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We theoretically demonstrate that the hallmarks of correlation and fermionization in a one-
dimensional exciton-polaritons gas can be observed with state-of-the-art technology. Our system
consists of a chain of excitonic quantum dots coupled to a photonic waveguide, with a low filling
of polaritons. We analytically identify the Tonks-Girardeau, Tavis-Cummings and mean-field limits
and relate them to different regimes of the excitonic anharmonicity and photonic bandwidth. Using
matrix-product states, we numerically calculate the ground-state energies, correlation functions and
dynamic structure factor of the system. In particular, the latter has a finite weight in the Lieb-
Liniger hole branch, and the density-density correlator displays Friedel-like oscillations for realistic
parameters, which reveal the onset of fermionization close to the Tonks-Girardeau regime. Our work
encourages future experiments aimed at observing, for the first time and in spite of the moderate
excitonic anharmonicity, strongly correlated exciton-polariton physics.

I. INTRODUCTION

Reducing the dimensionality of many-body systems
fundamentally affects their properties. One of the
most prominent examples is the one-dimensional Tonks-
Girardeau (TG) gas of bosons, where the presence of
strong inter-particle interactions leads to fermioniza-
tion [1, 2]. The TG gas is a limiting case of the un-
derlying Lieb-Liniger (LL) model, which describes a one-
dimensional system of repulsively interacting bosons [3].
In contrast to higher dimensions, the excitation spectrum
of the LL model contains two branches in the excita-
tion spectrum: particle and hole excitations, the latter
being a unique feature of one-dimensional physics. As
the interaction parameter is tuned from the weak to the
strong-coupling regime, the spectrum gradually changes
its character from particle to hole-like [4]. Observing this
transition in an experiment provides a clear fingerprint
of strong interactions in a one-dimensional system [5].

The paradigmatic example of the 1D Bose gas sug-
gests that dimensional reduction can be a strategy to
achieve strongly correlated photon fluids, which is one
main goal of research in quantum optics, even in the pres-
ence of moderate interactions. In particular, we focus our
attention here on exciton-polaritons [6, 7], but our re-
sults should also apply to other kinds of polaritons, such
as Rydberg polaritons [8, 9]. Exciton-polaritons have
emerged in the last two decades as an appealing platform
to study superfluidity [10], nonlinear physics [11, 12],
analogue gravity [13, 14], and non-equilibrium quasi-
condensates [15–17]. The photon endows the polariton
with a light mass, contrasting the detrimental effects of
temperature and disorder, and it allows for efficient opti-
cal driving and imaging. However, interactions between
polaritons, which are inherited by their matter compo-
nent, are typically small, such that in two dimensions a

mean-field description is accurate. Second-order corre-
lation measurements reveal up to a modest 5% of anti-
bunching [18].

In spite of these difficulties, there has been a lot of re-
cent theoretical and experimental work aimed at pushing
polaritons into the strongly correlated regime. Dipolari-
tons, obtained by hybridizing the photon with an inter-
layer exciton possessing a permanent dipole moment [19–
21], and polaron-polaritons, where the matter excitation
role is played by a charged trion [22], have provided an
enhancement of one order of magnitude of the interac-
tion over linewidth ratio. Rydberg excitons in Cu2O
compounds offer yet another option to pursue in this
direction [23, 24]. Quantum confinement of excitons
to 1D [25] and 0D [26, 27] traps by strongly localized
electric fields has recently been achieved. In many of
these advancements, a major role is played by atomically
thin semiconductors based on transition-metal dichalco-
genides (TMD) [28].

A first hint of the nontrivial role of dimensionality and
kinetic energy in renormalizing the polariton-polariton
interaction has been investigated in Ref. [29]. Here, the
authors studied two dipolaritons on a 1D wire, and re-
marked that hybridyzation of the photon with the exci-
ton does not necessarily result in a reduction of the cou-
pling constant by the Hopfield factor, as it is commonly
assumed in the mean-field framework; on the contrary,
when the spatial correlations are taken into account, the
light mass of the photon hinders the minimization of the
repulsion between the polaritons.

