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Abstract

There has been recently considerable progress in understanding the nature of perturbation

theory in UV free and gapped 2d integrable field theories with renormalon singularities.

Thanks to Bethe ansatz and large N techniques, non-perturbative corrections can also be

computed and lead to the reconstruction of the trans-series for the free energy in presence of

a chemical potential. This is an ideal arena to test resurgence in QFT and determine if and

how the exact result can be reconstructed from the knowledge of the perturbative series only.

In these notes we give a pedagogical introduction to this subject starting from the basics. In

the first lecture we give an overview of applications in QFT of Borel resummations before

the advent of resurgence. The second lecture introduces the key concepts of resurgence and

finally in the third lecture we discuss a specific application in the context of the principal

chiral field model. Extended version of three lectures given at IHES and review talks given

at Les Diablerets and Mainz, in 2023.
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1 Introduction

Perturbation theory is one of the most successful analytical tools to study physical processes

and is hence very important to understand its nature. It is known that perturbative expansions

in quantum field theories (QFT) are generically asymptotic with zero radius of convergence

[1]. In special cases, such as ϕ4 theories up to d = 3 space-time dimensions, the perturbative

expansion turns out to be Borel resummable [2–4]. Before the advent of resurgence in QFT,

Borel summability was considered essential. Early works were mostly interested in the large order

behaviour of the perturbative series, determined by certain saddle points in a complexification

of the theory [5]. This is useful to numerically reconstruct the Borel function from its first few

known perturbative coefficients, giving in this way an estimate of the observable. A notable

successful application of resummation methods along this line occurred in statistical physics in

the determination of critical exponents of second order phase transitions.

Most interesting QFTs, such as gauge theories in four space-time dimensions, are however

not Borel resummable because of singularities in the domain of integration of the Borel function.
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These can be avoided by deforming the contour at the cost of introducing an ambiguity that

is non-perturbative in the expansion parameter. The singularities can be associated to real

instantons, in which case we expect that the ambiguity might be removed by including them

in the path integral, together with their corresponding series expansion, resulting in what is

called a trans-series. A notable singularity which seems to be always present whenever the

theory includes marginal couplings is the so called renormalon singularity [6–8]. In contrast to

instantons, we do not know the semi-classical configuration associated to renormalons (indeed

it might simply not exist).1 Independently of its interpretation, the ambiguity resulting from

the non-Borel summability of a series is due to Stokes phenomena. The theory of resurgence [9]

is a systematic way to deal with Stokes phenomena and trans-series, and give a meaning to

otherwise non-Borel resummable asymptotic series. According to resurgence, a quantity can be

expanded in a trans-series which, as a whole, will be ambiguity-free and Borel resummable.

Importantly, the asymptotic series entering in the trans-series are related to each other. In the

best case scenario, one can hope that the whole trans-series can be reconstructed starting by

the perturbative series only.

A natural arena where resurgence can be applied is in the study of differential equations,

where (formal) solutions are expressed by asymptotic power series. Understanding the Stokes

phenomena allows us to determine the actual well-defined solutions of the equations. A beautiful

application of resurgence to the Schrödinger equation is at the base of the exact WKB method

[10–16]. Exact WKB is the upgrade of the WKB approximation to an exact method and allows

us to get the explicit form of the trans-series for wave functions, energy eigenvalues, etc.

A natural question to ask is then: does resurgence work in QFT, in particular in theories

featuring renormalon singularities? This is a hard question in general, because in QFT we do not

have “Schrödinger”- like equations to determine perturbative series at arbitrarily high orders.

However, there exist models which have renormalons and at the same time can be studied in

detail, both in perturbation theory and in a 1/N expansion, namely integrable 2d asymptotically

free theories. In these models both the spectrum and the S-matrix are known exactly and, as

noted long ago [17], one can use Thermodynamic Bethe Ansatz (TBA) techniques to compute

exactly the free energy in presence of a chemical potential. Using also other results to extract

perturbative series for the free energy at very high orders [18, 19], there have been recently

several studies to understand the resurgence nature of the perturbative expansion in integrable

2d theories [20–32].

Aim of these lectures is to give a pedagogical introduction to large orders and resurgence

aimed at an application in integrable models. Aside technicalities, the key principles underlying

resurgence are simple and we will focus on those. We start in section 2 from the basics, recalling

why we get asymptotic series in QFT and the conditions for Borel summability. We then give

a quick historical excursus on the subject prior to resurgence, discussing how large orders are

1As we will briefly discuss, renormalons can however be related to power corrections whenever the observable
of interest admits an operator product expansion (OPE).
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related to (complex) instantons, applications in critical phenomena, renormalons. We introduce

resurgence in section 3 by working out in detail the Airy function as a solution of a differential

equation, and how this is related to its integral representation. We then discuss a few formal

resurgence tools, the minimal ones required for our subsequent application. In section 4 we

finally work out in detail a specific result found in [24] where resurgence works at its best, the

determination of the trans-series for the free energy at leading order in 1/N in the principal

chiral field model. We will concretely show how the perturbative series is able to determine the

exact non-perturbative result, summarized in our final relation (4.64). A few concluding remarks

are given in section 5.

A comprehensive review on resurgence, including several examples, is [33]. A more compact,

and slightly more math-oriented, review is [34], while a systematic math-oriented review is [35].

See in particular [33] and references therein for an overview of topics in theoretical physics where

resurgence has been applied.

2 Asymptotic Series and Borel Resummation

Let us start by reviewing well-known facts about elementary complex analysis. A function f of a

complex variable g is said to be analytic at a point g0 if, in a small disc around g0, the function

is given by the power series

f(g) =

∞∑
n=0

cn(g − g0)
n . (2.1)

The radius of convergence R of the series (2.1) is given by

R−1 = lim sup
n→∞

|cn|
1
n . (2.2)

If g0 is a regular point of f , then R is non-vanishing and is given by the distance of g0 from the

closest singularity of f(g). Viceversa, if R is non-vanishing, necessarily g0 is a regular point of

the function f . The power series (2.1) is uniformly convergent for any |g| < R and divergent for

|g| > R. The convergence for |g| = R depends on the particular cases, but necessarily there is at

least a point where the series diverges, corresponding to the singular point of f(g) closest to g0.

In 1952, using analyticity and physical arguments, F. Dyson argued that the perturbative

series expansion in QED has to have zero radius of convergence [1]. The basic argument is

simple and brilliant. The QED expansion is a power series in α ∝ e2, where e is the electric

charge. Suppose that this expansion had a non-vanishing radius of convergence. Then the point

α = 0 should be a regular point when we look at observables O(α) as analytic functions in α.

This would imply that O(α) has a finite radius of convergence where the function is analytic,

including regions where α < 0. But when α < 0 electrons and positrons repel each other and

the vacuum is unstable. We conclude that physical observables in our world cannot be analytic

at α = 0. In turn, this implies that the series around α = 0 has zero radius of convergence.
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A modern version of Dyson’s argument can be obtained by considering the euclidean path

integral formulation in QFT. Consider a generic n-point function of local operators in a theory

described by an action S:

G(n)(x1, x2, . . . xn; ℏ) =
∫
Dϕϕ(x1)ϕ(x2) . . . ϕ(xn) e−S(ϕ)/ℏ , (2.3)

where we denote collectively all the fields in the action by ϕ. In euclidean space the action is

positive definite and the path integral converges.2 Consider now the loopwise expansion, that is

the expansion of G(n) in powers of ℏ. The point ℏ = 0 is necessarily non-analytic because for

any value of ℏ < 0 the Green functions G(n) blow up. We conclude that loopwise perturbative

expansions in QFT have generically zero radius of convergence and are divergent. A similar

conclusion applies for coupling constant expansions which, upon rescaling of the fields, are

equivalent to a loopwise expansion.

But how well-defined physical observables give rise to asymptotic expansions? In order to

answer to this question it is enough to consider ordinary integrals, which we can interpret as

baby version of path integrals in quantum mechanics or quantum field theory. Consider for

example the integral

I(g) =

∫ ∞

−∞
dx e−

x2

2
− gx4

4 , (2.4)

well-defined for real and positive g. Expanding for small g we get

I(g) =

∫ ∞

−∞
dx e−

x2

2

∞∑
n=0

gn

n!

(
− x4

4

)n ?
=

∞∑
n=0

gn
∫ ∞

−∞
dx e−

x2

2
1

n!

(
− x4

4

)n
=

∞∑
n=0

cng
n = Ĩ(g) , (2.5)

where

cn =

√
2(−1)nΓ

(
2n+ 1

2

)
n!

−→
n→∞

n!(−4)n
1√
πn

(
1 +O

( 1
n

))
. (2.6)

The factorial growth of the coefficients cn implies that the series Ĩ(g) has zero radius of con-

vergence and is asymptotic. The mistake we made in (2.5) is exchanging sum and integration.

Given a series of functions
∑

n fn(x) such that

∞∑
n=0

∫
X
|fn(x)| <∞ , (2.7)

then the dominated convergence theorem implies that (see e.g. [36])

∞∑
n=0

∫
X
fn(x) =

∫
X

∞∑
n=0

fn(x) . (2.8)

2With an appropriate measure and upon renormalization. Strictly speaking a full non-perturbative definition
of the path integral requires a lattice discretization of space-time.
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The series in (2.5) is convergent (the exponential) but it does not satisfy (2.7). So, out of a well-

defined function I(g), perturbation theory would give us a formal ill-defined asymptotic series

Ĩ(g). The same unjustified step is performed in QFT when we use perturbation theory. Since

path integrals do not make the situation better, perturbative expansions in QFT are generally

asymptotic.

In order to not confuse a function with its formal asymptotic series, we denote by a tilde the

formal asymptotic series of a given quantity f(g). We write

f(g) ∼ f̃(g) (2.9)

to indicate that f has f̃ as formal asymptotic series.

A series f̃(g) =
∑∞

n=0 cng
n is denoted asymptotic if, for any fixed order N , we have

f(g)−
N−1∑
n=0

cng
n = O(gN ) , as g → 0 . (2.10)

Note the crucial difference with respect to convergent series where for N → ∞ the sum∑N
n=0 cng

n approaches f(g) for any g within the domain of convergence. For convergent se-

ries different functions lead to different series. This is not the case for asymptotic expansions,

where different functions can have the same asymptotic expansion. For example, two functions

f1(g) and f2(g) with

f2(g) = f1(g) + e−1/ga(g) , (2.11)

have the same asymptotic expansion, provided a(g) is sufficiently regular. Generally asymptotic

expansions have zero radius of convergence because their coefficients grow factorially, (2.6) being

an example.

Definition 2.1. An asymptotic expansion f̃ of a function f is said to be of Gevrey-p if

f̃(g) =
∞∑
n=0

cng
n, with |cn| ≤ K1K

n
2 (n!)

p , (2.12)

for some constants K1 and K2.

