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GLOBAL REGULARITY AND INFINITE PRANDTL NUMBER LIMIT OF

TEMPERATURE PATCHES FOR THE 2D BOUSSINESQ SYSTEM

OMAR LAZAR, LIUTANG XUE, AND JIAKUN YANG

Abstract. We prove global regularity and study the infinite Prandtl number limit of temperature
patches for the 2D non-diffusive Boussinesq system with dissipation in the full subcritical regime.
The temperature satisfies a transport equation and the temperature initial data are given in the form
of non-constant patches. Our first main result is a persistence of regularity of the patches globally
in time. More precisely, we prove that if the boundary of the initial temperature patch lies in Ck+γ

with k ≥ 1 and γ ∈ (0, 1) then this initial regularity is preserved for all time. Importantly, our proof
is robust enough to show uniform dependence on the Prandtl number in some cases. This result
solves a question in Khor and Xu [39] concerning the global control of the curvature of the patch
boundary. Besides, by studying the limit when the Prandtl number goes to infinity, we find that the
patch solutions to the 2D Boussinesq-Navier-Stokes system in the torus converge to the unique patch
solutions of the (fractional) Stokes-transport equation and that the Ck+γ regularity of the patch
boundary is globally preserved. This allows us to extend the Ck+γ persistence result of Grayer II [29]
from the range k ∈ {0, 1, 2} to the full range k ≥ 1.
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1. Introduction

In this paper, we study the Cauchy problem of the two-dimensional non-diffusive Boussinesq-
Navier-Stokes system:

(Bα)





∂tθ + u · ∇θ = 0, (t, x) ∈ R+ ×D,

1
Pr

(
∂tu+ u · ∇u

)
+ νΛ2αu = −∇p+ θe2,

∇ · u = 0,

(u, θ)|t=0 = (u0, θ0),

(1)

where D is either R2 or torus T2, e2 := (0, 1)T is the second canonical vector of R2, ν ≥ 0 is
the kinematic viscosity, Pr > 0 is the non-dimensional Prandtl number, the dissipation operator
Λ2α := (−∆)α (α ∈ (0, 1]) is the classical (fractional) Laplacian operator defined via the Fourier

transform through the formula Λ̂2αf(·) = | · |2αf̂(·). The vector field u = (u1(x, t), u2(x, t))
T is the

velocity of the fluid, and the scalars p = p(x, t) and θ = θ(x, t) denote the pressure and temperature
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of the fluid, respectively. This system (Bα) with α = 1 is used to model the natural convection
phenomena in the ocean and atmospheric dynamics [46, 55]. It is also an important mathematical
model used to study the Rayleigh-Bénard convective motion as noticed for example in the work
by Constantin and Doering [15]. The system (Bα) with ν > 0, α ∈ (0, 1) can be viewed as an
intermediate model connecting the inviscid case (i.e. ν = 0) and the full Laplacian case that is ν > 0,
α = 1. We refer to [23, 51] for some physical background on the fractional Navier-Stokes equations
which corresponds to the case θ ≡ 0.

From the mathematical point of view, the Boussinesq system (1) contains the incompressible
Navier-Stokes and Euler equations as special cases [42, 47]. Furthermore, in the inviscid case, i.e.
ν = 0, the Boussinesq system shares many similarities with the 3D axi-symmetric Euler equations
with swirl. In light of the maximum principle of θ and the maximal regularity estimates of fractional
parabolic equations, we can distinguish 3 cases in the the viscous case (i.e. ν > 0). Namely, the
cases α > 1

2 , α = 1
2 and 0 < α < 1

2 which are classically called subcritical, critical and supercritical
respectively. It is worth recalling that, so far, the global well-posedness of smooth solutions for the 2D
Boussinesq system (1) remains a challenging open problem in the inviscid case or in the supercritical
case. Some important recent advances in the study of the 2D inviscid Boussinesq system (1) have
been obtained in [21, 11, 12] where finite time blow-up results in various domains are proved. We
refer also to [5, 22] for the global stability results.

For the 2D Boussinesq-Navier-Stokes system (Bα) with α = 1 and Pr = 1, Chae [6] and Hou, Li [36]
independently proved the global existence and uniqueness result associated with the smooth initial
data (u0, θ0) ∈ Hs×Hs with s > 2, which gives an answer to the problem number 3 in Moffatt [53] by
ruling out the possible development of singularity in the gradient for this system. The same type of
results have been obtained by Abidi and Hmidi [1] who proved the global well-posedness result for less
regular initial data θ0 ∈ B0

2,1, u0 ∈ L2 ∩B−1
∞,1. Then, Hmidi and Keraani [31] proved global existence

of weak solutions to the Boussinesq-Navier-Stokes system (B1) with initial data θ0 ∈ L2, u0 ∈ Hs,
s ∈ [0, 2). The uniqueness of weak solutions obtained in [31] has been solved by Danchin and Paic̈u
[19] using new regularizing effect together with paradifferential calculus. Let us also mention the
work of Hu, Kukavica and Ziane [37] who proved global persistence of regularity in Sobolev spaces.

For the 2D Boussinesq-Navier-Stokes system (Bα) with fractional dissipation and Pr = 1, Hmidi,
Keraani and Rousset [32] considered the critical viscous case α = 1

2 and proved that (B 1
2
) is globally

well-posed for any data θ0 ∈ L2 ∩B0
∞,1 and u0 ∈ H1 ∩ Ẇ 1,p, p > 2.

Recently, there has also been significant attention on the Boussinesq temperature patch problem
for the non-diffusive Boussinesq system (Bα), which is a free boundary problem of the system (Bα)
associated with an initial data which is given as the characteristic function of an initial domain
D0 ⊂ D which is assumed to be simply connected and bounded. Since θ satisfies a transport
equation and since the velocity u is assumed to be regular enough, it implies (at least formally) that
the temperature patch structure is preserved. In other words, any initial data 1D0 gives rise to a
solution θ(x, t) = 1D(t) where D(t) = Xt (D0) and Xt(·) is the particle trajectory generated by the
velocity u which verifies

∂Xt(y)

∂t
= u (Xt(y), t) , Xt(y)|t=0 = y. (2)

This point of view allows us to study many regularity questions, in particular, one may wonder
whether the initial regularity of the patch boundary is globally preserved along the evolution. More
precisely, one may study and try to answer the following question:

suppose ∂D0 ∈ Ck+γ , k ∈ Z+, γ ∈ (0, 1), whether ∂D(t) ∈ Ck+γ for all time?

Here the notation ∂D(t) ∈ Ck+γ means that there is a parametrization of the patch boundary
∂D(t) =

{
z(α, t) ∈ D, α ∈ S1 = [0, 1]

}
with z(·, t) ∈ Ck+γ.

Such regularity problem were initiated in the 1980s, in particular with the study of the vorticity
patch problem for the 2D Euler equations. This problem was solved by Chemin [9] (using paradif-
ferential calculus together with striated regularity estimates) and Bertozzi and Constantin [3] (using
a more geometric approach based on cancellation of singular kernel). They were able to prove that
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if an initial patch of the 2D Euler equations has its boundary in Ck+γ then this regularity remains
forever.

As for the temperature patch problem for the Boussinesq system (Bα) with α = 1 and Pr = 1,
Danchin and Zhang [20] proved that the C1+γ regularity of the patch boundary is globally preserved
in the 2D case as well as in the 3D case under an additional smallness condition by using the striated
estimates. Using another approach, Gancedo and García-Juárez [24] gave a proof of the persistence
of the C1+γ regularity in the 2D case. Moreover, they proved that the W 2,∞ and C2+γ regularity
of the boundary of the temperature patch is globally preserved. Their approach are based on new
cancellations in time-dependent Calderón-Zygmund operators. In particular, the result of [24] implies
that the curvature of the patch boundary is uniformly-in-time bounded. Furthermore, Chae, Miao
and Xue [7] established the global Ck+γ (for all k ∈ Z+)-regularity persistence of the patch boundary.
The same type of results were obtained in the 3D case in [25, 40].

For the 2D Boussinesq-Navier-Stokes system (Bα) with 1
2 < α < 1, Pr = 1, Khor and Xu [39] were

able to prove that, given an initial temperature patch data θ0 = 1D0 whose boundary of in C2α then
this regularity is preserved for all time. Besides, the authors in [39] raised two interesting questions,
namely,

(a) Is it possible to control the curvature for α ∈ (1/2, 1), as it is possible in the case α = 1?
(b) Can the critical equation α = 1/2 support unique temperature patch solutions, and what regularity

of their boundary would be preserved?

As we shall see later, we give an affirmative answer to the question (a) in Theorem 1.1, and we make
some comments on the question (b) in Remark 1.2.

When the Prandtl number Pr tends to infinity, as observed by Grayer II [29], the material derivative
of u in the momentum equation in the system (1) vanishes (at least formally) and the system (1)
becomes the two-dimensional (fractional) Stokes-transport system (by assuming ν = 1):

(STα)





∂tθ + u · ∇θ = 0, (t, x) ∈ R+ ×D,

Λ2αu = −∇p+ θe2,

∇ · u = 0,

θ|t=0 = θ0,

(3)

where α ∈ (0, 1]. The Stokes-transport system, which is the system (STα) with α = 1, can also be
recovered by taking a limit of sedimentation of inertialess rigid particles in a viscous fluid satisfying
Stokes system [34], where θ stands for the probability density function of the particles and (u, p) are
the velocity and pressure of the fluid. The global existence and uniqueness issue for the 3D Stokes-
transport system associated with regular or rough initial data has been intensely studied in various
settings [34, 35, 41, 50, 38]. For the 2D Stokes-transport system (ST1), Grayer II [29] proved tha the
Cauchy problem associated with data in L1∩L∞ is globally well-posed. As well, he proved the global
persistence of Ck+γ (k ∈ {0, 1, 2}) boundary regularity of the associated patch solutions. Dalibard,
Guillod and Leblond [18] studied the long-time behavior for the 2D Stokes-transport system in a
channel D = T× (0, 1) (see also [54]). One can refer to [2, 26, 27] for some further regularity results
for an interface of density in the Stokes-transport system.

The fractional Stokes-transport system (STα) with α ∈ (0, 1) can be seen as an intermediate model
between the inviscid incompressible porous media (IPM) equation (i.e. the α = 0 case, see e.g. [4, 17])
and the Stokes-transport system. In a very recent work, Cobb [14] proved various well-posedness
results in critical function spaces for the fractional Stokes-transport system in any dimension d ≥ 2.
In particular, the author showed a global well-posedness result in the case {d = 2, α ∈ (12 , 1)}
associated with data θ0 ∈ Lp ∩ L

2
2α−1 (1 ≤ p < 1

α ) and in the case {d = 2, α = 1
2} associated with

θ0 ∈ Ḃ0
2,1 ∩ Ḃ0

∞,1.

In this paper we study the patch problem for the 2D Boussinesq-Navier-Stokes system (Bα) in the
full subcritical regime, namely 1

2 < α ≤ 1. One of the main task is to get a control which is inde-
pendent on the Prandtl number Pr ∈ [1,∞) in order to let the Prandtl number goes to infinity. This
will allow us to recover the patch solutions for the system (STα) by passing to the limit. The initial
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temperature θ0 is the patch of nonconstant values, which is classically called the temperature front
initial data. This setting describes the evolution of the temperature front governed by the fluid flow,
and it is an important physical scenario in geophysics [28, 46]. Let us now introduce our analytical
setting regarding the initial condition.

Let k ≥ 2 be an integer,

θ0(x) = θ̄0(x)1D0(x), θ̄0(x) ∈
{
Ck+γ−2α(D0), for γ ∈ (0, 2α − 1), α ∈ (12 , 1],

Ck−1+γ̃(D0), γ̃ > 0, for γ = 2α− 1, α ∈ (12 , 1),
(4)

where D0 ⊂ D is a bounded simply connected domain with boundary

∂D0 ∈ Ck+γ, γ ∈
{
(0, 2α − 1], if α ∈ (12 , 1),

(0, 1), if α = 1.
(5)

We consider the level-set characterization of the domain D0: there exists a function ϕ0 ∈ Ck+γ (D)
such that

∂D0 = {x ∈ D : ϕ0(x) = 0} , D0 = {x ∈ D : ϕ0(x) > 0} , ∇ϕ0 6= 0 on ∂D0. (6)

Then, the boundary ∂D0 can be parameterized as

z0 : S
1 7→ ∂D0 with ∂αz0(α) = ∇⊥ϕ0 (z0(α)) :=W0 (z0(α)) , (7)

with ∇⊥ = (−∂2, ∂1)T . In what follows we also set the viscosity ν = 1 for simplicity.

Our first main result is to show that the Ck+γ regularity of the boundary of the patch is globally
preserved for the 2D subcritical Boussinesq system (Bα), where k ∈ Z+. In particular, we may clearly
show the dependence on the Prandtl number Pr ∈ [1,∞), and also positively answer the question (a)
raised by [39] in the case α ∈ (1/2, 1). As a matter of fact, ∂D(t) ∈ L∞

T (Ck+γ), k ≥ 2 implies that
the curvature of ∂D(t) is uniformly bounded.

Theorem 1.1. Let ε = 1
Pr ∈ (0, 1], α ∈ (12 , 1], and k ≥ 2 be an integer. Let D be either R2 or

T2. Suppose that θ0(x) = θ̄0(x)1D0(x) satisfies the above conditions (4)-(5). Assume that the initial
velocity u0 satisfies

• u0 ∈ H1 ∩ Ẇ 1,p(D),

• (∂W0u0, · · · , ∂k−1
W0

u0) ∈W 1,p(D) for some p > 2
2α−1 ,

• ∇ · u0 = 0.

Then, there exists a unique global solution (u, θ) to the 2D Boussinesq-Navier-Stokes system (1)
which satisfies

θ(x, t) = θ̄0(X
−1
t (x))1D(t)(x), (8)

with
∂D(t) ∈ L∞

(
[0, T ], Ck+γ

)
, (9)

where D(t) = Xt(D0), Xt is the particle-trajectory solving the equation (2) and X−1
t is its inverse.

In particular, for the cases that

either
{
α ∈ (12 , 1)

}
, or

{
α = 1, D = T2

}
, (10)

the result (9) holds uniformly with respect to ε.

Note that the notation ∂W0u0 := W0 · ∇u0 = div (W0 u0) means the directional derivative of u0
along the divergence-free vector field W0 := ∇⊥ϕ0.

Remark 1.1. It is important to mention that in the case k = 1 in Theorem 1.1, we still have the
same conclusion regarding the regularity of the patch. Indeed, if the initial data u0(x) and θ0(x) =
θ̄0(x)1D0(x) are such that

{
u0 ∈ H1, θ̄0 ∈ L∞(D0), ∂D0 ∈ C1+γ , γ ∈ (0, 1), for α = 1,

u0 ∈ H1 ∩W 1,p, p ∈ (2,∞), θ̄0 ∈ L∞(D0), ∂D0 ∈ C1+γ , γ ∈ (0, 2α − 1], for α ∈ (12 , 1),
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then according to Propositions 3.2 and 3.3 below, we have ∇u ∈ L∞([0, T ], Cγ(D)) where γ is such
that (5) with the corresponding estimates. Therefore, by combining with the following estimate (see
e.g. [7, Lemma 2.10])

‖∇X±1
t ‖Cγ ≤ e(2+γ)

´ t
0 ‖∇u‖L∞dτ

(
1 +

ˆ t

0
‖∇u(τ)‖Cγdτ

)
, (11)

we find that ∂D(t) ∈ L∞(0, T ;C1+γ(D)). Importantly, the above estimate is uniform with respect to
ε for the cases (10). Note that the special structure of the temperature patches is not used in the proof
of the global preservation of the C1+γ boundary regularity of the patch. This is completely different
from the proof of the Ck+γ (k ≥ 2) case treated in Theorem 1.1 where it makes a systematic use of
the structure of the temperature patch.

Remark 1.2. In the critical case α = 1
2 , it remains a very interesting question to show the global

well-posedness and the persistence of regularity of the patch boundary for both the Boussinesq-Navier-
Stokes system (B1/2) or the fractional Stokes-transport system (ST1/2). From the system (ST1/2), we
find that the relation of u and θ can be written as

u = ∇∂2Λ−3θ + (Λ−1θ) e2,

which enjoys the same scaling with the Biot-Savart law of the 2D Euler equations: u = ∇⊥Λ−2θ. It
is well-known that the vorticity patch problem for the 2D Euler equations was solved by [9, 3] as we
already mentioned in the introduction. One may therefore wonder if these techniques can be adapted
to get new regularity results in the patch problem for the critical system (ST1/2). However, there is a
clear difference in the constitutive relation linking θ and u. Indeed, noticing that

∇u = ∇2∂2Λ
−3θ + (∇Λ−1θ) e2, with θ = 1D(t), (12)

we see that the operators in front of θ in (12) are singular integral operators with odd kernels, which is
different from the case of even kernels in the vorticity patch problem. The even kernels have additional
cancellation effect and this property plays an essential role in proving the key Lipschitz estimate of
velocity u as in the works [9, 3]. For further developments regarding the fine properties of the singular
integral with even kernels one may see [48, 49].

Our second main result deals with the infinity Prandtl number limit of the patch solutions for the
2D Boussinesq-Navier-Stokes system (Bα) in the torus T2. We rigorously justify the convergence to
the patch solutions of the 2D (fractional) Stokes-transport system (STα). In particular, we provide
an indirect proof that the Ck+γ (k ∈ Z+) boundary regularity of the patch solutions to the system
(STα) is preserved globally in time. Specially, our theorem extends the result of Grayer II [29] to the
regime k ≥ 3.

Theorem 1.2. Let α ∈
(
1
2 , 1

]
, ε ∈ (0, 1], D = T2, k ≥ 1 be an integer. Suppose that θ0(x) =

θ̄0(x)1D0(x) satisfying
´

T2 θ0 dx = 0 is the temperature patch initial data that fulfills the assumptions

in Theorem 1.1 and Remark 1.1. Assume that uε0 ∈ H1 ∩ Ẇ 1,p(T2), (∂W0u
ε
0, · · · , ∂k−1

W0
uε0) ∈W 1,p(T2)

for some p > 2
2α−1 , ∇·uε0 = 0, and they converge to u0 and (∂W0u0, · · · , ∂k−1

W0
u0) in the corresponding

norms. Let (uε, θε) be the unique global regular solution to the 2D Boussinesq-Navier-Stokes system
(Bα) constructed in Theorem 1.1.