In this work we show that, with available experimen-
tal setups, it is possible to generate a 1D quantum gas of
exciton-polaritons displaying the signatures of fermion-
ization in the density-density correlation function and in
the dynamic stucture factor, where the Lieb-Liniger hole
branch takes a finite weight. Our proposal consists of an
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FIG. 1. 1D lattice of strongly interacting exciton-polaritons. (a) An array of 0D cavity sites, each coupled to a confined
excitonic dot. The cavity sites can be individually or collectively pumped. (b) The corresponding ladder model, where the
vertical rungs represent the photon-exciton coupling in the system with a coupling strength Ω. Cavity photons hop between
sites with a rate J , that depends on the cavity design and inter-site distance. The excitonic anharmonicity is given by the
on-site interaction strength U , which can be enhanced substantially by tighter exciton confinement. (c) The dispersion relations
of cavity photons (green), exciton (red) and exciton-polaritons (blue for the lower polariton branch, cyan dashed for the upper
one).

array of excitonic quantum dots coupled to a 1D pho-
tonic waveguide or array. In Sec. II we introduce the
underlying microscopic model and discuss the analyti-
cal limits of our system. The roles of the Rabi split-
ting, photonic bandwidth and excitonic anharmonicity
are analyzed in detail, highlighting a crossover between
the Tonks-Girardeau and Tavis-Cummings regimes [30].
Our numerical results are based on matrix-product state
(MPS) calculations and time-evolution techniques, as re-
ported in Sec. III. In Sec. IV we summarize our findings
and provide an outlook for future investigations.

II. SETUP AND THEORETICAL MODEL

In this work we study the ground state and collective
excitations of a one-dimensional polariton system, which
is schematically depicted in Fig. 1. Polaritons possess a
matter (exciton) and a radiation (photon) component [7].
In typical experimental realizations, the exciton disper-
sion is negligible over wavelengths belonging to the light
cone of an optical photon. For this reason we will con-
sider a flat exciton mode in what follows, resonant with
the bottom of the 1D photon dispersion. The physical
system that we envision consists of a 1D array of cav-
ity sites with an active nonlinear material that exhibits a
strongly anharmonic spectrum. We consider an excitonic
quantum dot defined by electric fields, where the confine-
ment length is tunable [25–27]. When the light-matter
coupling strength, represented by the vacuum-Rabi split-
ting, Ω, is stronger than the overall cavity linewidth
(Γ), we expect 0D exciton-polariton modes in each site

(Fig. 1b). Interactions between optical photons in vac-
uum are extremely small, while (polarized) excitons in
a same quantum dot repel each other in a sizable way.
Therefore we model local exciton interactions via a Bose-
Hubbard term of strength U . For a small enough exciton
confinement length in the quantum dot, this interaction-
energy shift can exceed the linewidth, leading to polari-
ton blockade. The 0D cavities are tunnel-coupled to each
other, as shown in Fig. 1a, with a rate J , and the dis-
persion of polaritons in the 1D cavity lattice is shown in
Fig. 1 c.

To perform our numerical studies we discretize space
and consider a lattice model of length L. As depicted in
Fig. 1b, such a lattice can be thought of as a L×2 ladder,
with the top and bottom rails corresponding to the the
photon and exciton degrees of freedom, respectively. The
creation operator for a photon at site j is denoted a†j , and
similarly x†

j for the exciton. Altogether, we consider the
Hamiltonian

H =
∑
j

ωXx†
jxj − J

(
a†jaj+1 + a†j+1aj − 2a†jaj

)
+

− Ω
(
x†
jaj + a†jxj

)
+

U

2
x†
jx

†
jxjxj (1)

where ωX denotes the exciton detuning, J is the photon
hopping strength, Ω is the Rabi coupling and U denotes
the on-site repulsion between excitons. In the following,
we set the detuning to zero, i.e., ωX = 0. The bare pho-
ton dispersion is given by ωph(k) = 2J(1 − cos(k)). In
our calculations we fix the lattice constant to one, but be-
low we discuss the role of the physical distance ℓ between
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the quantum dots. A similar setting was considered in
Ref. [31], which focused on densities close to the Mott
transition, i.e., with around one particle per rung. On
the contrary, in the following we will be mainly inter-
ested in the dilute regime of small fillings, which displays
different physics.

Note that we neglect the driven-dissipative nature of
polaritons and deal with a closed system, with a fixed
number N of bosonic excitations. Provided one can en-
gineer a photonic wire with a sufficiently high quality
factor, such an approximation may be appropriate for
excitons confined to quantum dots, since their oscillator
strength is strongly reduced by the dimensional confine-
ment, so their radiative decay rate is very small [32]. Un-
der such conditions, polaritons may have a sufficiently
long lifetime to reach equilibrium, similarly to experi-
ments in ultracold-atom [33, 34] and photon [35] BECs.
In our theoretical framework, the non-equilibrium nature
of the system will still enter in the spectral linewidths of
the collective excitations displayed below.