The condition can also be expressed in terms of the finite function f(g). We say that a

function f(g) admits a Gevrey-p asymptotic expansion in a region D if

f(g) =
N−1∑
k=0

cng
n +RN (g) , where |RN (g)| ≤ K1K

N
2 (N !)p|g|N , (2.13)

for any N and any g ∈ D. The perturbative loopwise expansions we encounter in QFT are

generally Gevrey-1, so we will consider from now on this case only.

Asymptotic series are useful because they approximate the exact result for small values of
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g. The accuracy depends of course on g, but also on the behaviour of the series coefficients cn

for n≫ 1. Contrary to convergent series, where the more terms are added in the series and the

more accurate is the result, in asymptotic series there is an optimal number of terms one should

keep, after which adding more terms results in worse and worse accuracy. This is called optimal

truncation.

¶ Exercise 1. Suppose that for n≫ 1

cn ∼ n!an . (2.14)

For ag > 0, show that the best accuracy for f(g) is obtained when we keep in the sum

NBest =

[
1

ag

]
, (2.15)

where [] indicates the integer part. Show also that the associated error, estimated as given by

the last term not included in the sum, is proportional to

∆NBest
∼ e

− 1
ag . (2.16)

For small g and a ≈ O(1), (2.16) shows that asymptotic series can be very precise, explaining

e.g. the success of QED. But no matter how many terms we compute in perturbation theory,

asymptotic series fail to reproduce the exact function by (at best) exponentially suppressed

terms. This is consistent with the intrinsic ambiguity related to asymptotic series shown in

(2.11). If the coupling g is not that small, optimal truncation might not be sufficient and we

should try to resum the series by resummation methods for divergent series. We will in particular

consider Borel resummations.

2.1 Basic notions of Borel resummations

Borel summation is a summation method for divergent series. Given f(g) and its formal series

expansion f̃(g), we define the Borel function f̂(t) as the function obtained by dividing the

original series by a factorially growing factor:

f̂(t) ≡
∞∑
n=0

cn
n!
tn . (2.17)

If f̃ is Gevrey-1, then by construction f̂ is analytic in a disc around the origin and the series

in (2.17) has a non-zero radius of convergence where it defines the analytic function f̂(t). We

denote Borel transforms of a function f by a hat and by t the argument of f̂ , also denoted as

the “Borel plane”. If f̂(t) can be analytically continued over the t-plane beyond the disc where
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(2.17) converges and is free of singularities in the positive real axis, t > 0, then the integral

fB(g) = s(f̃) ≡
∫ ∞

0
dt e−tf̂(gt) , (2.18)

if convergent, defines a function of g that is said to be the Borel resummation of the asymptotic

series f̃ . In (2.18) we have defined the Borel resummation operator s acting on asymptotic series.

The function fB(g), by construction, has the same asymptotic series as the original function f(g).

Indeed, we have

fB(g) =

∫ ∞

0
dt e−t f̂(gt)

?
=

∞∑
n=0

cn
n!
gn
∫ ∞

0
dt tne−t =

∞∑
n=0

cng
n , (2.19)

and hence

f̃B(g) = f̃(g) , (2.20)

as formal power series. Once again, the order of sum and integration in (2.19) cannot be inverted

because the Borel series expansion has generally a finite radius of convergence while the integral

is taken over the whole positive t axis. If we erroneously interchange the two operations, from a

finite function fB we get its asymptotic divergent series, as occurred in (2.5). Given that (2.20)

holds, the key question is now: is fB = f? In general this will not be the case. If, as we have

shown, different functions can admit the same asymptotic series, it is clear that manipulating

the latter cannot be enough to uniquely fix f(g). A theorem, however, guarantees for us the

necessary and sufficient conditions for Borel summability [37,38]:

Theorem 2.2. (Nevanlinna’s theorem [37]) Let f(g) be analytic in a open disc DR of radius

R whose center is at g = R in the positive real axis (see figure 1) and have there a Gevrey-1

asymptotic expansion. Then f̂(t) converges for |t| < 1/K2 and has an analytic continuation with

f̂(t) ≤ Ce
|t|
R , (2.21)

in a strip-like region which includes the whole positive real axis (see figure 1), and

fB(g) = f(g) (2.22)

in the disc DR. The converse also applies.

For a sketch of the proof see [38]. When f = fB we say that the asymptotic series f̃ is Borel

resummable to the exact result. In general, it is not easy to establish the analyticity conditions

on f to use the theorem, since in most cases these are unknown.3

¶ Exercise 2. Consider the function e−g−α
with α < 1. Show that this function, analytic in DR

for any R, does not satisfy (2.12) in DR.

3When the asymptotic series arises from an integral, we can establish Borel summability using steepest descent
arguments, bypassing Nevanlinna’s theorem, see e.g. [39].
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g

f(g)

R
⇔

t

K−1
2

f̂(t)

Figure 1: Nevanlinna theorem: if a function f(g) is analytic in the open green disc (left) and
admits a Gevrey-1 expansion there, then its Borel transform f̂ is analytic in the green strip-like
region (right), it is integrable and its inverse Laplace transform reproduces f(g). The converse
also applies.

We can get some intuition on Borel functions by working out the Borel transform of an

asymptotic series with coefficients exactly equal to the asymptotic behaviour (2.14), namely

cn = n!an. The Borel series in this case simply gives

f̂(t) =
1

1− at
. (2.23)

Due to the simple pole at t = 1/a, the radius of convergence of the Borel series is R = 1/|a|,
but the function (2.23) can be analytically continued over the whole t-plane. Borel summability

depends on the sign of a. If a > 0 (same sign series) the singularity is on the positive real t axis,

the integral (2.18) is divergent and the series is not Borel resummable. If a < 0 (alternating

series), the singularity is over the negative real t axis, the function f̂ satisfies Nevanlinna’s

conditions with K2 = a and the integral (2.18) is finite. In the latter case the series is Borel

resummable and the Borel resummed series is given by fB(g).

More in general, (2.14) gives only the asymptotic form of the coefficients of the series, while

the precise form of the latter might be unavailable. When the exact Borel function f̂(t) is not

known (the typical case) some information on its analytic structure can still be deduced, because

the large order behaviour of the asymptotic series determines the position of the singularity

closest to the origin. If a > 0 the series is not Borel resummable. On the other hand, if a < 0 the

series is not guaranteed to be Borel resummable, because further singularities on the positive

real axis might occur, depending on the next to leading large order behaviour of the series

coefficients.

A generalization of the Borel transform (sometimes denoted Borel-Le Roy transformation),

is obtained by defining

f̂b(g) ≡
∞∑
n=0

cn
Γ(n+ 1 + b)

gn , (2.24)
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where b is an arbitrary real parameter. The inverse Le Roy - Borel transform fB(g) reads

fB(g) =

∫ ∞

0
dt tbe−t f̂b(gt) , (2.25)

and is independent of b, as it should be. Borel-Le Roy functions with different b can be related

analytically as follows (see e.g. [39]):

f̂b(t) = t−b∂nt

[
tb+nf̂b+n(t)

]
, n ∈ N+

f̂b+α(t) =
t−b−α

Γ(α)

∫ t

0
dt′

(t′)b f̂b(t
′)

(t− t′)1−α
, 0 < α < 1 .

(2.26)

Note that the position of the singularities of two Borel-Le Roy transforms is the same, which

implies that Borel summability does not depend on b, though the nature of the singularities in

general changes.

Before the advent of resurgence, Borel summability was considered essential. As we men-

tioned, proving it is not an easy task because it requires to have control of the analyticity

properties in the coupling of exact quantities in QFT. As a matter of fact, most QFTs, includ-

ing interesting ones such as gauge theories in 4d, have loopwise expansions which are not Borel

resummable. Among the few exceptions where Borel summability has been established, bosonic

theories with quartic interactions in d < 4 dimensions (ϕ4d theories) are a notable class. More

specifically, in [2] it was found that the asymptotic series of the energy eigenvalues Ẽn(ℏ) of

the ϕ41 model (the quartic quantum mechanical anaharmonic oscillator) is Borel resummable. In

QFT (d = 2 and d = 3) the existence of a non-perturbative definition of the theory is generally

the first important point to be established, Borel summability (if any) being a by-product. This

proof has been given in [3,4] for the Euclidean ϕ4d theories (d = 2, 3) in a specific renormalization

scheme, in which 2n-point smeared Schwinger functions of local operators have been shown to

satisfy Nevanlinna’s conditions in an infinitesimal disc in the coupling constant complex plane.4

2.2 Large orders in perturbation theory: instantons and complex instantons

Given the difficulties of establishing rigorously the Borel summmability of asymptotic expansions

in QFT, early works were mostly interested in determining their large order behaviour [5,42–44]

(see [45] for a collection of early papers), namely the coefficient a in (2.14), and possibly other

coefficients governing sub-leading corrections. The motivation was two-fold:

• The sign of a can be taken as a first indication of the Borel summability of the series.

• When a < 0 or we know the theory is Borel resummable (like in ϕ4d theories), the knowledge

of the coefficients entering the large order behaviour, especially a, is useful to numerically

4See [40,41] for an heuristic, but much simpler and more general, argument for the Borel summability of such
theories using steepest descent arguments.
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reconstruct the Borel function from its first few known perturbative coefficients. In partic-

ular, under some assumptions, the knowledge of a allows to conformally map the original

asymptotic series to a convergent one.

The large order behaviour in QFT is determined by certain saddle points in a complexification

of the theory [5]. We show the key idea for the ordinary integral (2.4). The coefficients of its

perturbative expansion are given in (2.6). Lipatov’s trick consists in writing cn as a contour

integral

cn =
1

2iπ

∮
C0

dg

gn+1
Ĩ(g) ∼ 1

2iπ

∮
C0

dg

gn+1

∫ ∞

−∞
dx e−

x2

2
− gx4

4 , (2.27)

where C0 is a small contour around the origin g = 0 and we have naively replaced the formal

power series with the actual function in (2.27).5 We evaluate the double integral in (2.27) by a

saddle-point approximation. We change variables x = g−1/2y and then extend both integrals in

the complex plane. In this way we get, omitting numerical factors,

cn ≈
∮
C0
dg

∫
C
dz e−S(z,g) , S(z, g) =

1

g

(z2
2

+
z4

4

)
+
(
n+

3

2

)
log g , (2.28)

where C is a deformation of the path running over the real axis. For n≫ 1 and g ≪ 1 a saddle-

point approximation is valid for both integrals at the same time. We get three extrema for S.

One at g = ∞ and z = 0, which is singular and should be neglected, and two at

z0 = ±i , g0 = − 1

4
(
n+ 3

2

) . (2.29)

Plugging the two (equivalent) non-trivial saddles in S(z, g) we get the leading order approxima-

tion of cn:

cn ≈ n!(−4)n . . . (2.30)

In order to reliably compute . . . we should also consider the quadratic fluctuations around

the saddle. When these are taken into account, the large order behaviour in (2.6) is precisely

reproduced. We leave to the reader to perform this straightforward check.