Then, as ε→ 0, up to an extraction of a subsequence, (uε, θε) converges to the global unique weak
solution (u, θ) which is solution of the (fractional) Stokes-transport system (STα), and (u, θ) satisfies
that

θ(x, t) = θ̄0(X
−1
t (x))1D(t)(x), with ∂D(t) ∈ L∞

(
[0, T ], Ck+γ

)
, (13)

where D(t) = Xt(D0), Xt is the particle-trajectory generated by the velocity u and X−1
t is its inverse.

To prove the persistence of the temperature patch boundary in C1+γ and C2+γ , it suffices to prove
that ϕ belongs to L∞(0, T ;C1+γ(D)) and L∞(0, T ;C2+γ(D)), respectively. Note that the domain
D(t) = Xt(D0) can be determined by the level-set function ϕ(x, t) = ϕ0(X

−1
t (x)) which solves

∂tϕ+ u · ∇ϕ = 0, ϕ(0, x) = ϕ0(x). (14)
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Then, motivated by the works [32, 33] which has been recently applied in [7, 39], one introduces an
auxiliary quantity Γ, which plays an important role in the analysis. First, recall that the equation
for the vorticity ω := ∂1u2 − ∂2u1 is expressed as

ε
(
∂tω + u · ∇ω

)
+ Λ2αω = ∂1θ. (15)

We rewrite it as
(
ε∂t + εu · ∇+ Λ2α

)
ω − Λ2αΘ = 0, where ∂1θ = Λ2αΘ, which may be rewritten as

Θ = R1−2αθ := ∂1Λ
−2αθ. Hence, applying the operator R1−2α to the temperature equation yields

ε∂tΘ+ ε u · ∇Θ = −ε[R1−2α, u · ∇]θ.

Thus, if we set Γ := ω −Θ = ω −R1−2αθ, then we obtain the following equation for Γ

ε
(
∂tΓ + u · ∇Γ

)
+ Λ2αΓ = ε [R1−2α, u · ∇] θ. (16)

Note that the vorticity equation (15) enjoys the same structure as the equation (16), however the
forcing term ε [R1−2α, u · ∇] θ in (16) is more regular than the original term ∂1θ. In particular, it
allows to prove the uniform estimates with respect to ε. Taking advantage of the Biot-Savart law and
the relation ω = Γ +R1−2αθ, we have

u = ∇⊥Λ−2ω = ∇⊥Λ−2Γ +∇⊥∂1Λ
−2−2αθ. (17)

We first note that the L∞
T (L2(D)) norm of the velocity u has an upper bound given by (50) that

is growing in T
ε (with ε = 1

Pr) and this seems to be an obstruction to get uniform estimates with
respect to ε. However, by using the good unknown Γ, we can get nice a priori estimates of ∇u and
Γ which are uniform with respect to ε in some cases (10) (see Propositions 3.2 and 3.3). It is worth
mentioning that the commutator estimates in Lemma 2.6 play a crucial role to get nice estimates and
in particular it allows us to deal with the forcing term in (16). Since the commutator estimate (37)
requires a control on ‖u‖L2 (unlike (36) and (38) where one only needs to control a higher order semi-
norm of u in the cases (10)), this makes the case {α = 1, D = R2} a bit particular. In this special
case, we only prove the estimates of Γ and ∇u with upper bounds depending on T

ε . Importantly, one
may notice that Propositions 3.2 and 3.3 are enough to get the global well-posedness of temperature
patch solutions for the system (Bα) together with the global persistence of the regularity C1+γ of the
patch boundary ∂D(t), see Remarks 3.1, 3.2 below or Remark 1.1.

In order to prove that ϕ ∈ L∞([0, T ], C2+γ(D)), we introduce the tangential derivative W = ∇⊥ϕ
which solves the equation (80), and we focus on the Cγ norm of the quantity ∇W . It remains to
control the L1([0, T ], Cγ) norm of the term ∂W∇u, where ∂W =W · ∇. Since we have (17), we shall
prove the estimates of ∂WΓ and ∂W θ separately. Regarding the control of ∂WΓ, we need to apply
the smoothing estimate (44) in the equation (86) of ∂WΓ in order to give a good dependence of the
coefficient ε = 1

Pr . This is crucial especially after having noticed that there is a singular forcing term
1
ε [Λ

2α,W · ∇]Γ in (86). By taking advantage of the commutator estimates in (28) and Lemma 2.6,

we can control the L1
T (B

γ′

∞,1) norm of ∂WΓ with some specific γ′ > γ. This control is done in terms

of the integral of ‖W‖W 1,∞ multiplying some norms of Γ, which, in combination with the striated
estimate (25) gives a good estimate of the L1

T (C
γ) norm of ∂W∇∇⊥Λ−2Γ. Concerning the control of

∂W θ, we use a key property in Lemma 2.4 that holds for the patch initial data, and by using again
the striated estimate (25), we can get an upper bound of the L1

T (C
γ) norm of ∂W∇∇⊥∂1Λ

−2−2αθ.
Hence, collecting these estimates and (17), we get that ‖W (t)‖C1+γ is bounded by the time integral of
‖∇W‖Cγ times some norms of (Γ, θ,∇u). Then, the wanted global estimate follows from Grönwall’s
inequality, and this allows to finish the proof of Theorem 1.1 when k = 2. Along the proof, we need
to consider separately the cases α ∈ (12 , 1) and α = 1 as they require different approach.

In the proof of the propagation of higher order regularity, namely the Ck+γ-regularity of the
patch boundary, following the technics of [8], it suffices to show the striated estimate ∂k−1

W W ∈
L∞([0, T ], Cγ(D)). We use the induction method to prove it. Assume that we already control

the quantities W , ∇u, and Γ in the appropriate Bs,ℓ
p,r,W -norms (see Definition 2.1) as in (103) with

ℓ ∈ {1, . . . , k − 2}, then our aim is to establish the corresponding estimates for the step ℓ + 1. The
procedure is analogous to the proof of the C2+γ-persistence result. The higher-order striated estimates

in Lemma 2.2 play an important role in the proof. In order to get a control of W in L∞
T

(
Cγ+1,ℓ
W

)
, using
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the equation of ∂ℓW∇2W and the striated estimate (23), we see that the main task is to get a control

the of ∇2u in L1
T

(
Cγ−1,ℓ+1
W

)
. Since we have (17), we deal with Γ and θ separately. Indeed, by applying

the smoothing estimate (44) of the transport-diffusion equation and the induction assumption, we

obtain a good estimate of Γ (see (117)) in the space L1
T

(
Bγ′,ℓ+1
W

)
for a specific γ′ > γ. This can be used

to bound the L1
T (C

γ−1,ℓ+1
W ) norm of ∇2∇⊥Λ−2Γ. As for the control of θ, by using the patch structure

of θ and the striated estimates (33)-(34), one can bound the L1
T

(
Cγ−1,ℓ+1
W

)
norm of ∇2∇⊥∂1Λ

−2−2αθ
as in (109). Gathering all these estimates and using Grönwall’s inequality, we find the desired uniform
estimates (104) in the ℓ + 1 level, so that the induction scheme can be continued to give the final
objective. This leads to the statement of Theorem 1.1 with general k ≥ 3.

As far as the proof of Theorem 1.2 is concerned, it is mainly based on the use of the uniform
estimates with respect to ε obtained in Theorem 1.1 and classical compactness arguments. Although
the L2 energy estimate (50) of u is not enough to provide a uniform bound in ε, we can consider
the zero mode and non-zero mode separately to show the uniform boundedness of uε in ε in the
L∞(0, T ;H1(T2)) topology. By using the Aubin-Lions lemma, we deduce the strong convergence
of θε as in (121), so that by sending ε = 1

Pr → 0 we can prove (uε, θε) converges to (u, θ) and
solves the Stokes-transport system (STα) in the sense of distribution. For a more general and precise
statement one may see Proposition 5.1. As well, by studying the strong convergence of the particle-
trajectory Xε,±1

t , level-set function ϕε and striated quantity ∂W εW ε in the appropriate topology, we
can conclude that the limit function θ preserves the patch structure and the Ck+γ-regularity of the
patch boundary ∂D(t), as claimed.

The structure of the paper is as follows. In Section 2, we introduce some useful tools: The

Subsection 2.1 is the introduction of some background on striated type Besov spaces Bs,ℓ
p,r,W together

with several estimates in striated spaces. In the subsection 2.2, we collect some useful intermediary
lemmas. Section 3 is devoted to the proof of the persistence of the C2+γ regularity. In the section 4,
we give the proof of the persistence of the regularity in Ck+γ for any k ≥ 3. In Section 5, we give
the proof of Theorem 1.2 which deals with the passage to the limit to infinity of the Prandtl number.
Finally, the last section 6 is the proof of the striated estimates (24) and (25) in Lemma 2.2.

Notations. The following notations will be used throughout this paper.

• N := {0, 1, 2, 3, · · · }, Z+ := {1, 2, 3, · · · } and R+ := (0,+∞).
• Classically, S

(
Rd

)
is the Schwartz class of rapidly decreasing C∞ functions and by S ′

(
Rd

)
the

space of tempered distributions which is the dual space of S
(
Rd

)
.

• We also use several times the notation ‖(f1, . . . , fn)‖X := ‖f1‖X + · · ·+ ‖fn‖X .
• For two operators X and Y, the notation [X ,Y] := XY − YX denotes the commutator operator.

2. Some definitions and lemmas

2.1. Striated type Besov spaces and related estimates. We first define the classical Littlewood-
Paley decomposition and the definition of the Besov spaces (see [10, 42]). The idea is that one can
choose two nonnegative radial functions χ,ϕ ∈ C∞

c

(
Rd

)
that are supported respectively in the ball{

ξ ∈ Rd : |ξ| ≤ 4
3

}
and in the annulus

{
ξ ∈ Rd : 3

4 ≤ |ξ| ≤ 8
3

}
such that

χ(ξ) +
∑

j≥0

ϕ
(
2−jξ

)
= 1 for all ξ ∈ Rd.

For all tempered distribution f , the dyadic block operators ∆j and Sj are defined by

∆−1f = χ(D)f = h ∗ f, ∆jf = ϕ
(
2−jD

)
f = hj ∗ f, ∀j ∈ N,

Sjf = χ
(
2−jD

)
f =

∑

−1≤l≤j−1

∆lf = hj ∗ f, ∀j ∈ N, (18)

where hj(·) := 2jdh(2j ·), h := F−1ϕ ∈ S(Rd), hj(·) := 2jdh(2j ·), h := F−1χ ∈ S(Rd).

For all f, g ∈ S ′
(
Rd

)
, we have the following Bony’s decomposition:

fg = Tfg + Tgf +R(f, g),
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with
Tfg :=

∑

q∈N

Sq−1f∆qg, R(f, g) :=
∑

q≥−1

∆qf∆̃qg, ∆̃q := ∆q−1 +∆q +∆q+1.

In what follows, for a vector field W : Rd → Rd, we also use the notation TW ·∇ to denote the operator∑
q∈N Sq−1W · ∇∆q.

Now we introduce the Besov space Bs
p,r

(
Rd

)
and its striated version.

Definition 2.1. Let s ∈ R, (p, r) ∈ [1,∞]2. Denote by Bs
p,r = Bs

p,r(R
d) the space of tempered

distributions f ∈ S ′(Rd) such that

‖f‖Bs
p,r

:=
∥∥{2qs‖∆qf‖Lp

}
q≥−1

∥∥
ℓr
<∞.

For all ℓ ∈ N, N ∈ Z+ and a set of regular vector fields W = {Wi}1≤i≤N with Wi : R
d → Rd, denote

by Bs,ℓ
p,r,W = Bs,ℓ

p,r,W(Rd) the space of tempered distributions f ∈ Bs
p,r(R

d) such that

‖f‖
Bs,ℓ
p,r,W

:=

ℓ∑

λ=0

‖∂λWf‖Bs
p,r

=

ℓ∑

λ=0

∑

λi∈N,λ1+···+λN=λ

‖∂λ1
W1

· · · ∂λN
WN

f‖Bs
p,r
<∞;

we also denote by B̃s,ℓ
p,r,W = B̃s,ℓ

p,r,W(Rd) the set of tempered distributions f ∈ Bs
p,r(R

d) such that

‖f‖
B̃s,ℓ
p,r,W

:=

ℓ∑

λ=0

‖(TW·∇)
λf‖Bs

p,r

=
ℓ∑

λ=0

∑

λi∈N,λ1+···+λN=λ

‖(TW1·∇)
λ1 · · · (TWN ·∇)

λN f‖Bs
p,r
<∞.

In particular, when p = ∞, we always use the following notations

Cs,ℓ
W := Bs,ℓ

∞,∞,W , C̃s,ℓ
W := B̃s,ℓ

∞,∞,W , Bs,ℓ
W := Bs,ℓ

∞,1,W , B̃s,ℓ
W := B̃s,ℓ

∞,1,W . (19)

Besides, if W contains only one regular vector field W , i.e. W = {W}, we also denote

Bs,ℓ
p,r,W :=

{
f ∈ Bs

p,r(R
d)

∣∣ ‖f‖
Bs,ℓ
p,r,W

:=

ℓ∑

λ=0

‖∂λW f‖Bs
p,r
<∞

}
, (20)

B̃s,ℓ
p,r,W :=

{
f ∈ Bs

p,r(R
d)

∣∣ ‖f‖
B̃s,ℓ
p,r,W

:=
ℓ∑

λ=0

‖(TW ·∇)
λf‖Bs

p,r
<∞

}
, (21)

and similar notations (19) are used with W in place of W.

We shall use the Chemin-Lerner mixed space-time Besov space which is denoted L̃ρ
(
[0, T ], Bs

p,r

)

and is the set of tempered distribution g such that ‖g‖
L̃ρ
T (Bs

p,r)
:=

∥∥∥
(
2qs‖∆qg‖Lρ

T (Lp)

)
q≥−1

∥∥∥
ℓr
<∞.

In the above, the notations ∂W = W ·∇ and TW·∇ respectively denote the vector-valued operators

{Wi · ∇}1≤i≤N and {TWi·∇}1≤i≤N , and ∂λW =
{
∂λ1
W1

· · · ∂λN
WN

: λ1 + · · · + λN = λ, λi ∈ N

}
and

(TW·∇)
λ =

{
(TW1·∇)

λ1 · · · (TWN ·∇)
λN : λ1 + · · ·+ λN = λ, λi ∈ N

}
for all λ ∈ N.

Remark 2.1. The above definition of Besov space Bs
p,r(R

d) and striated Besov space Bs,ℓ
p,r,W(Rd) can

be extended to their counterparts Bs
p,r(T

d) and Bs,ℓ
p,r,W(Td) for distributions defined on Td. Indeed, one

can view a function f on Td as a 1-periodic function of Rd in all coordinate, i.e. f(x +m) = f(x)
for all x ∈ Rd and m ∈ Zd, thus recalling (18), we have for all x ∈ Td, j ∈ N,

∆jf(x) =

ˆ

Rd

hj(x− y)f(y)dy =
∑

m∈Zd

ˆ

Td+m
hj(y)f(x− y)dy =

ˆ

Td

hj(y)f(x− y)dy,
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and

Sjf(x) =

ˆ

Rd

hj(y)f(x− y)dy =

ˆ

Td

hj(y)f(x− y)dy = hj ∗ f(x),

with

hj(y) =
∑

m∈Zd

hj(y +m) =
∑

m∈Zd

2jdh(2j(y +m)), hj(y) =
∑

m∈Zd

hj(y +m).

From Poisson’s summation formula, we see that hj and hj have only discrete spectrum with

hj(y) =
∑

m∈Zd

ϕ(2−jm)e2πim·y, and hj(y) =
∑

m∈Zd

χ(2−jm)e2πim·y.

Some basic properties of the space Bs,ℓ
p,r,W are presented as follows.

Lemma 2.1. Let s, s̃ ∈ R, ℓ, ℓ̃ ∈ N, r, r̃ ∈ [1,∞], p ∈ [1,∞], and W = {Wi}1≤i≤N be composed of

regular vector fields Wi : R
d → Rd. The function space Bs,ℓ

p,r,W satisfies that

Bs,ℓ
p,r,W ⊂ Bs̃,ℓ

p,r,W for s ≥ s̃, Bs,ℓ
p,r,W ⊂ Bs,ℓ̃

p,r,W for ℓ ≥ ℓ̃,

Bs,ℓ
p,r,W ⊃ Bs,ℓ

p,r̃,W for r ≥ r̃,

and

‖f‖
Bs,ℓ+1
p,r,W

=
∥∥∂ℓ+1

W f
∥∥
Bs

p,r
+ ‖f‖

Bs,ℓ
p,r,W

, ‖f‖
Bs,ℓ+1
p,r,W

= ‖∂Wf‖Bs,ℓ
p,r,W

+ ‖f‖Bs
p,r
. (22)

The following striated estimates dealing with the spaces Bs,ℓ
p,r,W will play a crucial role in the proof

of the main results. The proof of this lemma is provided in Section 6.

Lemma 2.2. Let k ∈ N, ρ ∈ (0, 1), N ∈ Z+, and W = {Wi}1≤i≤N be a set of regular divergence-free

vector fields Wi : R
d → Rd satisfying that

‖W‖
C1+ρ,k−1
W

:=
k−1∑

λ=0

∥∥∂λWW
∥∥
C1+ρ <∞.

Let m(D) = Λσm0(D), σ > −1, and m0(D) be a zero-order pseudo-differential operator with m0(ξ) ∈
C∞

(
Rd\{0}

)
. Assume that u is a smooth divergence-free vector field of Rd, and φ : Rd → R is a

smooth function. Then the following statements hold true.

(i) For all ǫ ∈ (0, 1) and (p, r) ∈ [1,∞]2, we have

‖u · ∇φ‖
B−ǫ,k
p,r,W

≤ Cmin

{ k∑

µ=0

‖u‖B0,µ
W

‖∇φ‖
B−ǫ,k−µ
p,r,W

,

k∑

µ=0

‖u‖B−ǫ,µ
p,r,W

‖∇φ‖
B0,k−µ
W

}
. (23)

(ii) For all s ∈ (−1, 1), −1 < σ + s < 1 and (p, r) ∈ [1,∞]2, we have

‖[m(D), u · ∇]φ‖
Bs,k
p,r,W

≤ C
(
‖∇u‖

B0,k
W

+ ‖u‖L∞

)
‖φ‖

Bs+σ,k
p,r,W

. (24)

(iii) For all s ∈ (−1, 1), −1 < σ + s < 1 and (p, r) ∈ [1,∞]2, we have

‖m(D)φ‖
Bs,k+1
p,r,W

≤ C‖φ‖
Bs+σ,k+1
p,r,W

+ C‖W‖
B1,k
W

(
‖φ‖

Bs+σ,k
p,r,W

+ 1{−1<σ≤0}‖∆−1m(D)φ‖Lp

)
, (25)

where 1{−1<σ≤0} is the characteristic function of the set {−1 < σ ≤ 0}.
In the above, C > 0 depends on d, k, ǫ, σ, s and ‖W‖

C1+ρ,k−1
W

(when k = 0 this norm vanishes).