We use the following parameters to model our system,
that are realistic for excitonic quantum dots ([26, 27]) in
TMD heterostructures coupled to 1D cavity arrays. The
tunnel coupling strength between cavity sites is assumed
to be in the range of J ≈ (1 − 5)meV for a ∼ 1µm dis-
tance between optical cavities. For the on-site interaction
strength between polaritons, we estimate values in the
range U ≈ (0.1−1)meV. This is obtained from the typical
exciton-exciton interaction strength in TMD monolayers
of about 0.1µeVµm2, which leads to insignificant shifts
for delocalized 2D excitons. However, in electrically de-
fined quantum dots shown in Ref. [26, 27], the excitonic
area can be reduced down to ∼ 100 nm2. This in turn
dramatically enhances the interaction shift U, potentially
more than the typical polariton linewidth Γ ∼ 100µeV.
The reduction of excitonic area also comes at a cost, i.e.
the reduction of the light-matter coupling. However, the
large oscillator strength of excitons in TMD monolayers is
of great advantage in this case. The vacuum Rabi split-
ting for TMD monolayers coupled to microcavities has
been shown to be up to ∼ 20meV [22]. For electrically
defined quantum dots with reduced area, we estimate
Ω ∼ (2−5)meV, which also exceeds the linewidth. There-
fore, with these parameters, the scenario of strongly in-
teracting polaritons with on-site blockade can be realized.

In the next paragraphs, we build some physical intu-
ition for the nature of the ground state of the system. To
this aim, we study the two limiting regimes of small and
large J/Ω, displaying the physics of polariton fermion-
ization and of the Tavis-Cummings model, respectively.

A. Tonks-Girardeau limit

In the limit of small J/Ω or small density, the kinetic
energy of the system is negligible. As a consequence, the
ground state optimizes the light-matter interaction and
consists of well-defined (lower-branch) polaritons. Be-

cause of the zero exciton-photon detuning, such polari-
tons will be half matter-like and half radiation-like. In
other words, the Hopfield coefficient will be 0.5. We can
thus expect that the effective hopping of a polariton is
approximatively given by Jpol = J/2. On the other hand,
polaritons inherit interactions from their excitonic com-
ponent. As recently demonstrated in Ref. [29], the cor-
rect way to extract the effective polariton-polariton in-
teraction constant Upol is to adopt a Born-Oppenheimer
approach: one neglects the kinetic energy and computes
the ground-state energy EBO of

HBO =

 0 −
√
2Ω 0

−
√
2Ω 0 −

√
2Ω

0 −
√
2Ω U

 , (2)

corresponding to the matrix elements of the Rabi cou-
pling plus exciton-exciton interactions in the two-boson
sector. Then, one defines Upol = EBO − 2Ω, which is the
two-body local energy difference between the interacting
and non-interacting cases. In particular, when U/Ω → 0
one recovers Upol = U/4, which is the expected result
when taking the Hopfield coefficient to the fourth power,
while for U/Ω → ∞ one has Upol = (2−

√
2)Ω. In sum-

mary, the effective lower-polariton Hamiltonian reads

Hpol = −Jpol
∑
j

(b†jbj+1 + b†jbj−1)+

+ (2Jpol − Ω)
∑
j

b†jbj +
Upol

2

∑
j

b†jb
†
jbjbj , (3)

where b†j =
a†
j+x†

j√
2

describes the creation of a lower branch
polariton.

For J ≪ Ω, U , which entails Jpol ≪ Upol, the physics
is then well captured by the lattice version of the Tonks-
Girardeau (TG) model [1, 2]. In this scenario, polaritons
behave like impenetrable bosons and they can be mapped
onto fermions by the usual Jordan-Wigner transforma-
tion. As a result, any eigenstate of the bosonic system is
in one-to-one correspondence with a 1D non-interacting
Fermi gas, with the same energy and total momentum.
(Other quantities, like the momentum distribution, re-
quire instead a highly non-trivial mapping.) The ground
state, in particular, simply corresponds to a Fermi sea
filled up to the Fermi momentum kF = πN/L. More
precisely, for N = 2M + 1 particles and with periodic
boundary conditions (PBC), the TG energy reads

ETG = −NΩ+ Jpol

M∑
m=−M

[
2− 2 cos

(
2π

L
m

)]
, (4)

where −NΩ is the exact energy at J = 0. For an even
number of particles, the ground state is instead degener-
ate at the TG level.

