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GLOBAL REGULARITY AND INFINITE PRANDTL NUMBER LIMIT OF
TEMPERATURE PATCHES FOR THE 2D BOUSSINESQ SYSTEM

OMAR LAZAR, LIUTANG XUE, AND JIAKUN YANG

ABsTRACT. We prove global regularity and study the infinite Prandtl number limit of temperature
patches for the 2D non-diffusive Boussinesq system with dissipation in the full subcritical regime.
The temperature satisfies a transport equation and the temperature initial data are given in the form
of non-constant patches. Our first main result is a persistence of regularity of the patches globally
in time. More precisely, we prove that if the boundary of the initial temperature patch lies in C**7
with £ > 1 and v € (0,1) then this initial regularity is preserved for all time. Importantly, our proof
is robust enough to show uniform dependence on the Prandtl number in some cases. This result
solves a question in Khor and Xu [39] concerning the global control of the curvature of the patch
boundary. Besides, by studying the limit when the Prandtl number goes to infinity, we find that the
patch solutions to the 2D Boussinesq-Navier-Stokes system in the torus converge to the unique patch
solutions of the (fractional) Stokes-transport equation and that the C**7 regularity of the patch
boundary is globally preserved. This allows us to extend the C*+7 persistence result of Grayer IT [29]
from the range k € {0, 1,2} to the full range k& > 1.
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1. INTRODUCTION

In this paper, we study the Cauchy problem of the two-dimensional non-diffusive Boussinesq-
Navier-Stokes system:

0 +u-Vo =0, (t,$)€R+XD,
% (atu +u- Vu) + vA*y = —Vp + e,
(Ba) (1)
V-u=0,
(u, 0)]—o = (uo0,00),
where D is either R? or torus T?, ey := (0,1)7 is the second canonical vector of R?, v > 0 is
the kinematic viscosity, Pr > 0 is the non-dimensional Prandtl number, the dissipation operator
A?Y = (=A)® (a € (0,1]) is the classical (fractional) Laplacian operator defined via the Fourier
transform through the formula A2¢f(.) = | - |20‘f() The vector field u = (uq(x,t), ug(x,t))” is the

velocity of the fluid, and the scalars p = p(x,t) and 6 = 6(z,t) denote the pressure and temperature
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of the fluid, respectively. This system (B,) with @ = 1 is used to model the natural convection
phenomena in the ocean and atmospheric dynamics [416, 55]. It is also an important mathematical
model used to study the Rayleigh-Bénard convective motion as noticed for example in the work
by Constantin and Doering [15]. The system (B,) with v > 0, @ € (0,1) can be viewed as an
intermediate model connecting the inviscid case (i.e. ¥ = 0) and the full Laplacian case that is v > 0,
a = 1. We refer to [23, 51] for some physical background on the fractional Navier-Stokes equations
which corresponds to the case 8 = 0.

From the mathematical point of view, the Boussinesq system (1) contains the incompressible
Navier-Stokes and Euler equations as special cases [12, 47]. Furthermore, in the inviscid case, i.e.
v = 0, the Boussinesq system shares many similarities with the 3D axi-symmetric Euler equations
with swirl. In light of the maximum principle of 6 and the maximal regularity estimates of fractional
parabolic equations, we can distinguish 3 cases in the the viscous case (i.e. v > 0). Namely, the
cases o > %, a = % and 0 < a < % which are classically called subcritical, critical and supercritical
respectively. It is worth recalling that, so far, the global well-posedness of smooth solutions for the 2D
Boussinesq system (1) remains a challenging open problem in the inviscid case or in the supercritical
case. Some important recent advances in the study of the 2D inviscid Boussinesq system (1) have
been obtained in [21, 11, 12] where finite time blow-up results in various domains are proved. We
refer also to [5, 22] for the global stability results.

For the 2D Boussinesq-Navier-Stokes system (B, ) with a = 1 and Pr = 1, Chae [6] and Hou, Li [30]
independently proved the global existence and uniqueness result associated with the smooth initial
data (ug, bp) € H® x H® with s > 2, which gives an answer to the problem number 3 in Moffatt [53] by
ruling out the possible development of singularity in the gradient for this system. The same type of
results have been obtained by Abidi and Hmidi || who proved the global well-posedness result for less
regular initial data 6y € Bgl, uy € L?N Bo_ol,l' Then, Hmidi and Keraani [31] proved global existence
of weak solutions to the Boussinesq-Navier-Stokes system (B;) with initial data 8y € L?, ug € H?,
s € [0,2). The uniqueness of weak solutions obtained in [31]| has been solved by Danchin and Pai¢u
[19] using new regularizing effect together with paradifferential calculus. Let us also mention the
work of Hu, Kukavica and Ziane |37] who proved global persistence of regularity in Sobolev spaces.

For the 2D Boussinesq-Navier-Stokes system (B,) with fractional dissipation and Pr = 1, Hmidji,
Keraani and Rousset [32] considered the critical viscous case a = % and proved that (B 1 ) is globally

well-posed for any data 6y € L? N ng1 and up € H* N WP, p > 2.

Recently, there has also been significant attention on the Boussinesq temperature patch problem
for the non-diffusive Boussinesq system (B,,), which is a free boundary problem of the system (B,)
associated with an initial data which is given as the characteristic function of an initial domain
Dy C D which is assumed to be simply connected and bounded. Since 6 satisfies a transport
equation and since the velocity w is assumed to be regular enough, it implies (at least formally) that
the temperature patch structure is preserved. In other words, any initial data 1p, gives rise to a
solution 6(z,t) = 1p() where D(t) = X; (Do) and Xy(-) is the particle trajectory generated by the
velocity w which verifies

a);tt(y) =u(Xe(y),t), XeW)|—o =y @

This point of view allows us to study many regularity questions, in particular, one may wonder
whether the initial regularity of the patch boundary is globally preserved along the evolution. More
precisely, one may study and try to answer the following question:

suppose 0Dy € C**7 ke Z*,~ € (0,1), whether D(t) € C**7 for all time?

Here the notation dD(t) € C**7 means that there is a parametrization of the patch boundary
OD(t) = {z(a,t) € D, € S' = [0,1]} with z(-,t) € CF7.

Such regularity problem were initiated in the 1980s, in particular with the study of the vorticity
patch problem for the 2D Euler equations. This problem was solved by Chemin [9] (using paradif-
ferential calculus together with striated regularity estimates) and Bertozzi and Constantin [3] (using
a more geometric approach based on cancellation of singular kernel). They were able to prove that
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if an initial patch of the 2D Euler equations has its boundary in C**7 then this regularity remains
forever.

As for the temperature patch problem for the Boussinesq system (B,) with = 1 and Pr = 1,
Danchin and Zhang [20] proved that the C'*7 regularity of the patch boundary is globally preserved
in the 2D case as well as in the 3D case under an additional smallness condition by using the striated
estimates. Using another approach, Gancedo and Garcia-Juarez [24] gave a proof of the persistence
of the C'7 regularity in the 2D case. Moreover, they proved that the W2 and C?**7 regularity
of the boundary of the temperature patch is globally preserved. Their approach are based on new
cancellations in time-dependent Calderon-Zygmund operators. In particular, the result of [24] implies
that the curvature of the patch boundary is uniformly-in-time bounded. Furthermore, Chae, Miao
and Xue [7] established the global C*+7 (for all k € ZT)-regularity persistence of the patch boundary.
The same type of results were obtained in the 3D case in |25, 10].

For the 2D Boussinesg-Navier-Stokes system (B, ) with 1 < a < 1, Pr = 1, Khor and Xu [39] were
able to prove that, given an initial temperature patch data 6y = 1p, whose boundary of in C?* then
this regularity is preserved for all time. Besides, the authors in [39] raised two interesting questions,
namely,

(a) Is it possible to control the curvature for o € (1/2,1), as it is possible in the case a = 17
(b) Can the critical equation o = 1/2 support unique temperature patch solutions, and what regularity
of their boundary would be preserved?

As we shall see later, we give an affirmative answer to the question (a) in Theorem 1.1, and we make
some comments on the question (b) in Remark 1.2.

When the Prandtl number Pr tends to infinity, as observed by Grayer II [29], the material derivative
of w in the momentum equation in the system (1) vanishes (at least formally) and the system (1)
becomes the two-dimensional (fractional) Stokes-transport system (by assuming v = 1):

O +u-Vo=0, (t,z) e Ry x D,
A%y = —Vp + fes,
(ST4) B} 3)
V-u=0,
6‘1&:0 = bo,

where a € (0,1]. The Stokes-transport system, which is the system (ST, ) with @ = 1, can also be
recovered by taking a limit of sedimentation of inertialess rigid particles in a viscous fluid satisfying
Stokes system [34], where 6 stands for the probability density function of the particles and (u,p) are
the velocity and pressure of the fluid. The global existence and uniqueness issue for the 3D Stokes-
transport system associated with regular or rough initial data has been intensely studied in various
settings [34, 35, 41, 50, 38]. For the 2D Stokes-transport system (ST;), Grayer II [29] proved tha the
Cauchy problem associated with data in L' N L™ is globally well-posed. As well, he proved the global
persistence of C*¥™7 (k € {0,1,2}) boundary regularity of the associated patch solutions. Dalibard,
Guillod and Leblond [18] studied the long-time behavior for the 2D Stokes-transport system in a
channel D =T X (0,1) (see also [51]). One can refer to [2, 26, 27| for some further regularity results
for an interface of density in the Stokes-transport system.

The fractional Stokes-transport system (ST, ) with o € (0, 1) can be seen as an intermediate model
between the inviscid incompressible porous media (IPM) equation (i.e. the a = 0 case, see e.g. [4, 17])
and the Stokes-transport system. In a very recent work, Cobb [l4] proved various well-posedness
results in critical function spaces for the fractional Stokes-transport system in any dimension d > 2.
In particular, the author showed a global well-posedness result in the case {d = 2, a € (%,1)}
associated with data 6y € LP N LT (1 <p<1)andin the case {d =2, a = 3} associated with
0o € Bg,l N ngl.

In this paper we study the patch problem for the 2D Boussinesq-Navier-Stokes system (B,,) in the
full subcritical regime, namely % < a < 1. One of the main task is to get a control which is inde-
pendent on the Prandtl number Pr € [1,00) in order to let the Prandtl number goes to infinity. This
will allow us to recover the patch solutions for the system (ST,) by passing to the limit. The initial
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temperature 6y is the patch of nonconstant values, which is classically called the temperature front
initial data. This setting describes the evolution of the temperature front governed by the fluid flow,
and it is an important physical scenario in geophysics [28, 46]. Let us now introduce our analytical
setting regarding the initial condition.

Let k£ > 2 be an integer,

(4)

) ] =2y for 7€ (0,20~ 1),a € (3,1]
9 B 9 ) | 9 . - ’~ 9 ) 27 9
o(z) = bo(x)1p,(z), bo(x) {C’H”(Do), ¥>0, for y=2a-1la€(31),

where Dy C D is a bounded simply connected domain with boundary

(0,20 —1], if a€(3,1),

(0,1), if a=1. (5)

0Dy € CkJr,Y, v e {

We consider the level-set characterization of the domain Dy: there exists a function ¢y € C*+7 (D)
such that

0Dy ={x €D :¢o(x) =0}, Dy={zeD:py(x) >0}, Ves#0ondDy. (6)
Then, the boundary 0Dy can be parameterized as
20 : St 8Dy with Oaz0(e) = V3ep (20(a)) := Wy (20(e)) (7)

with V4 = (=05, al)T. In what follows we also set the viscosity v = 1 for simplicity.

Our first main result is to show that the C**7 regularity of the boundary of the patch is globally
preserved for the 2D subcritical Boussinesq system (B, ), where k € ZT. In particular, we may clearly
show the dependence on the Prandtl number Pr € [1,00), and also positively answer the question (a)
raised by [39] in the case a € (1/2,1). As a matter of fact, dD(t) € L(C**7), k > 2 implies that
the curvature of dD(t) is uniformly bounded.

Theorem 1.1. Let ¢ = & € (0,1], a € (3,1], and k > 2 be an integer. Let D be either R? or
T2. Suppose that 0(x) = Oo(x) 1p,(x) satisfies the above conditions (4)-(5). Assume that the initial
velocity ugy satisfies
o ug € H' nWhr(D),
e (Ow,ug,- - ,a%luo) € WP(D) for some p > 52+,
o V- ug = 0.
Then, there ezists a unique global solution (u,0) to the 2D Boussinesq-Navier-Stokes system (1)
which satisfies
0(x,t) = 0o(X; ' (2))1p (), (®)
with
dD(t) € L*([0,T7],C*), (9)
where D(t) = X(Dy), Xy is the particle-trajectory solving the equation (2) and X{l s ils inverse.
In particular, for the cases that

either {a € (3,1)}, or {a=1,D=T}, (10)
the result (9) holds uniformly with respect to €.

Note that the notation Ow,ug := Wy - Vug = div (Wpug) means the directional derivative of ug
along the divergence-free vector field Wy := V.

Remark 1.1. [t is important to mention that in the case k = 1 in Theorem 1.1, we still have the
same conclusion regarding the reqularity of the patch. Indeed, if the initial data ug(w) and 6p(z) =
0o(z)1p,(x) are such that

up € H', Oy € L>®(Dy), 0Dy € C'*7, ~ € (0,1), for a=1,
up € HAN WP p e (2,00), g € L=(Dy), 0Dy € C**7, v € (0,2a — 1], for a € (%,1)7
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then according to Propositions 3.2 and 3.3 below, we have Vu € L*([0,T],C7(D)) where 7 is such
that (5) with the corresponding estimates. Therefore, by combining with the following estimate (see
e.g. |7, Lemma 2.10])

t
(VX2 < o249 [ IVuloed (1 + /0 uwmnmch), (1)

we find that dD(t) € L°°(0,T; C**7(D)). Importantly, the above estimate is uniform with respect to
e for the cases (10). Note that the special structure of the temperature patches is not used in the proof
of the global preservation of the C'*7 boundary reqularity of the patch. This is completely different
from the proof of the C*™Y (k > 2) case treated in Theorem 1.1 where it makes a systematic use of
the structure of the temperature patch.

Remark 1.2. In the critical case o = %, it remains a very interesting question to show the global

well-posedness and the persistence of reqularity of the patch boundary for both the Boussinesq-Navier-
Stokes system (By ) or the fractional Stokes-transport system (STy/2). From the system (ST 2), we
find that the relation of u and 0 can be written as

u=VA30 + (A710) eq,

which enjoys the same scaling with the Biot-Savart law of the 2D Euler equations: uw = V+A"20. It
is well-known that the vorticity patch problem for the 2D FEuler equations was solved by [9, 3] as we
already mentioned in the introduction. One may therefore wonder if these techniques can be adapted
to get new reqularity results in the patch problem for the critical system (ST1/2). However, there is a
clear difference in the constitutive relation linking 0 and w. Indeed, noticing that

Vu=V2,A 720 + (VA '0)es, with 0=1p, (12)

we see that the operators in front of 0 in (12) are singular integral operators with odd kernels, which is
different from the case of even kernels in the vorticity patch problem. The even kernels have additional
cancellation effect and this property plays an essential role in proving the key Lipschitz estimate of
velocity u as in the works |9, 3|. For further developments regarding the fine properties of the singular
integral with even kernels one may see [18, 19].

Our second main result deals with the infinity Prandtl number limit of the patch solutions for the
2D Boussinesq-Navier-Stokes system (B,) in the torus T2. We rigorously justify the convergence to
the patch solutions of the 2D (fractional) Stokes-transport system (ST,). In particular, we provide
an indirect proof that the C**7 (k € Z%) boundary regularity of the patch solutions to the system
(ST,,) is preserved globally in time. Specially, our theorem extends the result of Grayer II [29] to the
regime k > 3.

Theorem 1.2. Let o € (%,1], e € (0,1, D = T?, k > 1 be an integer. Suppose that Oy(x) =
0o(z)1p, (x) satisfying Jq2 0o dx = 0 is the temperature patch initial data that fulfills the assumptions
in Theorem 1.1 and Remark 1.1. Assume that u§ € H' 0 W'P(T?), (dw,ug, - - ,a%lug) € Wir(T?)
for some p > %, V-uf =0, and they converge to ug and (Ow,uo, - - - ,8{}/_0%0) in the corresponding
norms. Let (u®,0%) be the unique global reqular solution to the 2D Boussinesq-Navier-Stokes system
(Ba) constructed in Theorem 1.1.