We have then established a connection between the large order behaviour of an asymptotic

series and saddle points. For ordinary integrals this connection can be generalized and made

more rigorous [46]. Let

I(0)(g) =
1
√
g

∫
C0
dz e

− f(z)
g ∼

∞∑
p=0

c(0)p gp , (2.31)

where f(z) is an analytic function and C0 is a regular path of steepest-descent (also called

Lefschetz thimble) passing through the saddle point z0 of f . For simplicity let f be an entire

function and z0 be an isolated and non-degenerate saddle point. Given z0, we can define saddles

5We will later mention more proper ways to get the large order behaviour. For now it suffices to say that this
naive method works.
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adjacent to it as follows. Consider the integral (2.31) as a function of g = |g| exp(iθ). The path

of steepest descent moves in the complex z-plane as θ is varied. Saddles which are crossed by the

steepest descent path as θ is varied are called “adjacent” to z0. Among the adjacent saddles, we

denote by zσ0 the leading adjacent saddle as the one with the smallest value of |f(zσ0)− f(z0)|.
Then, the following relation holds [46]:

c(0)p ≈
p→∞

∑
zσ0

Γ(p)(
f(zσ0)− f(z0)

)p c(σ0)
0 , (2.32)

where

c
(σ0)
0 =

1√
2π|f ′′(zσ0)|

(2.33)

is the leading (one-loop) coefficient term around the adjacent saddle(s) and the sum is present

in case we have more than one leading adjacent saddle. It is immediate to recover (2.6) applying

(2.32) to the integral (2.4). We see that the large order behaviour of a perturbative expansion

around a saddle point is given by the leading terms of “nearby” saddles, a typical manifestation

of resurgence, as we will repeatedly see in these lectures.

The idea can be applied to quantum mechanics and quantum field theory as well. For ex-

ample, for the quartic anharmonic oscillator with potential V (q) = q2/2 + q4/4, the large order

behaviour of the ground state energy E0 ∼
∑

p cpℏp is given by

cp ∝
p→∞

∮
C0
dℏ
∫
Dq(t) exp

(
− p log ℏ− 1

ℏ

∫ ∞

−∞
dtL(q)

)
, L(q) =

q̇2

2
+
q2

2
+
q4

4
, (2.34)

where C0 is a small contour around the origin ℏ = 0, and Dq(t) is the path integral measure for

all possible complex paths. Extremizing with respect to ℏ gives

− p

ℏ0
+
S0
ℏ20

= 0 , (2.35)

where S0 is the smallest non-trivial classical configuration with finite action S0. There are no

real, finite action instanton configurations for the quartic anharmonic oscillator, but we do have

complex instanton configurations. In particular, it is easy to verify that the purely imaginary

instanton

q(t) =
i
√
2

cosh t
, (2.36)

satisfies the equation of motion and has S0 = −4/3. Plugging back in (2.34) and proceeding as

before, we get

cp ∝ p!S−p
0 . (2.37)

A more precise estimate can be performed by taking into account fluctuations around the in-

stanton background. See [44] for details. Once again, we see that the large order behaviour of a

perturbative expansion is given by other saddles, complex instantons in this case. Like ordinary
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integrals, rigorous results for the large order behaviour of the perturbative expansion can also

be obtained in quantum mechanics using resurgence [12–16].

The method of [5] has been used also in QFT, though no rigorous derivation has been

established there.6 The large order behaviour of quartic scalar theories in d = 2, 3 dimensions

has been found to be given by purely imaginary instantons and is sign alternating, compatibly

with the Borel summability of the perturbative expansion in these theories, as discussed at the

end of section 2.1. Whenever a QFT admits real instantons, one has S0 > 0, a same sign series,

and Borel summability is lost. This is of course expected, since instanton contributions should

be added to the perturbative result. Each instanton saddle gives rise to its asymptotic coupling

expansion and we naturally get trans-series.

2.3 Applications in critical phenomena

Resummation methods have been applied successfully for decades in the study of second order

phase transitions in critical phenomena. In this context, the two main approaches are:

• ϵ-expansion [47]: the large order behaviour of the ϵ-expansion for quartic scalar models was

computed in [44] and found to be sign-alternating. Since then, assuming that the series is

Borel resummable (still unproven) several critical exponents have been computed. Starting

from a truncated series expansion it is possible to numerically reconstruct an approximant

for the Borel function associated to the observable, which is then computed by the Laplace

transformation (2.18).

• Fixed dimension [48]: the space-time dimension is fixed to its physical value and we start

from a massive disordered phase. The large order behaviour of the coupling expansion for

quartic scalar models was computed in [5], refined in [44], and found to be sign-alternating.

The perturbative series has been proved to be Borel resummable [3,4]. The critical point is

found by setting to zero a Borel resummed β-function for the quartic scalar coupling, from

which critical exponents are computed by a Borel resummation of the coupling expansion

evaluated at the critical value. The Borel resummations are performed numerically using

algorithms similar to those used for the ϵ-expansion.

The accuracy obtained over the years with the two methods is similar. Using < 10 coefficient

terms, an accuracy of order 1% − 1h is obtained, see e.g. [49] for an account for the 3d O(N)

vector models in the ϵ-expansion.7 Both methods have pros and cons. The ϵ-expansion allows for

an analytic understanding of the fixed points for ϵ≪ 1 and requires the computation of massless

loops, which can be handled analytically (see [51] for a recent account in the ϕ4 theory). The

fixed dimension expansion requires instead the harder computation of loops involving massive

6The key point is to understand which saddles should be considered, i.e. the analogues of the adjacent saddles
discussed above for ordinary integrals.

7The accuracy is estimated by comparing the results with more precise techniques (when available), such as
the conformal bootstrap [50].
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particles, which is typically handled numerically at high loops (see [52] for recent progress in this

direction). The latter method is however more rigorous, since Borel summability is established.8

It also allows us to study the massive phase, away from criticality [40,41], and comparisons with

other non-perturbative methods are possible.

The knowledge of the coefficient a < 0 governing the large order behaviour of the asymptotic

series in (2.14) is important in setting up algorithms to numerically reconstruct the Borel function

from a truncated series. In particular, under the assumption that all Borel singularities sit on

the negative real axis, we can perform a conformal transformation t = t(u) to map the Borel

plane t to the unit disc |u| ≤ 1. The transformed Borel function B̃(u) = B(t(u)) converges for

|u| < 1 and as a result the mapping converts the original asymptotic series into a convergent

one. This conformal mapping technique is one of the main and efficient methods used to resum

asymptotic series, though it is useful to recall that the assumption about the location of the

Borel singularities is yet unproven. We will not discuss further details of the conformal mapping

or of other numerical methods.

2.4 Obstruction to Borel summability: renormalons

Instantons govern the large order behaviour of an asymptotic series whenever the factorial

growth of the perturbative coefficients is given by the multiplicity of Feynman diagrams. Namely,

barring cancellations among diagrams at a given loop level, we have O(1) contributions from

O(n!) Feynman diagrams. Another source of factorial growth exists, which gives rise to O(n!)

contributions from O(1) Feynman diagrams. The associated singularity in the Borel plane is

called a renormalon singularity. Renormalons arise in theories with classically, but not exactly,

marginal couplings. The name “renormalon” is due to the their link with the RG flow of the

couplings which, in turn, can be determined from the UV renormalization of the theory. In fact,

they typically arise from n-loop diagrams given by a chain of the one-loop diagrams entering

the determination of the leading order β-function for a given coupling. See fig.2 for an example

in the ϕ4 theory in d = 4 dimensions. The basic mechanism giving the renormalon singularity is

universal. After renormalization, one-loop diagrams entering in the renormalon chain depends

only on the momentum of the large loop (indicated with k in figure 2) and is proportional

to β0 log(k
2/µ2), where β0 is the one-loop coefficient of the β-function and µ is the RG scale.

The n-loop diagrams, together with all counterterms insertions to make them UV finite, are

proportional to9

Gn ∼
∫ ∞

0
dk F (k)

(
β0 log

k

µ

)n
, (2.38)

where k denotes the radial component of the momentum kµ and F (k) is a model-dependent

function which we do not need to specify. The integral (2.38) can have two sources of factorial

8Strictly speaking, Borel summability has not been established in the renormalization scheme of [48] and used
since then, but in others. See [53] for details on this point.

9We neglect scheme dependent threshold terms, irrelevant in our considerations.
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p p+ k p

Figure 2: Renormalon n+ 1-loop diagram contributing to the two-point function of ϕ in the ϕ4

theory. The diagram consists in a chain of n small bubbles and a large loop over the momentum
k.

growth, in the IR or in the UV. Suppose that

F (k) ∼
k→0

kaIR−1 , aIR > 0 ,

F (k) ∼
k→∞

k−aUV−1 , aUV > 0 .
(2.39)

We can split
∫∞
0 =

∫ 1
0 +

∫∞
1 and, neglecting subleading contributions, we replace in the two

integrals the behaviour (2.39) to get∫ 1

0
dk kaIR−1

(
β0 log

k

µ

)n
= n!

(−β0
aIR

)n
aIR ,∫ ∞

1
dk k−aUV−1

(
β0 log

k

µ

)n
= n!

( β0
aUV

)n
a−1
UV .

(2.40)

A few comments are in order.

• The n-loop diagrams associated to Gn lead to two singularities in the Borel plane, at

t = −aIR
β0

, (IR Renormalon)

t =
aUV

β0
, (UV Renormalon) .

(2.41)

• Independently of the sign of β0, Borel summability is lost. For β0 > 0 this is due to the

UV renormalons and is related to the fact that the theory is non-perturbatively ill-defined.

For β0 < 0 this is due to the IR renormalons and is related to the fact that perturbation

theory breaks down at low energies.

• Renormalons reflect the mathematical inconsistency of a perturbative expansion in a pa-

rameter which is dimensionless only at the classical level.

• If a theory is perturbatively gapped in the IR, e.g. we have a mass term in the ϕ4 theory

above, the integral in (2.38) has a IR cut-off at the mass scale and the IR renormalon
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disappears. In contrast, UV renormalons are always present.

• Renormalons are often the leading source of factorial growth of the perturbative expan-

sion and dominate over singularities induced by instantons (or instantons anti-instantons)

configurations.

Renormalons were first discovered in the 2d Gross-Neveu model in the original paper [6], they

were found in QED (in the study of g− 2) in [7] and discussed by ’t Hooft (who coined the term

renormalon) in QCD in [8]. See [54] and references therein for further details.

The existence of renormalons in 4d gauge theories is hard to prove, because at order n

many other diagrams contribute. Cancellation among diagrams is possible, or the presence of

other factorially growing diagrams which are not of the renormalon-type. The chain of bubble

diagrams entering renormalons can however be shown to be dominant in the special case of large

N in vector models (not to be confused with ’t Hooft large N limit). Since a few years ago, the

existence of renormalons was rigorously established only for some 2d vector models at large N

such as the Gross-Neveu [6] and the non-linear sigma models [55–57].