The Fermi momentum kF = πN/L plays a fundamen-
tal role in determining the collective excitations and the
extension of the Lieb-Liniger branch II [3], which will be
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FIG. 2. Blueshift per particle of the ground-state energy with respect to the non-interacting case, for a periodic system of size
L = 36. Fixing N = 9 excitations, the behavior as function of J/Ω has been analysed for (a) realistic U = Ω and (b) very
large U = 104Ω exciton-exciton interactions. At small J/Ω the onset of fermionization is indicated by the black solid line. In
panel (b) for very large J/Ω one achieves the Tavis-Cummings limit (red dashes). The full photon-exciton model (red squares)
is also compared with an effective lower polariton model (blue circles), displaying perfect agreement at small J/Ω. In panel (c)
we instead vary N , hence the density ρ of excitations.

analyzed in Sec. II B and basically reflects the fact that
the scattering of a particle between the two Fermi surface
points costs zero energy and involves a 2kF momentum
exchange.

In a continuum wire, or in the limit of small densities,
the TG scaling holds:

ETG/N = −Ω+
k2F

6mpol
(5)

where now the Fermi momentum reads kF = πN/(ℓL)
and the polariton mass m−1

pol = 2ℓ2Jpol.

B. Tavis-Cummings regime

At large J and with PBC, the only state accessi-
ble for the photons is the k = 0 mode. In the limit
U/Ω → ∞, one can approximate the the excitonic Hilbert
space at each site as a two-level system, to recover the
Tavis-Cummings physics of collective light-matter inter-
action [30], given by the Hamiltonian

HTC = − Ω√
L
a†0

L∑
j

xj , (6)

to be solved in the subspace with N excitations. This
Hamiltonian can be block-diagonalized using the Dicke
representation of angular momenta [36]

S+ =

L∑
j

x†
j , Sz =

L∑
j

(
x†
jxj −

1

2

)
, (7)

obeying the algebra [S+, S−] = 2Sz, [Sz, S±] = ±S±.
The ground state lives in the representation of maximal

permutation symmetry or, in other words, of maximal
Dicke angular momentum S = L/2, where the energy
can be easily evaluated numerically. At small filling ρ =
N/L ≪ 1, it holds that

ETC/N ≃ −Ω+
Ω

4
ρ+O

(
ρ2
)
. (8)

Notice that this is independent of J and entails that the
crossover between the TG and TC regimes occurs for
J ∼ 3Ω

2π3ρ2 . In other words, having a larger density favors
the TC phase and vice versa.

At large J but small U/Ω, we instead expect that
the Bogoliubov approximation for the polariton Bose gas
should become accurate, yielding a ground-state energy
of EBogo ≃ −ΩN +

Upol

2
N(N−1)

L . In this regime, one
has no fermionization and the low-energy excitations will
be dominated by the usual bosonic Bogoliubov disper-
sion [37], with the acoustic Goldstone mode at small mo-
menta and no Lieb-Liniger branch II.

To conclude these theoretical remarks, let us discuss
the case of open boundary conditions (OBC). For small
hopping J and large lattice length L, the physics dis-
cussed above for PBC is recovered in the bulk of the sys-
tem, with small deviations at the endpoints (see App. A).
For a finite L and very large J , one would instead find
that the only accessible photonic mode is a sinusoidal
wave with finite energy. The excitations will then tend
to avoid the photonic sector and the ground state be-
comes matter-like (see App. B). In the following we will
consider PBC for the computation of the energies, since
we want to show its scaling at arbitrary J , while for the
excitation spectra we will use OBC, because in our MPS-
based numerical calculations it is cheaper and much eas-
ier to treat (even rather large, L ≳ 100) OBC systems
than (intermediate-scale, L ≳ 50) PBC systems. In our
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FIG. 3. (a) Photonic and (b) excitonic g(2) functions, evaluated with respect to the central site of an OBC ladder. Here we
used a realistic U = Ω interaction strength, N = 25 excitations in L = 100 sites (one-quarter filling) and three different hopping
couplings J/Ω. At J = 0.01Ω (red circles), Friedel oscillations are clearly visible and provide a hallmark of fermionization.

OBC calculations, we will therefore only consider rela-
tively small J and large L, such that we only deal with
bulk physics, and boundary and finite-size effects become
negligible.

III. NUMERICAL RESULTS

As already mentioned, there is a double advantage in
setting up the system on a lattice. The first, physical,
reason is that this allows to tune the photon hopping
J by the design of the photonic structure. The second,
purely theoretical, advantage is that we can profit from
the power of MPS-based methods such as DMRG to nu-
merically study the ladder model of Eq. (1).

A. Ground-state energy

In Fig. 2 we investigate the ground state energy by
defining the blueshift per particle, EGS/N + Ω, which
represents the energy per particle minus the energy of a
free polariton, −Ω, thus quantifying the effect that inter-
actions have on the total energy.

