-order density fluc-
tuations by computing the third- and fourth-order cen-
tral moments γ1(R) and γ2(R) of the number distribu-
tion, which embody up to four-body correlations; see
Eqs. (22) and (23) in Torquato, Kim, and Klatt.11 Thus,
our analysis reveals non-trivial higher-order correlations
in all states of water, including explicit features of tetra-
hedrality.
Figure 4 shows the skewness γ1(R) and excess kurto-

sis γ2(R) of the number distributions of oxygen atoms
in a spherical observation window of radius R. At spe-
cific radii, γ1(R) and γ2(R) exhibit salient features that
clearly scale with the degree of tetrahedral order for all
of our states.
Some of these radii directly correspond to characteris-

tic distances in a regular tetrahedral network. To explain
this relation, we first have to choose an appropriate bond
length of the tetrahedral network, e.g., here we choose the
distance to the first peak of the pair correlation function;
see Fig. 2. Then, the gray band at R ≈ 0.73 in the plot
of γ1(R) corresponds to the smallest radius for which the
spherical observation window can contain three atoms.
Close to this radius, we can therefore expect that the
higher the degree of tetrahedrality, the lower the proba-
bility of finding four or five atoms within this radius, and
hence the more left-tailed P [N(R)] will be, i.e., the more
negative will be the value of γ1(R = 0.73). This scaling of
γ1(R = 0.73) with the degree of tetrahedrality is quanti-
tatively confirmed in Fig. 5 (a), which plots γ1(R = 0.73)
against the average tetrahedral order parameter ⟨q⟩.
Attached to the gray band at R ≈ 0.73 in the inset of

Fig. 4 is a small figure that indicates the tetrahedral node
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3 2

4

FIG. 4. Skewness γ1 (left) and excess kurtosis γ2 (right) associated with window radius R are compared for all water states
considered here, amorphous silicon with a high degree of tetrahedral order, and a hard-sphere liquid with a low degree of
tetrahedral order. At three specific radii (shown in the gray shades), the features in γ1 and γ2 consistently scale with the
degree of tetrahedral order in these states. Correspondingly, the gray bands indicate radii where the possible number of atoms
per observation window increases by one for a regular tetrahedral node. The value is indicated in the attached figures of the
tetrahedral nodes and spherical observation windows.

and the spherical observation window, which contains up
to three atoms of the network. As we have seen, this
borderline case for three atoms imprints a clear feature
of tetrahedrality on the skewness γ1(R), i.e., the third-
order moment of the density fluctuations.

The excess kurtosis γ2(R), i.e., the fourth-order mo-
ment, exhibits a similar feature at the smallest radius for
which the observation window can contain four atoms of
the regular tetrahedral network. This radius is R ≈ 0.80,
and the scaling is confirmed in Fig. 5 (b). The values for
the ice phases are slightly off, which can be explained via
Fig. 4. Close to R ≈ 0.80, γ2(R) exhibits a local max-
imum as a function of R for all of our states except at
high temperatures. However, the peak positions of the
ice phases are slightly shifted with respect to those of
the disordered water phases. The latter agrees with the
peak of amorphous silicon. The different peak positions
for the ice phases are indicative of different distortions in
the tetrahedral networks compared to a regular network
(e.g., different ring statistics and consequently bending
angles).

At R = 0.42, i.e., the smallest possible radius of a win-
dow with two atoms of our regular tetrahedral network,
we find that γ1(R) and γ2(R) are still dominated by the
large void probability, i.e., the probability that the win-
dow contains no atoms. Hence features that scale with
the degree of tetrahedrality only emerge at slightly larger
radii of about 0.45–0.50.

Together, these features of γ1(R) and γ2(R) offer a re-
fined and statistically robust characterization of tetrahe-
dral order in disordered phases of water both in and out of
equilibrium — with immediate physical implications. In
fact, the additional structural information reveals behav-
ior in the higher-order moments that is non-monotonic
with respect to temperature.