In particular, for the special cases k = 0 and k = 1, the dependence on the lower order term
‖W‖

C1+ρ,k−1
W

in the constant C in Lemma 2.2 can be explicitly calculated. The corresponding striated

estimates are stated as follows and they will play an important role in the proof as well.
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Lemma 2.3. Assume that u is a smooth divergence-free vector field of Rd (d ≥ 2) and W =
{Wi}1≤i≤N (N ∈ Z+) is a set of smooth divergence-free vector fields. Let φ : Rd → R be a smooth

function. Let m(D) = Λσm0(D), σ > −1, and m0(D) be a zero-order pseudo-differential operator
with m0(ξ) ∈ C∞

(
Rd\{0}

)
. Then the following statements hold true.

(i) For all ǫ ∈ (0, 1) and (p, r) ∈ [1,∞]2, there exists a constant C = C(d, ǫ) > 0 such that

‖u · ∇φ‖B−ǫ
p,r

≤ Cmin
{
‖u‖B−ǫ

p,r
‖∇φ‖L∞ , ‖u‖L∞‖∇φ‖B−ǫ

p,r

}
, (26)

and

‖∂W(u · ∇φ)‖B−ǫ
p,r

+ ‖TW·∇(u · ∇φ)‖B−ǫ
p,r

≤ Cmin {A1, A2, A3} , (27)

with

A1 :=‖u‖B−ǫ
p,r

‖∂W∇φ‖B0
∞,1

+
(
‖∂Wu‖B−ǫ

p,r
+ ‖W‖B1

∞,1
‖u‖B−ǫ

p,r

)
‖∇φ‖B0

∞,1
,

A2 :=‖u‖B0
∞,1

‖∂W∇φ‖B−ǫ
p,r

+
(
‖∂Wu‖B0

∞,1
+ ‖W‖B1

∞,1
‖u‖B0

∞,1

)
‖∇φ‖B−ǫ

p,r
,

A3 :=‖u‖B0
∞,1

(
‖∂W∇φ‖B−ǫ

p,r
+ ‖W‖B1

∞,1
‖∇φ‖B−ǫ

p,r

)
+

(
‖∂Wu‖B−ǫ

p,r
+ ‖W‖B1

∞,1
‖u‖B−ǫ

p,r

)
‖∇φ‖B0

∞,1
.

(ii) For all s ∈ (−1, 1), −1 < σ + s < 1 and (p, r) ∈ [1,∞]2, there exists a constant C =
C(d, s, σ) > 0 so that

‖[m(D), u · ∇]φ‖Bs
p,r

≤ C‖u‖W 1,∞‖φ‖Bs+σ
p,r

. (28)

(iii) For all s ∈ (−1, 1), −1 < σ + s < 1 and (p, r) ∈ [1,∞]2, there exists a constant C =
C(d, s, σ) > 0 so that

‖∂W(m(D)φ)‖Bs
p,r

≤ C ‖∂Wφ‖Bs+σ
p,r

+ C‖W‖W 1,∞‖φ‖Bs+σ
p,r

. (29)

Proof of Lemma 2.3. Estimates (26) and (27) are exactly the same as those in [7, Lemma 2.5], thus
we only need to prove (ii) and (iii).

For the estimation of (28), using Bony’s decomposition, we have

[m(D), u · ∇]φ =
∑

j∈N

[m(D), Sj−1u · ∇]∆jφ+
∑

j∈N

[m(D),∆ju · ∇]Sj−1φ

+
∑

j≥−1

[m(D),∆ju · ∇] ∆̃jφ

:= I1 + I2 + I3.

Noting that there exist ψ̃ ∈ C∞
c (Rd) supported in an annulus away from the origin and h̃ =

F−1(mψ̃) = F−1(|ξ|σm0ψ̃) ∈ S
(
Rd

)
such that

[m(D), Sj−1u · ∇]∆jφ =
[
m(D)ψ̃(2−jD), Sj−1u · ∇

]
∆jφ (30)

= 2j(σ+d)

ˆ

Rd

h̃(2jy) (Sj−1u (x− y)− Sj−1u(x)) · ∇∆jφ (x− y) dy,

we find that

2qs ‖∆qI1‖Lp . 2qs
∑

j∈N,|q−j|≤4

‖∆q [m(D), Sj−1u · ∇]∆jφ‖Lp

. 2qs
∑

j∈N,|j−q|≤4

2j(σ−1)‖∇Sj−1u‖L∞‖∇∆jφ‖Lp

. cq‖∇u‖L∞‖φ‖Bs+σ
p,r

,

with {cq}q≥−1 satisfying ‖cq‖ℓr = 1. For I2, taking advantages of the following fact that (using

Lemma 2.5),

‖∇m(D)∆jφ‖Lp ≤ C2j(1+σ)‖∆jφ‖Lp , ∀p ∈ [1,∞], σ > −1, j ≥ −1, (31)
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we have, by setting A := 2qs ‖∆qI2‖Lp

A = C2qs
∑

j∈N,|q−j|≤4

∥∥∆q [m(D),∆ju · ∇]Sj−1φ
∥∥
Lp

≤ C2qs
∑

j∈N,|q−j|≤4

(∥∥∆qm(D)ψ̃(2−jD)
(
∆ju · ∇Sj−1φ

)∥∥
Lp +

∥∥∆q

(
∆ju · ∇m(D)Sj−1φ

)∥∥
Lp

)

≤ C2qs
∑

j∈N,|q−j|≤4

‖∆ju‖L∞

(
2jσ ‖∇Sj−1φ‖Lp + ‖∇m(D)Sj−1φ‖Lp

)

≤ C
∑

j∈N,|q−j|≤4

2j(s−1)‖∇∆ju‖L∞

(
2jσ

∑

−1≤j′≤j−1

2j
′‖∆j′φ‖Lp +

∑

−1≤j′≤j−1

2j
′(1+σ)‖∆j′φ‖Lp

)

≤ C‖∇u‖L∞

∑

j∈N,|j−q|≤4

∑

−1≤j′≤j−1

(
2(j

′−j)(1−s−σ) + 2(j
′−j)(1−s)

)
2j

′(s+σ)
∥∥∆j′φ

∥∥
Lp

≤ Ccq‖∇u‖L∞‖φ‖Bs+σ
p,r

,

where {cq}q≥−1 is such that ‖cq‖ℓr = 1. The term I3 can be decomposed as the following

I3 =
∑

j≥−1

m(D) div
(
∆ju ∆̃jφ

)
−

∑

j≥−1

div
(
∆jum(D)∆̃jφ

)

:= I3,1 + I3,2.

For I3,1 and I3,2, in view of (31) and the discrete Young’s inequality, we infer that for all s ∈ (−1, 1),
−1 < s+ σ < 1,

2qs ‖∆qI3,1‖Lp ≤ C2qs
∑

j≥max{q−3,−1}

∥∥∆qm(D) div
(
∆ju∆̃jφ

)∥∥
Lp

≤ C
∑

j≥max{q−3,−1}

2(q−j)(1+s+σ)2j ‖∆ju‖L∞ 2j(s+σ)
∥∥∆̃jφ

∥∥
Lp

≤ Ccq‖u‖B1
∞,∞

‖φ‖Bs+σ
p,r

≤ Ccq‖u‖W 1,∞‖φ‖Bs+σ
p,r

,

and, set B := 2qs ‖∆qI3,2‖Lp

B ≤ C2qs
( ∑

j≥max{q−3,2}

∥∥∆qdiv
(
∆jum(D)∆̃jφ

)∥∥
Lp +

∑

j≥q−3,j≤2

∥∥∆q

(
∆ju · ∇m(D)∆̃jφ

)∥∥
Lp

)

≤ C

(
2q(1+s)

∑

j≥max{q−3,2}

‖∆ju‖L∞ 2jσ
∥∥∆̃jφ

∥∥
Lp + 1{−1≤q≤5}

∑

−1≤j≤2

‖∆ju‖L∞‖∆̃jφ‖Lp

)

≤ C
∑

j≥max{q−3,2}

2(q−j)(1+s)2j ‖∆ju‖L∞ 2j(s+σ)
∥∥∆̃jφ

∥∥
Lp + 1{−1≤q≤5}‖u‖L∞‖φ‖Bs

p,r

≤ C
(
cq + 1{−1≤q≤5}

)
‖u‖W 1,∞‖φ‖Bs+σ

p,r
,

where {cq}q≥−1 is such that ‖cq‖ℓr = 1. Collecting all the above controls gives the estimate (28).

Next we prove (29). Noting that ∂W
(
m(D)φ

)
= −[m(D),W · ∇]φ +m(D)∂Wφ, and using (28),

we have

‖∂W
(
m(D)φ

)
‖Bs

p,r
≤ ‖[m(D),W ·∇]φ‖Bs

p,r
+ ‖m(D)∂Wφ‖Bs

p,r

≤ C‖W‖W 1,∞‖φ‖Bs+σ
p,r

+ C‖∂Wφ‖Bs+σ
p,r

+ C‖∆−1m(D)∂Wφ‖Lp .

By applying Bony’s decomposition and (31), we obtain that

‖∆−1m(D)∂Wφ‖Lp ≤
∑

0≤j≤4

‖∆−1m(D)div(Sj−1W ∆jφ)‖Lp +
∑

0≤j≤4

‖∆−1m(D)div (∆jW Sj−1φ)‖Lp

+
∑

j≥−1

∥∥∆−1m(D)div
(
∆jW ∆̃jφ

)∥∥
Lp
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≤ C‖W‖L∞

∑

−1≤j≤4

‖Sj+1φ‖Lp + C
∑

j≥−1

‖∆jW‖L∞‖∆̃jφ‖Lp

≤ C‖W‖B1
∞,∞

‖φ‖Bs+σ
p,r

(
1 +

∑

j≥−1

2−j(s+σ+1)

)

≤ C‖W‖W 1,∞‖φ‖Bs+σ
p,r

. (32)

Thus combining the above two estimates leads to (29), as desired. �

The lemma below deals with the striated estimate of patch-type initial data.

Lemma 2.4. Let D be either R2 or T2. Let α ∈ (12 , 1], k ≥ 2 and 0 < γ ≤ 2α − 1. Assume
that D0 ⊂ D is a bounded simply connected domain with boundary ∂D0 characterized by the level-set
function ϕ0 ∈ Ck+γ(D) for some γ ∈ (0, 2α−1] if α ∈ (12 , 1) and for some γ ∈ (0, 1) if α = 1. Denote

by W0 = ∇⊥ϕ0.

(1) If α ∈ (12 , 1], 0 < γ < 2α− 1 and θ0(x) = θ̄0(x)1D0(x) with θ̄0 ∈ Ck−2α+γ(D0), then we have

∂k−1
W0

θ0(x) ∈ Cγ−2α+1(D). (33)

(2) If α ∈ (12 , 1), γ = 2α− 1 and θ0(x) = θ̄0(x)1D0(x) with θ̄0 ∈ Ck−1+γ̃(D0), γ̃ > 0, then we have

∂k−1
W0

θ0(x) ∈ L∞(D). (34)

Proof of Lemma 2.4. We give the proof for D = R2 first. The proof of (33) in the case 0 < γ < 2α−1
is the same with [7, Lemma 2.6]. Thus we only need to sketch the proof of (34).

First note that Rychkov’s extension theorem [56] guarantees that there exists a function θ̃0 ∈
Ck−1+γ̃(R2) with the following restriction condition θ̃0|D0 = θ0. Then, it suffices to prove that

∂k−1
W0

(θ̃01D0) ∈ L∞(R2). Since the vector field W0 is tangential to the patch boundary ∂D0, the

operator ∂k−1
W0

commutes with the characteristic function 1D0 , and thus we only need to prove ∂k−1
W0

θ̃0 ∈
L∞(R2). In fact,

‖∂k−1
W0

θ̃0‖L∞ ≤ ‖∂k−1
W0

θ̃0‖Cγ̃ ≤ C‖W0‖Cγ̃‖∇∂k−2
W0

θ̃0‖Cγ̃

≤ C‖W0‖C1+γ̃

(
‖∇∂k−3

W0
θ̃0‖Cγ̃ + ‖∇2∂k−3

W0
θ̃0‖Cγ̃

)

≤ C‖W0‖Ck−2+γ̃

(
‖∇θ̃0‖Cγ̃ + ‖∇2θ̃0‖Cγ̃ + · · ·+ ‖∇k−1θ̃0‖Cγ̃

)

≤ C‖W0‖Ck−2+γ̃‖θ̃0‖Ck−1+γ̃ .

Hence (34) is proved and we finish the proof of Lemma 2.4 for D = R2.
As for the case D = T2, we define θ0 in R2 as θ0 = θ0 in a whole period, and vanishes in others.

Then we treat θ0 in the whole space case, it yields that ∂k−1
W0

θ0 ∈ Cγ−2α+1(R2) and ∂k−1
W0

θ0 ∈ L∞(R2),

respectively, which implies the desired results that are (33) and (34) where D = T2. �

2.2. Auxiliary lemmas. We refer to [33, Proposition 3.1] for the following lemma.

Lemma 2.5. Let m(D) = Λσm0(D), σ > 0, and m0(D) be a zero-order pseudo-differential operator
with m0(ξ) ∈ C∞

(
Rd\{0}

)
, then we have that for all p ∈ [1,∞], q ≥ −1, j ≥ 0,

‖m(D)Sju‖Lp ≤ C2jσ‖Sju‖Lp ,

‖m(D)∆qu‖Lp ≤ C2qσ‖∆qu‖Lp .
(35)

We have the following estimates of commutators involving the operator R1−β.

Lemma 2.6. Let D be either Rd or torus Td, d ≥ 2. Let (p, r) ∈ [2,∞] × [1,∞], R1−β := ∂1Λ
−β,

β ∈ (1, 2]. Assume that u = (u1, · · · , ud) is a smooth divergence-free vector field on D and φ is a
smooth scalar function on D.
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(i) If D = Rd and β ∈ (1, 2), we have that for all s ∈ (β − 2, 1),

‖[R1−β , u · ∇]φ‖Bs
p,r

≤ Cs,β‖∇u‖Lp

(
‖φ‖

Bs+1−β
∞,r

+ ‖φ‖L2

)
, (36)

and for all s ∈ (0, 1),

‖[R−1, u · ∇]φ‖Bs
p,r

≤ Cs

(
‖∇u‖Lp‖φ‖Bs−1

∞,r
+ ‖u‖L2‖φ‖L2

)
. (37)

(ii) If D = Td, we have that (36) also holds and for all s ∈ (0, 1),

‖[R−1, u · ∇]φ‖Bs
p,r

≤ Cs‖∇u‖Lp

(
‖φ‖Bs−1

∞,r
+ ‖φ‖L2

)
. (38)

Proof of Lemma 2.6. (i) We only sketch the proof of (36). The proof of (37) is analogous with that
of (38) given below, thus we omit the details. By using Bony’s decomposition, we may write

[R1−β , u · ∇]φ =
∑

q∈N

[R1−β, Sq−1u · ∇]∆qφ+
∑

q∈N

[R1−β,∆qu · ∇]Sq−1φ+
∑

q≥−1

[R1−β ,∆qu · ∇]∆̃qφ

:= Iβ + IIβ + IIIβ.

The control of Iβ and IIIβ is analogous to the proof of I and III in Proposition 4.2 of [58], so that for
all s > β − 2,

‖Iβ‖Bs
p,r

+ ‖IIIβ‖Bs
p,r

≤ C‖∇u‖Lp

(
‖φ‖

Bs+1−β
∞,r

+ ‖φ‖L2

)
.

For IIβ, the control of the corresponding term II in Proposition 4.2 of [58] contains some error, instead
we estimate it as follows

2js‖∆jIIβ‖Lp ≤ C2js
∑

q∈N,|q−j|≤4

(
‖R1−β(∆qu · ∇Sq−1φ)‖Lp + ‖∆qu · ∇R1−βSq−1φ‖Lp

)

≤ C2js
∑

q∈N,|q−j|≤4

‖∆qu‖Lp

(
2q(1−β)‖∇Sq−1φ‖L∞ + ‖∇R1−βSq−1φ‖L∞

)

≤ C
∑

|q−j|≤4

2q(s−1)‖∆q∇u‖Lp

(
2q(1−β)

∑

−1≤q′≤q−1

2q
′‖∆q′φ‖L∞

+
∑

−1≤q′≤q−1

2q
′(2−β)‖∆q′φ‖L∞

)

≤ C‖∇u‖Lp

∑

|q−j|≤4

∑

−1≤q′≤q−1

2(q
′−q)(1−s)2q

′(s+1−β)‖∆q′φ‖L∞

where in the fourth line we have used (35). Discrete Young’s inequality yields that for all s < 1,

‖IIβ‖Bs
p,r

≤ C‖∇u‖Lp‖φ‖
Bs+1−β

∞,r
.

Gathering the above estimates lead to (36) if D = Rd.