In contrast to the factorial growth due to the diagram multiplicity, renormalons do not have

a semi-classical interpretation, or at least this has not been found so far. On the other hand,

whenever the observable admits an OPE expansion, renormalons have been argued to be related

to power corrections [58]. Let us schematically describe the origin of such correspondence in the

context of a UV free 4d non-abelian gauge theory which confines in the IR. Let Φ be a generic

gauge-invariant composite local operator. Using the OPE, we can write its two-point function

when x→ 0 as

⟨Φ(x)Φ(0)⟩ ∼
∑
n

cn(µx)⟨On(0)⟩x∆On , (2.42)

where µ is the RG scale, the sum runs over all gauge invariant operators On with a non-trivial

one-point function on the vacuum (condensates) and ∼ indicates that the sum in (2.42) might

generally be asymptotic. Let ∆On be the scaling dimensions of On in the free UV CFT. By

dimensional analysis, we have

⟨On⟩ ∼ Λ∆On , (2.43)

where Λ is the dynamically generated scale of the theory,

Λ ≈ µe
1

g(µ)β0 . (2.44)

Each condensate gives rise to a non-perturbative contribution to the correlator, whereas the

coefficient functions cn(µx) encode the perturbative contributions around the condensate and

are given in general by an asymptotic series in the coupling.10 The coefficient associated to the

identity operator exchange corresponds to the ordinary perturbative expansion. If the latter

10The splitting in the OPE (2.42) between cn and the condensate is not uniquely defined and in particular
depends on the renormalization scheme. See e.g. [54] for further details in a renormalon perspective.
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features IR renormalon singularities as in (2.41), the series is not Borel resummable because

of the singularity in the integral (2.18). Alternatively we can deform the contour of integration

to avoid the singularity, in which case however we do not get a well-defined result. A way to

estimate the size of the ambiguity is to assume that the singularity is a simple pole and compute

its residue:
1

2iπ

∮
t0

dt
e
− t

g

t− t0
= e

− t0
g , t0 =

−aIR
β0

. (2.45)

The non-perturbative contribution (2.45) nicely matches the condensate (2.43), provided we

identify

aIR = ∆Omin , (2.46)

where ∆Omin is the smallest scaling dimension (besides the identity) of the operators On appear-

ing in the OPE (2.42). Higher order operators are expected to give rise to further singularities

over the positive real axis at tn = −∆On/β0. Renormalon singularities can be then associated

to (non-perturbative) power corrections in correlation functions admitting an OPE expansion.

Sharp results on this correspondence are limited to 2d models at large N [55–57, 59]. In fact,

most of the interest on renormalons in 2d large N models was motivated by verifying this

“renormalon-OPE” correspondence. The correspondence is assumed to hold in 4d QCD and it

is at the base of application of renormalon physics in QCD phenomenology.

3 Basics of resurgence

We have seen in section 2 that an infinite number of complex functions can lead to the same

asymptotic series expansion f̃(z). Due to the Stokes’ phenomena, it can happen that the Borel

resummation of f̃ gives a function in a region of the complex plane, but some other function

in some other region. These regions are delimited by Stokes lines. Resurgence is essentially a

systematic way to take into account of the Stokes phenomenon and give a meaning to otherwise

non-Borel resummable asymptotic series. Its foundations have been laid by J. Ecalle in his

seminal works [9]. Unfortunately, some proofs are still missing and resurgence is not a fully

rigorous mathematical subject yet.

It is useful to generalize the integral (2.18) along an arbitrary ray with angle θ in the complex

t-plane by defining

sθ(f̃) =
1

g

∫ eiθ∞

0
dt e

− t
g f̂(t) , (3.1)

where we require

Re
(eiθ
g

)
> 0 (3.2)

in order to have a convergent integral. Whenever an asymptotic series f̃(z) is not Borel re-

summable because of singularities occurring along the positive real axis in f̂(t), assuming that

such singularities are not dense in t and form a natural boundary, we can deform the original
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θ

Figure 3: Contours associated to lateral Borel resummations: (a) around the real positive axis,
(b) around an arbitrary ray at angle θ from the positive real axis.

contour into contours C± which go in the upper or lower plane, as in fig.3 (a). The non-Borel

summability is quantified by the difference of Borel resummation along C±:

(s+ − s−)(f̃) ̸= 0 , (3.3)

where s± ≡ s±ϵ, with ϵ ≪ 1, define so called lateral Borel resummations. We define the Stokes

automorphism S as

s+ ≡ s−S = s−(Id−Disc) , s+ − s− = −s−Disc . (3.4)

If the singularities occur along a ray with angle θ, we can similarly define the Stokes automor-

phism Sθ along a ray as

sθ+ = sθ−Sθ , sθ+ − sθ− = −sθ−Discθ , Sθ=0 = S . (3.5)

The key idea underlying resurgence is to reconstruct the function f by the knowledge of the

singularities of f̃ (which from now on we denote by f̃0). For example, let an be the positions

of the singularities (in general branch-cut singularities) along the positive real axis in the Borel

plane with an < an+1, n = 1, 2, . . ., as in panel (a) of figure 3. The ambiguity to s(f̃0), quantified

by (3.3), is given by the closest singularity a1 and is of order exp(−a1/g). A more careful

investigation shows that exp(−a1/g) multiplies in general an entire new formal power series f̃1.

This series can also give rise to ambiguities, which will be suppressed by a factor exp(−2a1/g),

and again lead to the discovery of another formal power series f̃2, and so on.11 In general, the

process requires the addition of an infinite number of formal power series f̃n. An entire non-

perturbative sector is unveiled by the Stokes phenomenon. We then replace the perturbative

11In general, if the ambiguity of s(f̃n) contains sub-leading exponentially suppressed terms, the situation is
more complicated. The various formal power series mix in an entwined way and we can have exponentially
suppressed terms of the general form exp(−

∑
k=1 pkak/g), with pk ∈ N. We focus here on the simple case where

the ambiguities are determined by a1 and are proportional to exp(−na1/g), n ∈ N, since this corresponds to the
case discussed in section 4.
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series expansion f̃0 of f with a trans-series F̃ :

F̃ (g) =

∞∑
n=0

σne
−an

g f̃n(g) . (3.6)

Although the formal series f̃n might not be Borel resummable individually, the whole trans-

series F̃ could, thanks to a cancellation of the ambiguities. Roughly speaking, resurgence is the

theory underlying this reconstruction process. The coefficients σn in (3.6) are denoted Stokes

constants. Their determination in general is non-trivial. In the simple case we will discuss, we

have σn = σn, and we will show how to fix σ.

A general framework where resurgence is useful is in solving differential equations starting

from an ansatz in terms of asymptotic series. Whenever asymptotic series comes from a (path)

integral, the Stokes discontinuity is related to a jump of steepest descent paths. We start with a

gentle introduction to resurgence by working out the simple and historically notable case of the

Airy function in sections 3.1 and 3.2. After that, we go back to general considerations in section

3.3.

3.1 The Airy function as solution of a differential equation

The Airy differential equation reads

y′′(x) = xy(x) , (3.7)

where x ∈ R. We look for solutions obtained via an asymptotic expansion. In order to do that,

we insert a dummy variable ϵ and consider the complexified equation with x→ z ∈ C:

ϵ2y′′(z) = zy(z) . (3.8)

The leading terms of an expansion for ϵ≪ 1 are given by

y± ≈ z−
1
4 e±

2
3ϵ

z3/2 . (3.9)

We then look for a solution in terms of a power series:

ỹ± =
1

2
√
π
z−

1
4 e±

2
3ϵ

z3/2ψ̃±(z) , ψ̃±(z) =
∞∑
n=0

α±
n (z)ϵ

n , (3.10)

where α±
0 (z) = 1 and we have conveniently normalized the series. As we momentarily see, the

series above is asymptotic and this explains the use of the tilde symbol. Large z is equivalent to

small ϵ and the z-dependence of the αn is easily found:

α±
n (z) = c±n z

− 3n
2 . (3.11)
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I

II

III

Figure 4: The three wedges of the complex plane delimited by Stokes lines and their orientation
for the Airy function. The branch-cut (red) is also reported.

Plugging the ansatz (3.10) in (3.8) allows us to fix all the coefficients cn. One gets

c±n =
(
± 3

4

)nΓ(n+ 1
6

)
Γ
(
n+ 5

6

)
2πΓ(n+ 1)

. (3.12)

¶ Exercise 3. Derive (3.12).

We compute the Borel transforms ψ̂±:

ψ̂±(t) =
∞∑
n=0

c±n
n!

(tz−3/2)n = 2F1

(1
6
,
5

6
, 1;± 3t

4z
3
2

)
. (3.13)

The functions ψ̂± are analytic in the cut complex t-plane, with a branch-cut singularity at

t± = ±4z3/2/3. For complex z both ψ̂+ and ψ̂− are Borel resummable. By taking the Laplace

transform of ψ̂± as in (2.18) we get two well-defined functions which correspond to the two

independent solutions of (3.8). However, we have a problem, because for z ∈ R+ the asymptotic

series ψ̃+ is not Borel resummable. Moreover, along the rays ϕ = ±2π/3, where z = |z| exp(iϕ),
the argument of the hypergeometric function turns real and the asymptotic series ψ̃− is not Borel

resummable. The solutions s(ỹ±) are then not well-defined over the whole complex z-plane, but

only in wedges delimited by Stokes lines, see fig.4. The arrows on the Stokes lines in fig.4 indicate

which ψ̂± is not Borel resummable: ψ̂+ when the arrow points towards the origin, ψ̂− when the

arrow points towards infinity. The formal power series (3.10) have a branch-cut singularity at

the origin, reported as a curvy red line. Monodromy considerations are useful to understand that

s(ỹ±) cannot be globally defined since they are not single-valued around z = 0. Indeed, solutions

of the differential equation (3.8) should be single-valued in z around any finite value, including

z = 0, as the only (irregular) singular point of the Airy equation is z = ∞. We get different

functions ya± = s(ỹ±), a = I, II, III, depending on the wedge where z sits, related with each other

through monodromies arising from the Stokes phenomenon. Such monodromies, together with

the one arising from the branch-cut singularity, combine to give a single-valued solution, as it
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= S− , = S+ = B

Figure 5: Connection matrices as we pass an oriented Stokes line (straight lines with arrows) or
the branch-cut (wavy lines).

should be. A key property of resurgence is that the non-trivial discontinuity of ỹ+ is proportional

to ỹ− and viceversa. This phenomenon arises from the fact that the singular behaviour of the

Borel functions ψ̂+ is proportional to ψ̂− (and viceversa). We say that ψ̂− “resurges” from ψ̂+.