Then, as e — 0, up to an extraction of a subsequence, (u®,6%) converges to the global unique weak

solution (u, @) which is solution of the (fractional) Stokes-transport system (ST,), and (u,0) satisfies
that

0(x,t) = 0o(X; " (2))1pw(x), with ID(t) € L>([0,T],CM), (13)
where D(t) = X;(Dy), X; is the particle-trajectory generated by the velocity w and X; ' is its inverse.

To prove the persistence of the temperature patch boundary in C'*7 and C?*7, it suffices to prove
that ¢ belongs to L°°(0,T; C1*7(D)) and L*°(0,T;C**7(D)), respectively. Note that the domain
D(t) = X;(Dy) can be determined by the level-set function ¢(z,t) = wo(X; ' (z)) which solves

dp+u-Vo=0, ¢0,z)=¢o(x). (14)
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Then, motivated by the works [32, 33] which has been recently applied in [7, 39], one introduces an
auxiliary quantity I', which plays an important role in the analysis. First, recall that the equation
for the vorticity w := dyus — druy is expressed as

e(Qw + u- Vw) + A*% = 9,0. (15)

We rewrite it as (aat +eu-V+ AQO‘) w — A?*0 = 0, where 9,0 = A>**O, which may be rewritten as
O = Ri_240 := 01A72%0. Hence, applying the operator Ri_s, to the temperature equation yields

€O +ceu-VO = —¢[Ri_94,u - V]b.
Thus, if we set ' :=w — © = w — R1_9,0, then we obtain the following equation for I'
e(T +u- VD) + A*T =€ [Ri_2q,u - V] 0. (16)

Note that the vorticity equation (15) enjoys the same structure as the equation (16), however the
forcing term € [Ri_2q,u - V] 6 in (16) is more regular than the original term 0160. In particular, it
allows to prove the uniform estimates with respect to €. Taking advantage of the Biot-Savart law and
the relation w = I' + Rq_9,0, we have

u=VA 2w = VAT 4 V519, A~2299. (17)

We first note that the L3°(L?(D)) norm of the velocity u has an upper bound given by (50) that
is growing in % (with e = %) and this seems to be an obstruction to get uniform estimates with
respect to e. However, by using the good unknown I', we can get nice a priori estimates of Vu and
I' which are uniform with respect to ¢ in some cases (10) (see Propositions 3.2 and 3.3). It is worth
mentioning that the commutator estimates in Lemma 2.6 play a crucial role to get nice estimates and
in particular it allows us to deal with the forcing term in (16). Since the commutator estimate (37)
requires a control on ||ul|z2 (unlike (36) and (38) where one only needs to control a higher order semi-
norm of u in the cases (10)), this makes the case {a = 1, D = R?} a bit particular. In this special
case, we only prove the estimates of I' and Vu with upper bounds depending on % Importantly, one
may notice that Propositions 3.2 and 3.3 are enough to get the global well-posedness of temperature
patch solutions for the system (B,) together with the global persistence of the regularity C''*7 of the
patch boundary 0D(t), see Remarks 3.1, 3.2 below or Remark 1.1.

In order to prove that ¢ € L>([0,T], C?t7(D)), we introduce the tangential derivative W = V+¢
which solves the equation (80), and we focus on the C7 norm of the quantity VW. It remains to
control the L!([0,T],C7) norm of the term Oy Vu, where dy = W - V. Since we have (17), we shall
prove the estimates of Jy 1" and Oy 60 separately. Regarding the control of Oy ', we need to apply
the smoothing estimate (44) in the equation (86) of dyI" in order to give a good dependence of the
coefficient € = %. This is crucial especially after having noticed that there is a singular forcing term
%[AQO‘, W - V]I in (86). By taking advantage of the commutator estimates in (28) and Lemma 2.6,
we can control the L%F(Bzcl),l) norm of dy T’ with some specific 4/ > ~. This control is done in terms
of the integral of ||W /|10 multiplying some norms of I', which, in combination with the striated
estimate (25) gives a good estimate of the L1(C7) norm of 9y VV+A~2I". Concerning the control of
Ow0, we use a key property in Lemma 2.4 that holds for the patch initial data, and by using again
the striated estimate (25), we can get an upper bound of the LL(C?) norm of dy VV+0;A=27299.
Hence, collecting these estimates and (17), we get that |W (¢)||c1+~ is bounded by the time integral of
IVIW{|cv times some norms of (I', 8, Vu). Then, the wanted global estimate follows from Gronwall’s
inequality, and this allows to finish the proof of Theorem 1.1 when k£ = 2. Along the proof, we need
to consider separately the cases a € (%, 1) and o = 1 as they require different approach.

In the proof of the propagation of higher order regularity, namely the C**7V-regularity of the

patch boundary, following the technics of [8], it suffices to show the striated estimate (95[7 w e
L*>([0,T],C7(D)). We use the induction method to prove it. Assume that we already control
the quantities W, Vu, and I' in the appropriate B;:?W—norms (see Definition 2.1) as in (103) with
¢ e {1,...,k— 2}, then our aim is to establish the corresponding estimates for the step £ + 1. The
procedure is analogous to the proof of the C?*7-persistence result. The higher-order striated estimates
in Lemma 2.2 play an important role in the proof. In order to get a control of W in L (C;,/[}H’g), using
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the equation of %VVQW and the striated estimate (23), we see that the main task is to get a control

the of V2u in L%w (C;’[; I’HI). Since we have (17), we deal with I" and 6 separately. Indeed, by applying
the smoothing estimate (44) of the transport-diffusion equation and the induction assumption, we

obtain a good estimate of I' (see (117)) in the space L1, (B%//H) for a specific 4/ > ~. This can be used
to bound the LIT(CJV_MH) norm of V2V+A72I". As for the control of @, by using the patch structure

of 6 and the striated estimates (33)-(34), one can bound the L1 (CJj, 1’Hl) norm of V2V+9; A~2-22¢
as in (109). Gathering all these estimates and using Gronwall’s inequality, we find the desired uniform
estimates (104) in the ¢ + 1 level, so that the induction scheme can be continued to give the final
objective. This leads to the statement of Theorem 1.1 with general k& > 3.

As far as the proof of Theorem 1.2 is concerned, it is mainly based on the use of the uniform
estimates with respect to € obtained in Theorem 1.1 and classical compactness arguments. Although
the L? energy estimate (50) of u is not enough to provide a uniform bound in e, we can consider
the zero mode and non-zero mode separately to show the uniform boundedness of u® in € in the
L>(0,T; H*(T?)) topology. By using the Aubin-Lions lemma, we deduce the strong convergence
of 6 as in (121), so that by sending ¢ = &= — 0 we can prove (u®,0°) converges to (u,6) and
solves the Stokes-transport system (ST, ) in the sense of distribution. For a more general and precise
statement one may see Proposition 5.1. As well, by studying the strong convergence of the particle-
trajectory X; ’il, level-set function ¢° and striated quantity Oy =W?¢ in the appropriate topology, we
can conclude that the limit function # preserves the patch structure and the C**7-regularity of the
patch boundary 9D(t), as claimed.

The structure of the paper is as follows. In Section 2, we introduce some useful tools: The
Subsection 2.1 is the introduction of some background on striated type Besov spaces B;:f,,w together
with several estimates in striated spaces. In the subsection 2.2, we collect some useful intermediary
lemmas. Section 3 is devoted to the proof of the persistence of the C?*7 regularity. In the section 4,
we give the proof of the persistence of the regularity in C**7 for any k > 3. In Section 5, we give
the proof of Theorem 1.2 which deals with the passage to the limit to infinity of the Prandtl number.
Finally, the last section 6 is the proof of the striated estimates (24) and (25) in Lemma 2.2.

Notations. The following notations will be used throughout this paper.

e N:=1{0,1,2,3,--- }, ZT :={1,2,3,--- } and R, := (0, +00).

e Classically, S (Rd) is the Schwartz class of rapidly decreasing C'*° functions and by &’ (Rd) the
space of tempered distributions which is the dual space of § (Rd).

e We also use several times the notation ||(f1,..., fn)llx == Ifillx + -+ | full x-

e For two operators X and ), the notation [X,)] := XY — VX denotes the commutator operator.

2. SOME DEFINITIONS AND LEMMAS

2.1. Striated type Besov spaces and related estimates. We first define the classical Littlewood-
Paley decomposition and the definition of the Besov spaces (see [10, 42]). The idea is that one can
choose two nonnegative radial functions y, ¢ € C2° (Rd) that are supported respectively in the ball
{¢eRe: ¢ < %} and in the annulus {{ € RY: 3 < |¢| < %} such that

XEO+D 9 (279¢) =1 forall¢ eRY
=0
For all tempered distribution f, the dyadic block operators A; and S; are defined by
Af=x(D)f =hxf, Ajf=¢(279D)f=hj*f, VjeN,
Sif=x(@7D)f= S Af=Txf VjeN, (18)
—1<I<j—1
where h;(-) := 294n(27.), h:= F~Lp € S(RY), hj(-) := 279h(27+), h = F~1x € S(RY).
For all f,ge &' (Rd), we have the following Bony’s decomposition:
f9="Trg+Tyf + R(f,9),
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with

Trg:=Y Se1fDgg, R(f,9):= > AgfAgg, Agi=Ar 1+ A5+ Agis.
geN q=—1

In what follows, for a vector field W : R4 — R, we also use the notation Tjy.v to denote the operator
quN Sq,1W N qu

Now we introduce the Besov space Bj . (Rd) and its striated version.

Definition 2.1. Let s € R, (p,r) € [1,00]?. Denote by Bj, = B;,,,(]Rd) the space of tempered
distributions f € S'(R?) such that

I£llss, = {2120 f o} sy

For all ¢ € N, N € Z" and a set of reqular vector fields W = {W;}1<i<y with W; : R? — R? denote
by B;:f;W = B;:?W(]Rd) the space of tempered distributions f € B;J,(Rd) such that

¢ l
A A A
Wllgee =D M0 s, =>2 >0 0w, 0w fls;, < o0
v T

A=0 N EN A+ AN=A

o < 0.

we also denote by g;:£7W = BpTW(Rd) the set of tempered distributions f € B (Rd) such that

~ = Ty )
171520 ;O\I( W) s,

¢
:Z Z 1(Tw, ) -+ (Twyw) fllBs, < 0.

A=0 N, EN AL+ A=A

In particular, when p = oo, we always use the following notations

s,0 8,0 28,0 s,0 18,0 18,0
Cyy = B3 cor O =B ows By = Boo s By =Bl we (19)
Besides, if W contains only one regular vector field W, i.e. W = {W}, we also denote
¢
Brrw = {f € By @®) [ Ifllgse = D100 s, < oo}, (20)
A=0
)4
Brraw = {f € By ®) [ Ifllgee = DI Twv) s, < oo, (21)
A=0

and similar notations (19) are used with W in place of W.

We shall use the Chemin-Lerner mixed space-time Besov space which is denoted Lr ([O, T], B;r)

and is the set of tempered distribution g such that HQHEPT(B;, i H <2q 18q9ll L2 (Lr) ) < 0.

g>—1ller

In the above, the notations dyy = W -V and Tyy.v respectively denote the vector-valued operators
{Wi'v}lgz‘SN and {TWi'V}1§i§N7 and a,év = {61)/‘1}1---8% M+ AN = AN € N} and

(Tw.v)A = { (TW1-V)>\1 s (TWN-V))\N At AN=A N E N} for all A € N.

Remark 2.1. The above definition of Besov space B;J(Rd) and striated Besov space B;:f’W(Rd) can
be extended to their counterparts By (T9) and B;f,w(']l‘d) for distributions defined on T?. Indeed, one

can view a function f on T% as a Z—pemodzc function of R? in all coordinate, i.c. f(x +m) = f(x)
for all x € R? and m € Z2, thus recalling (18), we have for all x € T¢, j € N,

Ajf(z) = /Rdh (x—y)f(y)dy = Z /d+m (z —y)dy = /Td h;(y) f(z — y)dy,
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and

5if@) = [ B =y = [ Bw)fe =y =T 5 @),
with

y)= > hily+m)= > 292 (y+m)), Z (y +m).

mezd meZd €zd
From Poisson’s summation formula, we see that h; and hj have only discrete spectrum with
hi(y) = > ¢@77m)e™™ Y, and hy(y) = Y x(277m)e*mY.
mezZd mezZd
Some basic properties of the space B ryy are presented as follows.

Lemma 2.1. Let 5,5 € R, 0,0 € N,r,7 € [1,00], p € [1, oo] and W = {Wi} o,y be composed of
reqular vector fields Wy : R* — R The function space B Y satisfies that

s, S0
Bp7r7 B

o fors>3 B, B fore>1,

s,
BP%W O B ?W forr>7,

and

1, = py, H e s Wl =||awf||gzﬁw+ufu3;,,n. (22)

The following striated estimates dealing with the spaces B Y will play a crucial role in the proof
of the main results. The proof of this lemma is provided in Sectlon 6.

Lemma 2.2. Let k €N, p € (0,1), N € Z", and W = {Wi} .,y be a set of regular divergence-free
vector fields Wi : R4 — R satisfying that

k—1
HWHC‘I/\ZFp,kfl = Z HaﬁVWHCHp < 0Q.
A=0

Let m(D) = A%my(D), 0 > —1, and mo(D) be a zero-order pseudo-differential operator with mo(§) €
c> (Rd\{O}). Assume that u is a smooth divergence-free vector field of R%, and ¢ : R — R is a
smooth function. Then the following statements hold true.

(i) For all e € (0,1) and (p,r) € [1,00]?, we have

-Vl ger. <Cmm{ZHuHBwHV¢HBm u,zuuug Vol | @)

n=0
(ii) Forallse (—1,1), -1 <o+s <1 and (p,r) € [1,00]2, we have

i) - Vil < € (IFullggs + ullie) 16l gores (21)
p,m W w p,r, W
(iii) For all s € (=1,1), =1 <o+ s <1 and (p,r) € [1,00]?, we have
S < ST0 S+0 — —
Im(D)ollgeiss < Cllgermies + ClW e (19l + 1oz ldam(D)olus),  (25)

where 1;_1.,<0y 1s the characteristic function of the set {-1< 0o <0}
In the above, C'> 0 depends on d, k,€,0,s and [[W||14p1-1 (when k =0 this norm vanishes).
w

In particular, for the special cases k = 0 and £ = 1, the dependence on the lower order term
W/l 1401 in the constant C'in Lemma 2.2 can be explicitly calculated. The corresponding striated
w

estimates are stated as follows and they will play an important role in the proof as well.



10 OMAR LAZAR, LIUTANG XUE, AND JIAKUN YANG

Lemma 2.3. Assume that u is a smooth divergence-free vector field of R (d > 2) and W =
{(Witicien (N € ZF) is a set of smooth divergence-free vector fields. Let ¢ : R? — R be a smooth
function. Let m(D) = Amg(D), o > —1, and mo(D) be a zero-order pseudo-differential operator
with mo(€) € C* (RN{0}). Then the following statements hold true.