In the search for a physical explanation of this non-
monotonic behavior, we compare γ1(R) and γ2(R) of our

water states to those of a simple liquid without tetra-
hedral order, namely the hard-sphere liquid. We first
focus on R ≈ 0.73, where γ1(R) exhibits the feature of
tetrahedrality discussed above, i.e., the local minimum
as a function of R that becomes more negative for more
tetrahedrally ordered water phases. In contrast, γ1(R)
of the hard-sphere liquid has a local maximum close to
this radius. Its functional value, however, is still smaller
than those of the high-temperature water states that are
dominated by thermal fluctuations.

Hence, we observe that the stronger the thermal fluc-
tuations are, the larger is γ1(R = 0.73); but the stronger
the tetrahedral order is, the smaller is γ1(R = 0.73). At
room temperature these two influences approximately
cancel out so that γ1(R = 0.73) ≈ 0. Similar effects
can be observed for larger radii and for γ2(R). Overall,
γ1(R) and γ2(R) appear to converge to zero more quickly
for water at room temperature than for our other state
points.

Importantly, these temperature non-monotonicities
that we have found in the higher-order moments com-
plement the known non-monotonic temperature depen-
dencies of thermodynamic response functions (isother-
mal compressibility and heat capacity), which anoma-
lously increase upon cooling. Interestingly, these anoma-
lous temperature dependencies of the thermodynamic re-
sponse functions are not strongly reflected in the corre-
sponding pair correlation functions, which only show a
mild increase in the strength of correlations as tempera-
ture decreases (see Fig. 2). By contrast, our higher-order
moments reveal distinct structural signatures, like the
pronounced features in γ1(R) and γ2(R) at specific radii.
The functional values at these radii change with temper-
ature and their absolute values are minimal close to room
temperature, hence mirroring the non-monotonic trends
in the response functions as functions of temperature.

In the next section, we use the Gaussian distance met-
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FIG. 5. For all of our states, the mean tetrahedral order ⟨q⟩ is plotted against the (a) skewness and (b) excess kurtosis at
characteristic radii. The states are represented by the same color code as in Fig. 4.

ric to quantify how quickly the higher-order moments
tend towards zero. We thus confirm that the speed of
convergence has a non-monotonic temperature depen-
dence (as surmised above); specifically, the convergence is
faster at room temperature than at higher or lower tem-
peratures. Then, we will discuss the chemical-physical
implications for hydrophobic solubility and beyond.

B. Effect of tetrahedrality on Gaussian distance metric

The combined effect of all higher-order moments on
the number distribution can be best quantified by the
Gaussian distance metric l2(R). Figure 6 compares our
results for all states. We observe that l2(R) decays at
large radii for all disordered states of water (i.e., for all
states except for the two ice phases). This observation
suggests that a central limit theorem (CLT) holds for
large R (and thus correspondingly large N) with respect
to the chosen metric.

Since any CLT depends on its metric, our proposed
CLT still agrees with the heavy left tails reported for
very large radii.42 There, indirect umbrella sampling37,41

revealed heavy left tails of P [N(R)], which can be related
to effects at liquid-vapor interfaces.42 However, since the
onset of the tails appears to converge to zero in the ther-
modynamic limit, they are consistent with a CLT in an
l2 metric. Note that these heavy left tails in water are
distinct from the more commonly observed right tails for
random point processes as reported for a broad spectrum
of models in Torquato, Kim, and Klatt.11

The CLT and its speed of convergence for a certain
range of radii indicates how well P [N(R)] can be ap-
proximated by a Gaussian distribution and hence by two-
body statistics. As an interesting side remark, the renor-
malized Gaussian approximation of Ashbaugh, Vats, and

Garde40 happens to coincide with the reference distribu-
tion of the Gaussian distance metric l2(R).