In the case of the Airy function, this property boils down to the hypergeometric transformation

property

2F1(a, b, c, z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b, a+ b+ 1− c, 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b

2F1(c− a, c− b, 1 + c− a− b, 1− z) ,

(3.14)

which shows us that the singular behaviour of 2F1 at z = 1 is proportional to the behaviour

of another 2F1 at z = 0. Taking z real, the Stokes discontinuity is determined by computing

(sθ+ − sθ−)(ỹ±) for θ = 0,±2π/3. One has

yII+ − yI+ = iyI− , yII− − yI− = 0 ,

yIII+ − yII+ = 0 , yIII− − yII− = iyII+ , (3.15)

yI+ − yIII+ = 0 , yI− − yIII− = iyIII+ .

It is more convenient not to talk about the jump of the functions y± but of the coefficients of

functions linear combinations of y±. We write

ya = ca+y+ + ca−y− , a = I, II, III , (3.16)

where y± are the solutions chosen in a given reference wedge, say II. The connection matrices

as we pass a Stokes line or the branch-cut singularity are expressed as 2× 2 matrices acting on

the coefficients (ca+, c
a
−), see figure 5:

S+ =

(
1 i

0 1

)
, S− =

(
1 0

i 1

)
, B =

(
0 −i
−i 0

)
. (3.17)

As anticipated, the total monodromy of ya under z → e2iπz is trivial. For example, starting from

region I, we have

S−S+BS+ = I. (3.18)

¶ Exercise 4. (recommended) Prove the first relation in the first row of (3.15) using the identity
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Figure 6: The Airy function Ai(x) as a function of x, oscillatory with a slow power-like decay
for x < 0, and exponentially decaying for x > 0.

(3.14). In the case at hand, the parameters entering the hypergeometric function satisfy the

relation a + b = c and the second term in (3.14) is obtained in a limit which gives rise to a

log(1− z) term.

We are now ready to discuss the solutions of the Airy differential equation (3.7) for x ∈ R.
There are two independent solutions, commonly denoted Ai(x) and Bi(x). They respectively

decay and blow-up exponentially for x→ ∞. For Ai(x) we have

Ai(x) =

{
y− , x > 0 ,

y− + iy+ , x < 0 .
(3.19)

We define the function Bi(x) as the orthogonal combination of Ai for x < 0. Its expression at

x > 0 is then given by applying S−1
+ to its coefficients. We get

Bi(x) =

{
y+ + iy− , x < 0 ,

2y+ + iy− , x > 0 .
(3.20)

Let us summarize the key points we learned:

1. The same asymptotic series can give rise to different functions in different wedges of the

complex plane because of the Stokes phenomenon.

2. The “observables”, the functions Ai and Bi, can not always be expressed as a formal

asymptotic series, but they can be expressed in terms of two of them.

3. Thanks to the Stokes discontinuity, we can “discover” one of the two asymptotic series

from the non-Borel summability of the other.

We conclude with an historical remark. The Airy function in optics governs the phenomenon

of supernumerary rainbows which occasionally can be seen accompanying the main bow. The
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modulus of the peaks of Ai(x) describes the intensity of the different bows, while x is roughly

the angular distance from the main bow. Notably, the supernumerary rainbows occur in one

direction only with respect to the main bow, in agreement with the behaviour of Ai(x), see

figure 6. Resurgence in the sky!

3.2 The Airy function as an integral

For x > 0, the Airy function Ai(x) admits an integral representation of the form

Ai(x) =
λ−

1
3

2π

∫ ∞

−∞
dw e−f(λ,w) , f =

−i
λ

(w3

3
+ w

)
, x = λ−

2
3 . (3.21)

The function f has two extrema at ±i, none of which is along the contour of integration.

In order to apply steepest descent methods for |λ| ≪ 1, we should first understand which

saddle point(s) contribute to the integral. We briefly recap the procedure when f is an arbitrary

entire function with isolated and non-degenerate saddle points.12 We first analytically continue

f for complex w and deform the initial integration contour C0 – the real w axis in the case of

(3.21) – into a properly chosen contour C that crosses the saddle points of f . In so doing, since

we can bring C0 up to infinity in some direction in the w-plane, C0 can effectively split into a sum

of several disjoint contours, i.e. contours connected only at infinity. Let wσ be the saddle points

of f(w). The contour of steepest-descent (also denoted downward flow) Jσ passing through wσ

is determined as the one where Im f is constant, and Re f is monotonically increasing as we

leave the fixed point. For each downward flow, there is a dual upward flow Kσ, where Im f is

constant and Re f is monotonically decreasing as we leave the fixed point.

Flows Jσ which reach Re f = ∞ are called Lefschetz thimbles. Regular upward flows reach

instead Re f = ∞. By construction the integral over each Lefschetz thimble is well defined and

convergent. The contour C0 should be freely deformed to match a combination C of Jσ’s keeping

the integral (3.21) finite during the deformation. In other words

C0 → C =
∑
σ

Jσnσ , (3.22)

where nσ are integers given by the intersection between the original cycle C0 and the upward

flows Kσ:

nσ = ⟨C0,Kσ⟩ , (3.23)

where ⟨a, b⟩ denote the intersection pairings between two cycles a and b (with a given orientation).

Note that, in absence of Stokes lines, downward and upward flows associated to different critical

points are dual to each other:

⟨Jσ,Kτ ⟩ = δστ . (3.24)

12See e.g. section 3 of [60] for a more in-depth review, aimed at physicists, which also features the Airy function
as primary example.
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Figure 7: Upward (red) and downward (green) flows for the Airy function Ai(x) in the w-plane.
The two black bullets represent the two saddle points at ±i. The shaded blue regions denote
the sectors in the complex plane where the integral (3.21) converges.

When instead Jσ hits another saddle point wτ ,
13 the flow ends at wτ where it reconnects

with Jτ . This leads to an effective split into two branches and to an ambiguity. The flow that

starts at wσ and end at wτ is denoted a Stokes line. In presence of a Stokes line, we have Jσ = Kτ

and the corresponding intersection ⟨Jσ,Kτ ⟩ is not well defined. The problem can be avoided by

deforming the initial integral by giving a small imaginary part to λ, such that all the downward

flows turn into Lefschetz thimbles.

We can now come back to the Airy integral (3.21). We have f(w±) = ±2/(3λ), where

w± = ∓i.14 For λ ∈ R, we have Stokes lines, because J+ = K− as Im f(w+) = Im f(w−). The

problem is circumvented by assingning a small phase to λ. We report in figure 7 the corresponding

downward and upward flows J± and K±. Let us denote by J I
± the downward flows for Arg λ > 0

and by J II
± the ones for Arg λ < 0. From figure 7 we have

J II
− = J I

− ,

J II
+ = J I

+ + J I
− .

(3.25)

The asymptotic expansions around the saddle point w± are in 1-1 correspondence with the

formal power series (3.10). We have

λ−
1
3

2π

∫
I−
dw e−f(λ,w) ∼ 1

2
√
π
λ

1
6 e−

2
3λ

∞∑
n=0

c−n λ
n = ỹ−(λ

− 2
3 ) ,

λ−
1
3

2π

∫
I+
dw e−f(λ,w) ∼ − i

2
√
π
λ

1
6 e

2
3λ

∞∑
n=0

c+n λ
n = −iỹ+(λ−

2
3 ) .

(3.26)

The Stokes discontinuity of y+ along the real line, as given by the first relation in (3.15) is

reproduced by the discontinuity of J+ in (3.25), taking into account (3.26). Independently of

13This can occur if Im f(wσ) = Im f(wτ ).
14The reason for this counterintuitive labeling will soon be clear.
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Arg λ, we have n+ = 0, n− = 1, as C0 intersects only K−. Hence Ai(x) = s(ỹ−), and we reproduce

(3.19) for x > 0.

We have established a correspondence between the Stokes discontinuity obtained from con-

siderations of Borel summability and the one coming from integration contours in integral repre-

sentations. The latter perspective makes clear why the singular behaviour of the Borel function

ŷ+ is proportional to ŷ− (and viceversa). The Airy function has an integral representation also

for x < 0, in which case both saddle points contribute to the integral.

3.3 Trans-series and bridge equations

Let us come back to the general analysis. It is useful to perform expansions around infinity and

redefine the function such that f(z) ∼ z−1 as z → ∞. In this way the formal asymptotic series

of f , its Borel and generalized Laplace dual transform read

f̃(z) =
∞∑
n=0

fnz
−n−1 , f̂(s) =

∞∑
n=0

fns
n

n!
, sθ(f̃) =

∫ eiθ∞

0
ds e−sz f̂(s) , Re (eiθz) > 0 . (3.27)

With these conventions, the Borel transforms of zf̃(z) and ∂z f̃(z) are given as

zf̃(z) → ∂sf̂(s) , ∂z f̃(z) → −sf̂(s) . (3.28)

A Gevrey-1 formal series is said to be resurgent if its Borel transform has endless analytic

continuation, namely no natural boundary of singularities. A resurgent function is called simple

if

f̂(s) =
c′ω

2iπ(s− ω)
+

cω
2iπ

ψ̂(s− ω) log(s− ω) + reg. , (3.29)

close to a singular point at s = ω. In (3.29), reg. denotes terms which are analytic at s = ω

and ψ̂ is analytic at s = ω. In general, the nature of the singularity of a Borel function is not

of logarithmic type. If this is the case, one may use (2.26) to possibly find the values of b for

which (3.29) applies. This step will not be needed in what follows. In the Airy function example

described in section 3.1, the Borel functions were simple, with c′ω = 0.

Given a Borel function f̂(s), we denote by ωa = |ωa| exp(iθ) the set of all its singularities

along a given ray in the Borel plane. The singularities induces a Stokes discontinuity (3.5) as we

pass the ray with angle θ. In order to disentangle the individual contribution of a singularity,

we (indirectly) define the alien derivative ∆ωa as

Sθ ≡ exp
(∑

{ωa}

e−zωa∆ωa

)
. (3.30)

It is also useful to define the dotted alien derivative

∆̇ω ≡ e−ωz∆ω (3.31)
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and the total alien dotted derivative

∆̇θ =
∑
{ωa}

∆̇ωa = logSθ . (3.32)

Let us work out the action of the alien derivative on a formal power series in the case in which

we have only one singularity ω along the ray θ = Argω. For simplicity we set c′ω = 0 in (3.29).