(i) For all e € (0,1) and (p,r) € [1,00]?, there exists a constant C' = C(d,€) > 0 such that
- Vol e < Cmin {Jull g IVl oo, ull IVl e b (26)
and
[[Ow (u - v‘b)HBpji + [[Tw-v(u- V(ﬁ)HBp—; < C'min{Ay, Ay, Az}, (27)
with
Ay =l s 10wV Slgo | + (Iowull e + IWlgs Nl ) I96]150_
Ay i=llullps,, 10wVSl e + (Iowulln |+ IWlgs lulss ) Vel 5,
Ay i=lullps, | (1owVsl e + Wlgr 190l ) + (Iowall e + IWlgr lul e ) 1V6]5s

(i) For all s € (—1,1), =1 < o0+ s < 1 and (p,r) € [1,00]%, there exists a constant C =
C(d,s,o) >0 so that

[[m(D), - V]dlp;, < Cllullwre ¢l gste- (28)

(iii) For all s € (=1,1), =1 < 0 +s < 1 and (p,r) € [1,00]?, there exists a constant C' =
C(d,s,o) >0 so that

WD), < C ol g + CIW Iy e 16l s (29)

Proof of Lemma 2.3. Estimates (26) and (27) are exactly the same as those in |7, Lemma 2.5, thus

we only need to prove (ii) and (iii).
For the estimation of (28), using Bony’s decomposition, we have

m(D),u- Vi =" m(D), S;-1u- V] Ao+ 3 m(D), Aju- V] ;16
JEN JjEN
+ Y [m(D),Aju-V]Ajé
j>—1
=1+ I+ I5.
Noting that there exist 1; € C®(R%) supported in an annulus away from the origin and h =
F - my) = F1(|¢[7mov) € S (RY) such that

(D), Sj_1u- VA9 = [m(D)b(277D),S; 1u-V]A;¢ (30)
= 20 [ Ry (81— ) = Sjorul@)) - VA (@~ ) dy,

we find that
2| AL, $2 Y 1A [m(D), Sj1u - V] A¢l,,
jeNv‘q_j‘SZl
<20 Y 2OV VA ¢l
jeNv‘j_Q‘SZl

< cql| Vull |l g

with {cq},~ ; satisfying [lcqll,, = 1. For Iy, taking advantages of the following fact that (using
Lemma 2.5_),

IVm(D)A;¢l|lr < CZIFDNA;¢|0, Ype[l,00], 0> —1,5> 1, (31)
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we have, by setting A := 29° [|[A L],

A = 02 N Ay Im(D), Aju- V] Sii9|,,

jeNv‘q_j‘SZl

< o2 ) (HAqm(D){E@_jD)(AJU'VSJ'*WS)HLP+HA(I(AJU'vm(D)S]'*NS)HLP)
jeNv‘q_j‘SZl

< o2 3 [ Bgulle (27 IVS;16ll, + V(D)8 160
JEN,[g—j]<4

< C Z 2j(s—1)HvAjuHLoo<2j<f Z 2j,HAj/¢HLP+ Z 2]‘/(1+a)HAj/¢HLp>

JEN,|g—j]<4 —1<j/<j—-1 —1<j'<i—1
< Va3 3 (Q(j'fjxlfw)+2<j'fj><1fs>)2j'<s+o> 14,6,

jEN|j—gl<a—1<5'<j-1
< CelVullzellll gste

where {cq} -, is such that [cg[|,. = 1. The term I3 can be decomposed as the following
Iy =Y m(D)div (Ajul;¢) — > div (Ajum(D)A;¢)
j>—1 j>—1
= 1371 + 1372.

For I3 and I3 9, in view of (31) and the discrete Young’s inequality, we infer that for all s € (-1, 1),
—-1l<s+o<1,

29 | Ay T34 || 1, < C29° > |Agm(D) div (Ajul ;o)
j>max{q—3,—1}
<c Y 29 Al L 26|40,
j>max{q—3,—1}
< CCq”“HBgO’OO‘W”B;’t” < CCqHUHWI’wH(ﬁHB;j;%

and, set B := 2% \|Aq13,2HLp

I

B < (2% Z HAqdiv (Aju m(D)Ajgb) HLP + Z HAq (Aju . Vm(D)ﬁjgb) HLP>
j>max{q—3,2} Jj2q—3,j<2
< C<2q(1+s) Z 1A ull; 2j0H£j¢HLp + 1 1<4<s) Z ‘|Aju||L°°‘|£j¢‘|Lp>
j>max{q—3,2} —1<5<2

< ¢ Y 2D Al 2N Ao+ Lcacgesy el l|Sllss,
j>max{q—3,2}

C (e + 1-12qz5)) lullwroe [0 e

IN

where {cq} -, is such that [[cq[|,- = 1. Collecting all the above controls gives the estimate (28).
Next we prove (29). Noting that dyy (m(D)¢) = —[m(D),W - V]¢ + m(D)dywe, and using (28),

we have

low (m(D)¢) |55, < llm(D), W V]¢llg;, + [m(D)owel s,

Py

< Wl oo 8l g + Cllowl ggse + ClIA_1m(D)ow] o
By applying Bony’s decomposition and (31), we obtain that

1A im(D)owelle < D [A—im(D)div(Sj—1W Aj@)llee + D [A-ym(D)div (AW Sj-16)|1s

0<;5<4 0<j<4

+ 3 |Asim(D)div(AW A;9) ||,
j>—1
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<COWlig= Y IS5+10lle +C Y 18W]1e=|A; s

—1<j<4 j=-1
—j(s+o+1)
< CIWlsy, ol (1+ Y 2 )
j=-1
< O Wilwroo 0] 51 (32)
Thus combining the above two estimates leads to (29), as desired. O

The lemma below deals with the striated estimate of patch-type initial data.

Lemma 2.4. Let D be either R? or T?. Let o € (3,1], k > 2 and 0 < v < 2a — 1. Assume
that Dy C D is a bounded simply connected domain with boundary 0Dqy characterized by the level-set
function o € C*T1(D) for some ~y € (0,2a—1] if a € (3,1) and for some v € (0,1) if « = 1. Denote
by Wy = V4.

(1) If e € (3,1], 0 <y < 2a — 1 and Oy(x) = Oo(z)1p,(x) with 6y € C*=22+7(Dy), then we have

Oy 0o (x) € 72 (D). (33)
(2) Ifa € (3,1), v =2a — 1 and Oy(z) = Op(x)1p, () with Oy € C*~1*7(Dy), 7 > 0, then we have
05 0o(x) € L™(D). (34)

Proof of Lemma 2.4. We give the proof for D = R? first. The proof of (33) in the case 0 < v < 2a—1
is the same with |7, Lemma 2.6]. Thus we only need to sketch the proof of (34).

First note that Rychkov’s extension theorem [50] guarantees that there exists a function 6o €
CF=117(R?) with the following restriction condition 6g|p, = 6. Then, it suffices to prove that
Ok H0y1p,) € L®(R?). Since the vector field Wy is tangential to the patch boundary 9Dy, the

Wo 0

operator 8{},_0 ! commutes with the characteristic function 1 Dy and thus we only need to prove 8{},_0 150 €
L>®(R?). In fact,

10875 ol == < 18555 Boll e < CUWolles V0ol
< ClWollgass (IV0l 2ol e + 1920}, Boll=
< CIWollgr-2x (IV8olles + IV*Bollcs + -+« + IV Foll= )
< C||Woll o245 160l o145

Hence (34) is proved and we finish the proof of Lemma 2.4 for D = R2.

As for the case D = T2, we define 6, in R? as §, = y in a whole period, and vanishes in others.
Then we treat @ in the whole space case, it yields that 8&%1@0 € C7~22F1(R?) and (95[701% € L*>(R?),
respectively, which implies the desired results that are (33) and (34) where D = T2, O

2.2. Auxiliary lemmas. We refer to [33, Proposition 3.1] for the following lemma.

Lemma 2.5. Let m(D) = A"mg(D), o > 0, and mo(D) be a zero-order pseudo-differential operator
with mo(€) € C*° (RN\{0}), then we have that for all p € [1,00],q > —1,5 >0,
Im(D)SjullLr < C27||Sjull 1,

35
Im(D)Agullr < C27 | Agull . (35)

We have the following estimates of commutators involving the operator Ri_g.

Lemma 2.6. Let D be either R? or torus T, d > 2. Let (p,7) € [2,00] x [1,00], Ri_p := AP,
B € (1,2]. Assume that u = (uy,--- ,uq) is a smooth divergence-free vector field on D and ¢ is a
smooth scalar function on D.
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(i) If D =R? and B € (1,2), we have that for all s € (B —2,1),

IR+ V165, < CoalVullzr (1]l peri-s + 1612 (36)
and for all s € (0,1),
lIR-1,u-Viglzy, < Co(IVullolléll gy + lullzz oz )- (37)
(i) If D = T¢, we have that (36) also holds and for all s € (0,1),
lIR-1,u-V)élls;, < CollVullor (1]l s +lI6]12). (38)

Proof of Lemma 2.6. (i) We only sketch the proof of (36). The proof of (37) is analogous with that
of (38) given below, thus we omit the details. By using Bony’s decomposition, we may write

[Ri—g,u- Vg = Z[le& Sg-1u- V]Aq0 + Z[leﬁv Aqu - V]Sq_1¢ + Z [Ri-p, Aqu - V]Aqqj
qeN qeN g>—1
= 15 + Hﬁ + IHB.
The control of Iz and Il is analogous to the proof of I and III in Proposition 4.2 of [58], so that for
all s > 8 — 2,

Wslls;, + Mgl 5;, < ClIVullz (6] gg1-5 + lISllz2)-

p,r =

For I1g, the control of the corresponding term II in Proposition 4.2 of [58] contains some error, instead
we estimate it as follows

A < 02 Y (IRip(Agu- VSm1@)llen + [Agu- VR3S, 1611 )

q€N,[g—j|<4
< 0¥ 3 Al (2O IVS, bl + VR sS,10l )
q€N,[g—j|<4
> QQ(sl)HAqvu||Lp<QQ(15) S oAy e~
lg—j|<4 —1<¢'<g¢-1
FY Al )
~1g%1

< C||Vu e Z Z 2(‘1/*‘1)(1*5)2‘1/(5“*5)\|Aq,¢||Loo

lg—jl<4 —1<¢'<q—1
where in the fourth line we have used (35). Discrete Young’s inequality yields that for all s < 1,
MgllBs, < ClVullLelll gari-s-

Gathering the above estimates lead to (36) if D = RY.

(ii) We only give the proof of (38) and the estimate (36) as the proof can be adapted in a similar
manner in the torus. Since [R_y,u-V]¢ = [R_1, (u—1u(0)) - V]¢, we can assume u(0) = [7, udz = 0
without loss of generality. Then, using Bony’s decomposition

[Rot,u- Vo= [Roy,Sgo1u-V]Ap+ Y [Ro1, Agqu- VIS 16+ D [Ro1,Aqu- VA
qgeN geN q>—1
= Il + 12 + -[3’

where we have used the notations introduced in Remark 2.1. For I, noting that there exists a bump
function ¢ € C2°(R?) supported on an annulus of R? away from the origin such that

L= [Ra4$(279D), Sy 1u- VA0,
qeN
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and using the fact that
R_1¢(279D = [ n —y)dy= [ h* —y)dy, hi( hi(
WD) @) = [ B wdy = [ )1 = = 3 ity

with hi(y) := 20 Dh*(29y) and h* = F~1(i& |¢|~%)) € S(RY), we infer that
fi= [ B0)(S,m1ue — 1) = 5,-10() - VA~ )y

/ ( Z hy(y +m)(Sg—1u(r —y —m) — Sq_lu(x))> VA p(z — y)dy

meZd
/T/ ( > hily+m)(—y—m) VS, 1u(m—7’y—7’m)> VA, b(x — y)drdy.
mezZd

Thus, by using the Minkowski inequality we find that for all j > —1,

2% AL e < C2° Y |[[RA(27ID), Syt VA

g€N,|q—j|<4
<crr Y | (Z|h*y+m>||y+m|>dy||vsq o1V A6
lg—j|<4 meZd
<C|Vulpr Y 20 A4] e / 2401 | p* (20y) |y|dy
; R4
lg—j|<4
<CIVulze > 297D Agp| 1,
lg—j|<4
which ensures that
I11lls5, < ClIVulliollg] gz -

For I, noting that

I = Z <R711Z(2*QD)(Aqu . vsq,ms) —Agu- VRASqflgb),

qeN
we obtain
298l < €2 Y (g (Agu- VSg-16) e + 1 Aqullor [ VR-1S-16] 1 )
geN,|g—j|<4
<oy Y ||Aquum<2—qnvsq1¢||Loo+||VR1A1¢||Loo+ 3 HAq«z»nLoo)
geN,|g—j|<4 0<¢’'<g—1
< C|Vule (2‘1(8 DA et 3D 20 eDarea /¢||Loo)
lg—j|<4 0<q'<q—1

which leads to that for all s < 1,
112]l5;, < ClIVullLe (6]l ps=1 + 19l 2)-

For I3, using the fact that u is divergence-free, we split it as the following

Is=Y RV (Aulge) = > Aqu- VR A+ > [RoaVe, AgulAge

>3 >3 —1<q<2
=131+ 132+ I33.
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(j € N) is bounded on LP(T?) for p € [2, 00|, we infer that for j = —1 (where —£

For the first term I3 j, since the operator R_1V is bounded on LP(T?) for p € [2,00) and R_1VA;
y — 2
p+2

for p = 00),
2 A1l < CY [ AuAd| 2 < CY [ Agulol|Agdlle < ClIVulzo]|6] 2,

LP+2
q>3 q>3

and for all 7 € N and s > 0,
AT le < C2° YT ARV - (Aqulgd)|rs
423,923
<C Z 2(j—Q)82qHAquHLpzq(S—l) qu(bHLoo < CCijuHLP H(bHBCSXZi’
q>3

where {c;j};jen is such that ||¢j|| = 1. The estimation of I3 is similar as that of I3, and we have

11321185, < ClIVullze (19l g1 + [0 2)-

p,r

For I3 3, we use Poincaré’s inequality,

1
oz = [[uC) = gy [ w)dz]|, < CNVulioies),
we find
Maslsg, < >0 Y (IARAY - (AuBed)ler + 18;(Aqu- VR-18,0)]|10 )
—1<j<6 —1<q<2
<0 Y (I18uBe0ll  + 180 VRAAG| 2 )
~1<q<2
<C Y 1Al Agdlle < CVulzel@lle.
~1<q<2
Therefore, collecting the above estimates yields the wanted estimate (38) in case of the torus. O

We refer to Lemma 6.10 of [32] for the following useful result.

Lemma 2.7. Let D be either R? or torus T, d > 2. Let v be a smooth divergence-free vector field
of D and f be a smooth scalar function. Then, for all p € [1,00] and ¢ > —1,

I[Ag, v VIfllze < ClIVol el fll By, .-

We recall the following regularity estimates of the transport equation (one can see |10] for a detailed
proof).

Lemma 2.8. Let D be either R? or torus T%, d > 2. Let (p,r) € [1,00]? and —1 < s < 1. Assume
that u is a smooth divergence-free vector field of D, and ¢ is a smooth function solving the transport
equation

dp+u-Vo=Ff, ¢l =go(x), zeR,
then there exists a constant C' = C(d, s) so that for all t > 0,

t
160255, < © (10, + 1 zgcog,y + [ IV0imlozg, o). (29

and

c [tV codr
190l 20 (35,.) < CeCH 170" (ol g, -+ 1FlI73 35 )) - (40)
We have the following regularity estimates of the transport-diffusion equation.

Lemma 2.9. Let D be either R? or torus T, d > 2. Let v > 0, (p,p,7) € [1,00]3, =1 < 5 < 1,
0 < a<1. Assume that u is a smooth divergence-free vector field of D, and ¢ is a smooth function
solving the transport-diffusion equation

ho+u-Vo+vA*p=f, ¢|,_o(x)=do(z), z€D. (41)
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Then, there ezists a constant C = C(d, s, «) independent of v so that for all t > 0,

vl o (s S ORI (igoll sy, + £z 5. (12)
and
volol., (o) SO0 pt)» e T IV (o e Fll g 0 ) - (43)
and -
oo || (27 Ay ) il S CeCRITN (Jlas + [ lipioy ). (44

Proof of Lemma 2.9. The smoothing estimate (42) comes from [52, Theorem 1.2] (while for the cases
a € (0,3] and r = 1 it is done in [30, Theorem 1.2).