11

For one relatively large radius and one relatively small
radius, we also show the corresponding number distribu-
tions in Fig. 6. Already at the second peak of l2(R), the
Gaussian distance metric is smaller for water at room
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support sizes at three different values (nf = 2, 3, 4); they coincide with the radii at which the predictions deviate from the
simulations.

temperature than at non-ambient conditions, whether it
is warmer or colder. This non-monotonic temperature
dependence essentially continues for larger radii and in-
deed confirms that among all states considered, the num-
ber distribution converges fastest to the normal distribu-
tion for equilibrium water at room temperature.

At high temperatures, thermal fluctuations enhance
density fluctuations, which leads to positively skewed
number distributions at a given length scale R; while
at low temperatures, the emergence of tetrahedral or-
der increases the correlation length and leads to nega-
tively skewed number distributions. At ambient condi-
tions, those two trends balance out, which results in a
fast convergence of the number distribution to a Gaus-
sian distribution.

As noted above, this balance between thermal fluctua-
tions and tetrahedral order is similar to the surmised rea-
son for the anomalous minimum in the isothermal com-
pressibility upon cooling. In our case, however, the non-
monotonic temperature dependence appears already at a
local scale, applies to non-equilibrium phases, and it ex-
plicitly affects the higher-order moments with immediate
physical implications, e.g., on the hydrophobic solubility,
as discussed in the next section. We will broaden the
scope of the discussion in Sec. IV.

C. Implications on hydrophobic solubility

A prominent example of the chemical-physical impor-
tance of density fluctuations in water is the solubility
of hydrophobic solutes in water. Specifically, the excess
chemical potential µex of hydration for a hard-particle
solute of radius R can be expressed by the probability of
the random formation of a spherical cavity in water, i.e.,
the void probability P [N(R) = 0]:76,77

µex = −kBT lnP [N(R) = 0]. (11)

The estimation of P [N(R) = 0] for liquid water has been
a particularly productive field of research starting with a
seminal paper by Hummer et al.23 and subsequent works
over the last two decades.34–42

Hummer et al.23 estimated P [N(R) = 0] via an
information-theoretic approximation, i.e., the probabil-
ity distribution P̂ [N(R)] that maximizes the cross en-
tropy (relative to a flat prior distribution) given the
first M moments of P [N(R)]. Using the first two mo-
ments of P [N(R)], Hummer et al. obtained (at ambient
temperatures) a surprisingly good approximation of the
void probability for small to intermediate radii, i.e., up
to about 10 Å.42 Counterintuitively, the accuracy of the
information-theoretic approximation was found to dete-
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riorate if higher-order moments were taken into account,
i.e., 2 < M < 7; see Hummer et al.58

This surprising accuracy at near-ambient conditions of
the information-theoretic approximation based on only
the first two moments evokes at least three questions:

(i) Why does the information-theoretic approxima-
tion, counter-intuitively, worsen when higher-order
moments are included?

(ii) Does the information-theoretic approximation ap-
ply to water in out-of-equilibrium or metastable
sates, or solid phases?

(iii) Should the tetrahedrality of water impact the ac-
curacy of the prediction of the solubility?

To address these three questions, we compute (from
our simulations) the void probability P [N(R) = 0],
also called cavity formation probability. We then deter-
mine the information-theoretic approximation with vary-
ing numbers of constraints M (always employing the
flat prior probability as in Hummer et al.23). Finally,
Fig. 7 compares our simulations results for P [N(R) = 0]
(dots) to the information-theoretic approximation (col-
ored lines).

While we confirm for water at ambient temperatures
the superiority of the information-theoretic approxima-
tion with M = 2 over those with higher-order moments,
we find that it is an exception. For all other states, the
information-theoretic approximation is accurate only for
a range of radii where the number of constrained mo-
ments essentially fix the entire probability distribution;
the higher the number of moments, the larger this range
of radii, which can be quantified by the following rule of
thumb.