In Figs. 2a) and 2b) we fix the filling factor to one
quarter and consider N = 9 excitations in a lattice of
length L = 36. In Figs. 2a) we numerically vary J/Ω
for the realistic interaction strength U = Ω. The DMRG
results for the ladder model are reported as red squares.
As anticipated, the polaritons are effectively impenetra-
ble at small J/Ω and one recovers the Fermi sea en-
ergy of the TG gas, Eq. (4), indicated by a black solid
line. In this regime, the effective polariton model from
Eq. (3) reproduces perfectly the full result, as indicated
by the blue circles, obtained by running DMRG on the
effective model. At large J there is instead some dis-
crepancy, since with U ∼ J ∼ Ω one cannot exclude
some ionization amplitude for the polariton. The ef-
fective model is well captured by the Bogoliubov re-

sult, EBogo ≃ −ΩN +
Upol

2
N(N−1)

L (see the blue dashed
line) suggesting the onset of quasi-condensation. Here,
Upol ≃ 0.186 Ω is used, as obtained from the Born-
Oppenheimer approximation.

Fig. 2b) reports the same calculation but for the sigi-
ficantly larger interaction strength U = 104Ω, which ef-
fectively means that excitons are hard-core bosons. At
small J , the Fermi sea energy is recovered and the effec-
tive model, where now we set Upol = (2 −

√
2)Ω, works

perfectly. At large J , instead, the blueshift matches the
Tavis-Cummings prediction of Eq. (8), see red dashes,
and thus reveals the physics of collective light-matter in-
teraction of a single photonic mode with a collection of
two-level emitters. The effective model energy, instead,
for large J/Ω is once again grasped by the Bogoliubov
approximation.

In Fig. 2c) we show the behavior of the blueshift per
particle at varying densities ρ = N/L and for a few com-
binations of U and J . In particular, it is clear that when
J ≪ U,Ω the TG physics is recovered and is independent
of U , since it can be mapped to the non-interacting Fermi
sea. This is evident by looking at the perfect overlap of
the yellow circles and fuchsia squares (at least at small
densities). The black solid line corresponds to ETG/N
from Eq. (5) and scales with density as ∝ ρ2. The small
discrepancies are finite-particle and finite-density devia-
tions from the continuum line. When J/Ω is large, the
dominant scaling of the single-particle blueshift is ∝ ρ,
but the results are sensitive to the value of U . In par-
ticular, only for very large U and J the TC prediction
is recovered (see the purple dashed line corresponding to
Eq. (8)).

These calculations have been performed with PBC and
using L = 36 sites; we refer to App. A for a finite-size
analysis, confirming that finite-size corrections are small
and well under control.
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FIG. 4. Dynamic structure factor S(q, ω) for a system of N = 25 excitations in a L = 100 chain, with photon hopping
J = 0.1Ω. Panel (a) reports S(q, ω) for a realistic U = Ω interaction strength and features three main contributions: the high
energy one is due to Rabi splitting, the weak intermediate line to doublons, the low energy one consists of phonons and of
the Lieb-Liniger II excitations. A zoom of this latter part is provided in panel (b), where the area containing the fermionic
excitations is limited by the cyan dashed line. Panel (c) reports the large U = 104Ω case, where the Lieb-Liniger branch II is
more pronounced. For the numerical time evolution, we use a step size of Ω · δt = 0.1 and a total propagation time ΩT = 500.

B. Ground-state correlations

Another useful observable is given by the second-order
correlation functions, strictly related to the density-
density correlators. These tell us about the probability
of measuring a second particle at site j given a first par-
ticle at site k. Since in our system we have two species
of bosons we can consider both the photonic correlator

g
(2)
ph (j, k) =

⟨a†ja
†
kakaj⟩
ρ2

, (9)

with j, k = 1, 2, ..., L, and the excitonic one

g
(2)
X (j, k) =

⟨x†
jx

†
kxkxj⟩
ρ2

. (10)

Notice that we chose to normalize with respect to the av-
erage total density ρ (in contrast with the local species-
resolved one). Also, in view of the OBC calculations of
the next paragraphs, here we report OBC results with
L = 101 and thus we keep the two spatial indices j, k
in the g(2) function (as opposed to a PBC calculation,
where only the distance |j − k| would matter). In prac-
tice, we computed the density-density correlations using
DMRG and obtained the g(2) functions by performing
the commutator.