We here only sketch the proof of (43) and (44). For all ¢ € N, applying the frequency-localization
operator A, to the equation (41) gives

O Dgd+ Sq1u- VAP +VA** Nyd = Ay f + Ry,
with
Ry = (Syo1u—u) - VA6 — [Agyu- V6.
Using [10, Lemma 2.100], we get
2P[|Rgllr < 2°][(Sq-1u — ) - VA4Sl e + 2%[|[Ag, u - V]| Lr

< 2% 3 || Akl e22| Ayl o + C gVl o ],
k>q—1
< Cey||Vul| <ol ss,.,

where {c,}qen satisfies ||cql- < 1. Following the same strategy as the proof of [52, Eq. (3.10)] and
using the above estimate on R,, we find that there exists a small time 7" > 0 satisfying

Tl
/ |Vul|peedr < Cy < 1,
0
so that for all t < T7,
t
D Al < (21l + 208 g + [ cfDITU el 07 )

Thus using the embedding L} (B3 ) < E%(B;,T), we have

¢
Nz, < (160, + W+ [ 19l ).
On the other hand, applying the operator A_; to the equation (41) gives
Ajp+u-VA_10+VA*A_1¢p=A_1f — [A_1,u-V]o.

Taking advantage of the LP-estimate of the transport-diffusion equation (see e.g. [30, Proposition
6.2]), we infer that

t
[A_1¢(@)]lr < [A-1¢0llLr + [[A-1fll L2 (Lr) +/0 A1, u-V]g(r)||Lrdr

t
< 1A-1¢ollze + A1 fllLrr) +C/O IVu(r)||Lello(7)lB;, d,

where in the last line we have used |10, Lemma 2.100] to deal with the commutator term. Hence,
combining the above estimates on high and low frequencies allow us to find that for all ¢t < T,

1 1 t
o, e < O+ (1ol + 1y, + [ 19060, 7).
t p,r
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By taking p = oo, we find that for all £ < 7" small enough,

160z 55 < ClIdolng, + 1 lzy(ss.): (45)
which also implies
1 1
Vel et < O+ 00 (I8l + 17t ) (46)
and
L1 (oa(s+2)
v | (a0l wn) < C(Iolng, + 1 nxes;,0)- (47)

Furthermore, for any 7 > 0, we make a partition {7;}}, of the time interval [0,7] so that

f;}“ [Vu(7)| eedT 2 €2, Then following the same ideas as the proof of (45), (46) and (47), we infer
that

|| Hlloo([li,li_’_l};Bs’r) S C<Hi(jl)”B;7r ||f||Ll([Ti,Ti+1};Bs’r)>? (15)
; <C(1 T ’ T,
P a P 4 s .. .Bs s
v ||¢H~p([ T ;;QP = (1+vT) <||¢( NiBs, + HfHLl([TZ,THI},BP’T))
and

1
Ve

g4 22
<2Q( + o )HAqQSHLP([ThTi-Fl];LP))q

<C(I6(Tliss, + 12z mnti53,)):

eNlle

By iterating (48) M-times and using the fact M =~ CLO fOT IVu| peodr, we deduce that

M—-1
0l 5. < c( S 6T, + HfupT(B;,»)
=0

< M (lgolls, + 1 llzs s, )CM + CllF s,
T
< CeOl VU= (gl g+ 1 fllpy s ) )

which also yields

M—-1
1 1
vollgll, 2 < CO+VI)0 ( S le(mlis;, + ||f||L1([o,T];B;T)>
Lg"(BPﬁ“ r ) i=0 ’
1 T
< C(1L+vT)reC o IVl (Yo 4 flps 5,)),

and

S 2a T ul|f,codT
(2PN inam) | < COR IV (g 4 £y 35.,)-

Therefore, we complete the proof of (43), (44). O

qeNIILr

The following compactness lemma plays an important role in the process of vanishing Prandtl
number limit.

Lemma 2.10 (Aubin-Lions lemma [15]). Assume that Xo C X C X are Banach spaces, and X is
compactly embedded in X and X is continuously embedded in X1. For all 1 < p,q < oo, let

V.= {u € Lg«(XQ) : O € L%(Xl)} .

Then we have

(i) if p < oo, then V is compactly embedded in L}.(X);
(ii) if p =00 and g > 1, then V is compactly embedded in C([0,T]; X).
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3. PERSISTENCE OF THE (2?17 BOUNDARY REGULARITY

This section is devoted to the proof of the persistence of the C?*7 regularity of the temperature
patch boundary dD(t) for some 0 < v < 2a — 1 if o € (3,1) and for some v € (0,1) if « = 1. In
particular, we shall explicitly show the dependence of the a priori estimates on the coefficient ¢ = %.

The L? energy estimate for the system (B,) is more or less classical (e.g. see Proposition 4.1 of
[39] without the dependence on the Prandtl number), and we have the following result.

Proposition 3.1. Let ¢ = % € (0,1], « € (0,1]. Let D be either R? or T?. Suppose that (u,0)
is a smooth solution of 2D Boussinesq-Navier-Stokes system (B,) with initial data ug € L*(D) and
0y € L N LP(D), p € [1,00]. Then there exists an absolute number Co > 0 such that for all t > 0,

10)l» @y = 100llLr (D) (49)

1. t
()20 + T2 IAl 1y 12 ) < Colluollze + [follz2) (2 +1)- (50)

Proof of Proposition 3.1. The conservation of the LP norm of § in (49) follows from the transport
equation. By taking the dot product of the equation for u in (1) with u itself, and using an integration
by parts, we get

ed o
Ol + 18Ol < | [ dua(e)da] < [Golzz )2 (51)

It follows that %Hu(t)HLz < L160]| 2 and

t
w2y < lluoll2py + EHHOHLQ(D)-

Inserting the above inequality into (51) and integrating with respect to the time variable lead to
1 1 1 t t
5”“@)”%2 + gHAauH%g(p) < 5”“0”%2 + g||90||L2 <||UOHL2 + EHQOHL2>,
which readily implies the desired bound (50). O

The following result concerns the a priori estimates for w and I' = w — Ri_200 = w — 1 A72%0
solving the system (B,) with ug € H', 8y € L' N L>. Note that Theorems 1.2, 5.2 and Proposition
5.4 of [39] have provided similar estimate as (52), but in order to clarify the dependence on the
parameter €, we here sketch the proof by using a slightly different argument.

Proposition 3.2. Letc = & € (0,1], a € (3,1]. Let D be cither R? or T2. Suppose that (u,0) is a
smooth solution of 2D Boussinesq-Navier-Stokes equations (B,,) with

o ug € HY(D),
[ ] V'UQZO,
o 0y L' N L>(D).

Then, there exists a constant C' > 0 depending only on o and the norms of (ug,6py) but independent
of € such that for all T > 0, such that the following statements hold true.

(1) If o € (3,1), we have
0, D)oy + I + W00 ey + 190 2y oy + [Vl ey < CeT. (52
(2) If D =R?, a =1, we have that for all v € (0,1),
190l 02y + Vel ooe) + V0l g o) < CO+T2) (14 /T). (53)
(3) If D =T?, a = 1, we have that for all v € (0,1),

1CVu, D)llege 2y + 0Ny sy ) + 1Tz 87y + IV Ullzt o < CeT. (54)
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Remark 3.1. Under the assumptions of Proposition 3.2, we can show the global existence and unique-
ness of solution (0,u) to the 2D Boussinesq-Navier-Stokes system (By) with e = p- € (0,1] and

a € (%, 1], which satisfies that for all T > 0,
6 € L®(0,T),L' N L*(D)), we L*([0,T], H' (D)) N L'([0,T], By 1(D)). (55)

In particular, if Oy is the temperature front initial data 0y 1p, with 8y € L°>(Dg) and Dy C D a
bounded simply connected domain satisfying 9Dy € C1T7, ~v € (0,2a — 1), then we have that (8)-(9)
hold with k =1 and the same scope of .

Indeed, the existence part follows from a standard approximation process and the a priori estimates
established in Propositions 3.1 and 3.2 (note that the fact that u is controlled in Ly(BL, ) in (55)
can be easily obtained). As far as the proof of the uniqueness is concerned, we refer to [24] for
the case o = 1 and to [39] for the case o € (%, 1). Regarding the temperature patches, since u is a
divergence-free vector field which belongs to L' ([0, T], W1>°(D)) then using Cauchy-Lipschitz theorem,
there exists a unique solution X¢(-) : D — D to (2) which is a bi-Lipschitzian measure-preserving
homeomorphism, thus the transport equation of 6 ensures (8) holds, and in combination with (11)
and (52), (54), we have VX' € L2(CY), v € (0,2 — 1), which implies dD(t) € L (CT7).

Proof of Proposition 3.2. Let us prove the first statement that is the point (1). The proof of (1)
works in either the whole space or the torus. By computing the L? scalar product of the equation in
I’ (16) with ", and using the commutator estimate (36) and the relation w =T" + R1_2,0, we get

1d

1 (03
S I3 + ZIAT@I2: < [IR1-20u - VIOl 2Tl

< Clwlz (101l gi=ze + 10]122) 1T 2
< C(INlz2 + [R1-2a0l £2)10]| L2 o< T | 2
< O[22 (1 + 160l z2nzee) + 160l 71 z00s
where in the last line we have used the fact that
R1-2a0(t)llr2 < ClO@)], 2 < Cllbollzrre-- (56)

Gronwall’s inequality leads to

A

1
1T 2 2y + ZIATIZ 12y < C(ITollZa + 18071 T) et HI 20T

(57)
< CeCT.
In the above, Iy := wyg — R1_2,00 satisfies that
[Tollrz < [lwollrz + [[R1-2000l 22 < lluollgn + 160l 1 < oo.
Furthermore, by using (56) again, we find
IVl oo 2) < Iwllzse(z2) < ITMzge 22y + IR1-2a0l 150 (12) < CeCT. (58)

Now we consider the estimation of HFHL;(Bgl) and [|T|7, (o). For all ¢ € N, applying the
s T 2,00

frequency localization operator A, to the equation (16) yields
1
A +u- VA + EAQO‘AqI‘ =—[Agu- VT +Ay([Ri—2a,u- V]0) = fq. (59)

Taking the scalar product of the above equation with A,I', we get
1d
2dt

with some ¢y > 0 absolute number. Integrating in the time variable leads to

co
AT ()72 + ;22“q||AqT(t)H%2 <[ AT 2l foll 25

t
_ %0 92a 0 (t—7)e2c
AL < e AT+ [ e g (1) nar,
0
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and
€ _ € o
1A L322y < 52 20| AqTol| 2 + 52 20| foll 21 r2y- (60)
Let N € N be a constant chosen later. Taking advantage of (57), (58) and Lemmas 2.6, 2.7, we have
HPHLlT(B%J) = Z 21 AL L1, (22 + Z 29 AgT| L1 (12
~1<g<N g>N

< C2N||F||L1T(L2)

+C 37 29072 (Tl 2 + [Ag - VITl gy (22 + 1 8g([Ra-2as - V10) 13 1) )
=N

< CQNHFHLIT(H)
+ C2N(-20) (HPoHLz + 190z (g o, .y + 10 “LIT<B%@33“L2>)>
< CGCTQN + C2N(172a)eCT”I«HLIT(B% by (61)

where in the last line we have used the continuous embedding B2171(D) — B, (D) together with
the fact that

10118 (g1-20ze) < 100 2rzee) < Tl0llz2nie.
By choosing N € N so that C2N1-20)CT %, we infer that
cT
ITllze(my,) < Ce-
Repeating the above process, we find that

ITlzy ey = D 2°NAT 2
q>—1

CllAAT |y (2

+C sup (18gTollz2 + 8, VI 1) + 180 Rz - V1Ol y i)
q

IN

< Oz ey + ClTollr2 + ClVullpge 12 (HFHLlT(Bgo’OO) + ||9\|L1T(B;;§am2))
< Ce“T. (62)
Next, we want to prove that Vu € E%F(C%‘*l). By using the identity

Vu = VVTA~—%0 = VVEATD + YV, A 27209, (63)
we have

HVUHEIT(CQQA) < HA—lvu”LlT(LDO) + EZNP 2g(2a71)HAqvu”L%(Loo)

q(2a—1) q(1—2a)
< C|IVull 22y + 0216111\])2 <HAQFHL1T(L°°) +2 HA(JQ”LIT(L”)) (64)
< ClIVulligwey + Oz (e ) + C 500 1AL 0
< e,

Since we have the following embedding C**~! < BJ | < L, then IVull gy g < CeCT. Hence
gathering the above estimates completes the proof of (52).

Let us prove the statement (2). From the vorticity equation (15) with o = 1 and the classical L?
estimate, it is not difficult to see that

ed 1 1
S 1w @I: + IVwOIB: < | [ 00(a, s < S80I + 5IVw()]B:.
th R2 2 2
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By integrating in the time variable we obtain
2 1
2 2 2 2
Jeo(®) 3 + Vw2 < llwoll2: + ~l16ol2:t,

which also gives
1
IVl e (r2) + %HVQUHLQ < 2(||wollr2 + [|6oll2) (1 + \/g)

Next we want to prove the estimate of |lw]| r1(po. )- Using the identity

F=w-R_10=w-0(—A)""4,
together with Lemmas 2.6 and 2.7, we infer that for all ¢ € N,
112, V1T g2 < [[[Ag - V)(1d = A_)Tl|g + | Ag (- VA2 + flu - VAA T2
< O Vullr2[|(1d = A1) g, + Cllullr2[[ VA1 Lo
< ClVullpz(lwllgo, . + 10l ) + Cllullzz (Iwllz2 + 101]22),
and
IR-1. - V10ll2 < C(IVullz2 18] 5y + a2 18]12) < Clallp 18]2015

Hence, by noticing that the inequality (60) with o = 1 still holds, and applying the above estimates
and Proposition 3.1, we find that for some N € N (to be chosen later), we have

lwllze s, ) < o Al ey + Y AR 1y ey + D IAGT Lt (1)

—1<¢<N q>N q>N
<C > 2Awliw +C Y 2 UAB L (1)
—00<g<N >N
+Ce - 27(IATollze + IAg, w- VTl gy g2y + IR-1,w- V10l 12))
q=>N

< 02T (14 /T) + 02 (w0, 8022 + Vel speoy @l o, )
+ 05271\[(HVUHL%"(LQ)HHHLlT(L?ﬁLOO) + ||UHL%°(L2)(||WHL,}F(L2) + HeHLlT(L?ﬂLOO)))
<27 (1+ \/5) + CVER N (L V) [l g as, )+ Ce27 V(14 T2) (14 \/5)

Choosing N € N such that max{C/(1 +VT),1}27V ~ 3 allows us to write that

lollzsqen ) + I1Vull @,y < CO+T2)(144/T),

oo

where C' > 0 depends only on the norms of ug and 6y, importantly, C' > 0 is independent of . Note
that from the identity I' = w — R_160, we may write that

T2y (B, ) < lwllzscme ) + 1R-100Lrse, )
< lwllzy s, ) + CllA1R-101 Ly, £y + C> 2ROl (1<)

qeN

< wllzyse ) + ClOlLy(Linr=) < C(1 +T2)(1 + \/@
Similarly as above, we get that for all v € (0, 1),
lwllipzry < 18a@liywm) + 227 IAR 18] Loy + D 27 AT g o)
qu qu

ClA 1wl 2y +C D290 AW 1 () + C Y 290D AT |1 12
qeN qeN

(65)

IN
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< or(1+ \@)
+ 02320070 (A, Tall o + &g+ VIT gy ) + 1R V81l 1))
geN
< C(1+T?) (1 + \/9 + CVE(L+ VT) @]l 1o,y

< C(1+T3)(1+\/§>.

Collecting the above estimates leads to (53) and ends the proof of the statement (2).

It remains to prove the statement (3). Consider (16) in the case @ = 1. By taking the scalar
product of the evolution equation in I" with I' itself, and using the commutator estimate (38), we get

1d 1
§allf(t)\|%2 + gIIVF(t)Hiz < R-1,w- VIO@) | 2T ()] 2

IR -1,u- VIO _y T2

Cllwlzz (01l -y +1012) IT @)
C(IN 22 + IR-10llz2) 1100l L2enpoe 1T ()]l 2
CT @2 + )T @)l 2

CIT @) + C,

IN

IN

ININ A

where in the last line we have used that

IR_A6(t) 122y < CIAT 0Ol psray < CLO@)| 5 < Cléo] s

‘|L§(T2) - L3(T2)’
Gronwall’s inequality and the fact that [|[To||z2 < |lwollz2 + |R=160]/r2 < C allow us to state that,
for all ¢ > 0, the following control holds
1 t
T+ 2 [ IVIEadr < (Lol + Co) < Ce
0

It is easy to see that, using the identity w =I' + R_160, we may write that
IVu®)lz2 < llw(®)llz2 < T2z + [IR-16(8)] 2 < Ce.