The information-theoretic approximation withM con-
straints is accurate if there are at most M non-negligible
values of P [N(R)]. In that case, the M moments virtu-
ally specify all probabilities. More specifically, we define
the effective support size nf (R) as the minimal number n
for which

∑∞
m=n+1 P [N(R) = m] < P [N(R) = 0]. Then,

the information-theoretic approximation with M con-
straints is accurate for a range of radii where nf (R) ≤M ;
see Fig. 7.

For the same range of radii, we also obtain accurate
predictions via the rigorous bounds from Torquato, Kim,
and Klatt.11 The upper and lower bounds virtually co-
incide within this regime, which may facilitate an ana-
lytic approach to hydrophobic solubility for small radii.
For larger radii, the information-theoretic approximation
prediction is more precise even though it is not perfect.

At these radii slightly larger than the constrained
range, the deviations of the information-theoretic ap-
proximation from our simulation data display a con-
sistent pattern. The information-theoretic approxima-
tion underestimates P [N(R) = 0] when the skewness
is negative, which corresponds to a tetrahedral order
higher than that for water at ambient temperatures; and
the information-theoretic approximation overestimates

P [N(R) = 0] when the skewness is positive, which corre-
sponds to a low tetrahedral order. For water at room
temperature, the skewness and excess kurtosis almost
vanish, as discussed above, resulting in accurate Gaus-
sian predictions of the information-theoretic approxima-
tion with M = 2. Hence, the surprisingly good perfor-
mance of the information-theoretic approximation at am-
bient conditions appears to be again related, via γ1(R),
to a balance of thermal fluctuations and tetrahedral or-
der.
In answer to the questions above, (ii) the information-

theoretic approximation is a valuable approximation for
all of our states, but a similar accuracy as for water at
room temperature is obtained only for small radii, where
the first M moments fix the distribution. (iii) Both
tetrahedrality and thermal fluctuations impact the ac-
curacy of the information-theoretic approximation but
with opposing effects, i.e., underestimation or overes-
timation of P [N(R) = 0], respectively. (i) At room
temperature, these effects roughly cancel out. For all
of our other states, higher-order moments improve the
information-theoretic approximation; more precisely, the
range of radii for which we obtain accurate predictions
increases. For example, if we constrain four instead of
two moments, the range of radii with accurate predic-
tions increases from about 0.6 to 0.8.

IV. DISCUSSION

We have studied here the link between physical proper-
ties and density fluctuations in water by going beyond the
two-body level to higher-order moments and by compar-
ing a great variety of states of water across a broad range
of temperatures 80K to 1600K. These states include ice
phases, equilibrium liquid water, supercritical water, and
disordered nonequilibrium quenches, and we compared
them to two further reference systems: equilibrium hard
spheres, representing a simple liquid, and a continuous
random network, representing amorphous silicon. We
analyzed all of our samples with a recently developed,
advanced platform for local density fluctuations.11 This
approach includes robust estimates of higher-order mo-
ments (which enables us to capture crucial information
about n-body correlations), a Gaussian distance metric.
Our analysis reveals how water’s tetrahedral order af-

fects not only the number variance but also the higher-
order moments of local density fluctuations since tetrahe-
drality is a many-body property. Specifically, we observe
that the third- and four-order central moments, γ1(R)
and γ2(R), scale with the mean tetrahedral order param-
eter ⟨q⟩ at two characteristic length scales R = 0.73 and
0.80, respectively. This scaling clearly indicates that the
skewness and excess kurtosis entail signatures of tetra-
hedrality on the higher-order correlations for all of our
phases. Moreover, the corresponding radii can be di-
rectly related to characteristic distances in tetrahedral
nodes.
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The Gaussian distance metric l2(R) as a function of
the radius R has a local minimum at R ≈ 0.72 for liq-
uid water at T = 300K but a local maximum for the
quenches and the supercooled liquid at T = 200K. Al-
though the pair correlation functions appear to be similar
for all of our liquid-like states of water at a wide range
of conditions, the higher-order moments reveal distinct
structural differences, e.g., related to the degree of tetra-
hedrality or to how close the density fluctuations are to
Gaussian. While such structural differences can easily be
missed by two-body characteristics, they are clearly cap-
tured by the higher-order moments. Hence, our results
further motivate the need for experimental methods to
ascertain three- and higher-body correlations in water
systems, e.g., via isothermal pressure derivatives of the
structure factor or a spherical harmonic analysis.60–62