In Fig. 3a) we report the photonic correlator g
(2)
ph (j)

evaluated in the N = 25, U = Ω ground state and having
fixed k = j0 = 50 at the central site of the chain. For
small J/Ω = 0.01 (red circles) the effect of fermionization
is evident from the strong Friedel oscillations, originating
from both the reference sites and the edge of the system.

For larger J/Ω = 0.1 (blue pentagons) the Friedel oscil-
lations have the same period but are very weak. Notice
that, in spite of the relatively small system size, the bulk
value of the g(2) function approaches 1/4, coming from
the fact that the photonic content of the GS is around
50%. For larger J/Ω = 10.0 (green squares) the Friedel
oscillations are washed out and the shape of g(2) is domi-
nated by the sinusoidal lowest energy photonic mode. In
this regime, the system size as well as the choice of bound-
ary conditions play a major role, and we are far from
being in the thermodynamic limit. Also, notice that the
photonic fraction is no longer close to 50%, see App. A.

Furthermore, the correlators show a clear dip at j = k.
In the TG regime the polaritons are impenetrable and
the g(2) function is vanishing. For large J and with OBC,
the light and matter degrees of freedom decouple, as also
shown by the Von Neumann entropy in App. C. This
means that two or more photons have a finite probability
to be found at the same lattice site.

Fig. 3b) displays the excitonic correlation function,
g
(2)
X (j). At small J/Ω there is no big difference with re-

spect to the photonic correlator, confirming that the po-
laritons are well-bound particles. Instead, at large J/Ω
the dip at j = k survives, even though the large kinetic
energy in the system makes it possible to find two ex-
citons at the same spot. Notice that for U → ∞ the
excitonic dip always reaches zero.

C. Dynamic structure factor

The momentum and frequency-dependent response of
a system’s density to external perturbations is encoded in
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the dynamic structure factor. It provides insights into the
collective neutral modes of the system; a paradigmatic,
historically crucial, example is provided by the acousto-
rotonic dispersion of phonons in superfluid helium, as
probed by inelastic neutron scattering [38]. We compute
the dynamic structure factor of channel α ∈ {ph,X} as

Sαα(q, ω) = Re
∑
j

∫ +∞

0

dt

π
eiωt−iqj⟨δnα(j, t)δn

†
α(j0, 0)⟩

(11)
where we introduced the density-fluctuation operator
δnα = nα − ⟨nα⟩. To get a broadening of the lines Γ,
we just multiply by e−

Γ
2 t before taking the Fourier trans-

form, and we use Γ = 0.04Ω, as an estimate of the polari-
ton radiative rate. In view of the experimental detection,
we will focus on the α = ph sector and drop the subscript
αα in the following.

We use density matrix renormalization group (DMRG)
calculations [39, 40] and the time-dependent variational
principle [41] to obtain the time evolution of nj0 |GS⟩
under the full Hamiltonian in Eq. (1). According to
Eq. (11) this yields access to the dynamic structure fac-
tor upon Fourier transformations. The results are re-
ported in Fig. 4, for an OBC chain of length L = 100
and J = 0.1Ω. At q = 0 we find that the relevant spec-
tral information in the structure factor are superimposed
by numerical artefacts that stem from a phase shift in
the time-evolved state. While this error may be reduced
to some extent by improving the time-evolution method
[41], it is not a major concern for us and we instead set
the corresponding column of S(q, w) to zero. In panel
(a), one can distinguish two main branches, and a fainter
one in between. The high-energy branch corresponds to

excitations from the lower polariton branch into an up-
per polariton branch, and is located at energies of order
2Ω. As it will be discussed below, the intermediate and
weakest branch has its position determined by Upol and
originates from doublon excitations.

The low-energy band is instead zoomed in in panel (b)
and bears the hallmarks of fermionization. The mapping
between impenetrable 1D bosons and a non-interacting
Fermi gas entails a one-to-one correspondence between all
the eigenstates, where energy and total momentum are
preserved in the mapping. There are then two possible
kinds of excitations with very small energy. The first one
is the excitation of a fermion close to the Fermi surface
with a small momentum transfer. The second one is the
excitation of a fermion by a momentum transfer of order
2kF . In the bosonic system, this results in the presence of
two branches in the dynamical structure factor: the usual
acoustic phonon dispersion at small momenta, and the
so-called Lieb-Liniger branch II at momenta around 2kF .
The two branches are displayed in Fig. 4b) by the cyan
dashed lines. The area between the two lines comprises
all the (q, ω) points for which the Lindhard function of
the free Fermi gas is non-zero. In panel (c), we also report
the case of very large U = 104Ω.