Then, following the same lines as the proof of (61), we find that for some @ € N (that will be fixed
later),

HPHLlT(B%J) = Z 2qHAqFHLlT(B) + Z 2q”AqFHLlT(B)
—1<q<Q 7>Q
< Oy ) + € 30 2ol + [[Agr - DIl gy 2y + 1R V1ol )
q2Q

< 02267 4 027 (Lol + 19ullr ) (g o) + 100y i) )

< Ce“T2% 4 czerCT|yrHL1T(B%J).
By choosing Q € N so that Ce¢T2-? ~ %, we find that

”F”LlT(B%’I) + HPHL;(BSO’I) < CeT

Following the same idea as the proof of (62) and (64), we infer that

c
”F”ZIT(B;()O) + HVUHZIT(B&,OO) < CeT.

Gathering the above estimates and the embedding B, ., (T?) < C7(T?) (0 < v < 1) lead to (54) and
therefore the proof of the last statement (3), thus this completes the proof of Proposition 3.2. U
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The following result is concerned with the a priori estimates for (u,I") solving the system (B,)
with ug € H' N WP and 6y € L' N L.

Proposition 3.3. Let ¢ = PL € (0,1, a € (%,1]. Let D be either R? or T2. Suppose that (u,0) is

)y

the smooth solution for the 2D Boussinesq-Navier-Stokes system (B,,) satisfying

e ug e H'NWhH(D), 2 < p < o0,
o V.uy=0,
e 0y L' N L>(D).

Then, for all T > 0, there exists a constant C' > 0 depending on « and the norms of (ug,6y) but
independent of € such that the following statements hold.

(1) If a € (3,1), then we have
[(Vu,T) || Loe 1oy + HFHZ;(BZ%%O) + HFHLlT(Bi‘)";l) + IVl g1 (g2a-1y < CeT, (66)

In particular, if additionally T{l < p < 00, we also have

ICllcesL ) < CecT. (67)
(2) If D =R? o =1, then for all v € (0,1) we have
1OV, D)l ooy + IVl g s, ) < CA+TH (14 L), (68)
1Pz o+ ITNzyee ) < CO+T (14 /T). (69)
(3) If D =T?2, a =1, we have
1V, D)o oy + 10Nz 20y + IVl 28 B, ) + IVUllct sy, ) < CeT. (70)

Remark 3.2. Under the assumptions of Proposition 3.5, and if we additionally consider the temper-
ature patch initial data 0o(x) = 0o(x)1p, () as in Theorem 1.1 with

0Dy € O, §y € L>=(Dy), if a€(3,1),
dDg € W2y € CH(Dy), 0 < p < 1, if =1,

we can prove that

OD(t) € LF(C*), if a€(3:1),
OD(t) € L¥X(W?>),  if a=1.

In fact, if a € (%,1), the claim follows from the fact that VX,fEl € L¥(C%~1) which is a direct
consequence of (66) and (11); while if o = 1, the claim follows from the fact that X' € L(W?>°)
which is a consequence of the following estimate

Cexp{C(1+T4)(1+ g)}, for a=1,D =R2?,

(71)
Cexp{Ce®T}, for a =1,D =T2

IVull Ly w1 py) <

as for the proof of (71), we infer from (63) that
HV2UHL1T(L<><>) < HV2VLA72FHL1T(L°°) + ||V2Vl81A749||L1T(Loo)
< CIlllryse, ) + ||V2VJ_81A749HL%(LOO);

by following the geometric lemma in [3| or |7, Sec. 3.2|, we conclude that \|V2VL(91A_49HL1T(L00) and
][Vu\\L%F(Wl,oo) is controlled by (71).

Proof of Proposition 3.3. Let us first prove (1). In this case a € (3, 1), we prove (66)-(67) in a unified
approach without distinguishing D to be R? or T?2.
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By multiplying both sides of the I'-equation (16) with |T[P=2T'(x,t) and integrating over the spatial
variable, we use the integration by parts to get

1d 1 N - _
SSITOIE, + 7 [ AT TP )de < [Re-sar- VIO DO (72

The positivity lemma in [16] ensures that the term coming from dissipation A%°T is nonnegative, thus
by applying Lemma 2.6 and the Caderén-Zygmund theorem, we find

CIPO)le < [R1z0ru- V100 10
< Cllo®lls (162) -2 + 160 z2)
< O(IOlls + [R1-208(0) 1) 100 201
< O(I(D)ll o + 1ol z1rzoe) Wl 2z

where in the last line we have used the following estimate

IR1-2a0(t) e < CIIA220(t) ]| < COE)| 20 < C|lfoll 11z (73)
[ (2a—1)p+2

Gronwall’s inequality and the fact that [|To|lzr < ||wollzr + [|R1—2060]|zr < C imply that ||I'(¢)||z» <
eCt, thus, using the identity w = I' + Ri_240, one finds

1T, V)l g zry < CIT, w)llzge ey < ClTN|zze (e + IR1-200]l L2 10y < Ce“T

By taking the scalar product, for all ¢ € N, of the equation (59) with |A,T[P~? A,T'(x,t) and then
using the following estimate (see [13])

/D (A**AD) |ATP2AD do > e 22| A D)7, , Vg €N,

for some ¢ > 0 independent of ¢, we obtain

1d C on —1
Sz 1A Ol + ~ 2| ATL T < 1AL OIT 1 £l 1o

which gives
t
_c92a —C(t—1 2
1AL ()] < e ||Aqfo\|Lp+/O e <P ()] A (74)
Taking the L'([0,7]) norm, and using (52), Lemmas 2.6 and 2.7, we get that for all ¢ € N,
T T
P 8Ty 1y < C 18Tl +C [ 180 VTl 7 +C [ 18, (Racan - 916)]

< CToll e + ClIVul| pge rr) (\|F\|L1T(Bgom) + ||9\|L1T(B;;ggmLz)) < e
Hence, we have

C
HPHZ%(BgaOO) < CHA—1PHL1T(LP) + Slelg 22aqHAqPHLlT(Lp) < CeT.
’ q

20— 2 20— 2
Together with the continuous embedding B;%,Oéo — Boco,ioo" — ng‘;l (p > 2) and Bogoop — Béo,l
(p > 527), the above inequality yields HI’HLlT(BCz)g;l) < CeCT and (67).
As for the estimate of Vu in the space of L},(C?*1) = L,(B291), it suffices to follow the same
lines as the proof of (64) and we see that

IV 11 ety < CllA_1 V|| 11 (foo —i—CHsuqu(Qo‘_l)HA V“”L“’H
L3(C ) L. (L) 4eN 4q Ll (75)
< ClIVullpy 2y + ClT Ny (g2ey + ClOl Lo, ) < CeT.

Hence collecting the above estimates gives (66)-(67) and therefore (1) is proved.
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To prove the second statement, that is (2), we consider the case D = R? and o = 1. We remark
that (72) now becomes

1d
— PO + —/ D (@, )P 2|V (@, ) Pdx < |[Roy,u- VIO oD@ 175

1-2
thus we use the embedding B, ;" (R?) — LP(R?) and (37) to find

d

S e < [[R-1,u- VIO 1o (76)
< ClR-1u- VIO 5120
< CIVUOl 218 -ayp + Cllu®) 210 2.

)
(

Integrating in time and applying Proposition 3.1 give that
[Tl zge ey < Tollze + C(IVull Ly 22y + lull s 2)) 101l Loe (z2nz0e)
< |lwollze + R-160[le + C(VT(|Vull 12 12y + Tl g0 (22)) 100l L2 Lo
< C(1+T)<1+ %)

where in the above we also have used that [|R_160p|zr < CHQOHL%- Thus,
P

IVullizeqrr) < Clwligan < € (I0eg o) + R4l (1)) < CA+T)(1+ L)

Then, we prove the estimate of \|F\|L1 ). We see that (74) with a = 1 still holds, and we
p oo
integrate on the time interval [0, 7] to get that for all ¢ € N,

1AL Ly < 5272q”AqF0HLP + 2272q”fl1”Lt1(LP)7

for some ¢ > 0 independent of ¢ and f, given by (59). Thus by taking advantage of (50), (65),
Lemmas 2.6, 2.7 and the following estimate

AL | Loe(zr) < A 1wl pge(rr) + A1 R-10] Lo (1r)
< Cllellzg (o) + CIR 1l pany < €(1+/T),
we have
HPHZ,}F(Bgm) < HA—lr”LlT(LP) + (SJIEIII\T) 22qHAqFHLlT(Lp)
< CIAATl 00y + Csp (ITolls + el - V1D )+ <Aa((Rrs V) g0
< CllAAT 2y ey + CllTol| e
+ c(auwuLW) (Il s, oy + 160y o) + e|ruuL%OL2ueuL1TLz)

<or(1+yD) rearr)(1+I) ccarr(1+ /1), (77)

As a result of the embedding LT(B2 ) — LlT(Béo’l), we obtain the same upper bound as
ITllzs g1 |- Together with (75) with o =1, we find

IVl o) < CIVuliy 0 + CITly o) + Clolliy o,y < CO+TH(1+ L), (78)

Hence, gathering the above inequalities completes the proof of (68)-(69).
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It remains to prove (3). We treat the case D = T? and o = 1. By using (76), (73) (with a = 1)
and the commutator estimate (38), we get

d
IOl < M[R-1,u - VIO@)] Lo
< Cll[R-1,u- VIOl g/
< Cllw®llee (10O 172 + 10 2)
< C(IP@ler + IR-10) | 2) 10| L2
< C(IIP(@)|ze + 100l £2rzee) 100l L2
Gronwall’s inequality ensures that
HPHL%‘J(LP) S (HPOHLP + CT)GCT S CGCT.
Following the same idea as the proof of (77)-(78) and using (54), we infer that
Py oy + T oy + IVl ey < CeT.
By collecting the above estimates we deduce (70). O

Our main result in this section is as follows.

Proposition 3.4. Let e = & € (0,1], a € (3,1]. Let D be either R? or T2. Suppose that
Uy € H'n Wl’p(D),

Owyug € WIP(D), for some p > 52—,

A Uo :_07

bo(x) = 90(:6)11)0(3:),

o) < {21 2(D0), for 7 € (0,20~ 1),a € (4,1,

where Dy C D is a bounded simply connected domain with boundary 0Dy € C*t7 for some v €
(0,2a — 1] if a € (%, 1) and for some v € (0,1) if « = 1. Then there exists a unique global solution
(u, ) to the 2D Boussinesq-Navier-Stokes system (B,,) which satisfies

0(z,t) = Oo(X; " (2))1pg (2),

with
dD(t) € L™ (0,T;C**(D)), (79)

where D(t) = X;(Dy), X; is the particle-trajectory generated by the velocity u and X; ' is its inverse.
In particular, if either {a IS (%, 1)}, or {D =T% o= 1}, the result (79) holds uniformly with respect
to €.

Proof of Proposition 3.4. Inview of Remark 3.1, it suffices to show the a priori estimate on L (C**7 (D))
of ¢, which is the level-set function of D(t) defined by (14). Let us denote by W := V¢ the tangential
vector field, it satisfies

OW +u-VW =W -Vu:= owu, Wl =W, (80)
and
VW +u-V(VW) =0wVu+ VW -Vu —Vu-VW, VW|i=o = V. (81)
Thanks to (39) and the product estimate ||f g||cv < C||f|lcv|gllcv, we obtain that

t t
VW (@)l <C [V Wolley + C / 18w V()| dr + C / IVu() e [VW (D)endr. (82)
0 0
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The maximum principle of the equation (80) also gives
t
W (B[~ < [Wollzee +/0 IVu(T)|| e [[W(7) || oo dT. (83)

The main goal is to bound the dy Vu in L} (C7). Using the identity (63), we find that
low Vull Ly ey < 0w VVEATZT| y oy + [OW VVEOAT2 20y (84)

Below we split the proof into three parts according to the domain D and the value of «.

(1) First, we deal with the case a € (%, 1), and we prove the uniform estimates with respect to e
regardless of the domain. Gronwall’s inequality and (83), (52) give that

W (0)l[z0e < [Wolpsoelo ITu@lizedr < geex(©n), (85)

In order to control the term of I" in (84), we prove an estimate of I’ = W - VI'. From (16) and
the fact that [0y, 0 + u - V] = 0, we see that Oy solves the following equation:

1 1
O (OwT) + -V (dwT) + —A* (OwT) = —[A**, W - VIT + 0w ([R1-20,u - V]0). (86)

According to the smoothing estimate (44) in Lemma 2.9, there exists a constant C' > 0 independent
of € so that for all 2« — 1 < 9/ < min{1,4a — 2 — %} (recall that % < 2« — 1), therefore

10wy () < N IAGOWT g 2)) gl + 182 @0 Ty
C [YIVu(r)|| poodT 1 ! 2
<Ol IVl (uaworouBZ;fﬁg/o 122 W 9]0 e
t
+ / 0w ([Ri-za:u- V] 0)]| 2o df) 1A 1div (W)l 100
0 oo,
. t
SCeCfO HVU(T)”LOOdT<€H8W()FOHB’Y,20—"_/ H[AQG,W'V] FHBW/,QQ dr
0,1 0 0,1

t t
v [ 100 (Riczor D100 e dr) € W e T
0 o0, 0
Taking advantage of the identities
Ty =wo+ Ri2aby = wo + alA_QO‘HO, and awoaj’lm = 8j (aWOUO) - ajWO - Vug,
and using the product estimate (26), we get
HaworoHBz;;za < H(?WOVUOHBZ;;M + HaWORl—QaHOHBZ;Hm
S ||8W0u0||B’Y/—120¢+1 + C ||VWO||L°° ||VUOHB'Y/—1204 + C HWOHLOO ||VR1*20{90HB”//_1204
S Clidwsuollywrs + Clleollya.ee luollyre + Clleollyee 0ol 2qze < oo

where in the last line we have used the embedding that for all 0 < v/ < 4o — 2 — 1—2),
LP s BY s B ke oy g oy gl
and the following estimate

IVR1-2a80| 5 ~20 < Cll00]l o +2-10 < Cll0]lLe-

Using (26) (with —1 < 7' —2a < 1—2a < 0), Lemma 2.6 and (66), (83), together with the embedding

L < BL TP we find that for all 0 <4/ < 4a —2 — 2,
IV ([Ri-2a;u- V] ) )<C I[R1—20,u- VIO

H 1 v —2a /-0»1—20¢+2
L (BL L(B] ”)

p,1

< IVl o (1, orvs-sesyy +10lizmn)
t oo, 1
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< CIIVull gz (I60llz + 60l 12) < Ce, (87)
and

10w ([R1-2a,u- VIO, (552) < ClW g (o) IV [R1-2a;u - V]

oo, 1

LH(BL3*)
< Ceexp(Ct).
According to (28) in Lemma 2.3, we deduce that for all 2a — 1 </ < 1,
1AW - 9] T o < CUW e T

Hence, gathering the estimates (66), (83) and the above estimates, we find that

Tl < OO I (1 - Wl T e ar \|W\|L;>O(Loo>\|w||mp)>

+ ClIWlLgo ooy 1T 1 (200
< 0@ (1 [ W I, ).