(ii) We only give the proof of (38) and the estimate (36) as the proof can be adapted in a similar
manner in the torus. Since [R−1, u ·∇]φ = [R−1, (u− û(0)) ·∇]φ, we can assume û(0) =

´

Td udx = 0
without loss of generality. Then, using Bony’s decomposition

[R−1, u · ∇]φ =
∑

q∈N

[R−1, Sq−1u · ∇]∆qφ+
∑

q∈N

[R−1,∆qu · ∇]Sq−1φ+
∑

q≥−1

[R−1,∆qu · ∇]∆̃qφ

:= I1 + I2 + I3,

where we have used the notations introduced in Remark 2.1. For I1, noting that there exists a bump

function ψ̃ ∈ C∞
c (Rd) supported on an annulus of Rd away from the origin such that

I1 =
∑

q∈N

[R−1ψ̃(2
−qD), Sq−1u · ∇]∆qφ,
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and using the fact that

R−1ψ̃(2
−qD)f(x) =

ˆ

Rd

h∗q(y)f(x− y)dy =

ˆ

Td

h
∗
q(y)f(x− y)dy, h

∗
q(y) :=

∑

m∈Zd

h∗q(y +m),

with h∗q(y) := 2q(d−1)h∗(2qy) and h∗ = F−1
(
iξ1|ξ|−2ψ̃

)
∈ S(Rd), we infer that

I1 =

ˆ

Td

h
∗
q(y)

(
Sq−1u(x− y)− Sq−1u(x)

)
· ∇∆qφ(x− y)dy

=

ˆ

Td

( ∑

m∈Zd

h∗q(y +m)
(
Sq−1u(x− y −m)− Sq−1u(x)

))
· ∇∆qφ(x− y)dy

=

ˆ

Td

ˆ 1

0

( ∑

m∈Zd

h∗q(y +m)(−y −m) · ∇Sq−1u(x− τy − τm)

)
· ∇∆qφ(x− y)dτdy.

Thus, by using the Minkowski inequality we find that for all j ≥ −1,

2js‖∆jI1‖Lp ≤ C2js
∑

q∈N,|q−j|≤4

‖[R−1ψ̃(2
−qD), Sq−1u · ∇]∆qφ‖Lp

≤ C2js
∑

|q−j|≤4

ˆ

Td

( ∑

m∈Zd

|h∗q(y +m)||y +m|
)
dy‖∇Sq−1u‖Lp‖∇∆qφ‖L∞

≤ C‖∇u‖Lp

∑

|q−j|≤4

2q(1+s)‖∆qφ‖L∞

ˆ

Rd

2q(d−1)|h∗(2qy)||y|dy

≤ C‖∇u‖Lp

∑

|q−j|≤4

2q(s−1)‖∆qφ‖L∞ ,

which ensures that

‖I1‖Bs
p,r

≤ C‖∇u‖Lp‖φ‖Bs−1
∞,r

.

For I2, noting that

I2 =
∑

q∈N

(
R−1ψ̃(2

−qD)
(
∆qu · ∇Sq−1φ

)
−∆qu · ∇R−1Sq−1φ

)
,

we obtain

2js‖∆jI2‖Lp ≤ C2js
∑

q∈N,|q−j|≤4

(
‖h∗

q ∗
(
∆qu · ∇Sq−1φ

)
‖Lp + ‖∆qu‖Lp‖∇R−1Sq−1φ‖L∞

)

≤ C2js
∑

q∈N,|q−j|≤4

‖∆qu‖Lp

(
2−q‖∇Sq−1φ‖L∞ + ‖∇R−1∆−1φ‖L∞ +

∑

0≤q′≤q−1

‖∆q′φ‖L∞

)

≤ C‖∇u‖Lp

∑

|q−j|≤4

(
2q(s−1)‖∆−1φ‖L2 +

∑

0≤q′≤q−1

2(q−q′)(s−1)2q
′(s−1)‖∆q′φ‖L∞

)
,

which leads to that for all s < 1,

‖I2‖Bs
p,r

≤ C‖∇u‖Lp

(
‖φ‖Bs−1

∞,r
+ ‖φ‖L2

)
.

For I3, using the fact that u is divergence-free, we split it as the following

I3 =
∑

q≥3

R−1∇ ·
(
∆qu ∆̃qφ

)
−
∑

q≥3

∆qu · ∇R−1∆̃qφ+
∑

−1≤q≤2

[R−1∇·,∆qu]∆̃qφ

:= I3,1 + I3,2 + I3,3.
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For the first term I3,1, since the operator R−1∇ is bounded on Lp(Td) for p ∈ [2,∞) and R−1∇∆j

(j ∈ N) is bounded on Lp(Td) for p ∈ [2,∞], we infer that for j = −1 (where 2p
p+2 = 2 for p = ∞),

2−s‖∆−1I3,1‖L∞ ≤ C
∑

q≥3

‖∆qu ∆̃qφ‖
L

2p
p+2

≤ C
∑

q≥3

‖∆qu‖Lp‖∆̃qφ‖L2 ≤ C‖∇u‖Lp‖φ‖L2 ,

and for all j ∈ N and s > 0,

2js‖∆jI3,1‖Lp ≤ C2js
∑

q≥3,q≥j−3

‖∆jR−1∇ · (∆qu ∆̃qφ)‖Lp

≤ C
∑

q≥3

2(j−q)s2q‖∆qu‖Lp2q(s−1)‖∆̃qφ‖L∞ ≤ Ccj‖∇u‖Lp‖φ‖Bs−1
∞,r

,

where {cj}j∈N is such that ‖cj‖ℓr = 1. The estimation of I3,2 is similar as that of I3,1, and we have

‖I3,2‖Bs
p,r

≤ C‖∇u‖Lp

(
‖φ‖Bs−1

∞,r
+ ‖φ‖L2

)
.

For I3,3, we use Poincaré’s inequality,

‖u‖Lp(Td) =
∥∥∥u(·) − 1

|Td|

ˆ

Td

u(x)dx
∥∥∥
Lp(Td)

≤ C‖∇u‖Lp(Td),

we find

‖I3,3‖Bs
p,r

≤ C
∑

−1≤j≤6

∑

−1≤q≤2

(
‖∆jR−1∇ · (∆qu ∆̃qφ)‖Lp + ‖∆j(∆qu · ∇R−1∆̃qφ)‖Lp

)

≤ C
∑

−1≤q≤2

(
‖∆qu ∆̃qφ‖

L
2p
p+2

+ ‖∆qu · ∇R−1∆̃qφ‖
L

2p
p+2

)

≤ C
∑

−1≤q≤2

‖∆qu‖Lp‖∆̃qφ‖L2 ≤ C‖∇u‖Lp‖φ‖L2 .

Therefore, collecting the above estimates yields the wanted estimate (38) in case of the torus. �

We refer to Lemma 6.10 of [32] for the following useful result.

Lemma 2.7. Let D be either Rd or torus Td, d ≥ 2. Let v be a smooth divergence-free vector field
of D and f be a smooth scalar function. Then, for all p ∈ [1,∞] and q ≥ −1,

‖[∆q, v · ∇]f‖Lp ≤ C‖∇v‖Lp‖f‖B0
∞,∞

.

We recall the following regularity estimates of the transport equation (one can see [10] for a detailed
proof).

Lemma 2.8. Let D be either Rd or torus Td, d ≥ 2. Let (p, r) ∈ [1,∞]2 and −1 < s < 1. Assume
that u is a smooth divergence-free vector field of D, and φ is a smooth function solving the transport
equation

∂tφ+ u · ∇φ = f, φ|t=0 (x) = φ0(x), x ∈ Rd,

then there exists a constant C = C(d, s) so that for all t > 0,

‖φ‖L∞
t (Bs

p,r)
≤ C

(
‖φ0‖Bs

p,r
+ ‖f‖

L̃1
t(Bs

p,r)
+

ˆ t

0
‖∇u(τ)‖L∞‖φ(τ)‖Bs

p,r
dτ

)
, (39)

and

‖φ‖L∞
t (Bs

p,r)
≤ CeC

´ t
0
‖∇u‖L∞dτ

(
‖φ0‖Bs

p,r
+ ‖f‖L̃1

t (Bs
p,r)

)
. (40)

We have the following regularity estimates of the transport-diffusion equation.

Lemma 2.9. Let D be either Rd or torus Td, d ≥ 2. Let ν > 0, (ρ, p, r) ∈ [1,∞]3, −1 < s < 1,
0 < α ≤ 1. Assume that u is a smooth divergence-free vector field of D, and φ is a smooth function
solving the transport-diffusion equation

∂tφ+ u · ∇φ+ νΛ2αφ = f, φ|t=0 (x) = φ0(x), x ∈ D. (41)
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Then, there exists a constant C = C(d, s, α) independent of ν so that for all t > 0,

ν
1
ρ ‖φ‖

L̃ρ
t

(
Ḃ

s+2α
ρ

p,r

) ≤ CeC
´ t
0
‖∇u(τ)‖L∞dτ

(
‖φ0‖Ḃs

p,r
+ ‖f‖L̃1

t (Ḃ
s
p,r)

)
, (42)

and

ν
1
ρ ‖φ‖

L̃ρ
t

(
B

s+2α
ρ

p,r

) ≤ C(1 + νt)
1
ρ eC

´ t
0
‖∇u(τ)‖L∞dτ

(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

)
, (43)

and

ν
1
ρ

∥∥∥
(
2
q(s+ 2α

ρ
)‖∆qφ‖Lρ

t (L
p)

)
q∈N

∥∥∥
ℓr

≤ CeC
´ t
0
‖∇u(τ)‖L∞dτ

(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

)
. (44)

Proof of Lemma 2.9. The smoothing estimate (42) comes from [52, Theorem 1.2] (while for the cases
α ∈ (0, 12 ] and r = 1 it is done in [30, Theorem 1.2]).

We here only sketch the proof of (43) and (44). For all q ∈ N, applying the frequency-localization
operator ∆q to the equation (41) gives

∂t∆qφ+ Sq−1u · ∇∆qφ+ νΛ2α∆qφ = ∆qf +Rq,

with

Rq := (Sq−1u− u) · ∇∆qφ− [∆q, u · ∇]φ.

Using [10, Lemma 2.100], we get

2qs‖Rq‖Lp ≤ 2qs‖(Sq−1u− u) · ∇∆qφ‖Lp + 2qs‖[∆q, u · ∇]φ‖Lp

≤ C2qs
∑

k≥q−1

‖∆ku‖L∞2q‖∆qφ‖Lp + C cq‖∇u‖L∞‖φ‖Bs
p,r

≤ C cq‖∇u‖L∞‖φ‖Bs
p,r
,

where {cq}q∈N satisfies ‖cq‖ℓr ≤ 1. Following the same strategy as the proof of [52, Eq. (3.10)] and
using the above estimate on Rq, we find that there exists a small time T ′ > 0 satisfying

ˆ T ′

0
‖∇u‖L∞dτ ≤ C0 ≪ 1,

so that for all t ≤ T ′,

ν
1
ρ 2q(s+

2α
ρ
)‖∆qφ‖Lρ

t (L
p) ≤ C

(
2qs‖∆qφ0‖Lp + 2qs‖∆qf‖L1

t (L
p) +

ˆ t

0
cq(τ)‖∇u(τ)‖L∞‖φ(τ)‖Bs

p,r
dτ

)
.

Thus using the embedding L1
t (B

s
p,r) →֒ L̃1

t (B
s
p,r), we have

ν
1
ρ

∥∥∥
(
2
q(s+ 2α

ρ
)‖∆qφ‖Lρ

t (L
p)

)
q∈N

∥∥∥
ℓr

≤ C

(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

+

ˆ t

0
‖∇u‖L∞‖φ‖Bs

p,r
dτ

)
.

On the other hand, applying the operator ∆−1 to the equation (41) gives

∂t∆−1φ+ u · ∇∆−1φ+ νΛ2α∆−1φ = ∆−1f − [∆−1, u · ∇]φ.

Taking advantage of the Lp-estimate of the transport-diffusion equation (see e.g. [30, Proposition
6.2]), we infer that

‖∆−1φ(t)‖Lp ≤ ‖∆−1φ0‖Lp + ‖∆−1f‖L1
t (L

p) +

ˆ t

0
‖[∆−1, u · ∇]φ(τ)‖Lpdτ

≤ ‖∆−1φ0‖Lp + ‖∆−1f‖L1
t (L

p) + C

ˆ t

0
‖∇u(τ)‖L∞‖φ(τ)‖Bs

p,r
dτ,

where in the last line we have used [10, Lemma 2.100] to deal with the commutator term. Hence,
combining the above estimates on high and low frequencies allow us to find that for all t ≤ T ′,

ν
1
ρ ‖φ‖

L̃ρ
t (B

s+2α
ρ

p,r )
≤ C(1 + νt)

1
ρ

(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

+

ˆ t

0
‖∇u(τ)‖L∞‖φ(τ)‖Bs

p,r
dτ

)
.



TEMPERATURE PATCHES FOR 2D NON-DIFFUSIVE BOUSSINESQ SYSTEM 17

By taking ρ = ∞, we find that for all t ≤ T ′ small enough,

‖φ‖
L̃∞
t (Bs

p,r)
≤ C

(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

)
, (45)

which also implies

ν
1
ρ ‖φ‖

L̃ρ
t (B

s+2α
ρ

p,r )
≤ C(1 + νt)

1
ρ

(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

)
, (46)

and

ν
1
ρ

∥∥∥
(
2q(s+

2α
ρ
)‖∆qφ‖Lρ

t (L
p)

)
q∈N

∥∥∥
ℓr

≤ C
(
‖φ0‖Bs

p,r
+ ‖f‖L1

t (B
s
p,r)

)
. (47)

Furthermore, for any T > 0, we make a partition {Ti}Mi=0 of the time interval [0, T ] so that
´ Ti+1

Ti
‖∇u(τ)‖L∞dτ ≈ C0

2 . Then following the same ideas as the proof of (45), (46) and (47), we infer
that

‖φ‖L̃∞([Ti,Ti+1];Bs
p,r)

≤ C
(
‖φ(Ti)‖Bs

p,r
+ ‖f‖L1([Ti,Ti+1];Bs

p,r)

)
, (48)

ν
1
ρ ‖φ‖

L̃ρ([Ti,Ti+1];B
s+2α

ρ
p,r )

≤ C(1 + νT )
1
ρ

(
‖φ(Ti)‖Bs

p,r
+ ‖f‖L1([Ti,Ti+1];Bs

p,r)

)
,

and

ν
1
ρ

∥∥∥
(
2q(s+

2α
ρ
)‖∆qφ‖Lρ([Ti,Ti+1];Lp)

)
q∈N

∥∥∥
ℓr

≤C
(
‖φ(Ti)‖Bs

p,r
+ ‖f‖L1([Ti,Ti+1];Bs

p,r)

)
.

By iterating (48) M -times and using the fact M ≈ 1
C0

´ T
0 ‖∇u‖L∞dτ , we deduce that

‖φ‖L̃∞

T (Bs
p,r)

≤ C

(M−1∑

i=0

‖φ(Ti)‖Bs
p,r

+ ‖f‖L1
T (Bs

p,r)

)

≤ CM
(
‖φ0‖Bs

p,r
+ ‖f‖L1

T (Bs
p,r)

)
CM + C‖f‖L1

T (Bs
p,r)

≤ CeC
´ T
0 ‖∇u‖L∞dτ

(
‖φ0‖Bs

p,r
+ ‖f‖L1

T (Bs
p,r)

)
,

which also yields

ν
1
ρ‖φ‖

L̃ρ
T (B

s+2α
ρ

p,r )
≤ C(1 + νT )

1
ρ

(M−1∑

i=0

‖φ(Ti)‖Bs
p,r

+ ‖f‖L1([0,T ];Bs
p,r)

)

≤ C(1 + νT )
1
ρ eC

´ T
0 ‖∇u‖L∞dτ

(
‖φ0‖Bs

p,r
+ ‖f‖L1

T (Bs
p,r)

)
,

and

ν
1
ρ

∥∥∥
(
2
q(s+ 2α

ρ
)‖∆qφ‖Lρ

T (Lp)

)
q∈N

∥∥∥
ℓr

≤ CeC
´ T
0

‖∇u‖L∞dτ
(
‖φ0‖Bs

p,r
+ ‖f‖L1

T (Bs
p,r)

)
.

Therefore, we complete the proof of (43), (44). �

The following compactness lemma plays an important role in the process of vanishing Prandtl
number limit.

Lemma 2.10 (Aubin-Lions lemma [45]). Assume that X0 ⊆ X ⊆ X1 are Banach spaces, and X0 is
compactly embedded in X and X is continuously embedded in X1. For all 1 ≤ p, q ≤ ∞, let

V :=
{
u ∈ Lp

T (X0) : ∂tu ∈ Lq
T (X1)

}
.

Then we have

(i) if p <∞, then V is compactly embedded in Lp
T (X);

(ii) if p = ∞ and q > 1, then V is compactly embedded in C([0, T ];X).
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3. Persistence of the C2+γ boundary regularity

This section is devoted to the proof of the persistence of the C2+γ regularity of the temperature
patch boundary ∂D(t) for some 0 < γ ≤ 2α − 1 if α ∈ (12 , 1) and for some γ ∈ (0, 1) if α = 1. In

particular, we shall explicitly show the dependence of the a priori estimates on the coefficient ε = 1
Pr .

The L2 energy estimate for the system (Bα) is more or less classical (e.g. see Proposition 4.1 of
[39] without the dependence on the Prandtl number), and we have the following result.

Proposition 3.1. Let ε = 1
Pr ∈ (0, 1], α ∈ (0, 1]. Let D be either R2 or T2. Suppose that (u, θ)

is a smooth solution of 2D Boussinesq-Navier-Stokes system (Bα) with initial data u0 ∈ L2(D) and
θ0 ∈ L2 ∩ Lp(D), p ∈ [1,∞]. Then there exists an absolute number C0 > 0 such that for all t > 0,

‖θ(t)‖Lp(D) = ‖θ0‖Lp(D), (49)

‖u(t)‖L2(D) +
1√
ε
‖Λαu‖

L2
t

(
L2(D)

) ≤ C0

(
‖u0‖L2 + ‖θ0‖L2

)( t
ε
+ 1

)
. (50)

Proof of Proposition 3.1. The conservation of the Lp norm of θ in (49) follows from the transport
equation. By taking the dot product of the equation for u in (1) with u itself, and using an integration
by parts, we get

ε

2

d

dt
‖u(t)‖2L2 + ‖Λαu(t)‖2L2 ≤

∣∣∣
ˆ

D

θ u2(x, t)dx
∣∣∣ ≤ ‖θ0‖L2‖u(t)‖L2 , (51)

It follows that d
dt‖u(t)‖L2 ≤ 1

ε‖θ0‖L2 and

‖u(t)‖L2(D) ≤ ‖u0‖L2(D) +
t

ε
‖θ0‖L2(D).