While in the color plots of Fig. 4 the presence of the
Lieb-Liniger branch II is barely visible, the fingerprints of
fermionization are more evident when looking into slices
of the dynamic structure factor at different values of U .
In Fig. 5a), we report the cut of S(q, ω) at zero frequency,
as a function of momentum and for different U ’s. For
increasing U , the Lieb-Liniger II peak develops around
2kF ≃ π/2, the filling being one fourth here. While
this phenomenon is very weak for the U = Ω case (or-
ange dash-dotted line), there is still a large oscillator-
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FIG. 6. Response function −Imχres(q, ω) for the same pa-
rameters as used in Fig. 4.c,which can be probed by trans-
mission and reflectivity spectroscopy.

strength loss with respect to the non-interacting polari-
ton case. Here, one can exactly compute that the low-
energy part of S(q, ω) should be a perfect cosine with
oscillator strength independent of q. For a numerical
comparison, the case U = 0.1Ω is reported as a blue dot-
ted line, showing a qualitative change in the strength and
spread of the spectrum.

Another hallmark of interactions is shown in Fig. 5b),
where we display S(q, ω) at q = π. The small, interme-
diate peaks are shifted from the low-energy branch by
∼ Upol, suggesting this feature is due to doublon exci-
tations. Also, the fact that this intermediate branch is
more visible at q ∼ π suggests a lattice origin, and indeed
doublons are not well defined in the continuum.

D. Resonant spectroscopy

In polariton experiments optical spectroscopy enables
measurements like reflectivity, transmittivity, photolumi-
nescence and absorption. These possibilities make po-
laritons a very convenient platform for their easiness to
probe.

In particular, in reflectivity and transmittivity measur-
ments the cavity is actively perturbed by a probe laser
and the following response function determines the spec-
trum [42, 43]:

χres(q, ω) = −i

∫ +∞

0

dt

π
eiωt⟨[aq(t), a†q(0)]⟩, (12)

where aq = 1√
N

∑
j e

−iqjaj . Absorption and photolumi-
nescence experiments correspond instead to the first and
second half of the commutator, respectively [44].

The response function χres(q, ω) can be once again
computed by time evolving the matrix product ground
state after addition or removal of a photon. We plot the

resulting −Imχres(q, ω) in Fig. 6. One can distinguish
three main branches, which we attribute, from lower to
higher energy, to the injection of a lower polariton, of a
doublon (out of a single polariton), and an upper polari-
ton. Interestingly, while in principle the single-particle
spectral function of the TG gas should also carry the
signatures of fermionization [45], in the photon spectral
function this is basically invisible (there is only an ex-
tremely weak kink around q ≃ 2kF , not visible on this
scale). We conclude that in practice it is easier to infer
fermionization from the density-density correlations than
by resonant photon spectroscopy.

IV. SUMMARY AND OUTLOOK

Exciton-polariton gases confined to low dimension of-
fer new experimental routes for studying strongly corre-
lated quantum systems. Here, based on a microscopic
lattice model used to characterize the system, we ana-
lyzed the competition between the Rabi splitting, pho-
tonic bandwidth and exciton repulsion. We have investi-
gated the conditions, in terms of exciton anharmonicity
and photonic bandwidth, under which polaritons display
fermionized behavior, demonstrating that this regime
may be probed by state-of-the-art setups. On the an-
alytical side, we identified two important limiting cases
of the physical parameters, revealing Tonks-Girardeau
and Tavis-Cummings physics, respectively. Our numer-
ical analysis has shown that it may be favourable to
probe fermionization based on density-density correla-
tions rather than by resonance spectroscopy. With these
findings, our work motivates experiments to observe cor-
related exciton-polaritons in the near term.
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Appendix A: Finite-size effects

In the main text we report numerical simulations on
systems with both periodic and open boundary condi-
tions, the latter configuration more suitable for comput-
ing correlators, as plotted in Figs. 3–6 at small J/Ω.
Instead, in Fig. 2, we report the ground state energy
with periodic boundary conditions. Here we show that,
for sufficiently small J/Ω and sufficiently large L, our



9

OBC simulations recover the essential physics occurring
the bulk of the system.

1. Ground-state energies

In Fig. 2 we have shown DMRG results for the blueshift
per particle, (Egs/N + Ω)/Ω, as a function of tunneling
rate J/Ω and for a system with periodic boundary con-
ditions. Here we instead fix J/Ω = 0.1 and study the
blueshift as a function of lattice size L. While doing so,
we keep the density, ρ = N/L, constant. As in Fig. 2, we
choose a filling factor of 1/4.