We compute

(s+ − s−)θf̃ =

∫ eiθ∞

ω
ds e−szcωψ̂(s− ω) =

∫ eiθ∞

0
du e−(ω+u)zcωψ̂(u) = cωe

−ωzsθ(ψ̃) , (3.33)

where ψ̃ is the asymptotic series associated to the Borel function ψ̂ appearing in (3.29), which

we assumed for simplicity to be Borel resummable along the ray θ. Using (3.4) and (3.5) we

have

Sθ(f̃) = f̃ + cωe
−ωzψ̃ . (3.34)

Matching with (3.30) gives

∆ωf̃ = cωψ̃ , ∆n
ωf̃ = 0 , n > 1 . (3.35)

Whenever ψ̃ is not Borel resummable, higher alien derivatives do not vanish. We will see an

example of this kind in what follows. The alien derivative is a map between formal power

series. Given a series f̃ , the alien derivative extracts the power series associated to the singular

behaviour of f̂ , in this case ψ̃. It is called a derivative because it satisfies the Leibniz rule

∆ω(f̃1f̃2) = ∆ω(f̃1)f̃2 + f̃1∆ω(f̃2) . (3.36)

The alien derivative does not commute with the ordinary derivative ∂z. However, using the

correspondence (3.28), it is easy to show that its dotted version does:

[∆̇ω, ∂z] = 0 . (3.37)

The action of the alien derivatives can also be extracted using so called bridge equations. We

describe them in a particularly simple set-up in terms of differential equations [33, 34], the

minimum needed for the subsequent application in the context of integrable models we will

consider. See [35] for a more extensive and math-oriented discussion.

Let Φ(z) be the solution of a differential equation in z. We look for a perturbative formal

power series solution in 1/z in terms of a trans-series of the form

Φ̃(z, σ) =

∞∑
n=0

σne−ωnzϕ̃n(z) . (3.38)
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In (3.38) ϕ̃0 is the perturbative formal power series, ϕ̃n>0 are the non-perturbative ones, and we

have taken the Stokes parameters σn = σn, with σ to be determined. By definition the trans-

series Φ̃(z, σ) satisfies the differential equation to all orders in 1/z and e−z. Suppose also that

the differential equation is such that ∂σΦ̃ and ∆̇ωnΦ̃ satisfy the same (homogeneous) differential

equation.15 Then we have the equation

∆̇ωk
Φ̃(z, σ) = Ak(σ)∂σΦ̃(z, σ) , (3.39)

where Ak are undetermined functions of σ. The relation (3.39) is an example of bridge equation,

so called because it allows to relate different formal power series ϕ̃n between each other. Let us

assume that ωn = 2n, with n > 0, and let us write ∆̇ωn ≡ ∆̇n for simplicity. We have

∆̇kΦ̃(z, σ) =
∞∑
n=0

σne−2(n+k)z∆kϕ̃n(z) ,

Ak(σ)∂σΦ̃(z, σ) =

∞∑
n=0

nσn−1Ak(σ)e
−2nzϕ̃n(z) .

(3.40)

Matching powers of σ and e−2nz gives

A1(σ) = A1 , Ak>1(σ) = 0 , (3.41)

and

∆1ϕ̃n = (n+ 1)A1ϕ̃n+1 , (3.42)

with A1 a constant coefficient. This can be determined by looking at the behaviour of the

Borel function ϕ̂0 associated to the perturbative series ϕ̃0 around the singularity ω1. Once A1

is known, the resurgent structure of the trans-series is essentially determined. However, we still

have to understand how to get the actual exact function Φ(z), solution of the starting differential

equation (with some boundary conditions), from the trans-series Φ̃(z, σ). Given (3.42), the Stokes

automorphism S reads

S0Φ̃(z, σ) = e∆̇1Φ̃(z, σ) = eA1∂σ Φ̃(z, σ) = Φ̃(z, σ +A1) , (3.43)

namely

s+
(
Φ̃(z, σ)

)
= s−(

(
Φ̃(z, σ +A1)

)
, (3.44)

where s± here means Borel resummations of the individual formal power series ϕ̃n. We still have

to fix σ. When the exact function Φ(z) is real, we can determine σ and reconstructs Φ from Φ̃

demanding the reality of the resummation procedure. Indeed, both s+ and s− will in general

gives rise to complex values for Φ. It is useful to introduce the median Borel resummation defined

15For example, given that [∂σ, ∂z] = 0 and (3.37), this condition is automatically satisfied for non-linear inho-
mogeneous differential equations which are first order in ∂z, the inhomogeneous term being killed by either the
action of ∂σ or ∆̇ωn .
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as

smed = s+S
− 1

2 = s−S
1
2 . (3.45)

In contrast to s±, smed preserves the reality properties of the formal power series where it acts

on. If C denotes complex conjugation, one has Cs+ = s−C and

CS0 = S−1
0 C , C∆̇0 = −∆̇0C. (3.46)

Therefore, from (3.45), we get

Csmed = smedC . (3.47)

Remarkably, the resummation of the whole trans-series is reproduced starting from the real

perturbative series by using median resummation. In our case we have16

smed(ϕ̃0) = s+

(
e−

1
2
e−2z∆1 ϕ̃0

)
= s+

( ∞∑
l=0

(
− 1

2

)l e−2zl

l!
∆l

1ϕ̃0

)
=

∞∑
l=0

(
− A1

2

)l
e−2zls+(ϕ̃l)

= s−

(
e

1
2
e−2z∆1 ϕ̃0

)
= s−

( ∞∑
l=0

(1
2

)l e−2zl

l!
∆l

1ϕ̃0

)
=

∞∑
l=0

(A1

2

)l
e−2zls−(ϕ̃l) , (3.48)

where we have used

∆l
1ϕ̃0 = Al

1l!ϕ̃l , (3.49)

see (3.42). The trans-series in the first and second row of (3.48) matches with (3.38) and (3.44),

with the identification

σ = σ+ ≡ −A1

2
, σ +A1 = σ− ≡ A1

2
. (3.50)

We reconstruct the exact function by considering

smed(ϕ̃0) = s+
(
Φ̃(z, σ+)

)
= s−

(
(Φ̃(z, σ−)

)
= Φ(z) . (3.51)

Given the trans-series Φ̃(z, σ), the choice of Stokes constant σ depends on which lateral resum-

mation we perform in such a way that a well-defined non-ambiguous result is obtained. This

example concretely shows how from the knowledge of the perturbative series ϕ̃0 it is possible

to reconstruct the full result using resurgence techniques. The trans-series we will determine in

the next section for the large N free energy in the principal chiral field model is precisely of this

form.

16We tacitly assume here that the sum of formal power series defining the trans-series is absolutely convergent.
As far as we are aware, a proof of this statement is missing. See e.g. [61, 62] for results pointing towards this
direction.
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4 2d models and 1/N expansion

The 1/N expansion is a time-honored tool to detect phenomena which are otherwise invisible in a

coupling constant expansion, such as the qualitative emergence of spontaneous chiral symmetry

breaking in four-dimensional gauge theories [63] or its quantitative description in certain two-

dimensional models such as the Gross-Neveu theory [6]. This is possible because 1/N rearranges

the perturbative series and resums it order by order in 1/N . In an ordinary perturbation theory

with coupling constant g, at fixed N we have an expansion of the form

ϕ̃0(g,N) =
∞∑
n=0

cn(N)gn , cn(N) ∼
n≫1

n! . (4.1)

At large N , we define the ’t Hooft coupling λ = g2N , kept fixed for g → 0 and N → ∞, and

write the expansion

ψ̃0(g,N) =

∞∑
n=0

dn(λ)N
−n . (4.2)

In the large N case (4.2), two large order behaviours can be considered:

1. fixed λ, behaviour of 1/N series.

2. fixed n, behaviour of expansion of dn(λ) for λ≪ 1: d̃n(λ) =
∑∞

k=0 dn,kλ
k.

In case 1 we generally expect

dn(λ) ∼
n≫1

n! , fixedλ , (4.3)

though there are situations where the large N series can converge for specific observables, e.g. the

free energy in the 2d Gross-Neveu model [24]. The qualitative behaviour of d̃n in case 2 depends

on the theory. Since instantons are suppressed at large N , the factorial growth of Feynman

diagrams is reduced to exponential at each order in 1/N . As a consequence, in theories without

renormalons, d̃n is a convergent series in λ. Notable theories of this kind include zero-dimensional

(0d) matrix models, 4d N = 4 super Yang–Mills theory, 3d O(N) models or Chern–Simons–

matter theories. When renormalons are present, however, the series d̃n is divergent asymptotic,

with

dn,k ∼
k≫1

k! , fixedn . (4.4)

We consider in what follows case 2, where we analyze the first orders in 1/N and look at the

behaviour of the series for dn(λ) in theories where this is divergent due to the presence of

renormalons. An interesting class of theories of this sort are 2d integrable QFTs like the O(N)

non-linear sigma model (NLSM), the O(N) Gross-Neveu (GN) model, the SU(N) principal chiral

field (PCF) model. All such theories are gapped in the IR, they have a dynamically generated

scale, they are UV free. The first two are vector theories, the third is a matrix model. We mostly

focus on the last case.
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In this third and final lecture we compute the 1/N leading order free energy in presence of

a chemical potential, and show how the result could have been obtained from a perturbative

series in the t’Hooft coupling constant, using median resummation.

We review in section 4.1 how the free energy can be computed using TBA. The explicit

computation for the principal chiral field at leading order in 1/N is carried out in sections 4.2

and 4.3. Results for other models, at large and finite N , are briefly discussed in section 4.4.

4.1 Free energy in integrable systems

The observable of interest is the relative free energy

F(h) ≡ F (h)− F (0) , (4.5)

where F (h) is the zero temperature and infinite volume limit of the free energy in presence of a

chemical potential h associated to a conserved charge Q. Per unit volume, F (h) reads

F (h) = − lim
V,β→∞

1

V β
log tr e−β(H−hQ), (4.6)

where V is the volume of space, H is the Hamiltonian, and β is the total length of Euclidean

time. For simplicity, we refer to F(h) just as the free energy.

It was pointed out in [17] that in integrable quantum field theories F(h) can be determined by

using the TBA ansatz and exact S-matrix amplitudes, in terms of a linear integral equation. Let

m be the mass gap in the theory. For h > m, we expect that the ground state will be populated

with particles with positive charge with respect to Q. By appropriately embedding the charge

operator Q within the full global symmetry of the theory, the ground state will be populated by

a single species of particle, the one minimizing H − hQ, in the limit of zero temperature. The

number density ρ of such particles can be determined in terms of Bethe roots χ(θ) by the TBA

equation

χ(θ)−
∫ B

−B
dθ′K(θ − θ′)χ(θ′) = m cosh θ , (4.7)

where χ(θ) is supported on the interval [−B,B], with B a quantity yet to be determined. The

integral kernel appearing in the Bethe ansatz equation is given by

K(θ) =
1

2iπ

d logS(θ)

dθ
, (4.8)

where θ = θ1−θ2 is the relative rapidity of the two scattering states, and S is their corresponding

S-matrix amplitude, exactly determined using integrability [64]. Independently of their spin, the

particles which populate the ground state obey a Fermi statistics.17 The energy per unit length

17In the bosonic NLSM and PCF theories this is seen from the fact that S(0) = −1. In the GN model S(0) = 1,
but the particles in the vacuum are fermions.

29



e and the density ρ are given by

e =
m

2π

∫ B

−B
dθ χ(θ) cosh θ, ρ =

1

2π

∫ B

−B
dθ χ(θ). (4.9)

The parameter B is related to the Fermi momentum pF of particles. Its value is fixed by the

density ρ and one can obtain an equation of state relating e to ρ.