Next, we want to get an estimate of dy (VVLA_ZF). We have
1ow (VVA~2T) < OlA0w (VAT gy + ClIVOW (VAT [ 3 0y
CllA-1div (W VVEATD)|[ 1 ooy + O VW - V(VVATT)
+ C||ow (V2VEATT)

HL%(C“{)

IN

Iy sy

HLtI(Cw—l)‘

The right-hand-side terms of the above inequality can be estimated as follows, thanks to (52) and
(83),

IN

|A_10w (VVEAT2T CIW | g0 (o) [V VAT 11 12y

< Ceexp(Ct)’

)HLtl(LDO)

and taking advantage of (26) and Lemma 2.5,

VW - V(VV+-AT2T

IN

t
Magiery < € [ VW@ P9840 () oo

IN

t
¢ [ 19w @l (18472 VEAE@)] e + [0 e ) dr
0

IN

t
c /O VW () e D)o,

then, since we have (29) (with s =v—1, 0 = 1),

t
16w (V2VAAT) |y oy < ClOWT |y oy + € [ IW (@)l [T () o dr.
i( ) +(C7) 0
Collecting the above estimates yields
t
low (VAT [y vy < C WLy 5y ) +C /0 W (Pl [T (7) | v dr + Ceo® ()

t (88)
< CeowlCD) <1+/ W () oo D) | g1 1d7>.
0 o

For the estimation of the 6 term in (84), by using (26), (29) (with 0 = 2 —2a, s =y -1 €
(—1,2a — 2]) and (56), (83), we obtain

0w (VV+8,A~2-200) < Cljasdiv (wIvtaatg)|

HL%(C”Y) L%(L‘X’)

+|[vow (vvtaa-z2)|

Li(Cr—1)
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< ClWllLge ooy IR1-2a01l 11 12y
t
+C/ VW ()| Los [[ V2V 01 A 27290 | oy—1d
0

+C |ow (VETtaa-2 )|

L)
t
C ol zyicer-sey + C [ 1W oy [0z

+ CeP (O, (89)

IN

where in the last line we also used the estimate

HVZVLalA—Z—Zaa o < CHA_1A2_2046HL2 =+ CHHHB&:&;O*%( < CHGHLQOLO‘J'

Since Oy 0 solves the transport equation
O (Owl) +u-V(Owl) =0, Owb|i—o = Ow,b, (90)
we apply Lemma 2.8 and (52) to show that for all v € (0,2a — 1),
0w Ol r1-20 < CeC o VU2 310 o] 120 < CPED), (91)
and for v = 2a — 1,
[Ow o)l po, ceClo Vel 13y, 0| o,

<
< cefh IVuOllzeodr || g gl oo (92)
< Ceexp(C’t)7

where Oy, 0p € C7T172% for v € (0,2a — 1) and Iy, 0y € L™ for v = 2a — 1 in view of Lemma 2.4.

Therefore, by collecting the estimates (82), (84) and (88)-(92), we find

IWBllcnsn + 10wTl 1y () + 19w Vuly cn

t
<@ (14 [ WEllors (I sy, + 102z + [Fu(er) ar )

Using Gronwall’s inequality combined with (66)-(67) (together with the embedding C%*~! <« C7,

v € (0,2« — 1]) guarantee that
||W||L%9(01+w) + HOWFHLIT (BQ;J) + HawquLlT(Cw) < Ce®™P exp(CT)’

where C' > 0 is independent of e. This implies W € L ([0, T],C** (D)) uniformly in e for all
0<~v<2a—1andae€ (3,1), this ends the proof in the case a € (3, 1).

(2) We deal with the case of @ = 1 and D = R2. Note that (83) and (53) imply
W ()| oo < [Wol|pooels IVuMlzeodr < GeCB0) where E.(t) := (1 + T4)(1 + \/9 (93)
We want to get a control of Oy ' = W - VI'. Since Ow 1" solves the following equation,
9, (OwT) +u-V (9T — éA (OwT) = _é A, 0w T + dw ([R1,u- V]0)
= —éAW VT — ng VT + 0w ([R_1,u-V]6).

Using the smoothing estimate (44) together with the product estimate (26), we find that for all
7 € (Lmin {y+1,2 - 2}),

1ow Tl (52.)
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1

t
C [T |Vul| poodT o2
< CeeC o IVulle <||awor0\|33;32 +g/0 (HAW-VFHB;HQ +vw v r||B;32)dT

10w (R T10)]y (7o) )+ C 1A T gy
t u codT 1 !
<Ce ecfo IVelzeed <H8W0P0”B;/;712 + 2/0 <”AW”BZLE2HVPHL“ + HVWHLOOHV2PHB¥;2)dT
+|ow ([R-1,u - V] H)HL% (BZ;_12>> + HA_1diV(W P) HL}(LO@)

t
C [y IVullpoodr , . /
< Tt ([ Py dr el (Row D10)]y (o) + € 10w Tal -2 )
+ ClW zge ooy 1Tl L1 (2ry-

Using again that Ty = wy + R_160p = wo + 01A726 and the embedding WP C B;Y;Tll where +/ is
suchthat0<7'—1<1—%,weget
1OwoToll g~ < [10wo Vo] -2 + 10wo R 1601l -
< Clowytoll 1 + C IV Woll e V0l -2 + € [Woll e [ VR 16011
< Clowyuollwe + Clleollwee [[uollywre + Cllvollyres [[0oll 2npe < oo

Then, using the estimates (26), (37), (68), (93) together with the embedding L>® <« B;’;;2+2/p for
all 1 <~ <2— 1—2), we deduce that

EHaW([R—hu'v](g)”Ltl(Bw/—l?) < Ce||W/lpse(ro) H[R—w-V]@HL%(B«—;)
< Cee“PO|R_1,u- V0 L2
< I1R-1 ]HL%(B;J 1+,2,)
CE:(t)
< Ce <||VUHL%(LP)H9HL?O (BZ;;H%) + IIUHLg(Lz)\IHIILgO(Lz))
< CGCEE(t).

Gathering the above estimates and (68), (93) yields

t
CE-(1)
Tl gy < CB0 (14 [ IW Iy IOl 5y ).
Thanks to the striated estimate (29) (with o = 0), we also infer that
t
0w (VVHA2D) | 1 oy < ClOWT NIy + € /0 W (7)o IT(7) | dr

t (94)
< CeCE() (1 +/0 ||W(7')||Bz; 1HF(7-)HB;; 1d7'> .
Then, by following the same lines as proof of (89) and using (93), we get
HaW (VVLalA_Ata) HLg(cw)
< CHA_10W (Vvlall\_46) HLtl(LOO) 4 CHV@W (VvLalA_LlH) HL%(B&;;O)
t
< W el +© [ I9W e [ V29000 s o
+C|ow (V2V+oA~0)

HLtl(Bg;;o)

t
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From the equation (90), we apply Lemma 2.4 and (53) to get that

OO myr < eC o IVulocdr g gl < CeCE=) 06
Boo,oo 0 C

Therefore, taking advantages of (82), (84), (93)-(96) and the embedding C7*! C B;’C;1 for all 1 <
v < min{y+1,2 — %}, we find

W (#)llcrr + H<9WF||L1<

/
~
t Boo,l

)t 10w Vull L1 oy

t
g&ww<HJWWm%w0+me¢+wwwmﬁﬁ.
0 0,1

Together with the continuous embedding E% (Bioo) — L} (B;Y;,l), Gronwall’s inequality and the esti-

mates (53), (69) guarantee that
Wlsgeicron + 10Tl (5 ) + 10wVl ey < €5

xexp {e (T4l o+ [ Vullyen ) |
< Ceexp(CEg(T)) (97)
where C' > 0 is independent of . This implies W € L>([0,T],C'*7(R?)) for all 0 < v < 1 and
e € (0,1].
(3) When o = 1 and D = T2, the proof is quite similar to the case & = 1 and D = R2. The only
difference lies on the use of Lemma 2.6 and Propositions 3.2, 3.3, thus by repeating the process in

the above by doing small modifications if necessary, we conclude that (97) holds with E.(7") replaced
by exp(CT). Hence, we obtain that W € L>(0,T; C'*7(T?)) uniformly in ¢ for all 0 < v < 1.

To sum-up, in terms of the notations (19)-(21), and using Propositions 3.2, 3.3, we have that for
a € (3,1) and for all 0 <y < 20— 1 <’y’<min{1,4a—2—%},

W e (cioy + IVl g ey + HPHL1T<B;/I;,1) = Wiz + I1(Vu, 0w Vu)| 1 o)
< O P exp(CT)’
whereas for a =1 and for all 0 <y <1 <+ <min{y+1,2 — %},
Ceexpexp(CT) for D = T?,
HWHL%O(C‘;F’Y,O) + ”quL%(CJ‘}l) + ”F”L%(B‘W};,l> S {CGGXP(CEE(T)), for D = R2, (99)

where C' > 0 is independent of ¢ and FE.(t) is defined in (93). This completes the proof of Proposition
3.4. O

4. PERSISTENCE OF THE C*T7 BOUNDARY REGULARITY WITH k >3

In this section, under the assumptions of Theorem 1.1, we want to prove that the regularity C*t7
of the boundary of initial patch temperature is preserved globally in time. More precisely, we want
to prove that 9D(t) € C** for all k > 3 and for some 0 < v < 2 — 1 if a € (1,1) and for some
v € (0,1) if = 1. In particular, the persistence of C*+7-boundary regularity is uniform with respect
to ¢ for the case that either {a € (3,1)} or {D =T? o = 1}.

Recall that the regularity of the boundary of the patch temperature dD(t) is closely related with
the striated regularity of the (tangential) vector field W = V't¢ with V+ = (=d,01)7. Indeed,
according to [3] (see also [13]), we have that that for k > 3,

OD(t) € L=([0,T],C*) <= (W) (-,t) € L= ([0,T],C"(D)); (100)

and, in particular, to prove the uniform persistence of the C**7 regularity of the patch boundary it
suffices to prove (100) uniformly in €.
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For this purpose, we shall prove that for all £ > 3, % <a<1,0<~v<2a—1and v such that
2a—1<’y'<min{1,4a—2—1—2),’y+204—1},

||W||L%o (C‘“//‘;Ll,k72) + ||VUHL%F(C#71) + HFHLIT (B%,kfl) < Hypa(T); (101)
whereas forall k >3, a=1,0<~vy < 1,and 1 </ <min{7+1,2—1—2)},

Hy_(T), for D = T2,

w _ \Y% _ T ey < 102
W0 egnis) + 1Vl o)+ Ty 0 1)_{Hk_1(E€(T)), e p g (102

where Hy,_1(T) depends on T but is independent of € and Hy_1(E.(T)) depends on E.(T). If (101)
and (102) are proved then a direct consequence of these controls is that

{lailjl;lw{’L%O(Cw) - HW ‘ V@"f[,*QWHL%O(CW) < C”W”L%’(C”){’8$2W“L$(CV+I)

< CHWHL%O(C'Y)HWHL%(C‘};H,IC72) < 00,

which corresponds to the desired result (100). Hence it suffices to prove that (101) and (102) hold.
In order to show the estimates (101) and (102), we apply the induction method.

First we deal with the estimate (101) where D is either R? or T?. Assume that for some ¢ €
{1,...,k — 2}, we have

HWHL%O(Cwl,ea) + HVUHUT(C#) + HFHLHBW) < Hy(T), (103)
we want to prove that it also holds for ¢ replaced by £ + 1, that is,
W ) 190y (o) Ty gy < Hesa (D) (104)

The inductive statement is true for £ = 1, as a matter of fact, one notices that (98) is nothing but
(103) with ¢ =1, and also Lemma 2.2 and Lemmas 6.1, 6.2 can be applied with k = /.

We first derive the estimation of the L§°(C7~!)-norm of 8f, V2W. In view of (81) and the fact
that [Ow, 0 + u - V] = 0, we have

0 (0fy V2W) + u - V (8, V2W) = 05 V2u + 20, (VW - V2u) + 8y (VW - Vu)

105
— Oy (V?u- VW) =20 (Vu- V*W). (105)
Owing to Lemma 2.8, we find that for all v € (0,2« — 1],
‘ t
0572 (@) < €I ok Wil + [0 V2ul)] v
0
t
¢ 2 ¢ 2
+/0 | (88 (72w - V) 0y (- v W))(CHdT
t
¢ 2 ¢ 2
+/0 | (o6 (VW - v2u) 04 (7 u-vw)ﬂ(ﬁldf). (106)

Since Dy € C*7(D) implying oy € C*+7 (D), and by repeatedly using (26), one can get
190, V2 Wol | 1 Siwol oo 19005, V2 Wl
SiWollypree IVOGRZVEWollcnm1 + V205 2 V2 Wl
SiWolly e IV Wollgr-t + - + V2 W | g

Sllgollyeee 190llor2er Sigolly iz IP0llcres -
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In view of Lemma 2.2 and the striated estimates (132), (140), (142), the last two integrals on the
right-hand side of (106) can be treated as follows:

dr

/Ot | (8t (v - 92u) fy (92u- )|

t
< C/ (VW - V2u, V?u - VIV)
0

HCW IZdT

Mg V() oo ed,

t t
< 0 [ I9Wlgy [Vulrear < © [ o)
0 w w 0

and

[ (929 -5 2 (5w

cr-1

t
gc/ | (V2W - Vu, Vu - V2W)
0

HCW 1,2 d'T

t t
vZ[Ir \V4 W \V/

Now the main task is to control the second term on the right-hand side of (106), and it follows from
equality (17) that
(+1172 (+1 LA—2
10w V¥ ull 1y ey < |0 VIV AT

<||vrvta~er|

)+ Ha€+1v2vJ_a A7272a0HL1

(@1 = $(C7 1)
+[|[VPVEo AT 2|

(cr-1
(107)

L%(C'VYV—I,Z-Q—I) Ll C'y 1€+1)

Taking advantage of (25) with s =+ —1 and 0 = 2 — 2a, we get
t
[P0 vy < OBl g + € [ W g 2

Since 871;1/0 for all j € {1,--- ,¢+ 1} satisfies
O (0,0) +u - V(9,0) =0

we use (40) and Lemma 2.4 to infer that for all v € (0,2a — 1),

ClIVaull g1

1056 e -y < e THE™ 19y B0l -ary < O™,

and for v = 2a — 1,

ClVaull 1

10y 0ll (g, ) < Ce L oy,

Lollse.

ClVaull g1

< Ce FE[0Yy, ol Lo < Ce™PED),

Summing the above inequalities over j € {1,--- ,¢ + 1} leads to that for all v € (0,2a — 1],
HHHL?O (cav—(Qa—l),H—l) < Qe (@), (108)

Then, using (108) gives

edr. (109)

t
V2V o A2 2)| , (ce+) < CePOY) 4 Cep(Ch / W ()l g2,
t 0

For the first term of the right-hand side of (107), we use (25) (with s =~y —1, ¢ = 1) to deduce that
t
HV2VLA*2FHL%(C‘}/_M+1) < cnrnLHWH) +C/O W ()l 10 () (110)

In the following we consider the smoothing estimate of 8{%}" 'T". From (16) and the fact

(05, 0 +u- V] =0,
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we see that
1 (6% 1 «
O (OL'T) +u - V(95T + gA2 (04T = - (A2 05T + 04 ([R1-2a, u - V] 6) (111)
= Fyya,
where
(A2 00T = [A%, 0w | 0fy T + Ow ([A%*, 0y ] Zaf ([A%, w85, T). (112)
According to (44) in Lemma 2.9, we infer that for all 2a — 1 < v/ < 1,
10Ty ey < 71260 D gy ay) O]y
< CeeCh ||w<T>||LoodT(Haé;}roHBz;;m F1Feall (20 )
+AZ1(95'T) HLI(LOO)
< e (Tl e+ A Iy
+ Eua‘a}kl ([Rl—Qonu : V] 0) HL% (BZO/IQQ))
t
40 [ IW ) e 105 T () el (13)
0
Taking advantage of the relation I'g = wg — R1_240p and the equality
Vot f = [V, 0wl on f + 0w ([V,0w] 0 f) + -+ 0 ([V, 0w] f)
¢
> % (VW Vo f), (114)
=0

we apply Lemmas 2.2, 2.4 and the striated estimates (132), (140), (142) to deduce that

HOZ“Pon e < H@”quoHBW 20+ [|OR R 20

B'y 2a

< Cuva“luoum 2t CZ VW - vaé;ojuoug%_m,j + C||[Wo + VR1-2000]| g 20,
] =0 0 0

gcua”luouwlp+CZ\|VW0\|BOJ | vy, uoum —2s + C [Woll gyt [VR1-2080]] gy 2.0
7=0

< Cllaf wollyr + C 1Wollgge ol gyr—samnre € IWollge (14 1ol gge-r ) [Boll gy 22
0

(41

§C<1+HWOHB%><§H uonlp—i—ZHB ol e 4a><c (115)

where in the last three lines we have used the continuous embedding that

) ) )

1,p v +3—4a v +1-2a 0o v +2—4a ~—(20c—1 v +2—4a
WP e BIHPT B L < BLY BL oY — B
valid for all

0<7§2a—1<,/<min{1,7+2a—1,4a—2—§}.