Inserting the above inequality into (51) and integrating with respect to the time variable lead to

1

2
‖u(t)‖2L2 +

1

ε
‖Λαu‖2L2

t (L
2) ≤

1

2
‖u0‖2L2 +

t

ε
‖θ0‖L2

(
‖u0‖L2 +

t

ε
‖θ0‖L2

)
,

which readily implies the desired bound (50). �

The following result concerns the a priori estimates for u and Γ = ω − R1−2αθ = ω − ∂1Λ
−2αθ

solving the system (Bα) with u0 ∈ H1, θ0 ∈ L1 ∩ L∞. Note that Theorems 1.2, 5.2 and Proposition
5.4 of [39] have provided similar estimate as (52), but in order to clarify the dependence on the
parameter ε, we here sketch the proof by using a slightly different argument.

Proposition 3.2. Let ε = 1
Pr ∈ (0, 1], α ∈ (12 , 1]. Let D be either R2 or T2. Suppose that (u, θ) is a

smooth solution of 2D Boussinesq-Navier-Stokes equations (Bα) with

• u0 ∈ H1(D),
• ∇ · u0 = 0,
• θ0 ∈ L1 ∩ L∞(D).

Then, there exists a constant C > 0 depending only on α and the norms of (u0, θ0) but independent
of ε such that for all T > 0, such that the following statements hold true.

(1) If α ∈ (12 , 1), we have

‖(∇u,Γ)‖L∞

T (L2) + ‖Γ‖L1
T (B1

2,1)
+ ‖Γ‖

L̃1
T (B2α

2,∞)
+ ‖∇u‖

L̃1
T (C2α−1)

+ ‖∇u‖L1
T (L∞) ≤ CeCT . (52)

(2) If D = R2, α = 1, we have that for all γ ∈ (0, 1),

‖∇u‖L∞

T (L2) + ‖∇u‖L1
T (L∞) + ‖∇u‖L1

T (Cγ) ≤ C(1 + T 3)
(
1 +

√
T
ε

)
. (53)

(3) If D = T2, α = 1, we have that for all γ ∈ (0, 1),

‖(∇u,Γ)‖L∞

T (L2) + ‖Γ‖L1
T (B1

2,1)
+ ‖Γ‖L̃1

T (B2
2,∞) + ‖∇u‖L1

T (Cγ) ≤ CeCT . (54)
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Remark 3.1. Under the assumptions of Proposition 3.2, we can show the global existence and unique-
ness of solution (θ, u) to the 2D Boussinesq-Navier-Stokes system (Bα) with ε = 1

Pr ∈ (0, 1] and

α ∈ (12 , 1], which satisfies that for all T > 0,

θ ∈ L∞([0, T ], L1 ∩ L∞(D)), u ∈ L∞([0, T ],H1(D)) ∩ L1([0, T ], B1
∞,1(D)). (55)

In particular, if θ0 is the temperature front initial data θ̄0 1D0 with θ̄0 ∈ L∞(D0) and D0 ⊂ D a
bounded simply connected domain satisfying ∂D0 ∈ C1+γ , γ ∈ (0, 2α − 1), then we have that (8)-(9)
hold with k = 1 and the same scope of γ.

Indeed, the existence part follows from a standard approximation process and the a priori estimates
established in Propositions 3.1 and 3.2 (note that the fact that u is controlled in L1

T (B
1
∞,1) in (55)

can be easily obtained). As far as the proof of the uniqueness is concerned, we refer to [24] for
the case α = 1 and to [39] for the case α ∈ (12 , 1). Regarding the temperature patches, since u is a

divergence-free vector field which belongs to L1([0, T ],W 1,∞(D)) then using Cauchy-Lipschitz theorem,
there exists a unique solution Xt(·) : D → D to (2) which is a bi-Lipschitzian measure-preserving
homeomorphism, thus the transport equation of θ ensures (8) holds, and in combination with (11)
and (52), (54), we have ∇X±1

t ∈ L∞
T (Cγ), γ ∈ (0, 2α − 1), which implies ∂D(t) ∈ L∞

T (C1+γ).

Proof of Proposition 3.2. Let us prove the first statement that is the point (1). The proof of (1)
works in either the whole space or the torus. By computing the L2 scalar product of the equation in
Γ (16) with Γ, and using the commutator estimate (36) and the relation ω = Γ +R1−2αθ, we get

1

2

d

dt
‖Γ(t)‖2L2 +

1

ε
‖ΛαΓ(t)‖2L2 ≤ ‖[R1−2α, u · ∇]θ‖L2‖Γ‖L2

≤ C‖ω‖L2

(
‖θ‖B1−2α

∞,1
+ ‖θ‖L2

)
‖Γ‖L2

≤ C
(
‖Γ‖L2 + ‖R1−2αθ‖L2

)
‖θ‖L2∩L∞‖Γ‖L2

≤ C‖Γ‖2L2

(
1 + ‖θ0‖L2∩L∞

)
+ ‖θ0‖4L1∩L∞ ,

where in the last line we have used the fact that

‖R1−2αθ(t)‖L2 ≤ C‖θ(t)‖
L

1
α
≤ C‖θ0‖L1∩L∞ . (56)

Grönwall’s inequality leads to

‖Γ‖2L∞

T (L2) +
1

ε
‖ΛαΓ‖2L2

T (L2) ≤ C
(
‖Γ0‖2L2 + ‖θ0‖4L1∩L∞T

)
eC(1+‖θ0‖L2∩L∞)T

≤ CeCT .
(57)

In the above, Γ0 := ω0 −R1−2αθ0 satisfies that

‖Γ0‖L2 ≤ ‖ω0‖L2 + ‖R1−2αθ0‖L2 ≤ ‖u0‖Ḣ1 + ‖θ0‖
L

1
α
<∞.

Furthermore, by using (56) again, we find

‖∇u‖L∞

T (L2) ≤ ‖ω‖L∞

T (L2) ≤ ‖Γ‖L∞

T (L2) + ‖R1−2αθ‖L∞

T (L2) ≤ CeCT . (58)

Now we consider the estimation of ‖Γ‖L1
T (B1

2,1)
and ‖Γ‖

L̃1
T (B2α

2,∞)
. For all q ∈ N, applying the

frequency localization operator ∆q to the equation (16) yields

∂t∆qΓ + u · ∇∆qΓ +
1

ε
Λ2α∆qΓ = − [∆q, u · ∇] Γ + ∆q

(
[R1−2α, u · ∇] θ

)
:= fq. (59)

Taking the scalar product of the above equation with ∆qΓ, we get

1

2

d

dt
‖∆qΓ(t)‖2L2 +

c0
ε
22αq‖∆qΓ(t)‖2L2 ≤ ‖∆qΓ‖L2‖fq‖L2 ,

with some c0 > 0 absolute number. Integrating in the time variable leads to

‖∆qΓ(t)‖L2 ≤ e−
c0
ε
22αqt‖∆qΓ0‖L2 +

ˆ t

0
e−

c0
ε
(t−τ)e2αq‖fq(τ)‖L2dτ,
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and

‖∆qΓ‖L1
t (L

2) ≤
ε

c0
2−2αq‖∆qΓ0‖L2 +

ε

c0
2−2αq‖fq‖L1

t (L
2). (60)

Let N ∈ N be a constant chosen later. Taking advantage of (57), (58) and Lemmas 2.6, 2.7, we have

‖Γ‖L1
T (B1

2,1)
=

∑

−1≤q<N

2q‖∆qΓ‖L1
T (L2) +

∑

q≥N

2q‖∆qΓ‖L1
T (L2)

≤ C2N‖Γ‖L1
T (L2)

+C
∑

q≥N

2q(1−2α)
(
‖Γ0‖L2 + ‖[∆q, u · ∇]Γ‖L1

T (L2) + ‖∆q([R1−2α, u · ∇]θ)‖L1
T (L2)

)

≤ C2N‖Γ‖L1
T (L2)

+C2N(1−2α)

(
‖Γ0‖L2 + ‖∇u‖L∞

T (L2)

(
‖Γ‖L1

T (B0
∞,∞) + ‖θ‖L1

T (B1−2α
∞,∞ ∩L2)

))

≤ CeCT 2N + C2N(1−2α)eCT ‖Γ‖L1
T (B1

2,1)
, (61)

where in the last line we have used the continuous embedding B1
2,1(D) →֒ B0

∞,∞(D) together with
the fact that

‖θ‖L1
T (B1−2α

∞,∞ ∩L2) ≤ ‖θ‖L1
T (L2∩L∞) ≤ T‖θ0‖L2∩L∞ .

By choosing N ∈ N so that C2N(1−2α)eCT ≈ 1
2 , we infer that

‖Γ‖L1
T (B1

2,1)
≤ CeCT .

Repeating the above process, we find that

‖Γ‖L̃1
T (B2α

2,∞) =
∑

q≥−1

22αq‖∆qΓ‖L1
T (L2)

≤ C‖∆−1Γ‖L1
T (L2)

+C sup
q∈N

(
‖∆qΓ0‖L2 + ‖[∆q, u · ∇]Γ‖L1

T (L2) + ‖∆q[R1−2α, u · ∇]θ‖L1
T (L2)

)

≤ C ‖Γ‖L1
T (L2) + C ‖Γ0‖L2 + C‖∇u‖L∞

T (L2)

(
‖Γ‖L1

T (B0
∞,∞) + ‖θ‖L1

T (B1−2α
∞,2 ∩L2)

)

≤ CeCT . (62)

Next, we want to prove that ∇u ∈ L̃1
T (C

2α−1). By using the identity

∇u = ∇∇⊥Λ−2ω = ∇∇⊥Λ−2Γ +∇∇⊥∂1Λ
−2−2αθ, (63)

we have

‖∇u‖
L̃1
T (C2α−1)

≤ ‖∆−1∇u‖L1
T (L∞) + sup

q∈N
2q(2α−1)‖∆q∇u‖L1

T (L∞)

≤ C‖∇u‖L1
T (L2) +C sup

q∈N
2q(2α−1)

(
‖∆qΓ‖L1

T (L∞) + 2q(1−2α)‖∆qθ‖L1
T (L∞)

)

≤ C‖∇u‖L1
T (L2) +C‖Γ‖L̃1

T (B2α
2,∞) + C sup

q∈N
‖∆qθ‖L1

T (L∞)

≤ CeCT .

(64)

Since we have the following embedding C2α−1 →֒ B0
∞,1 →֒ L∞, then ‖∇u‖L1

TL∞ ≤ CeCT . Hence

gathering the above estimates completes the proof of (52).

Let us prove the statement (2). From the vorticity equation (15) with α = 1 and the classical L2

estimate, it is not difficult to see that

ε

2

d

dt
‖ω(t)‖2L2 + ‖∇ω(t)‖2L2 ≤

∣∣∣
ˆ

R2

θ ∂1ω(x, t)dx
∣∣∣ ≤ 1

2
‖θ(t)‖2L2 +

1

2
‖∇ω(t)‖2L2 .
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By integrating in the time variable we obtain

‖ω(t)‖2L2 +
2

ε
‖∇ω(t)‖2L2 ≤ ‖ω0‖2L2 +

1

ε
‖θ0‖2L2t,

which also gives

‖∇u‖L∞

T (L2) +
1√
ε
‖∇2u‖L2 ≤ 2

(
‖ω0‖L2 + ‖θ0‖L2

)(
1 +

√
T
ε

)
.

Next we want to prove the estimate of ‖ω‖L1
T (B0

∞,1)
. Using the identity

Γ = ω −R−1θ = ω − ∂1(−∆)−1θ,

together with Lemmas 2.6 and 2.7, we infer that for all q ∈ N,

‖[∆q, u · ∇]Γ‖L2 ≤ ‖[∆q, u · ∇](Id−∆−1)Γ‖L2 + ‖∆q(u · ∇∆−1Γ)‖L2 + ‖u · ∇∆q∆−1Γ‖L2

≤ C‖∇u‖L2‖(Id−∆−1)Γ‖B0
∞,∞

+ C‖u‖L2‖∇∆−1Γ‖L∞

≤ C‖∇u‖L2

(
‖ω‖B0

∞,∞
+ ‖θ‖L∞

)
+C‖u‖L2

(
‖ω‖L2 + ‖θ‖L2

)
,

and

‖[R−1, u · ∇]θ‖L2 ≤ C
(
‖∇u‖L2 ‖θ‖

B
−1/2
∞,1

+ ‖u‖L2‖θ‖L2

)
≤ C‖u‖H1‖θ‖L2∩L∞ .

Hence, by noticing that the inequality (60) with α = 1 still holds, and applying the above estimates
and Proposition 3.1, we find that for some N ∈ N (to be chosen later), we have

‖ω‖L1
T (B0

∞,1)
≤

∑

−1≤q≤N

‖∆qω‖L1
T (L∞) +

∑

q≥N

‖∆qR−1θ‖L1
T (L∞) +

∑

q≥N

‖∆qΓ‖L1
T (L∞)

≤ C
∑

−∞<q≤N

2q‖∆qω‖L1
T (L2) + C

∑

q≥N

2−q‖∆qθ‖L1
T (L∞)

+ Cε
∑

q≥N

2−q
(
‖∆qΓ0‖L2 + ‖[∆q, u · ∇]Γ‖L1

T (L2) + ‖[R−1, u · ∇]θ‖L1
T (L2)

)

≤ C2NT
(
1 +

√
T
ε

)
+Cε2−N

(
‖(ω0, θ0)‖L2 + ‖∇u‖L∞

T (L2)‖ω‖L1
T (B0

∞,∞)

)

+ Cε2−N
(
‖∇u‖L∞

T (L2)‖θ‖L1
T (L2∩L∞) + ‖u‖L∞

T (L2)

(
‖ω‖L1

T (L2) + ‖θ‖L1
T (L2∩L∞)

))

≤ C2NT
(
1 +

√
T
ε

)
+C

√
ε2−N

(
1 +

√
T
)
‖ω‖L1

T (B0
∞,∞) + Cε2−N (1 + T 2)

(
1 +

√
T
ε

)
.

Choosing N ∈ N such that max{C√
ε(1 +

√
T ), 1}2−N ≈ 1

2 allows us to write that

‖ω‖L1
T (B0

∞,1)
+ ‖∇u‖L1

T (B0
∞,1)

≤ C(1 + T 2)
(
1 +

√
T
ε

)
,

where C > 0 depends only on the norms of u0 and θ0, importantly, C > 0 is independent of ε. Note
that from the identity Γ = ω −R−1θ, we may write that

‖Γ‖L1
T (B0

∞,1)
≤ ‖ω‖L1

T (B0
∞,1)

+ ‖R−1θ‖L1
T (B0

∞,1)

≤ ‖ω‖L1
T (B0

∞,1)
+ C‖∆−1R−1θ‖L1

T (L4) + C
∑

q∈N

‖∆qR−1θ‖L1
T (L∞)

≤ ‖ω‖L1
T (B0

∞,1)
+ C‖θ‖L1

T (L1∩L∞) ≤ C(1 + T 2)
(
1 +

√
T
ε

)
.

(65)

Similarly as above, we get that for all γ ∈ (0, 1),

‖ω‖L1
T (Bγ

∞,1)
≤ ‖∆−1ω‖L1

T (L∞) +
∑

q∈N

2qγ‖∆qR−1θ‖L1
T (L∞) +

∑

q∈N

2qγ‖∆qΓ‖L1
T (L∞)

≤ C‖∆−1ω‖L1
T (L2) + C

∑

q∈N

2q(γ−1)‖∆qθ‖L1
T (L∞) + C

∑

q∈N

2q(γ+1)‖∆qΓ‖L1
T (L2)
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≤ CT
(
1 +

√
T
ε

)

+ Cε
∑

q∈N

2q(γ−1)
(
‖∆qΓ0‖L2 + ‖[∆q, u · ∇]Γ‖L1

T (L2) + ‖[R−1, u · ∇]θ‖L1
T (L2)

)

≤ C(1 + T 2)
(
1 +

√
T
ε

)
+ C

√
ε
(
1 +

√
T
)
‖ω‖L1

T (B0
∞,∞)

≤ C(1 + T 3)
(
1 +

√
T
ε

)
.

Collecting the above estimates leads to (53) and ends the proof of the statement (2).

It remains to prove the statement (3). Consider (16) in the case α = 1. By taking the scalar
product of the evolution equation in Γ with Γ itself, and using the commutator estimate (38), we get

1

2

d

dt
‖Γ(t)‖2L2 +

1

ε
‖∇Γ(t)‖2L2 ≤ ‖[R−1, u · ∇]θ(t)‖L2‖Γ(t)‖L2

≤ ‖[R−1, u · ∇]θ(t)‖
B

1
2
2,∞

‖Γ(t)‖L2

≤ C‖ω‖L2

(
‖θ‖

B
−

1
2

∞,∞

+ ‖θ‖L2

)
‖Γ(t)‖L2

≤ C
(
‖Γ‖L2 + ‖R−1θ‖L2

)
‖θ0‖L2∩L∞‖Γ(t)‖L2

≤ C
(
‖Γ(t)‖L2 + 1

)
‖Γ(t)‖L2

≤ C‖Γ(t)‖2L2 + C,

where in the last line we have used that

‖R−1θ(t)‖L2(T2) ≤ C‖Λ−1θ(t)‖L4(T2) ≤ C‖θ(t)‖
L

4
3 (T2)

≤ C‖θ0‖
L

4
3 (T2)

.

Grönwall’s inequality and the fact that ‖Γ0‖L2 ≤ ‖ω0‖L2 + ‖R−1θ0‖L2 ≤ C allow us to state that,
for all t > 0, the following control holds

‖Γ(t)‖2L2 +
1

ε

ˆ t

0
‖∇Γ(τ)‖2L2dτ ≤ (‖Γ0‖2L2 + Ct

)
eCt ≤ CeCt.

It is easy to see that, using the identity ω = Γ +R−1θ, we may write that

‖∇u(t)‖L2 ≤ ‖ω(t)‖L2 ≤ ‖Γ(t)‖L2 + ‖R−1θ(t)‖L2 ≤ CeCt.

Then, following the same lines as the proof of (61), we find that for some Q ∈ N (that will be fixed
later),

‖Γ‖L1
T (B1

2,1)
=

∑

−1≤q<Q

2q‖∆qΓ‖L1
T (L2) +

∑

q≥Q

2q‖∆qΓ‖L1
T (L2)

≤ C2Q‖Γ‖L1
T (L2) + C

∑

q≥Q

2−q
(
‖Γ0‖L2 + ‖[∆q, u · ∇]Γ‖L1

T (L2) + ‖[R−1, u · ∇]θ‖L1
T (L2)

)

≤ C2QeCT + C2−Q

(
‖Γ0‖L2 + ‖∇u‖L∞

T (L2)

(
‖Γ‖L1

T (B0
∞,∞) + ‖θ‖

L1
T (B

−1/2
∞,∞∩L2)

))

≤ CeCT 2Q + C2−QeCT ‖Γ‖L1
T (B1

2,1)
.