The free energy F(h) is obtained by taking a Legendre transform of e(ρ):

h ≡ ∂ρe(ρ) , F(h) ≡ e(ρ)− ρh ,

ρ = −∂hF(h) , e(ρ) = F(h) + ρh .
(4.10)

In an equivalent, more useful, formulation of the TBA equations, the basic quantity is a function

ϵ(θ), which satisfies the integral equation

ϵ(θ)−
∫ B

−B
dθ′K(θ − θ′)ϵ(θ′) = h−m cosh θ , (4.11)

and the boundary conditions

ϵ(±B) = 0 . (4.12)

In terms of ϵ, the free energy is more directly given by

F(h) = −m

2π

∫ B

−B
dθ cosh θ ϵ(θ) . (4.13)

In order to gain some intuition on the physical interpretation of the above formulas, it is useful

to work out the case in which the scattering is negligible and we have a gas of free fermions.

In this case, (4.7) gives χ = m cosh θ = dp/dθ, where p = m sinh θ is the momentum of the

particles. The density is given by

ρ =
m

π
sinhB =

1

2π

∫ pF

−pF

dp =
pF
π
, (4.14)

while the energy

e =
1

2π

∫ pF

−pF

√
p2 +m2dp . (4.15)

The function ϵ reads

ϵ(θ) = h−m cosh θ . (4.16)

Given (4.12) and (4.14), we have

coshB =
h

m
=

√
1 +

p2F
m2

, (4.17)
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and hence

ϵ(p) =
√
p2F +m2 −

√
p2 +m2 . (4.18)

For p < pF (|θ| < B) we can interpret ϵ as the energy of hole excitations, configurations where a

particle of momentum p is removed from the Dirac sea. On the other hand, for p > pF (|θ| > B),

ϵ can be seen (up to a sign) as the energy of a particle excitation.

¶ Exercise 5. Show that

F(h) = min
ρ

e(ρ)− ρh (4.19)

corresponds to F(h) defined in (4.13), where ϵ(θ) satisfies the condition (4.12).

Computed in this way, F(h) is a well-defined function of h and m. No renormalons appear.

In order to recast the result in terms of asymptotic expansions in a QFT perturbative series,

we have to “reinsert” the dependence on the coupling constant g2 which appears in the UV

Lagrangian description of such theories. A useful definition of running coupling is

1

α(µ)
+ ξ logα(µ) ≡ log

( µ
m

)
, (4.20)

where

α ≡ 2β0g
2 , ξ =

β1
2β20

, (4.21)

and β0, β1 are the one- and two-loop coefficients of the beta-function for g defined as

β(g) = µ
dg

dµ
= −β0g3 − β1g

5 +O(g7) . (4.22)

In terms of α, we have

β(α) = µ
dα

dµ
= −α2 − ξα3 +O(α4) . (4.23)

We call TBA scheme the renormalization scheme defined by (4.20). Applying µ∂µ to (4.20) gives

the exact β-function in the TBA scheme. Consistently, the first two terms in the expansion agree

with those in (4.23).

The considerations above apply to the NLSM, GN and PCF model. In what follows we focus

on the PCF model, see [24] for details concerning the NLSM and GN theories. We can expand

F(h) in 1/N :

F(h) ≈
∞∑
k=0

Fk(h)∆
k−1 , ∆ =

1

N
. (4.24)

Determining the explicit forms of Fk is not an easy task, so we consider only the leading term

F0. In the PCF model it is convenient to define the ’t Hooft coupling

α ≡ α
(
µ =

√
2π

e
h
)
, (4.25)
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where α(µ) is the TBA coupling defined in (4.20), and expand F0(h) in terms of it. We have

F0(h) ∼ −h
2

8π
Φ̃k=0(α, σℓ) , (4.26)

where

Φ̃k(α, σℓ) =
∞∑
ℓ=0

σℓe
− 2ℓ

α ϕ̃
(ℓ)
k (α) , (4.27)

where σℓ are the trans-series parameters introduced in (3.6). We compute the exact form of F0

in section 4.2 and determine the associated trans-series Φ̃0 in section 4.3.

4.2 F(h) in the principal chiral field at leading order in 1/N

The PCF model is a matrix quantum field theory. Its Lagrangian density reads

L =
1

g2
tr
(
∂µΣ ∂

µΣ†
)
, (4.28)

where Σ is a SU(N)-valued matrix field. The coupling g2 is UV free and the theory is strongly

coupled in the IR. The β-function parameters defined in (4.21) read

β0 =
N

16π
, ξ =

1

2
. (4.29)

The full mass spectrum of the theory has been determined using integrability [65]. We have a

set of bound states with masses

mn = m
sin
(
πn
N

)
sin
(

π
N

) , n = 1, 2, . . . , N − 1 , (4.30)

in the rank n antisymmetric representation (n, n) of the SU(N)L × SU(N)R global symmetry

group of (4.28).

In the PCF model we embed Q in SU(N)V ⊂ SU(N)L × SU(N)R. Its eigenvalues in the

fundamental representation are denoted by q = (q1, · · · , qN ). We choose the embedding [66]18

q =

(
1

2
,− 1

2(N − 1)
, · · · ,− 1

2(N − 1)

)
. (4.31)

There is only one particle state minimizing H−hQ, which is given by the (11) entry of the states

in the bifundamental representation of SU(N)L×SU(N)R. In the scattering of such states only

the symmetric channel (in both SU(N)L and SU(N)R) of the S-matrix can contribute. This is

18See [67–69] for other charge assignments.
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given by [65]

S(θ) = −
Γ
(
1 + iθ

2π

)2
Γ
(

1
N − iθ

2π

)
Γ
(
1− 1

N − iθ
2π

)
Γ
(
1− iθ

2π

)2
Γ
(

1
N + iθ

2π

)
Γ
(
1− 1

N + iθ
2π

) . (4.32)

We compute F0(h) by expanding in 1/N the TBA equation (4.11). This expansion of the

kernel is non-analytic in 1/N and gives:

K(θ) = δ(θ) + ∆K1(θ) +O(∆2) , (4.33)

where

K1(θ) = − d

dθ

(2
θ

)
. (4.34)

We also expand ϵ and B:

ϵ(θ) = ∆−1
∞∑
k=0

ϵk(θ)∆
k , B =

∞∑
k=0

Bk∆
k . (4.35)

The O(∆−1) trivializes, while at O(∆0) we get

−
∫ B0

−B0

dθ′K1(θ − θ′)ϵ0(θ
′) = h−m cosh θ . (4.36)

Relabeling B0 → B, using the explicit form (4.34) of K1 and integrating over θ, (4.36) is

equivalent to

P

∫ B

−B
dθ′

2

θ − θ′
ϵ0(θ

′) = V ′(θ) , V ′(θ) ≡ hθ −m sinh θ . (4.37)

Interestingly enough, (4.37) is identical to the equation for the density of eigenvalues of a one-

matrix model [70] with potential

V =
h

2
θ2 −m cosh θ , (4.38)

where θ and ϵ0(θ) play the role of the eigenvalues and their density, respectively. We can then

adapt the matrix model solutions in terms of resolvents to our case. Let us briefly recall how

resolvents work. We look for an analytic function R(z) in the z-cut complex plane, with a cut

[−B,B] over the real axis, of the form

R(z) =

∫ B

−B
dx

2ϵ0(x)

z − x
. (4.39)

By construction, the discontinuity along the cut of the resolvent gives ϵ0, and we require that
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its principal part equals V ′:

R(z+)−R(z−) = −4iπϵ0(z) ,

1

2

(
R(z+) +R(z−)

)
= V ′(z) .

(4.40)

Thanks to its analyticity properties, R(z) can be written as

R(z) = V ′(z)−
√
z2 −B2F1(z) , (4.41)

where

ϵ0(z) =
1

2π

√
B2 − z2F1(z) , (4.42)

and

F1(z) =

∮
C∞

dw

2iπ

V ′(w)

w − z
(w2 −B2)−

1
2 =

∮
C0

dw

2iπ

V ′( 1
w )

1− wz
(1− w2B2)−

1
2 . (4.43)

Expanding both V ′(w−1) and (1− w2B2)−1/2 around w = 0 and using the relation

∮
C0

dw

2iπ
(1− zw)−1w−s =

{
zs−1 , s ≥ 0 ,

0 , s < 0 ,
(4.44)

gives

ϵ0(θ) =
1

2π

√
B2 − θ2

h− 2m
∑
r,k≥0

(
2k

k

)
r + k + 1

(2(r + k + 1))!

(
B2

4

)k

θ2r

 . (4.45)

Thanks to the overall
√
B2 − θ2 factor, the boundary condition (4.12) is automatically satisfied

by (4.45). However, due to the form of K1 in (4.34), we have to also demand regularity of ∂θϵ0

at θ = ±B. This condition gives

h− 2m
∑
r,k≥0

(
2k

k

)
r + k + 1

(2(r + k + 1))!
4−kB2(k+r) = 0 . (4.46)

The series can be resummed, leading to

h

m
=

2

B
I1(B) + I2(B) , (4.47)

where Ik are Bessel functions of the first kind. The relation (4.47) implicitly defines B as a

function of m/h. Knowing ϵ0, we can determine the free energy (4.13) by using∫ B

−B
dθ
√
B2 − θ2θ2k = B2k+2

√
πΓ
(
k + 1

2

)
2Γ(k + 2)

. (4.48)
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Eventually we get

F0(h) = −h
2

4π

{
B2I1(B)

2I1(B) +BI2(B)
− 1

2

B4

(2I1(B) +BI2(B))2
1F2

(
1

2
; 1, 2;B2

)}
, (4.49)

where B is determined from (4.47) and 1F2 is the generalized hypergeometric function (not to

be confused with the ordinary hypergeometric function 2F1)

1F2(a; b1, b2; z) =

∞∑
k=0

(a)kz
k

(b1)k(b2)kk!
. (4.50)

4.3 Trans-series expansion of F0

The free energy (4.49) is an exact expression, function of the two mass scales in the problem,

h and m. The next task is to rewrite (4.49) as a trans-series in terms of the coupling defined

in (4.20). The task is greatly simplified by the fact that both the Bessel functions Ia and the

generalized hypergeometric 1F2 admit simple trans-series expansions in terms of their argument.