A key insight of our higher-order moment analysis is
the newly found temperature non-monotonicity in the
Gaussian distance metric l2(R). First of all, the con-
vergence or non-convergence to a Gaussian distribution
distinguishes the disordered from the ordered phases.
Specifically, in contrast to the two crystalline ice phases,
the distributions of all our disordered states become close
to a Gaussian for large radii as measured by l2(R). For
these liquid-like states, we observe that, at ambient con-
ditions, tetrahedral order and thermal fluctuations bal-
ance out, and hence l2(R) converges to zero most rapidly.
The convergence slows down at higher and lower temper-
atures; in the former case, because of larger thermal fluc-
tuations; in the latter case, because of higher tetrahedral
order.

This non-monotonicity distinguishes itself from the
well-known anomaly in the isothermal compressibility in
at least two aspects. Even though the isothermal com-
pressibility can be related to density fluctuations, more
precisely, the asymptotic number variance, it only holds
in the limit of infinite radii and only pertains to the sec-
ond moment. In our case, we find that tetrahedrality also
induces non-monotonic temperature dependencies locally
for the higher-order moments.

Another intriguing aspect of water’s anomalies is the
nested structural, dynamic, and thermodynamic anoma-
lies noted by Errington and Debenedetti 59 . Specifi-
cally, they observe a region of “structural” anomalies,
where water’s translational and orientational order de-
crease upon compression, a region of “dynamic” anoma-
lies, where water’s diffusion coefficient increases upon
compression, and a region of “thermodynamic” anoma-
lies, where density decreases upon cooling at constant
pressure. The set of temperatures and densities that de-
fine the region of structural anomalies completely con-
tains the region of dynamic anomalies, which in turn
contains the region of thermodynamic anomalies. Given
that our present approach provides a platform to charac-
terize higher-order structural information about water at
all length scales, in future work, it would be interesting
to study how the skewness, kurtosis, and Gaussian dis-
tance metric might behave at state points in the vicinity

of water’s nested anomalies. Such an effort may reveal
further structural links between water’s anomalous local,
mesoscale, and macroscale phenomena.59

A consequence of this non-monotonic behavior is that
higher-order moments are no longer negligible relative
to the first and second moments once we consider
water states away from ambient conditions. Hence,
second-order approximations that assume Gaussian den-
sity fluctuations and that work well close to room
temperature will become less accurate at both high
and low temperatures. We demonstrate this effect for
the information-theoretic approximation of hydropho-
bic solubility.23 With the prominent exception of wa-
ter at ambient conditions, we find that the information-
theoretic approximation is accurate only in a range where
the constrained moments essentially determine the entire
probability distribution. Therefore, the higher-order mo-
ments generally improve the approximation for the larger
solute radii as one departs from ambient conditions.

Moreover, for radii beyond the range where the first
two moments provide accurate predictions, the sign of
γ1(R) indicates whether the information-theoretic ap-
proximation over- or underestimates the hydrophobic sol-
ubility for our states. The sign of γ1(R), in turn, is linked
to the question whether tetrahedrality or thermal fluc-
tuations have a greater influence on the local degree of
order and disorder. Thus, our higher-order moment anal-
ysis not only improved the predictions quantitatively and
provides estimates for the range where the approximation
is accurate and which deviations are to be expected, but
the higher-order moments provide us with physical in-
sights into what determines the local structural features
of a wide variety of water phases.