By choosing Q ∈ N so that CeCT2−Q ≈ 1
2 , we find that

‖Γ‖L1
T (B1

2,1)
+ ‖Γ‖L1

T (B0
∞,1)

≤ CeCT .

Following the same idea as the proof of (62) and (64), we infer that

‖Γ‖L̃1
T (B2

2,∞) + ‖∇u‖L̃1
T (B1

∞,∞) ≤ CeCT .

Gathering the above estimates and the embedding B1
∞,∞(T2) →֒ Cγ(T2) (0 < γ < 1) lead to (54) and

therefore the proof of the last statement (3), thus this completes the proof of Proposition 3.2. �
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The following result is concerned with the a priori estimates for (u,Γ) solving the system (Bα)
with u0 ∈ H1 ∩W 1,p and θ0 ∈ L1 ∩ L∞.

Proposition 3.3. Let ε = 1
Pr ∈ (0, 1], α ∈ (12 , 1]. Let D be either R2 or T2. Suppose that (u, θ) is

the smooth solution for the 2D Boussinesq-Navier-Stokes system (Bα) satisfying

• u0 ∈ H1 ∩ Ẇ 1,p(D), 2 < p <∞,
• ∇ · u0 = 0,
• θ0 ∈ L1 ∩ L∞(D).

Then, for all T > 0, there exists a constant C > 0 depending on α and the norms of (u0, θ0) but
independent of ε such that the following statements hold.

(1) If α ∈ (12 , 1), then we have

‖(∇u,Γ)‖L∞

T (Lp) + ‖Γ‖
L̃1
T (B2α

p,∞)
+ ‖Γ‖L1

T (B2α−1
∞,1 ) + ‖∇u‖L1

T (C2α−1) ≤ CeCT , (66)

In particular, if additionally 2
2α−1 < p <∞, we also have

‖Γ‖L1
T (B1

∞,1)
≤ CeCT . (67)

(2) If D = R2, α = 1, then for all γ ∈ (0, 1) we have

‖(∇u,Γ)‖L∞

T (Lp) + ‖∇u‖L1
T (B1

∞,∞) ≤ C(1 + T 4)
(
1 + T

ε

)
, (68)

‖Γ‖L̃1
T (B2

p,∞) + ‖Γ‖L1
T (B1

∞,1)
≤ C(1 + T 4)

(
1 +

√
T
ε

)
. (69)

(3) If D = T2, α = 1, we have

‖(∇u,Γ)‖L∞

T (Lp) + ‖Γ‖L̃1
T (B2α

p,∞) + ‖Γ‖L1
T (B1

∞,1)
+ ‖∇u‖L1

T (B1
∞,∞) ≤ CeCT . (70)

Remark 3.2. Under the assumptions of Proposition 3.3, and if we additionally consider the temper-
ature patch initial data θ0(x) = θ̄0(x)1D0(x) as in Theorem 1.1 with

{
∂D0 ∈ C2α, θ̄0 ∈ L∞(D0), if α ∈ (12 , 1),

∂D0 ∈W 2,∞, θ̄0 ∈ Cµ(D0), 0 < µ < 1, if α = 1,

we can prove that {
∂D(t) ∈ L∞

T (C2α), if α ∈ (12 , 1),

∂D(t) ∈ L∞
T (W 2,∞), if α = 1.

In fact, if α ∈ (12 , 1), the claim follows from the fact that ∇X±1
t ∈ L∞

T (C2α−1) which is a direct

consequence of (66) and (11); while if α = 1, the claim follows from the fact that X±1
t ∈ L∞

T (W 2,∞)
which is a consequence of the following estimate

‖∇u‖L1
T (W 1,∞(D)) ≤




C exp

{
C(1 + T 4)

(
1 +

√
T
ε

)}
, for α = 1,D = R2,

C exp{CeCT }, for α = 1,D = T2;
(71)

as for the proof of (71), we infer from (63) that

‖∇2u‖L1
T (L∞) ≤ ‖∇2∇⊥Λ−2Γ‖L1

T (L∞) + ‖∇2∇⊥∂1Λ
−4θ‖L1

T (L∞)

≤ C‖Γ‖L1
T (B1

∞,1)
+ ‖∇2∇⊥∂1Λ

−4θ‖L1
T (L∞);

by following the geometric lemma in [3] or [7, Sec. 3.2], we conclude that ‖∇2∇⊥∂1Λ
−4θ‖L1

T (L∞) and

‖∇u‖L1
T (W 1,∞) is controlled by (71).

Proof of Proposition 3.3. Let us first prove (1). In this case α ∈ (12 , 1), we prove (66)-(67) in a unified

approach without distinguishing D to be R2 or T2.
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By multiplying both sides of the Γ-equation (16) with |Γ|p−2Γ(x, t) and integrating over the spatial
variable, we use the integration by parts to get

1

p

d

dt
‖Γ(t)‖pLp +

1

ε

ˆ

D

Λ2αΓ |Γ|p−2Γ(x, t)dx ≤ ‖[R1−2α, u · ∇]θ‖Lp‖Γ(t)‖p−1
Lp . (72)

The positivity lemma in [16] ensures that the term coming from dissipation Λ2αΓ is nonnegative, thus
by applying Lemma 2.6 and the Caderón-Zygmund theorem, we find

d

dt
‖Γ(t)‖Lp ≤ ‖[R1−2α, u · ∇]θ(t)‖Lp

≤ C‖ω(t)‖Lp

(
‖θ(t)‖B1−2α

∞,1
+ ‖θ(t)‖L2

)

≤ C
(
‖Γ(t)‖Lp + ‖R1−2αθ(t)‖Lp

)
‖θ(t)‖L2∩L∞

≤ C
(
‖Γ(t)‖Lp + ‖θ0‖L1∩L∞

)
‖θ0‖L2∩L∞ ,

where in the last line we have used the following estimate

‖R1−2αθ(t)‖Lp ≤ C‖Λ1−2αθ(t)‖Lp ≤ C‖θ(t)‖
L

2p
(2α−1)p+2

≤ C‖θ0‖L1∩L∞ . (73)

Grönwall’s inequality and the fact that ‖Γ0‖Lp ≤ ‖ω0‖Lp + ‖R1−2αθ0‖Lp ≤ C imply that ‖Γ(t)‖Lp ≤
eCt, thus, using the identity ω = Γ +R1−2αθ, one finds

‖(Γ,∇u)‖L∞

T (Lp) ≤ C‖(Γ, ω)‖L∞

T (Lp) ≤ C‖Γ‖L∞

T (Lp) + ‖R1−2αθ‖L∞

T (Lp) ≤ CeCT .

By taking the scalar product, for all q ∈ N, of the equation (59) with |∆qΓ|p−2∆qΓ(x, t) and then
using the following estimate (see [13])

ˆ

D

(
Λ2α∆qΓ

)
|∆qΓ|p−2∆qΓ dx ≥ c 22αq ‖∆qΓ‖pLp , ∀q ∈ N,

for some c > 0 independent of q, we obtain

1

p

d

dt
‖∆qΓ(t)‖pLp +

c

ε
22αq ‖∆qΓ(t)‖pLp ≤ ‖∆qΓ(t)‖p−1

Lp ‖fq(t)‖Lp ,

which gives

‖∆qΓ(t)‖Lp ≤ e−
c
ε
t22αq ‖∆qΓ0‖Lp +

ˆ t

0
e−

c
ε
(t−τ)22αq ‖fq(τ)‖Lp dτ. (74)

Taking the L1([0, T ]) norm, and using (52), Lemmas 2.6 and 2.7, we get that for all q ∈ N,

22αq ‖∆qΓ‖L1
T (Lp) ≤ C ‖∆qΓ0‖Lp + C

ˆ T

0
‖[∆q, u · ∇] Γ‖Lp dτ + C

ˆ T

0
‖∆q ([R1−2α, u · ∇] θ)‖Lp dτ

≤ C ‖Γ0‖Lp + C‖∇u‖L∞

T (Lp)

(
‖Γ‖L1

T (B0
∞,∞) + ‖θ‖L1

T (B1−2α
∞,∞ ∩L2)

)
≤ CeCT .

Hence, we have

‖Γ‖L̃1
T (B2α

p,∞) ≤ C‖∆−1Γ‖L1
T (Lp) + sup

q∈N
22αq‖∆qΓ‖L1

T (Lp) ≤ CeCT .

Together with the continuous embedding B2α
p,∞ →֒ B

2α− 2
p

∞,∞ →֒ B2α−1
∞,1 (p > 2) and B

2α− 2
p

∞,∞ →֒ B1
∞,1

(p > 2
2α−1 ), the above inequality yields ‖Γ‖L1

T (B2α−1
∞,1 ) ≤ CeCT and (67).

As for the estimate of ∇u in the space of L1
T (C

2α−1) = L1
T (B

2α−1
∞,∞ ), it suffices to follow the same

lines as the proof of (64) and we see that

‖∇u‖L1
T (C2α−1) ≤ C‖∆−1∇u‖L1

T (L∞) + C
∥∥∥ sup

q∈N
2q(2α−1)‖∆q∇u‖L∞

∥∥∥
L1
T

≤ C‖∇u‖L1
T (L2) + C‖Γ‖L1

T (B2α−1
∞,∞ ) + C‖θ‖L1

T (B0
∞,∞) ≤ CeCT .

(75)

Hence collecting the above estimates gives (66)-(67) and therefore (1) is proved.
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To prove the second statement, that is (2), we consider the case D = R2 and α = 1. We remark
that (72) now becomes

1

p

d

dt
‖Γ(t)‖pLp +

p− 1

ε

ˆ

R2

|Γ(x, t)|p−2|∇Γ(x, t)|2dx ≤ ‖[R−1, u · ∇]θ‖Lp‖Γ(t)‖p−1
Lp ,

thus we use the embedding B
1− 2

p

2,1 (R2) →֒ Lp(R2) and (37) to find

d

dt
‖Γ(t)‖Lp ≤ ‖[R−1, u · ∇]θ(t)‖Lp (76)

≤ C‖[R−1, u · ∇]θ(t)‖
B

1−2/p
2,1

≤ C‖∇u(t)‖L2‖θ(t)‖
B

−2/p
∞,1

+ C‖u(t)‖L2‖θ(t)‖L2 .

Integrating in time and applying Proposition 3.1 give that

‖Γ‖L∞

T (Lp) ≤ ‖Γ0‖Lp + C
(
‖∇u‖L1

T (L2) + ‖u‖L1
T (L2)

)
‖θ‖L∞

T (L2∩L∞)

≤ ‖ω0‖Lp + ‖R−1θ0‖Lp + C
(√
T‖∇u‖L2

T (L2) + T‖u‖L∞

T (L2)

)
‖θ0‖L2∩L∞

≤ C(1 + T )
(
1 + T

ε

)
,

where in the above we also have used that ‖R−1θ0‖Lp ≤ C‖θ0‖
L

2p
p+2

. Thus,

‖∇u‖L∞

T (Lp) ≤ C‖ω‖L∞

T (Lp) ≤ C
(
‖Γ‖L∞

T (Lp) + ‖R−1θ‖L∞

T (Lp)

)
≤ C(1 + T )

(
1 + T

ε

)
.

Then, we prove the estimate of ‖Γ‖L̃1
T (B2

p,∞). We see that (74) with α = 1 still holds, and we

integrate on the time interval [0, T ] to get that for all q ∈ N,

‖∆qΓ‖L1
t (L

p) ≤
ε

c
2−2q‖∆qΓ0‖Lp +

ε

c
2−2q‖fq‖L1

t (L
p),

for some c > 0 independent of q and fq given by (59). Thus by taking advantage of (50), (65),
Lemmas 2.6, 2.7 and the following estimate

‖∆−1Γ‖L∞

T (Lp) ≤ ‖∆−1ω‖L∞

T (Lp) + ‖∆−1R−1θ‖L∞

T (Lp)

≤ C‖ω‖L∞

T (L2) + C‖R−1θ‖L∞

T (Lp) ≤ C
(
1 +

√
T
ε

)
,

we have

‖Γ‖L̃1
T (B2

p,∞) ≤ ‖∆−1Γ‖L1
T (Lp) + sup

q∈N
22q‖∆qΓ‖L1

T (Lp)

≤ C‖∆−1Γ‖L1
T (Lp) + C sup

q∈N

(
‖Γ0‖Lp + ε‖[∆q, u · ∇]Γ‖L1

T (Lp) + ε‖∆q([R−1, u · ∇]θ)‖L1
T (Lp)

)

≤ C‖∆−1Γ‖L1
T (Lp) + C‖Γ0‖Lp

+ C

(
ε‖∇u‖L∞

T (Lp)

(
‖Γ‖L1

T (B0
∞,∞) + ‖θ‖

L1
T (B

−1/2
∞,∞∩L2)

)
+ ε‖u‖L∞

T L2‖θ‖L1
TL2

)

≤ CT
(
1 +

√
T
ε

)
+ C(1 + T 4)

(
1 +

√
T
ε

)
≤ C(1 + T 4)

(
1 +

√
T
ε

)
. (77)

As a result of the embedding L̃1
T (B

2
p,∞) →֒ L1

T (B
1
∞,1), we obtain the same upper bound as

‖Γ‖L1
TB1

∞,1
. Together with (75) with α = 1, we find

‖∇u‖L1
T (B1

∞,∞) ≤ C‖∇u‖L1
T (Lp) + C‖Γ‖L1

T (B1
∞,∞) + C‖θ‖L1

T (B0
∞,∞) ≤ C(1 + T 4)

(
1 + T

ε

)
. (78)

Hence, gathering the above inequalities completes the proof of (68)-(69).
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It remains to prove (3). We treat the case D = T2 and α = 1. By using (76), (73) (with α = 1)
and the commutator estimate (38), we get

d

dt
‖Γ(t)‖Lp ≤ ‖[R−1, u · ∇]θ(t)‖Lp

≤ C‖[R−1, u · ∇]θ(t)‖
B

1/2
p,∞

≤ C‖ω(t)‖Lp

(
‖θ(t)‖

B
−1/2
∞,∞

+ ‖θ(t)‖L2

)

≤ C
(
‖Γ(t)‖Lp + ‖R−1θ(t)‖Lp

)
‖θ(t)‖L2∩L∞

≤ C
(
‖Γ(t)|Lp + ‖θ0‖L1∩L∞

)
‖θ0‖L2∩L∞ .

Grönwall’s inequality ensures that

‖Γ‖L∞

T (Lp) ≤
(
‖Γ0‖Lp + CT

)
eCT ≤ CeCT .

Following the same idea as the proof of (77)-(78) and using (54), we infer that

‖Γ‖
L̃1
T (B2

p,∞)
+ ‖Γ‖L1

T (B1
∞,1)

+ ‖∇u‖L1
T (B1

∞,∞) ≤ CeCT .

By collecting the above estimates we deduce (70). �

Our main result in this section is as follows.

Proposition 3.4. Let ε = 1
Pr ∈ (0, 1], α ∈ (12 , 1]. Let D be either R2 or T2. Suppose that

• u0 ∈ H1 ∩ Ẇ 1,p(D),
• ∂W0u0 ∈W 1,p(D), for some p > 2

2α−1 ,
• ∇ · u0 = 0,
• θ0(x) = θ̄0(x)1D0(x),

θ̄0(x) ∈
{
C2+γ−2α(D0), for γ ∈ (0, 2α − 1), α ∈ (12 , 1],

C1+γ̃(D0), γ̃ > 0, for γ = 2α− 1, α ∈ (12 , 1),

where D0 ⊂ D is a bounded simply connected domain with boundary ∂D0 ∈ C2+γ for some γ ∈
(0, 2α − 1] if α ∈ (12 , 1) and for some γ ∈ (0, 1) if α = 1. Then there exists a unique global solution
(u, θ) to the 2D Boussinesq-Navier-Stokes system (Bα) which satisfies

θ(x, t) = θ̄0(X
−1
t (x))1D(t)(x),

with

∂D(t) ∈ L∞
(
0, T ;C2+γ(D)

)
, (79)

where D(t) = Xt(D0), Xt is the particle-trajectory generated by the velocity u and X−1
t is its inverse.

In particular, if either
{
α ∈ (12 , 1)

}
, or

{
D = T2, α = 1

}
, the result (79) holds uniformly with respect

to ε.

Proof of Proposition 3.4. In view of Remark 3.1, it suffices to show the a priori estimate on L∞
T (C2+γ(D))

of ϕ, which is the level-set function ofD(t) defined by (14). Let us denote byW := ∇⊥ϕ the tangential
vector field, it satisfies

∂tW + u · ∇W =W · ∇u := ∂Wu, W |t=0 =W0, (80)

and

∂t∇W + u · ∇(∇W ) = ∂W∇u+∇W · ∇u−∇u · ∇W, ∇W |t=0 = ∇W0. (81)

Thanks to (39) and the product estimate ‖f g‖Cγ ≤ C‖f‖Cγ‖g‖Cγ , we obtain that

‖∇W (t)‖Cγ ≤C ‖∇W0‖Cγ + C

ˆ t

0
‖∂W∇u(τ)‖Cγ dτ + C

ˆ t

0
‖∇u(τ)‖Cγ‖∇W (τ)‖Cγdτ. (82)



TEMPERATURE PATCHES FOR 2D NON-DIFFUSIVE BOUSSINESQ SYSTEM 27

The maximum principle of the equation (80) also gives

‖W (t)‖L∞ ≤ ‖W0‖L∞ +

ˆ t

0
‖∇u(τ)‖L∞‖W (τ)‖L∞dτ. (83)

The main goal is to bound the ∂W∇u in L1
t (C

γ). Using the identity (63), we find that

‖∂W∇u‖L1
t (C

γ ) ≤
∥∥∂W∇∇⊥Λ−2Γ

∥∥
L1
t (C

γ)
+

∥∥∂W∇∇⊥∂1Λ
−2−2αθ

∥∥
L1
t (C

γ)
. (84)

Below we split the proof into three parts according to the domain D and the value of α.