The Bessel functions of the second kind Ia(z) and Ka(z) are solutions of the second order

differential equation z2y′′ + zy′ − (z2 + a2)y = 0. Formal solutions of the equation in terms of

asymptotic power series in 1/z can be found, similarly to the case of the Airy equation discussed

in section 3.1. These are given by

ỹ
(a)
± =

√
π

2z
e±z

∞∑
n=0

c±n (a)z
−n , (4.51)

where

c±n (a) = (±1)n
Γ
(
n+ 1

2 + a
)
Γ
(
n+ 1

2 − a
)

2nΓ(n+ 1)Γ
(
1
2 + a

)
Γ
(
1
2 − a

) . (4.52)

For real z, ỹ
(a)
− is Borel resummable and its Borel resummation defines the Bessel function Ka,

while ỹ
(a)
+ has a Stokes discontinuity: (s+− s−)(ỹ(a)+ ) = 2i cos(πa)s(ỹ

(a)
− ). The Bessel function Ia

is obtained as the resummation of a two-term trans-series:

πIa(z) = s±(ỹ
(a)
+ ) + σ±e

∓iπas(ỹ
(a)
− ) , σ± = ∓i . (4.53)

By using (4.51) and (4.53), we get the following equalities, valid for B > 0:

2

B
I1(B) + I2(B) =

eB√
2πB

(
s±(γ̃

(0)) + σ±e
−2Bs(γ̃(1))

)
,

BI1(B) =

√
B

2π
eB
(
s±(ν̃

(0))− σ±e
−2Bs(ν̃(1))

)
, (4.54)
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where

γ̃(0)(B) = 1 +
1

8B
+

9

128B2
+ · · · , γ̃(1)(B) = γ̃(0)(−B) ,

ν̃(0)(B) = 1− 3

8B
− 15

128B2
+ · · · , ν̃(1)(B) = ν(0)(−B) , (4.55)

are Gevrey-1 series.

A similar analysis for the generalized hypergeometric function gives

B2

2
1F2

(
1

2
; 1, 2;B2

0

)
=
e2B

4π

(
s±(f̃

(0)) + C±e−2B4Bs±(f̃
(1)) + e−4Bs(f̃ (2))

)
, (4.56)

where

f̃ (0)(B) = 1 +
1

4B
+ · · · , f̃ (2)(B) = f (0)(−B), f̃ (1)(B) = 1− 1

8B2
+ · · · (4.57)

are again Gevrey-1 asymptotic series. As before, the symbol s with no subscript refers to formal

series which have a non-ambiguous Borel resummation along the positive real axis. Using (4.54)

and (4.56) we can determine a trans-series expansion of the free energy (4.49) in terms of 1/B and

e−2B. We are however interested in obtaining the trans-series expansion in terms of the ’t Hooft

coupling α introduced in (4.20), which is more directly connected to conventional perturbation

theory. The relation between α and B is obtained from (4.47) and the first relation in (4.54).

With α defined as in (4.25), we have

B − 1

2
log(B)− 1

2
+ log γ̃(0)(B) + log

(
1 + σ±e

−2B γ̃
(1)(B)

γ̃(0)(B)

)
=

1

α
+

1

2
log(α), (4.58)

and it has a trans-series solution of the form

B =
1

α
B̃(0)(α) +

∑
ℓ≥1

σℓ±e
−2ℓ/αB̃(ℓ)(α) , (4.59)

where the series B̃(ℓ)(α) can be computed at arbitrarily high order (see [24] for the explicit form

of the first terms for ℓ = 0, 1, 2). Plugging (4.59) in the trans-series in 1/B for F0 finally gives

us the desired result of a trans-series structure of F0(h) in α and exp(−2/α):

Φ̃0(α, σ±) =
1

α
− 1

2
− α

4
− 5α2

16
− 53α3

96
− 487α4

384
− 13789α5

3840
− 185143α6

15360
+O

(
α7
)

− 4σ±
eα2

e−2/α

(
1 + α+

α2

4
− α3

16
+
α4

96
− 31α5

384
− 23α6

1280
+O

(
α7
))

+
2σ2±
e2α

e−4/α

(
1− α

4
+

3α2

8
− α3

2
+

4α4

3
− 181α5

64
+

3227α6

320
+O

(
α7
))

+O
(
e−6/α

)
,

(4.60)
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where Φ̃0 is defined in (4.26). We see that the trans-series (4.60) is of the form given in (4.27),

where the parameters σℓ are all related and given by

σℓ = σℓ± , (4.61)

with a two-fold ambiguity ± deriving from the choice of lateral Borel resummation. The first

terms of the first series ϕ̃ℓ read

ϕ̃0(α) =
1

α
− 1

2
− α

4
+ · · · ,

ϕ̃1(α) = − 4

eα2

(
1 + α+

α2

4
+ · · ·

)
, (4.62)

ϕ̃2(α) =
2

e2α

(
1− α

4
+

3α2

8
+ · · ·

)
.

The non-perturbative corrections in (4.60) are proportional to powers of exp(−2/α), which

corresponds to Λ2, the square of the dynamically generated scale. From the considerations in

section 2.4 it is natural to identify the Borel singularities associated to the non-perturbative

exp(−2ℓ/α) terms to IR renormalons and to the appearance of condensates with UV scaling

dimensions 2ℓ.19 Despite we get an infinite number of IR renormalons, the trans-series Φ̃0 inherits

the simple resurgent properties of its building blocks, the Bessel functions I1,2 and the generalized

hypergeometric function 1F2. In fact, an analysis of the first formal series ϕ̃n points toward a

very simple pattern of alien derivatives:20

∆1ϕ̃n = 2i(n+ 1)ϕ̃n+1 . (4.63)

This is precisely of the same form as (3.42), with A1 = 2i, and Ak>1 = 0.21 This allows us to

use the results discussed at the end of section 3.3. More specifically, we have

F0(h) = −h
2

8π
s±(Φ̃0(α, σ±)) = −h

2

8π
smed(ϕ̃0(α)) , (4.64)

where smed is the median resummation defined in (3.45). See [24] for numerical checks of the

validity of (4.64).

Note that ϕ̃0 corresponds to the asymptotic series around the perturbative wrong vacuum

with massless excitations. The IR renormalons can be seen as a signal of the inconsistency of

the expansion. Yet, and quite remarkably, (4.64) shows that by the knowledge of ϕ̃0, we could

have in principle recovered the full exact result. This, of course, would have required to work

19In vector models this interpretation is confirmed by large N techniques which allow us to compute the values
of such condensates.

20Similar resurgent equations apply to the solution to Painlevé II equations [71].
21It would be nice to derive (4.63) directly from some bridge equations, as in the toy example discussed in

section 3.3.
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out in a bottom-up approach the pattern of alien derivatives (4.63), and assume that median

resummation gives the exact result.

4.4 Other large N and finite N results

We briefly discuss in this last section other results obtained both at large and finite N . Most

of the analysis have focused on the O(N) NLSM, the O(N) GN model, and the SU(N) PCF

model.22 By using a technique developed in [18,19] to extract many perturbative terms in 1/B or

in the coupling α from the TBA equations (4.7) and (4.11), [20] established that the large order

behaviour in the above theories are controlled by renormalons, for any finite N . Evidence for

identifying such singularities with renormalons was provided from large N QFT computations

around the “naive” vacuum, which was shown to give rise to non-Borel resummable asymptotic

series with the expected singularity structure [23]. While in the PCF model resurgence works

beautifully at large N , as synthesised in (4.64), for the O(N) non-linear and Gross-Neveu vector

models it was found that, when fixing the order in the 1/N expansion, the resulting perturbative

series in the coupling constant is not sufficiently generic and cannot be used to predict non-

perturbative corrections [24]. Interesting results were found for the O(N) NLSM at N = 4,

where technical simplifications allow for a more in-depth analysis. In particular, exploiting the

results of [18, 19], [21, 22, 26] found resurgent relations between the perturbative and the first

few non-perturbative series. An efficient way to extract the first terms of the non-perturbative

series using Wiener-Hopf techniques was found in [25]. Leveraging on this method, [30] found a

way to determine the whole trans-series starting from the perturbative series, and pointed out

that the exact result is recovered by median resummation of the trans-series. The O(N) model

with N = 3 also received some interest, being notably the only model with topologically stable

instantons. The trans-series in this case is given by both renormalon and instantons singularities

and its structure has been analyzed in [27–29]. The resurgence properties of the O(N) NLSMs

have been fully worked out recently in [32], where it has been found that median resummation

of the perturbative series is enough to reconstruct the whole result for N ≥ 4, while for N = 3

at least two other non-perturbative series are required. Evidence that, in contrast to the large N

case, the perturbative series might be enough to predict non-perturbative corrections in the GN

model at finite N has been given in [25]. In addition, new Borel singularities were found which

are naively not those expected from ordinary renormalons, i.e. integer powers of the dynamically

generated scale. The physical interpretation of these singularities requires further study.

5 Concluding remarks

Perturbative expansions in QFT typically have zero radius of convergence, yet this does not

harm its application at weak coupling, its natural area of application. Somewhat surprisingly,

perturbation theory can also be used at strong coupling. Before resurgence, strong coupling was

22See [31] for an exception.
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accessible only for Borel resummable expansions, a very stringent constraint. Several results have

been obtained in this way, mostly in the context of critical phenomena in scalar field theories.

Non-Borel resummable perturbative expansions can be systematically studied by using resur-

gence. We still don’t know the general requirements under which perturbative expansions in QFT

are resurgent, so it is useful to provide evidence in theories where we know the exact answer by

other means. We have shown in these lectures the notable case of the free energy as a function

of a chemical potential in 2d integrable models.

So far we mostly checked that resurgence works in theories where we knew the answer by

other means. So the big question is: can we use it to actually compute new observables? In QFT

this seems to be at the moment out of reach, because we need to know many more perturbative

terms than those typically known in order to “activate” the resurgence program. In quantum

mechanics it has been shown that, using suitable deformations, observables expressed in terms

of a trans-series in ordinary perturbation theory also admit expansions which give rise to a

single Borel resummable asymptotic series [39]. And history has shown that predictions can be

made when we have to deal with a single series only. Understanding how resurgence works in

controlled cases would be of help in possibly finding similar deformations in QFT.

Even in absence of a method to get quantitative results, resurgence can be seen as a useful

organizing principle for strongly coupled theories, since the size of non-perturbative effects is

efficiently and analytically captured.
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[3] J.-P. Eckmann, J. Magnen, and R. Sénéor, Decay properties and Borel summability for the

Schwinger functions in P (ϕ)2 theories, Commun. Math. Phys. 39 (1974), no. 4 251 – 271.

39



[4] J. Magnen and R. Seneor, Phase Space Cell Expansion and Borel Summability for the

Euclidean phi**4 in Three-Dimensions Theory, Commun. Math. Phys. 56 (1977) 237.

[5] L. N. Lipatov, Divergence of the Perturbation Theory Series and the Quasiclassical

Theory, Sov. Phys. JETP 45 (1977) 216–223.

[6] D. J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotically Free Field

Theories, Phys. Rev. D10 (1974) 3235.

[7] B. E. Lautrup, On High Order Estimates in QED, Phys. Lett. B 69 (1977) 109–111.

[8] G. ’t Hooft, Can We Make Sense Out of Quantum Chromodynamics?, Subnucl. Ser. 15

(1979) 943.
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