We perform DMRG on this OBC system for lattice
sizes L ∈ {10, 20, 40, 60, 80, 100, 120}. In Fig. 7 it can be
seen that the blueshift first decreases, as a function of L,
and then quickly saturates. Since this is shown on a log-
arithmic scale, it thus quickly converges to the blueshift
that one would obtain in the thermodynamic limit. This
is exemplarily shown both for the intermediate U = 1 and
a very large interaction strength, U = 105. But since the
energy is expected to converge quickly, we also calculate
the more sensitive correlations, that we also investigate
in the main text.

2. Correlations

In the main text we show results for finite systems.
Figs. 3 and 4 are obtained for systems with open bound-

FIG. 7. Blueshift per particle as a function of system size
with open boundary conditions and at quarter filling. This
is shown for different chain lengths from L = 10 to L = 120.
Numerical parameters: J/Ω = 0.1, U/Ω = 1.

FIG. 8. Finite-size scaling of photonic correlator as defined
in Eq. (9), evaluated j sites away from the center of the finite
chain. This is shown for different chain lengths from L = 10
to L = 120. Numerical parameters: J/Ω = 0.1, U/Ω = 1.

ary conditions and a system size L = 100. These sys-
tems are sufficiently large such that finite-size effects do
not play an important role. To show this numerically,
we calculate the photonic correlation function, g(2)ph , that
was introduced in Eq. (9) in the main text.

In Fig. 8 we evaluate g
(2)
ph (j, L/2) between a central

site and a few sites away from the center. It is appar-
ent from these numerical results that the finite-size ef-
fects become less pronounced with growing system size.
While for a system with L = 10, the edges of the system
are quickly reached when successively going step by step
away from the center, for the larger system we only probe
their bulks. As the systems grow in size, the correlators
converge rather quickly as can be seen from a point-wise
comparison of the different curves. As expected, the ex-
citonic correlators show the same tendency (results not
shown).

Appendix B: Photonic fraction

As discussed in the main text, the polaritons in our
model are approximately half exciton, half photon, for
large parts of parameter space. However at really large
J/Ω there are some corrections within PBC systems, and
this picture completely fails for open boundary condi-
tions. For OBC, the photonic contribution disappears as
we increase J/Ω. This is exemplarily shown in Fig. 9
for a system at quarter filling, again for intermediate
(U/Ω = 1) and large (U/Ω = 105) on-site interactions.



10

FIG. 9. Photonic fraction as a function of tunneling rate,
J/Ω, for large (red squares) and intermediate (blue circles) on-
site repulsion strengths U . Numerical parameters are L = 60,
N = 15, and OBC are taken.
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FIG. 10. Exact diagonalization results for Von Neumann
entropies (left axis) and photonic fraction (right axis, red tri-
angles) as a function of J/Ω. The Von Neumann entropy is
computed by partitioning the system in two ways: cutting the
rungs of the ladder to separate the photonic and excitonic de-
grees of freedom (blue circles); or cutting the left and right
halves of the ladder (cyan squares). Simulation parameters:
L = 8, N = 3, U = ∞ and OBC.

In both cases the matter component starts to dominate
at tunneling rates that are much larger than Ω.

Appendix C: Von-Neumann entropy

It is also interesting to look at the light-matter entan-
glement as a function of J/Ω. A measure of the entan-
glement between two subsystems A and B is provided by
the Von Neumann entropy

SAB = −TrA[ρA log ρA] = −TrB [ρB log ρB ] (C1)

where ρA = TrB [|GS⟩⟨GS|] is the reduced density matrix
of subsystem A, and similarly for ρB .

In the following we will consider both the light-matter
entanglement SX−ph and the left-right one Sleft−right.
Since the tensor network structure is not particularly con-
venient to compute SX−ph (while Sleft−right is straight-
forwardly obtained from the Schmidt decomposition of
the central bond link), we use exact diagonalization on a
small system to get a qualitative idea of the behavior of
the Von Neumann entropy.

The exact diagonalization results are presented in
Fig. 10 for a system with L = 8, N = 3, U = ∞ and
open boundary conditions. On the left vertical axis, the
blue circles correspond to SX−ph and the cyan squares
to Sleft−right, while the photonic fraction is displayed as
red triangles (right vertical axis), for comparison with
the DMRG results in a long system (Fig. 9). In partic-
ular, for very large J there is no photonic component,
because of the too large kinetic energy cost, the light-
matter subsystems trivially decouple and the entropy is
zero SX−ph. On the contrary, larger spatial correlations
result in a larger Sleft−right.
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