(1) First, we deal with the case α ∈ (12 , 1), and we prove the uniform estimates with respect to ε
regardless of the domain. Grönwall’s inequality and (83), (52) give that

‖W (t)‖L∞ ≤ ‖W0‖L∞e
´ t
0 ‖∇u(τ)‖L∞dτ ≤ Ceexp(Ct). (85)

In order to control the term of Γ in (84), we prove an estimate of ∂WΓ = W · ∇Γ. From (16) and
the fact that [∂W , ∂t + u · ∇] = 0, we see that ∂WΓ solves the following equation:

∂t (∂WΓ) + u · ∇ (∂WΓ) +
1

ε
Λ2α (∂WΓ) =

1

ε
[Λ2α,W · ∇]Γ + ∂W

(
[R1−2α, u · ∇] θ

)
. (86)

According to the smoothing estimate (44) in Lemma 2.9, there exists a constant C > 0 independent
of ε so that for all 2α− 1 < γ′ < min{1, 4α − 2− 2

p} (recall that 2
p < 2α− 1), therefore

‖∂WΓ‖
L1
t

(
Bγ′

∞,1

) ≤
∥∥(2qγ′‖∆q(∂WΓ)‖L1

t (L
∞)

)
q∈N

∥∥
ℓ1
+ ‖∆−1(∂WΓ)‖L1

t (L
∞)

≤C ε eC
´ t
0 ‖∇u(τ)‖L∞dτ

(
‖∂W0Γ0‖Bγ′−2α

∞,1

+
1

ε

ˆ t

0

∥∥[Λ2α,W · ∇
]
Γ
∥∥
Bγ′−2α

∞,1

dτ

+

ˆ t

0
‖∂W ([R1−2α, u · ∇] θ)‖

Bγ′−2α
∞,1

dτ

)
+ ‖∆−1div (W Γ)‖L1

t (L
∞)

≤CeC
´ t
0
‖∇u(τ)‖L∞dτ

(
ε ‖∂W0Γ0‖Bγ′−2α

∞,1

+

ˆ t

0

∥∥[Λ2α,W · ∇
]
Γ
∥∥
Bγ′−2α

∞,1

dτ

+ ε

ˆ t

0
‖∂W ([R1−2α, u · ∇] θ)‖

Bγ′−2α
∞,1

dτ

)
+ C

ˆ t

0
‖W (τ)‖L∞‖Γ(τ)‖L∞dτ.

Taking advantage of the identities

Γ0 = ω0 +R1−2αθ0 = ω0 + ∂1Λ
−2αθ0, and ∂W0∂ju0 = ∂j(∂W0u0)− ∂jW0 · ∇u0,

and using the product estimate (26), we get

‖∂W0Γ0‖Bγ′−2α
∞,1

≤ ‖∂W0∇u0‖Bγ′−2α
∞,1

+ ‖∂W0R1−2αθ0‖Bγ′−2α
∞,1

. ‖∂W0u0‖Bγ′−2α+1
∞,1

+ C ‖∇W0‖L∞ ‖∇u0‖Bγ′−2α
∞,1

+ C ‖W0‖L∞ ‖∇R1−2αθ0‖Bγ′−2α
∞,1

. C ‖∂W0u0‖W 1,p +C ‖ϕ0‖W 2,∞ ‖u0‖W 1,p + C ‖ϕ0‖W 1,∞ ‖θ0‖L2∩L∞ <∞,

where in the last line we have used the embedding that for all 0 < γ′ < 4α− 2− 2
p ,

Lp →֒ B0
p,∞ →֒ Bγ′+2−4α

∞,1 , W 1,p →֒ Bγ′+3−4α
∞,1 →֒ Bγ′+1−2α

∞,1 ,

and the following estimate

‖∇R1−2αθ0‖Bγ′−2α
∞,1

≤ C‖θ0‖Bγ′+2−4α
∞,1

≤ C‖θ0‖Lp .

Using (26) (with −1 < γ′−2α < 1−2α < 0), Lemma 2.6 and (66), (83), together with the embedding

L∞ →֒ B
γ′+2−4α+2/p
∞,1 , we find that for all 0 < γ′ < 4α− 2− 2

p ,

‖∇ ([R1−2α, u · ∇] θ)‖
L1
t

(
Bγ′−2α

∞,1

) ≤ C ‖[R1−2α, u · ∇] θ‖
L1
t

(
B

γ′+1−2α+2
p

p,1

)

≤ C‖∇u‖L1
t (L

p)

(
‖θ‖

L∞
t

(
B

γ′+2−4α+2
p

∞,1

) + ‖θ‖L∞
t (L2)

)
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≤ C‖∇u‖L1
t (L

p)

(
‖θ0‖L∞ + ‖θ0‖L2

)
≤ CeCt, (87)

and

‖∂W ([R1−2α, u · ∇] θ)‖
L1
t

(
Bγ′−2α

∞,1

) ≤ C‖W‖L∞
t (L∞) ‖∇ [R1−2α, u · ∇] θ‖

L1
t

(
Bγ′−2α

∞,1

)

≤ Ceexp(Ct).

According to (28) in Lemma 2.3, we deduce that for all 2α− 1 < γ′ < 1,
∥∥[Λ2α,W · ∇

]
Γ
∥∥
Bγ′−2α

∞,1

≤ C‖W‖W 1,∞‖Γ‖
Bγ′

∞,1

.

Hence, gathering the estimates (66), (83) and the above estimates, we find that

‖∂WΓ‖
L1
t

(
Bγ′

∞,1

) ≤ CeC
´ t
0 ‖∇u‖L∞dτ

(
1 +

ˆ t

0
‖W‖W 1,∞‖Γ‖

Bγ′

∞,1

dτ + ‖W‖L∞
t (L∞)‖∇u‖L1

t (L
p)

)

+ C‖W‖L∞
t (L∞)‖Γ‖L1

t (L
∞)

≤ Ceexp(Ct)

(
1 +

ˆ t

0
‖W (τ)‖W 1,∞‖Γ(τ)‖B1

∞,1
dτ

)
.

Next, we want to get an estimate of ∂W
(
∇∇⊥Λ−2Γ

)
. We have

∥∥∂W
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (C

γ)
≤ C

∥∥∆−1∂W
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (L

∞)
+C

∥∥∇∂W
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (C

γ−1)

≤ C
∥∥∆−1div

(
W ∇∇⊥Λ−2Γ

)∥∥
L1
t (L

∞)
+C

∥∥∇W · ∇
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (C

γ−1)

+ C
∥∥∂W

(
∇2∇⊥Λ−2Γ

)∥∥
L1
t (C

γ−1)
.

The right-hand-side terms of the above inequality can be estimated as follows, thanks to (52) and
(83),

∥∥∆−1∂W
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (L

∞)
≤ C‖W‖L∞

t (L∞)‖∇∇⊥Λ−2Γ‖L1
t (L

2)

≤ Ceexp(Ct),

and taking advantage of (26) and Lemma 2.5,

∥∥∇W · ∇
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (C

γ−1)
≤ C

ˆ t

0
‖∇W (τ)‖L∞‖∇2∇⊥Λ−2Γ(τ)‖Cγ−1dτ

≤ C

ˆ t

0
‖∇W (τ)‖L∞

(
‖∆−1∇2∇⊥Λ−2Γ(τ)‖L∞ + ‖Γ(τ)‖Cγ

)
dτ

≤ C

ˆ t

0
‖∇W (τ)‖L∞‖Γ(τ)‖Cγdτ,

then, since we have (29) (with s = γ − 1, σ = 1),

∥∥∂W
(
∇2∇⊥Λ−2Γ

)∥∥
L1
t (C

γ−1)
≤ C

∥∥∂WΓ
∥∥
L1
t (C

γ)
+ C

ˆ t

0
‖W (τ)‖W 1,∞‖Γ(τ)‖Cγ dτ.

Collecting the above estimates yields

∥∥∂W
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (C

γ)
≤ C ‖∂WΓ‖

L1
t

(
Bγ′

∞,1

) + C

ˆ t

0
‖W (τ)‖W 1,∞‖Γ(τ)‖Cγdτ + Ceexp (Ct)

≤ Ceexp(Ct)

(
1 +

ˆ t

0
‖W (τ)‖W 1,∞‖Γ(τ)‖B1

∞,1
dτ

)
.

(88)

For the estimation of the θ term in (84), by using (26), (29) (with σ = 2 − 2α, s = γ − 1 ∈
(−1, 2α − 2]) and (56), (83), we obtain

∥∥∂W
(
∇∇⊥∂1Λ

−2−2αθ
)∥∥

L1
t (C

γ)
≤ C

∥∥∥∆−1div
(
W ∇∇⊥∂1Λ

−2−2αθ
)∥∥∥

L1
t (L

∞)

+
∥∥∥∇∂W

(
∇∇⊥∂1Λ

−2−2αθ
)∥∥∥

L1
t (C

γ−1)
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≤ C‖W‖L∞
t (L∞) ‖R1−2αθ‖L1

t (L
2)

+C

ˆ t

0
‖∇W (τ)‖L∞‖∇2∇⊥∂1Λ

−2−2αθ‖Cγ−1dτ

+C
∥∥∥∂W

(
∇2∇⊥∂1Λ

−2−2αθ
)∥∥∥

L1
t (C

γ−1)

≤ C ‖∂W θ‖L1
t (C

γ+1−2α) + C

ˆ t

0
‖W‖W 1,∞‖θ‖L2∩L∞dτ

+Ceexp (Ct), (89)

where in the last line we also used the estimate∥∥∥∇2∇⊥∂1Λ
−2−2αθ

∥∥∥
Cγ−1

≤ C‖∆−1Λ
2−2αθ‖L2 + C‖θ‖Bγ+1−2α

∞,∞
≤ C‖θ‖L2∩L∞ .

Since ∂W θ solves the transport equation

∂t(∂W θ) + u · ∇(∂W θ) = 0, ∂W θ|t=0 = ∂W0θ0, (90)

we apply Lemma 2.8 and (52) to show that for all γ ∈ (0, 2α − 1),

‖∂W θ(t)‖Cγ+1−2α ≤ CeC
´ t
0
‖∇u(τ)‖L∞dτ‖∂W0θ0‖Cγ+1−2α ≤ Ceexp(Ct), (91)

and for γ = 2α− 1,

‖∂W θ(t)‖B0
∞,∞

≤ CeC
´ t
0 ‖∇u(τ)‖L∞dτ‖∂W0θ0‖B0

∞,∞

≤ CeC
´ t
0
‖∇u(τ)‖L∞dτ‖∂W0θ0‖L∞ (92)

≤ Ceexp(Ct),

where ∂W0θ0 ∈ Cγ+1−2α for γ ∈ (0, 2α − 1) and ∂W0θ0 ∈ L∞ for γ = 2α− 1 in view of Lemma 2.4.

Therefore, by collecting the estimates (82), (84) and (88)-(92), we find

‖W (t)‖C1+γ + ‖∂WΓ‖
L1
t

(
Bγ′

∞,1

) + ‖∂W∇u‖L1
t (C

γ)

≤Ceexp(Ct)

(
1 +

ˆ t

0
‖W (τ)‖C1+γ

(
‖Γ(τ)‖B1

∞,1
+ ‖θ(τ)‖L2∩L∞ + ‖∇u(τ)‖Cγ

)
dτ

)
.

Using Grönwall’s inequality combined with (66)-(67) (together with the embedding C2α−1 →֒ Cγ ,
γ ∈ (0, 2α − 1]) guarantee that

‖W‖L∞

T (C1+γ) + ‖∂WΓ‖
L1
T

(
Bγ′

∞,1

) + ‖∂W∇u‖L1
T (Cγ) ≤ Ceexp exp(CT ),

where C > 0 is independent of ε. This implies W ∈ L∞
(
[0, T ], C1+γ (D)

)
uniformly in ε for all

0 < γ ≤ 2α− 1 and α ∈ (12 , 1), this ends the proof in the case α ∈ (12 , 1).

(2) We deal with the case of α = 1 and D = R2. Note that (83) and (53) imply

‖W (t)‖L∞ ≤ ‖W0‖L∞e
´ t
0 ‖∇u(τ)‖L∞dτ ≤ CeCEε(t), where Eε(t) := (1 + T 4)

(
1 +

√
T
ε

)
. (93)

We want to get a control of ∂WΓ =W · ∇Γ. Since ∂WΓ solves the following equation,

∂t (∂WΓ) + u · ∇ (∂WΓ)− 1

ε
∆(∂WΓ) = −1

ε
[∆, ∂W ] Γ + ∂W ([R−1, u · ∇] θ)

= −1

ε
∆W · ∇Γ− 2

ε
∇W : ∇2Γ + ∂W ([R−1, u · ∇] θ) .

Using the smoothing estimate (44) together with the product estimate (26), we find that for all
γ′ ∈ (1,min

{
γ + 1, 2− 2

p

}
),

‖∂WΓ‖
L1
t

(
Bγ′

∞,1

)
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≤ CεeC
´ t
0
‖∇u‖L∞dτ

(
‖∂W0Γ0‖Bγ′−2

∞,1

+
1

ε

ˆ t

0

(
‖∆W · ∇Γ‖

Bγ′−2
∞,1

+
∥∥∇W : ∇2Γ

∥∥
Bγ′−2

∞,1

)
dτ

+ ‖∂W ([R−1, u · ∇] θ)‖
L1
t

(
Bγ′−2

∞,1

)
)
+ C ‖∆−1∂WΓ‖L1

t (L
∞)

≤ Cε eC
´ t
0 ‖∇u‖L∞dτ

(
‖∂W0Γ0‖Bγ′−2

∞,1

+
1

ε

ˆ t

0

(
‖∆W‖

Bγ′−2
∞,1

‖∇Γ‖L∞ + ‖∇W‖L∞‖∇2Γ‖
Bγ′−2

∞,1

)
dτ

+ ‖∂W ([R−1, u · ∇] θ)‖
L1
t

(
Bγ′−2

∞,1

)
)
+

∥∥∆−1div
(
W Γ

)∥∥
L1
t (L

∞)

≤ eC
´ t
0 ‖∇u‖L∞dτ

(
ˆ t

0
‖W‖

Bγ′

∞,1

‖Γ‖
Bγ′

∞,1

dτ + ε ‖∂W ([R−1, u · ∇] θ)‖
L1
t

(
Bγ′−2

∞,1

) + ε ‖∂W0Γ0‖Bγ′−2
∞,1

)

+ C‖W‖L∞
t (L∞)‖Γ‖L1

t (L
p).

Using again that Γ0 = ω0 + R−1θ0 = ω0 + ∂1Λ
−2θ0 and the embedding W 1,p ⊂ Bγ′−1

∞,1 where γ′ is

such that 0 < γ′ − 1 < 1− 2
p , we get

‖∂W0Γ0‖Bγ′−2
∞,1

≤ ‖∂W0∇u0‖Bγ′−2
∞,1

+ ‖∂W0R−1θ0‖Bγ′−2
∞,1

≤ C ‖∂W0u0‖Bγ′−1
∞,1

+ C ‖∇W0‖L∞ ‖∇u0‖Bγ′−2
∞,1

+ C ‖W0‖L∞ ‖∇R−1θ0‖Bγ′−2
∞,1

≤ C ‖∂W0u0‖W 1,p + C ‖ϕ0‖W 2,∞ ‖u0‖W 1,p + C ‖ϕ0‖W 1,∞ ‖θ0‖L2∩L∞ <∞.

Then, using the estimates (26), (37), (68), (93) together with the embedding L∞ →֒ B
γ′−2+2/p
∞,1 for

all 1 < γ′ < 2− 2
p , we deduce that

ε ‖∂W ([R−1, u · ∇] θ)‖
L1
t

(
Bγ′−2

∞,1

) ≤ Cε‖W‖L∞
t (L∞) ‖[R−1, u · ∇] θ‖

L1
t

(
Bγ′−1

∞,1

)

≤ CεeCEε(t)‖[R−1, u · ∇]θ‖
L1
t

(
B

γ′−1+ 2
p

p,1

)

≤ CeCEε(t)
(
‖∇u‖L1

t (L
p)‖θ‖

L∞
t

(
B

γ′−2+ 2
p

∞,1

) + ‖u‖L1
t (L

2)‖θ‖L∞
t (L2)

)

≤ CeCEε(t).

Gathering the above estimates and (68), (93) yields

‖∂WΓ‖
L1
t

(
Bγ′

∞,1

) ≤ CeCEε(t)

(
1 +

ˆ t

0
‖W (τ)‖

Bγ′

∞,1

‖Γ(τ)‖
Bγ′

∞,1

dτ

)
.

Thanks to the striated estimate (29) (with σ = 0), we also infer that

∥∥∂W
(
∇∇⊥Λ−2Γ

)∥∥
L1
t (C

γ)
≤ C ‖∂WΓ‖L1

t (C
γ) + C

ˆ t

0
‖W (τ)‖W 1,∞‖Γ(τ)‖Cγdτ

≤ CeCEε(t)

(
1 +

ˆ t

0
‖W (τ)‖

Bγ′

∞,1

‖Γ(τ)‖
Bγ′

∞,1

dτ

)
.

(94)

Then, by following the same lines as proof of (89) and using (93), we get
∥∥∂W

(
∇∇⊥∂1Λ

−4θ
)∥∥

L1
t (C

γ)

≤ C
∥∥∆−1∂W

(
∇∇⊥∂1Λ

−4θ
)∥∥

L1
t (L

∞)
+ C

∥∥∇∂W
(
∇∇⊥∂1Λ

−4θ
)∥∥

L1
t (B

γ−1
∞,∞)

≤ C‖W‖L∞
t (L∞)‖θ‖L1

t (L
2) + C

ˆ t

0
‖∇W‖L∞

∥∥∇2∇⊥∂1Λ
−4θ

∥∥
Bγ−1

∞,∞
dτ

+ C
∥∥∂W

(
∇2∇⊥∂1Λ

−4θ
)∥∥

L1
t(B

γ−1
∞,∞)

≤ CeCEε(t) + C

ˆ t

0
‖W (τ)‖W 1,∞‖θ(τ)‖L2∩L∞dτ + C ‖∂W θ‖L1

t (B
γ−1
∞,∞) . (95)
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From the equation (90), we apply Lemma 2.4 and (53) to get that

‖∂W θ(t)‖Bγ−1
∞,∞

≤ eC
´ t
0
‖∇u‖L∞dτ ‖∂W0θ0‖Cγ−1 ≤ CeCEε(t). (96)

Therefore, taking advantages of (82), (84), (93)-(96) and the embedding Cγ+1 ⊂ Bγ′

∞,1 for all 1 <

γ′ < min{γ + 1, 2− 2
p}, we find

‖W (t)‖Cγ+1 + ‖∂WΓ‖
L1
t

(
Bγ′

∞,1

) + ‖∂W∇u‖L1
t (C

γ)

≤ CeCEε(t)

(
1 +

ˆ t

0
‖W (τ)‖Cγ+1

(
1 + ‖Γ(τ)‖

Bγ′

∞,1

+ ‖∇u(τ)‖Cγ

)
dτ

)
.