One of the most immediate applications of hydropho-
bic solubility is in biology, which of course is typically re-
stricted to near-ambient conditions. Thus, the utility of
the information-theoretic approximation even with M =
2 is readily apparent. However, there are many techno-
logically and scientifically impactful cases where predict-
ing water’s interactions with hydrophobic solutes may
also be important at conditions far from ambient, such
as for understanding the impact of hydrophobic aerosol
particles in the atmosphere51,52 (i.e., low-temperature),
or for understanding life in exotic environments such as
on astronomical bodies, e.g., comets, planets,53 (i.e., low-
temperature, low-pressure) or near hydrothermal vents54

(i.e., high-temperature, high-pressure). In such cases,
considering higher-order moments of P [N(R)] may prove
useful.

Finally, we point out that the higher-order moments
generically provide a robust characterization of n-body
correlations in water’s tetrahedral network. Such addi-
tional structural information can, for example, enhance
or complement recent unsupervised machine learning ap-
proaches to classify high- and low-density structures in
liquid water.78 One could also envision combining these
structural characterization techniques with recent ad-
vances in machine-learned interaction potentials79–81 to
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explore structure across length scales as derived from ab
initio models. More broadly, our findings could also gen-
eralize to other highly-polar (e.g., ammonia, HF) and/or
network-forming liquids (e.g., Si, Ge)82.
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FIG. 8. The two-body measure G2, which is the height of
the second peak of g2(r), is plotted as a function of the mean
tetrahedral order ⟨q⟩ for all states considered here. These
states are represented by the same color code as in Fig. 2.

Appendix A: Correlation of the second peak of g2(r) with
tetrahedral order

The value of the two-body correlation function g2(r)
at the second peak, which is here denoted by G2, has
been employed by Sellberg et al. 48 to quantify the de-
gree of tetrahedral order of liquid water. For purposes of
comparison, we apply this parameter to all states consid-
ered here. Figure 8 clearly shows a positive correlation
between G2 and the mean tetrahedral order ⟨q⟩ for all of
the states of water considered in this paper (and similar
to Supplementary Fig. S21 from Sellberg et al. 48 in a
different representation for temperatures 200–340K).

Appendix B: Formulas for the skewness and excess kurtosis in terms of n-body correlation functions

Here, we represent the expressions for the skewness γ1(R) and excess kurtosis γ2(R) associated with the spherical
observation window of radius R in terms of the n-body correlation functions gn(r

n); see Torquato, Kim, and Klatt 11

for derivations. The skewness, defined in Eq. (2), can be written as

γ1(R) = [σ2
N (R)]−3/2

{
ρv1(R) + 3ρ2

∫
Rd

h(r)vint2 (r;R)dr+ ρ3
∫
Rd

∫
Rd

[g3(r
3)− 3g2(r12) + 2]vint3 (r3;R)dr2dr3

}
,

(B1)

where vintn (rn;R) is the intersection volume of n spheres of radius R centered at positions rn = r1, r2, · · · , rn. We see
that γ1(R) encodes up to three-body information. The excess kurtosis, defined in Eq. (3), can be written as

γ2(R) = [σ2
N (R)]−2

{
ρv1(R) + 7ρ2

∫
Rd

h(r)vint2 (r;R)dr+ 6ρ3
∫
Rd

∫
Rd

[g3(r
3)− 3g2(r12) + 2]vint3 (r3;R)dr2dr3

+ ρ4
∫
Rd

∫
Rd

∫
Rd

[g4(r
4)− 4g3(r

3) + 12g2(r12)− 6]vint4 (r4;R)dr2dr3dr4 − 3

[
ρ2

∫
Rd

g2(r)v
int
2 (r;R)dr

]2 }
. (B2)

We see that γ2(R) encodes up to four-body information.
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