For the commutator term [A2a,3€f}1]f’ given by (112), it follows from (24) (with s = 7' — 2a,
o = 2a), (132) and (140) that

l
I [AM,aé;l]rHLl(By, oo < < |8 (1A%, W - V]oy, T)

~ lea ez
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4
<Oy w - vien T
=0

4 t
.
< cjzg /0 (IFW )l + IW @)= )15 D) gyl

L B“{’ 20 ])

t
= C/ W) T ()] 5o T, (116)
0 w w

where C' > 0 depends on HWHLOO(Cwﬁ»l,lfl) which is bounded by Hy(T"). For the second term of Fyq
T \"W
n (113), by using the formula V ([Ri1_2q4,u - V]0) = [VRi_24,u - V] — (Vu) - VR1_2,0 and (26),

we see that
el|og! ((R1-2a,u - V] 6) I, (B255)
< Ce|[W iz (100 | VORy ([R1-20, - V] ) HL% (57/5)
< Cel|oyy (VR1-2a,u - V]0) HL% (5257 + Ce||ofy (Vu - VR1-240) HL%(B;EQQ)
+ Ce||[V. 0] ([R1-20,u - V] 0) ||
= Ny 4+ Ny + Ns.

AC

To estimate Ny, we use (24) in Lemma 2.2, the induction assumption (103) together with the estimate
(108) (with the embedding CJV_%‘H’EH — B‘V,V+2_4O"€), we find

Nl S CE H[VR1—2017U : v] HHL% (B"};—Qa,é)

= C<HVUHL,} (8%) + €Hu”Lt1(L°°)) HQHL?O (2ot
<C,

where in the last line we have used the following estimate (which is a consequence of (50) and (52))
t 1 1
clullzgieey < € [ leulfaleVullindr < C(leulyn + 1Vallyps)) < C.

and C > 0 independent of € depends on Hy(T) with H,(T) > Ce®®eP(CT) By applying (23), (25),
(103) and (108), the second term Ny can be estimated as

Ny < Ce||Vu- VR1,2a9||L% (57->)
< Cel|Vul, (50) IVR1-200| . (572)
< Cluly (g0) (190 sy + I gy I )
< C.
For N3, we use (114), (103), Lemma 2.2, together with the estimates of Ny, Ny, one obtains that

N3 <

(vw VO Ry _ge - V] 9) (

L} (BL ™)

MN

HVW VO R V]H‘

Ll (By —2a, z)

=

1=
/—

/\

HVWHLOO Oz

‘va" 1= (R - V]H‘

Ll (By —2a, z)
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< Ce||w|| ZHva’f =1 Ry gt V] 9‘

L?o(B‘lﬂ’/l L Ll Bﬂ/ —2a, z)

-2
< Ce IV ([Rumas - VIOl g g 20 1>+c€§;H [V, 0] ([R1-30,u- V] 6)

L% (B";"/—Qa,i)

0—20-2—i
<C+0eY 3 ||oh (YW Vol (Ricsasu- VI0)) | (5-2)
i=0 j=0 o
< C+Ce Z HVW . V@f;2iiij ([R1-2a,u - V] 9)‘ 1( Ry —20,itj
0<i+j<l-2 K (BW )
<C+Ce Z Hvaf;z_i_j ([Ri—2a,u - V] ‘9)‘ I’ (Bw’72a,i+j) )
0<i+j<l-2 o

where C' > 0 is independent of ¢ and depends on Hy(t) with Hy(T) > H;_1(T) > CexPexp(CT) By
repeating the above process and using (87) we end up with

N3 < C+Ce HV ([Rl_ga,u . V] (g)HLt1 (B;/;’_lga) < (.
Hence, it follows from (110), (113), (115), (116) and the above estimates on Nj-N3 that
t
_ ||+t

00y ey = 106 Ty + 1Ty ey <€ (14 [ IO lggelIT g ) (127

and (recall that 0 <y < /)
t
2L A —2
[VVEA2D) sy SC+C [ WOl ID0) g (118)

Then, using (106), (109) and (118), we find that for all (y,4) such that

0<7§2a—1<7/<min{1,4a—2—%,7+2a—1},

t
|05 VW (1) g1 + Haﬁ;lv%umm_l) < C/O (HPHB%,Z + [ Vullgoe + 1) [Wllgys1.edr +C,

(119)
where C' > 0 is independent of € and depends on Hy(T) > Ce®PeP(CT) By using (112), (114) and
Lemma 2.2 and Lemma 6.2, we infer that

/-1
[0 W Ol < 3 00 (F2W - 90l W) e s
j=0

-1 {—1
V2w - vay, '~ JWULOO(%,U +23 ||y VR W)
Jj=0 7=0

¢

gl

g (eg)

IN
Q

(172 908 ey
j=0

IV e i IV00 W e “))

IN

OV e gty IV ey (L I ey
.

IN
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and

|00, (VW - Vi, Vu)

M-

19,069y o < e

J

~ |l
(@)

IN

va Vol jVuHLI ()

t .
= CZ/O HVWHBOV‘;J'HV@%[;]VUHC%M dr
=0

t
<c / IW ()l gt V() e i
0 w w
Consequently, taking advantage of the following estimates

W (@)l gyrre = [0 W ()] cr + W (@)l gz
< C||V2o W ()| gy + | 2105 W (2) HLOO+C
< Ol VW )| coor + 1V 00 ]W @) s + IW O)lee |05 W ()| o + C
< C|ow VW ()] pys + €

and
IVl s gy < H3€$1WHLW>+HWHL,}(cy)
< CIVO Vull o1y + 12103 V| y oy + €
= CHaétJ/FIVZUHLtI(Cv—l)+CH[V’8€J1]V“H@(CW—1)
+CHWHLE’O(LOO)HaéVVUHL%(LOO) +C
t
< CHaé[J/rlv2uHLt1(C'v—l)+C/0 W) g () e+ C.

and in combination with the estimates (117), (119), we deduce that for all 0 < v < 2o — 1 and
200—1 <+ <min{1,4a—2—§,ry+2a—1},

IW @ g + 190y gy + I gy
t
<0 [ (Pl + 1Tulgge + 1) Wl ey + €.
0 w w w

where C' > 0 depends on Hy(T') but is independent of e. Gronwall’s inequality and assumption (103)
guarantee that

< Cexp {CHVUHLIT(C;"}Z) + CHFHLlT(B"};’e) + CT} < Hg+1(T),

which corresponds to (104), as desired. Therefore, the estimate (101) is proved.

It remains to prove the estimate (102). One may follow the same steps as the proof of the estimate
) P
it was already done in [7] (the notation must be adapted as 4’ used here corresponds to 7' + 1). For
the proof of (102) in the case ¢ = 1 and D = R? we also refer to [7]. Hence, the proof of Theorem

1.1 is completed.

(101) up to possibly minor modifications. The main issue is the estimate of ||[A, 8&'}'1]I’||
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5. INFINITE PRANDTL NUMBER LIMIT IN THE TORUS T2

This section is devoted to the proof of Theorem 1.2 concerning the passage to the limit when the
Prandtl number Pr goes to infinity. Before that, we present a general convergence result of the system
(By) without assuming the temperature patch structure.

Proposition 5.1. For each € € (0,1], consider (u®,0%) a global reqular solution of the Boussinesq-
Navier-Stokes system (Bo) defined on T? for a € (L, 1] with uniformly bounded initial data (uf,05) €
(H' x L*>®)(T?), V- u§ =0 and [ 65dz = 0. We suppose that the initial data converge to (ug,6p) €
(H' x L>®)(T?) ase — 0.

Then, as € — 0, up to extraction of a subsequence, (uf,0%) converges to a global unique weak
solution (u,0) € L>([0,T], H(T?)) x L*([0,T] x T?) of the (fractional) Stokes-transport system
(STy) given by (3).

Remark 5.1. Concerning the existence and uniqueness of the global weak solution for the (fractional)
Stokes-transport system (3), one refers to the work |29] (see Corollary 7) for the case a = 1 and to
[11] (see Theorem 1.5) for the case o € (3, 1). Note that from the assumption we have [, §odz =0,
which is the compatibility condition for the system (3).

Proof of Proposition 5.1. Since 0 = [ 05(x) dx = 0, from the equation verified by 6 in (1) we
find

/ 0°(x,t) dx :/ 05(x) de =0, Vt>D0.
T2 T2

Integrating the evolution equation in u in (1) over the spatial variable gives

62 u(z,t) de = / 0°(z,t)eadr = 0, that is, / u(z,t) dx :/ ug(x) de.
dt Jp2 T2 T2 T2

Thanks to Poincaré’s inequality, one gets
1
Ol ey < 19602 + [0 = 1 [ et 4] [ uttyae
|T2| T2 L2 T2

< CIVU Ol + €| [ ()]

According to Propositions 3.1, 3.2, we have that u° is uniformly bounded in L5°(H'(T?)) and 6° is
uniformly bounded in L°(L>°(T?)). Thus, up to extraction of subsequences, we have the weak-x
convergence, as € — 0,

u® —=*u, in LP(HYT?)), (120)
0° —* 6, in LF(L>®(T?).
It follows from the lower semicontinuity of weak limit that w € L5°(H'(T?)) and 6 € L (L>(T?)).
From the equation 0,0° = —div (u® 6°) and
[div (u® 6°) [ oo (m-1) < Cllu® || Leo(12) < Cllul| Lo 22y 10° | Lge () < C,
we know that 9;0° is uniformly bounded in L (H ~1(T?)). Since L*(T?) — H 3 (T?) is compact, we

use the Aubin-Lions lemma or the Rellich compactness theorem (see Lemma 2.10 or [12]) to infer the
strong convergence:

6° =0, in C([0,T), H 2(T?)). (121)

Now we can pass the limit to show that (u, ) solves the (fractional) Stokes-transport system (3).
We only need to show the convergence of the nonlinear terms, since the linear ones can be dealt with
in a standard way. For all ( € S(T? x [0,7]), we have that as ¢ — 0,

| [ [, 0 v )cara] < llpiun9ullsun Gl e < Ol g anlcliy o — O
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‘/OT /TQ div (uf 6°) (dxdt—/OT/TQ div (u0) (drdt
S‘/OT/TQ(Ua—U)'VCdedt‘+‘/OT/T2U€.VC(98_9)dxdt

T
< € _ . €. € _
_(/O /TQ(U ) VCOdadt] +lu® -Vl ) 107 =0l ey, = 0 (122)

where the convergence in (122) follows from (120), (121) and the estimate that

and

[0l gty < 7 - Vg < Ol lageqam Il ey < C-
U

Corollary 5.1. Under the assumptation of Proposition 5.1, one can get 0° and 0 in Proposition 5.1
satisfies 0° — 0 in L5 (LY(T?)) for all 1 < q,r < c0.

Proof of Corollary 5.1. Since 6 is uniformly bounded in L3¥(L>(T?)) and 6 € L$°(L>°(T?)), thanks
to the interpolation and embedding properties of Lebesgue spaces, we only need to show 6 — 6 in
LZ(L?(T?)). Since (u,8) € L>([0,T], H(T?)) x L>=([0,T] x T?) is a global unique weak solution of
the (fractional) Stokes-transport system (3), one gets ||0||z2(r2) = [|0ol[z2(r2) and [|0]| 2 (jo,r)xT2) =
T1/2H90HL2(T2). Similarly we have [|6%(12(j0,77x12) = T1/2H98HL2(T2). Since 6 converges to 6y in
L>(T?) C L?*(T?), one finds that 10°[| L2 (jo,7)xT2) converges to [|€|p2(jo,r)xT2) as € — 0. Taking
advantages of 65 — @ in L%([0,T] x T?), one gets that 6° — ¢ in L2(L?(T?)). O

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let X; be the particle-trajectory generated by the velocity «®, that is, X7
solves

d

X W) = (Xi W) 1), XiW)li=o = v (123)

Denote by Xf’_l the inverse map of X7, then Xf’_l satisfies
t
XN a) =2 — / u (1, X% 0 Xf’fl(x))dT. (124)
0

Thanks to Proposition 3.3, we have the following uniform estimates, Vu® € LL(C?*7}(T?)) for
a € (3,1) and Vu© € LL(BL, (T?)) for o = 1. Since

ﬁ(O,t) = /11‘2 u®(x, t)de = /11‘2 ug(x)dzr < Collugl| 12

for all ¢ € [0, 7], we get that u® € L}.(C?**(T?)) uniformly in ¢ if o € (3,1) and u® € LL(C7(T?)),
for all 7 € (0,1) uniformly in ¢ if & = 1. Therefore, using (11) we find that the system (123) has a
unique solution X§(-) : T2 — T? on [0, T] which is a measure-preserving homeomorphism satisfying
that X7 and its inverse X{"~' belong to L¥(C2?*(T?)) if a € (3,1) and belong to L (C7(T?)),
7 € (0,1) if « = 1. Besides, from the equation of € in (1), it holds that

0°(x,t) = 00 (X; "' (2))1pey(2), with D°(t) = X;(Do). (125)
By using the equations (123) and (124), we also know that 9, X0 € L3°(H'(T?2)) uniformly in ¢,

thus Aubin-Lions lemma guarantees that there exist X;(-) : T> — T? and its inverse X, '(-) : T2 — T2
such that, as € — 0 and up to the extraction of a subsequence,

Xy 5 XA i ([0, T);,CH(T?), 7 € (0,20 — 1),

Moreover, X;(-) is a measure-preserving homeomorphism that solves the limit equation (2) in the sense
of distribution, and also X;*' € L¥(C?**(T?)) if a € (3,1) and X e Le(C(T?)), vy € (0,1)
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if @« = 1. Passing to the limit in (125), we recover that 0(x,t) which solves the first equation in (3)
satisfies

0(x,t) = 00(X; ' (2))1pp (), with D(t) = X¢(Dy).

If £ = 1, the regularity of thEl implies the global persistence of the regularity C'*7 of dD(t), that
is, (13) with & = 1 holds. If k > 2, then recalling that @o(z) € C*+7(T?2) satisfying (6) is the
level-set characterization of Dy, we have that the domain D(t) can be characterized by ¢°(z,t) =
©0 (Xf’fl(x)) satisfying that

Opp” +u” -Vt =0, ¢ li=o(x) = po(x).

Since ¢° is bounded in L (C?**7(T?)) (see (98) and (99)) and u® is controlled in L5°(H'(T?)), one
gets that dpp° belongs to L¥¥(H(T?)) uniformly in e. Since C?™(T?) — C**71(T?) (11 < 7) is
compact, Lemma 2.10 yields that, up to the extraction of a subsequence,

¢* =, in C([0,T]),C*(T?),0 <~ < 7. (126)

By letting ¢ — 0 in the equation of ¢°, we find that p(z,t) = ¢o(X; *(x)) is the level-set characteri-
zation of the domain D(t) and it solves the equation (in the sense of distribution)

Opp+u-Vo=0, o¢li—o(z) =)

Besides, it follows from the weak-* limit of ¢ that ¢ € L$°(C?T7(T?)), and this proves that the
global persistence of the C?T7 regularity of dD(t).

For the case k > 2, in light of (100) and (102), we have (9{;”‘1/211/1/‘2 € L¥(C7(T?)) uniformly in e,
with W := V1. From the equation (80) and the fact that [Oyy=,d; + uf - V] = 0, we get

O (05 We) +us - V(05 We) = ot (We - V).
The uniform estimates (100) and (102) together with (26) and the striated estimate (23) imply that
lu® - VO Wel 1y -1y < Cllw |y ooy 1952 WE L Lge (omy < €
and

1057 (W= - V)l g oy S WS VUl |y oty < CIWE g gty IV oty <6

)

where C' > 0 is independent of ¢, thus it follows that 0, ((9{};1W€) € LL(C7~1(T?)) uniformly in e.
Using the Aubin-Lions lemma ensures that, up to an extraction of a subsequence,

)

N We — fr, in L2([0,T),C7(T?)), 0 < 72 < 7. (127)

We claim that fj, = aﬁ;lW with W := V1. Indeed, if k = 3, it follows from (126) that f3 = oL W.
Now assume that f, = 8{;1W for each ¢ € {3, -+ ,k — 1}, we shall show that fy 1 = 861/W- Noting
that by using (126) and (127), we find that for all ¢ € S(T? x [0,T]),

/ (8l W) ¢ dadt = — / / (0529 (=) dadt
T2 T2

— —/O o fg (({9{/[/() dzdt = /(; /p (8wfg) Cdxdt,

and it follows from the uniqueness of the limit that f, 11 = Ow fr = 3€VW. Thus the induction method
ensures that fr = 6{}; YW, as desired.

Furthermore, the weak-* limit of a{;,;l W¢ implies that 8‘]},— 'W e L (CV(T?)). In combination with
(100), this shows the global persistence of C*™7 regularity of the boundary patch D(t). Therefore,
the proof of Theorem 1.2 is finished. O
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6. PROOF OF LEMMA 2.2: STRIATED ESTIMATES

Let us denote

Ry (o, ... am, / / HO‘Z x+ fi(1)271 )h(T,y)dydT,
[0,1]m JRd ;
where ¢ € N, h € C ([0,1]™; S (R?)), f; € L ([0,1]™) for all T € (0,1)™. Note that when f; = 0 and
Jga h(7,y)dy = 1, the identity becomes Ry (cv1, ..., 04) = [ as().
=1

1=
First we recall the following important result whose proof can be found [7].

Lemma 6.1. Let (k,N) € Z* xZ*, p € (0,1), and W = {W;}, ;. be a set of reqular divergence-free
vector fields of R? satisfying that
k—1
Wlggsnns = 3 | T Wlney < . (128)
A=0

Let o (1 =1,...,m) be such that supp a; C B(0,C;27), C; > 1, and let v be a smooth function with
compact support in a ball. Then, we have that for all s € R, (p,7) € [1,00]? and £ € {0,1,...,k},

|(Tw.v) Ry (01, .- am) || 1 < C min <Z I (Tw.v)!" o v H I(Tw.v )" Oéj||Loo>,

=N p<e 1<j<m,j#i
(129)
with = (p1, -+ ) and |p] = pg + -+ + pm, and
l
[(Tws) ¥ (279D) ¢l ,, < CO [[(Tw-v) 0| (130)
A=0
and
H <2qu Byv)' q¢HL") q>—1ller * H <2q(871)H (Tw)' VAngHL”)qz—l o = C||¢HEZif,w’ (131)
and

IVllge < Cldligoos. (132
p,r, W p,r, W
In the above the positive constant C depends on |[W||z1+p5-1.
w

Based on Lemma 6.1, we obtain the following useful striated estimates.

Lemma 6.2. Let W = {W;} .,y be a set of reqular divergence-free vector fields of R? satisfying
(128) with (k,N) € Zt x Z*, p € (0,1). Let m(D) := A°mq(D), o > —1, and mo(D) be a zero-order
pseudo-differential operator with my(§) € C* (Rd\{O}). Then, there exists a positive constant C
depending on HWH@VJP,;CA such that the following statements hold for all £ € {0,1,...,k}.

(i) We have that for all ¢ > —1,

¢
18 (Tww) V(D)o 1, < € 3217 |(Tiw.9) ¢l (133)
A=0

and for all ¢ € N,

V4
2|(Tww) Agdl o <€ D0 D ITwe) A VO (134)
q1€N,|q1—q|<Ny A=0

with Ny € N depending only on L.
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(ii) For all s <0, we have

¢ ¢
Tolgye,, < Cmin{ 3 ol ol D lollge lolggs |- (135)
ks s R kS
and
)4
Tl <€D Il ol (136)
M:
While for all s < 1,
l
ITeuilgy,, < O3 Pollge ol (137)
M:
and for all s € R,
¢
ITourlsy,, <€ X IVulgplilycs (18)

(iii) Assume that v is a divergence-free vector field of R?, then we have that for all s > —1,

)4 )4 )4
IR, Vu)lgee S min { > Il Ty, 3 Il Il 3 ||v||gwuwugm}.

pn=0
(139)
(iv) We have that

1@llgse < Cllllgse < Cllllgse . Vse(=1,1), (140)

p, 7, W P, W P, W
[6ll51¢ < Clldllgns < Clldllns (141)
Wligee < CIWlgse , ¥s>-1, (142)

p, 7, W p, T, W
and,

2s < C s C S V > 1. 143
9152 < Clldllgse  +CllollgeWiigee |, Vs> (143)

Proof of Lemma 6.2. The only statement which needs to be proved is (133) since the other estimates
are the same as Lemma 5.2 in [7]. We prove it via the induction method. We first remark that (133)
for £ = 0 is true: this follows from Lemma 2.5. Assume that it holds for all ¢ € {0,--- , ¢} with some
¢e€{0,1,--- ,k — 1}, we want to prove that (133) is true at the rank (¢ + 1). Similarly as (30), we
notice that
(Tw.v) Vm(D)f = — [Vm(D), Tw.v] f+Vm(D) (Tw.v) f
==Y [Vm(D), S W - V]|Ay, £+ Vm(D) (Tw.v) f
q1eN
== 3 [Vm(D)i (27" D), S0y V] Ay + Tm(D) (T £,
q1eN
and

{Vm(D){/; (2_qlD) » Sq -1V V} Ag f
= gn(HiFe) / 1(20) (S W(w = y) = S W) - VA, f(z = y)dy
R
= gu(1+7) / ﬁl(y) (SquW (x - Q_QIy) - Squw(x)) VA, f (35 - 2_Q1y) dy
R4

1 ~
= —2‘11(’/ / hi(y)y - VSq W (x — 72_‘11@/) VA, f (3: — 2_q1y) dy dr,
0 JRd
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with by = FL(i&m()Y(€)) € S(RY). Thus by using the induction assumption together with
Lemma 6.1, we infer that for all ¢ > —1,

18 (Two) T Vm(D)||,, < (A (Twe) (Vm(D), Tw]9) |1, + |2 (Twv)" V(D) (Tw.v) ¢,
S Z Z QqIOH(TW'V)MSm—lvaLOOH(TW'V)WVAQ1¢HLP

q1EN,q1~q p1+p2 <L

¢
+ 200+9) Z (D) 19|,

A=0
041
= Z?q”” @9 ¢l + 32 N (Tww) ¢l
A=0 A=1
0+1
S 22N @) e
A=0

where in the last line we have used (130) and the following estimate

q1—1
[ Tw0) VS Wil € 30 2700 (200 | (Tig) A, YW, )
q2=—1

< Cl[VW]gewm < ClW| g0 < oo.
w w
Hence, by induction, we have proved (133) which is the wanted control. U
Then, we turn to the proof of Lemma 2.2.

Proof of Lemma 2.2. Since (23) was already proved in Lemma 2.4 in [7], we only need to prove
statements (ii) and (iii). We shall prove (24) and (25) again by induction on the index k. For k = 0,
(24) follows directly from (28), while (25) follows from (29) together with the estimate

Im(D)¢|ss, < ClA_ym(D)g||Le + C|| (25| Ajm(D)g|| )
< CIA_1m(D)g|l oo + C|(27E+ ] Al 1)
< Cl1<o<op|A-1m(D)$]l v + Cll@]l oo (144)

where C' > 0 is a universal constant (the norm [[W||,14,x-1 plays no role).

Assume that (24) and (25) holds for ¢ € {0,1,...,k—1} (where kK = 0 when ¢ = 0 ) with ¢ in place
of the k-index, we intend to prove that they also hold for the £+ 1 case. For the estimation of (24),
thanks to Bony’s decomposition, we have

(m(D),u- Vg = 3 [m(D),Sj1u-VIAjé+ ) [m(D), Aju- V]S 16

JeN JEN

+Zm D)div (A; ul\; i9) Zdiv (Aju m(D)quS)
§>3 j>3

+ ) (D), Aju-V]A¢
—1<5<2

5

= > I,
j=1

It follows from (140) that

|[m(D),u - V]¢||B;,£J§/1v < C||(I1, Iz, I3, In, I5) |

s, 0+1 .
BP,T,W
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For Iy, noticing that m(D)zZ (2*jD) = 2i(dto)p, (27-) * with h = fﬁl(m{/;) esS (Rd), and
[m(D), S;_1u-V]Ajp(x) = [m(D)¢ (279D), Sj_1u- | VA;¢(x)
= 2J° /dﬁ(y) (Sj—1u(z — 2_jy) —Sj_qu(z)) - VAj¢ (z — 2_jy) dy
R
1 ~ . .
= —9i(e=1) / / h(y)y - VSj—1u(z —1277y) - VA;¢ (z — 277y) dydr,
0 JRd

we apply Lemma 6.1 and Lemma 6.2 to obtain that for all A € {0,1,...,¢+ 1},

2°)|A, (Two) Il S 20 Y (Aq@W.V)A([m(D)J(z*JD),sj_lu.v}Aj¢)(

jeNj~q L
S 20 3 S I @w) VS | (e ) VA,
JEN,j~q A1+A2<A
DS S I Bl [ 2 i B [C T
JENjg A+ A< N j<j—1
+1
< ORI
S CqAIZ::OHVquﬂV,VAlHV@\BZleC Y
+1
< _ _
~ Cq)\lzzoHvuugﬂwhu(ﬁungxﬂ A

S Hvu||33’f“||¢HBZﬁf’v’5“’

with {cq},~ ; satisfying [lcgl,, = 1. It immediately leads to
I 2s < C V o+s .
15llg050 < ClIVullgygon 6l g0

Then, we use the strategy as the proof of (30), that is, we decompose I as

I =Y m(D)p(27D)(Aju-VSj10) = Y Aju-Vm(D)Sj1¢ = Ios + L.
jeN jeN
For I5 1, by using the induction assumptions and taking advantages of (129), (132), (134) and (140),
we find that for all A € {0,1,...,¢+ 1},

2°)|ay M) L2all, S 22 Y HAq(TW-V)Am(D)i(TjD)(AJU'V5j71¢)H

Lpr
JEN,j~q
A .
S 2 Y Y27 (Twe) M (Aju- VS 19)|,
JEN,j~qA1=0
S D > YD) Ajul| e |[(Tww) ¥ VS,
FEN, jrvg Aa+Az <A
A2
S XY AT S e anvil,- )
JEN,j~q Aa+A3<A q1EN,q1~j Ay=0
X < Z H(Tw-v)/\?’vAJ"b‘m)
Jj'<j—-1
S Z Z HVUHBQ,,\4 Z 2(j7jl)(s+071)2jl(s+071)H(TW-V)ASVA]"(ﬁ‘Lp
JEN,jq AaFAg <A Vi

N

A
oVl Y 1965 r1en
A3=0
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and

29(| Ay (Ty.v) Lo,

<

S

AN

N

1A\

N

N

N

S
S

cqll Vull goerallél gos.ern

chVUHBOWZH H(bHBZtSvéH’

2qs Z HAq (Tw.v)A (Aju . Vm(D)Sj_1¢) HLF
JeEN,j~q

Z Z [(Tw.v) " Ajul| oo || (Tw.w) 2 Vm(D)S; 19|,
JEN jrg A1 +A2 <A

A1
> oy zﬂs-”( S 3 It vl )

JEN,j~g A1 +A2 <A q1EN,q1~j A3=0

(H (Two)*Vm(D)A 6], + Y [[(Tww)*Vim(D /¢H”>

0<5/<j—1

S Y IVl (HVm( )A_16]|1s

JeN, J~q>\z+/\3<>\

f Y S wemea,)

0<5'<j—14=0

IVullgoss
> 2“1’<”A 1¢\|Lp+2 >, wIt) Tw-v)MAj/wLp)
JEN,j~q A1=00<j'<j—1

CQHVUHB RO, ¢+1 Z HQSH S+<7 A2

Ao=0
cqllVul go.er ”(ngZﬁf’v’ﬁ“

CQHVUHB%}“ ”(bHB;t”Vé“

where {cq} . | satisfies ||cq[[, = 1. Then the above estimates readily give

1l ey < ClIVal gy o 16l e o

For I3, by applying Lemma 6.1 and Lemma 6.2, we find that for all A € {0,1,...,¢+ 1},

29(| A (Tw.v)* I3

Iz»

<

~

N

N

N

N

2 ) HAq (Ty.v)* Vm(D) (Aﬁ'uzjqﬁ)‘ L
j>max{3,g—Nx}

A
ga(ltsto) §° ( > [(Tw-9)* (Ajud0) HLP>

A1=0 " j>max{3,q— Ny}
gull+ste)  §° > @285l [T A9,
j>max{3,g— Ny} A2+A3<A
Z Z 2(4=7)(1+s+0) 9] | (Tyy.v)? Ajul|

A2+A3<l+1 j>max{3,g— N}
« 9d(o+s) H (TWV))\S AJ(bHLP
+1

A2
DS 2<q—j><1+s+a><z > H(TW-V)MAjlquLw>

A2=0 j>max{3,g— N} Ji~j Aa=0

X 9l ne
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S CQHVUHgOWHI”(ﬁugg’t’s‘/,\fﬂ
S CQHVUHBOWZHH(ﬁHBZI’s‘/,gH,

which guarantees that

Msllgo s < ClIVullgoesslifl gresr

For I,, similarly as above, we infer that for each A € {0,1,...,¢+ 1},

QqSHA TW v I4HLP ,S 298 Z HAq (Tw.v)A div (A]uﬁjm(Dﬁﬁ) ‘
jZ>max{3,g—Nx}

A
2at+) > @) (Aud;m(D)g) |

Lp

S
A1=0j>max{3,g— N}
s 203 X @) A [[(Twe) P Aim(D)6)
j>max{3,g— Ny} A2+A3<A
S > >, 2| (Bo) Aju
A2+A3<l+1 j>max{3,g— Ny}
A3
< (2093 (T Bl
A4=0
41
N Z Z 2a=9)1+) <Z Z H (v AsAleuHLw> H(ﬁHBs“’“l
A2=0 j>max{3,q—N)} J1~j As=0
S cqllVullgoe 19l gstoen
5 CquuHBg{}“l H(bHBg‘:SV\fH )

Therefore, we get
”I‘*Hgf;iffvlv < C||VUHB%+1H¢||ng’svyg+1-

Taking advantages of Lemma 2.5, the term [I5 can be easily estimated as follows:

Ny +1 2

Isllgeess < 32 30 D7 ([|8a(Tww) m(D) div (Audy) |,

g=—1)X=0j=-1

—|—“Aq(Tw.v)>\ (AJU : vm(D)AJ(b) HLP)

<0y ([mo)div (Aud, o), + A Vm(D)A],,)

Jj=—1

<Ol (3 1B56l50) < Cllll=6lgg o

—1<j<2
Hence, gathering the above estimates, we find the wanted inequality (24).
Then, to prove the control (25), thanks to (22) and (144), we have that
[(D)olgeriz = O n(D)) sy + m(D)olls;,
CIW - V(D)) gsexs + Clldlpgie + Cliico<oy [Aam(D)9ll
< |lm(D), W - Vgl gs.exr + [[m(D) || gs.e1
p,r,\ W p,r, W
+ Clléll e + CLi1<oo IA_1m(D)9l 1,

IN
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Thanks to the induction assumptions of (24)-(25) and using (32), one can get
[m(D), W - V16l gersr < Clllgrserer (IFWllgorsr + [W]eeo )
p,m, W p, W w
< C S0
< Oollgremes W gy

and

lm(DYowblsess < Clowolgemses + CIW e (10wl geres + |1A_sm(D)div (W )|, )
P, W W w p,r,W

< Cllllgzsagen + ClW gy (19l gevoer + 165z )

S C|’¢HB;‘¢""}€+27

where C' > 0 depends on [[W||,1p.x-1. Collecting the above estimates allows us to conclude that (25)
w
holds in the step ¢ + 1, this ends the proof. O
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