Together with the continuous embedding L̃1
t (B

2
p,∞) →֒ L1

t (B
γ′

∞,1), Grönwall’s inequality and the esti-

mates (53), (69) guarantee that

‖W‖L∞

T (C1+γ) + ‖∂WΓ‖
L1
T

(
Bγ′

∞,1

) + ‖∂W∇u‖L1
T (Cγ) ≤ CeCEε(T )

× exp
{
eCEε(T )

(
T + ‖Γ‖

L1
T (Bγ′

∞,1)
+ ‖∇u‖L1

T (Cγ)

)}

≤ Ceexp(CEε(T )) (97)

where C > 0 is independent of ε. This implies W ∈ L∞([0, T ], C1+γ(R2)) for all 0 < γ < 1 and
ε ∈ (0, 1].

(3) When α = 1 and D = T2, the proof is quite similar to the case α = 1 and D = R2. The only
difference lies on the use of Lemma 2.6 and Propositions 3.2, 3.3, thus by repeating the process in
the above by doing small modifications if necessary, we conclude that (97) holds with Eε(T ) replaced
by exp(CT ). Hence, we obtain that W ∈ L∞(0, T ;C1+γ(T2)) uniformly in ε for all 0 < γ < 1.

To sum-up, in terms of the notations (19)-(21), and using Propositions 3.2, 3.3, we have that for
α ∈ (12 , 1) and for all 0 < γ ≤ 2α− 1 < γ′ < min{1, 4α − 2− 2

p},
‖W‖

L∞

T (C1+γ,0
W ) + ‖∇u‖

L1
T (C

γ,1
W ) + ‖Γ‖

L1
T

(
Bγ′,1
W

) = ‖W‖L∞

T (C1+γ) + ‖(∇u, ∂W∇u)‖L1
T (Cγ)

+ ‖(Γ, ∂WΓ)‖
L1
T

(
Bγ′

∞,1

) (98)

≤ Ceexp exp(CT ),

whereas for α = 1 and for all 0 < γ < 1 < γ′ < min{γ + 1, 2 − 2
p},

‖W‖
L∞

T (C1+γ,0
W ) + ‖∇u‖

L1
T (C

γ,1
W ) + ‖Γ‖

L1
T

(
Bγ′,1
W

) ≤
{
Ceexp exp(CT ), for D = T2,

Ceexp(CEε(T )), for D = R2,
(99)

where C > 0 is independent of ε and Eε(t) is defined in (93). This completes the proof of Proposition
3.4. �

4. Persistence of the Ck+γ
boundary regularity with k ≥ 3

In this section, under the assumptions of Theorem 1.1, we want to prove that the regularity Ck+γ

of the boundary of initial patch temperature is preserved globally in time. More precisely, we want
to prove that ∂D(t) ∈ Ck+γ for all k ≥ 3 and for some 0 < γ ≤ 2α − 1 if α ∈ (12 , 1) and for some

γ ∈ (0, 1) if α = 1. In particular, the persistence of Ck+γ-boundary regularity is uniform with respect
to ε for the case that either {α ∈ (12 , 1)} or {D = T2, α = 1}.

Recall that the regularity of the boundary of the patch temperature ∂D(t) is closely related with
the striated regularity of the (tangential) vector field W = ∇⊥ϕ with ∇⊥ = (−∂2, ∂1)T . Indeed,
according to [8] (see also [43]), we have that that for k ≥ 3,

∂D(t) ∈ L∞([0, T ], Ck+γ) ⇐⇒
(
∂k−1
W W

)
(·, t) ∈ L∞ ([0, T ], Cγ(D)) ; (100)

and, in particular, to prove the uniform persistence of the Ck+γ regularity of the patch boundary it
suffices to prove (100) uniformly in ε.
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For this purpose, we shall prove that for all k ≥ 3, 1
2 < α < 1, 0 < γ ≤ 2α − 1 and γ′ such that

2α− 1 < γ′ < min
{
1, 4α − 2− 2

p , γ + 2α− 1
}
,

‖W‖
L∞

T

(
Cγ+1,k−2
W

) + ‖∇u‖
L1
T

(
Cγ,k−1
W

) + ‖Γ‖
L1
T

(
Bγ′,k−1
W

) ≤ Hk−1(T ); (101)

whereas for all k ≥ 3, α = 1, 0 < γ < 1, and 1 < γ′ < min
{
γ + 1, 2 − 2

p

}
,

‖W‖
L∞

T

(
Cγ+1,k−2
W

) + ‖∇u‖
L1
T

(
Cγ,k−1
W

) + ‖Γ‖
L1
T

(
Bγ′,k−1
W

) ≤
{
Hk−1(T ), for D = T2,

Hk−1(Eε(T )), for D = R2,
(102)

where Hk−1(T ) depends on T but is independent of ε and Hk−1(Eε(T )) depends on Eε(T ). If (101)
and (102) are proved then a direct consequence of these controls is that

∥∥∂k−1
W W

∥∥
L∞

T (Cγ)
=

∥∥W · ∇∂k−2
W W

∥∥
L∞

T (Cγ)
≤ C‖W‖L∞

T (Cγ)

∥∥∂k−2
W W

∥∥
L∞

T (Cγ+1)

≤ C‖W‖L∞

T (Cγ)‖W‖
L∞

T (Cγ+1,k−2
W )

<∞,

which corresponds to the desired result (100). Hence it suffices to prove that (101) and (102) hold.
In order to show the estimates (101) and (102), we apply the induction method.

First we deal with the estimate (101) where D is either R2 or T2. Assume that for some ℓ ∈
{1, . . . , k − 2}, we have

‖W‖
L∞

T

(
Cγ+1,ℓ−1
W

) + ‖∇u‖
L1
T

(
Cγ,ℓ
W

) + ‖Γ‖
L1
T

(
Bγ′,ℓ
W

) ≤ Hℓ(T ), (103)

we want to prove that it also holds for ℓ replaced by ℓ+ 1, that is,

‖W‖
L∞

T

(
Cγ+1,ℓ
W

) + ‖∇u‖
L1
T

(
Cγ,ℓ+1
W

) + ‖Γ‖
L1
T

(
Bγ′,ℓ+1
W

) ≤ Hℓ+1(T ). (104)

The inductive statement is true for ℓ = 1, as a matter of fact, one notices that (98) is nothing but
(103) with ℓ = 1, and also Lemma 2.2 and Lemmas 6.1, 6.2 can be applied with k = ℓ.

We first derive the estimation of the L∞
T

(
Cγ−1

)
-norm of ∂ℓW∇2W . In view of (81) and the fact

that [∂W , ∂t + u · ∇] = 0, we have

∂t
(
∂ℓW∇2W

)
+ u · ∇

(
∂ℓW∇2W

)
= ∂ℓ+1

W ∇2u+ 2∂ℓW
(
∇W · ∇2u

)
+ ∂ℓW

(
∇2W · ∇u

)

− ∂ℓW
(
∇2u · ∇W

)
− 2∂ℓW

(
∇u · ∇2W

)
.

(105)

Owing to Lemma 2.8, we find that for all γ ∈ (0, 2α − 1],

∥∥∂ℓW∇2W (t)
∥∥
Cγ−1 ≤ CeC

´ t
0 ‖∇u‖L∞dτ

(∥∥∂ℓW0
∇2W0

∥∥
Cγ−1 +

ˆ t

0

∥∥∂ℓ+1
W ∇2u(τ)

∥∥
Cγ−1dτ

+

ˆ t

0

∥∥∥
(
∂ℓW

(
∇2W · ∇u

)
, ∂ℓW

(
∇u · ∇2W

) )∥∥∥
Cγ−1

dτ

+

ˆ t

0

∥∥∥
(
∂ℓW

(
∇W · ∇2u

)
, ∂ℓW

(
∇2u · ∇W

))∥∥∥
Cγ−1

dτ

)
. (106)

Since ∂D0 ∈ Ck+γ(D) implying ϕ0 ∈ Ck+γ (D), and by repeatedly using (26), one can get

∥∥∂ℓW0
∇2W0

∥∥
Cγ−1 .‖W0‖L∞ ‖∇∂ℓ−1

W0
∇2W0‖Cγ−1

.‖W0‖W1,∞
‖∇∂ℓ−2

W0
∇2W0‖Cγ−1 + ‖∇2∂ℓ−2

W0
∇2W0‖Cγ−1

.‖W0‖Wℓ−1,∞
‖∇3W0‖Cγ−1 + · · ·+ ‖∇ℓ+2W0‖Cγ−1

.‖ϕ0‖Wℓ,∞
‖ϕ0‖Cℓ+2+γ .‖ϕ0‖Wk−2,∞

‖ϕ0‖Ck+γ .
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In view of Lemma 2.2 and the striated estimates (132), (140), (142), the last two integrals on the
right-hand side of (106) can be treated as follows:

ˆ t

0

∥∥∥
(
∂ℓW

(
∇W · ∇2u

)
, ∂ℓW

(
∇2u · ∇W

))∥∥∥
Cγ−1

dτ

≤ C

ˆ t

0

∥∥(∇W · ∇2u,∇2u · ∇W
)∥∥

Cγ−1,ℓ
W

dτ

≤ C

ˆ t

0
‖∇W‖

B0,ℓ
W

∥∥∇2u
∥∥
Cγ−1,ℓ
W

dτ ≤ C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖∇u(τ)‖

Cγ,ℓ
W

dτ,

and
ˆ t

0

∥∥∥
(
∂ℓW

(
∇2W · ∇u

)
, ∂ℓW

(
∇u · ∇2W

))∥∥∥
Cγ−1

dτ

≤ C

ˆ t

0

∥∥(∇2W · ∇u,∇u · ∇2W
)∥∥

Cγ−1,ℓ
W

dτ

≤ C

ˆ t

0

∥∥∇2W
∥∥
Cγ−1,ℓ
W

‖∇u‖
B0,ℓ
W
dτ ≤ C

ˆ t

0
‖W (τ)‖

Cγ+1,ℓ
W

‖∇u(τ)‖
Cγ,ℓ
W

dτ.

Now the main task is to control the second term on the right-hand side of (106), and it follows from
equality (17) that

∥∥∂ℓ+1
W ∇2u

∥∥
L1
t (C

γ−1)
≤

∥∥∂ℓ+1
W ∇2∇⊥Λ−2Γ

∥∥
L1
t (C

γ−1)
+

∥∥∂ℓ+1
W ∇2∇⊥∂1Λ

−2−2αθ
∥∥
L1
t (C

γ−1)

≤
∥∥∇2∇⊥Λ−2Γ

∥∥
L1
t

(
Cγ−1,ℓ+1
W

) +
∥∥∇2∇⊥∂1Λ

−2−2αθ
∥∥
L1
t

(
Cγ−1,ℓ+1
W

).
(107)

Taking advantage of (25) with s = γ − 1 and σ = 2− 2α, we get

∥∥∇2∇⊥∂1Λ
−2−2αθ

∥∥
L1
t

(
Cγ−1,ℓ+1
W

) ≤ C‖θ‖
L1
t

(
Cγ−2α+1,ℓ+1
W

) + C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖θ(τ)‖

Cγ−2α+1,ℓ
W

dτ.

Since ∂jW θ for all j ∈ {1, · · · , ℓ+ 1} satisfies

∂t(∂
j
W θ) + u · ∇(∂jW θ) = 0,

we use (40) and Lemma 2.4 to infer that for all γ ∈ (0, 2α − 1),

‖∂jW θ‖L∞
t (Cγ−(2α−1)) ≤ Ce

C‖∇u‖
L1
t (L

∞)‖∂jW0
θ0‖Cγ−(2α−1) ≤ Ceexp(Ct),

and for γ = 2α− 1,

‖∂jW θ‖L∞
t (B0

∞,∞) ≤ Ce
C‖∇u‖

L1
t (L

∞)‖∂jW0
θ0‖B0

∞,∞

≤ Ce
C‖∇u‖

L1
t (L

∞)‖∂jW0
θ0‖L∞ ≤ Ceexp(Ct).

Summing the above inequalities over j ∈ {1, · · · , ℓ+ 1} leads to that for all γ ∈ (0, 2α − 1],

‖θ‖
L∞
t

(
C
γ−(2α−1),ℓ+1
W

) ≤ Ceexp(Ct). (108)

Then, using (108) gives

‖∇2∇⊥∂1Λ
−2−2αθ‖

L1
t

(
Cγ−1,ℓ+1
W

) ≤ Ceexp(Ct) +Ceexp(Ct)

ˆ t

0
‖W (τ)‖

B1,ℓ
W
dτ. (109)

For the first term of the right-hand side of (107), we use (25) (with s = γ − 1, σ = 1) to deduce that

∥∥∇2∇⊥Λ−2Γ
∥∥
L1
t

(
Cγ−1,ℓ+1
W

) ≤ C‖Γ‖
L1
t

(
Cγ,ℓ+1
W

) + C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖Γ(τ)‖

Cγ,ℓ
W

dτ. (110)

In the following we consider the smoothing estimate of ∂ℓ+1
W Γ. From (16) and the fact

[
∂ℓ+1
W , ∂t + u · ∇

]
= 0,
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we see that

∂t
(
∂ℓ+1
W Γ

)
+ u · ∇

(
∂ℓ+1
W Γ

)
+

1

ε
Λ2α

(
∂ℓ+1
W Γ

)
=

1

ε

[
Λ2α, ∂ℓ+1

W

]
Γ + ∂ℓ+1

W

(
[R1−2α, u · ∇] θ

)

:= Fℓ+1,
(111)

where
[
Λ2α, ∂ℓ+1

W

]
Γ =

[
Λ2α, ∂W

]
∂ℓWΓ + ∂W

([
Λ2α, ∂ℓW

]
Γ
)
=

ℓ∑

j=0

∂jW
([
Λ2α, ∂W

]
∂ℓ−j
W Γ

)
. (112)

According to (44) in Lemma 2.9, we infer that for all 2α− 1 < γ′ < 1,
∥∥∂ℓ+1

W Γ
∥∥
L1
t

(
Bγ′

∞,1

) ≤
∥∥∥
(
2qγ

′∥∥∆q(∂
ℓ+1
W Γ)

∥∥
L1
t (L

∞)

)
q∈N

∥∥∥
ℓ1
+

∥∥∆−1(∂
ℓ+1
W Γ)

∥∥
L1
t (L

∞)

≤ CεeC
´ t
0
‖∇u(τ)‖L∞dτ

(∥∥∂ℓ+1
W0

Γ0

∥∥
Bγ′−2α

∞,1

+ ‖Fℓ+1‖L1
t

(
Bγ′−2α

∞,1

)
)

+
∥∥∆−1(∂

ℓ+1
W Γ)

∥∥
L1
t (L

∞)

≤ Ceexp(Ct)

(
ε
∥∥∂ℓ+1

W0
Γ0

∥∥
Bγ′−2α

∞,1

+
∥∥[Λ2α, ∂ℓ+1

W

]
Γ
∥∥
L1
t

(
Bγ′−2α

∞,1

)

+ ε
∥∥∂ℓ+1

W ([R1−2α, u · ∇] θ)
∥∥
L1
t

(
Bγ′−2α

∞,1

)
)

+C

ˆ t

0
‖W (τ)‖L∞‖∂ℓWΓ(τ)‖L∞dτ. (113)

Taking advantage of the relation Γ0 = ω0 −R1−2αθ0 and the equality
[
∇, ∂ℓ+1

W

]
f = [∇, ∂W ] ∂ℓW f + ∂W

(
[∇, ∂W ] ∂ℓ−1

W f
)
+ · · · + ∂ℓW

(
[∇, ∂W ] f

)

=

ℓ∑

j=0

∂jW
(
∇W · ∇∂ℓ−j

W f
)
, (114)

we apply Lemmas 2.2, 2.4 and the striated estimates (132), (140), (142) to deduce that
∥∥∂ℓ+1

W0
Γ0

∥∥
Bγ′−2α

∞,1

≤
∥∥∂ℓ+1

W0
∇u0

∥∥
Bγ′−2α

∞,1

+
∥∥∂ℓ+1

W0
R1−2αθ0

∥∥
Bγ′−2α

∞,1

≤ C
∥∥∇∂ℓ+1

W0
u0

∥∥
Bγ′−2α

∞,1

+ C

ℓ∑

j=0

∥∥∇W0 · ∇∂ℓ−j
W0

u0
∥∥
Bγ′−2α,j
W0

+ C
∥∥W0 · ∇R1−2αθ0

∥∥
Bγ′−2α,ℓ
W0

≤ C
∥∥∂ℓ+1

W0
u0

∥∥
W 1,p + C

ℓ∑

j=0

‖∇W0‖B0,j
W0

∥∥∇∂ℓ−j
W0

u0
∥∥
Bγ′−2α,j
W0

+ C ‖W0‖B0,ℓ
W0

‖∇R1−2αθ0‖Bγ′−2α,ℓ
W0

≤ C
∥∥∂ℓ+1

W0
u0

∥∥
W 1,p + C ‖W0‖B1,ℓ

W0

‖u0‖Bγ′−(2α−1),ℓ
W0

+ C ‖W0‖B0,ℓ
W0

(
1 + ‖W0‖B1,ℓ−1

W0

)
‖θ0‖Bγ′+2−4α,ℓ

W0

≤ C
(
1 + ‖W0‖B1,ℓ

W0

)( ℓ+1∑

j=0

∥∥∂jW0
u0

∥∥
W 1,p +

ℓ∑

j=0

∥∥∂jW0
θ0
∥∥
Bγ′+2−4α

∞,1

)
≤ C, (115)

where in the last three lines we have used the continuous embedding that

W 1,p →֒ Bγ′+3−4α
∞,1 →֒ Bγ′+1−2α

∞,1 , L∞ →֒ Bγ′+2−4α
∞,1 , Bγ−(2α−1)

∞,∞ →֒ Bγ′+2−4α
∞,1 ,

valid for all
0 < γ ≤ 2α− 1 < γ′ < min

{
1, γ + 2α − 1, 4α − 2− 2

p

}
.

For the commutator term
[
Λ2α, ∂ℓ+1

W

]
Γ given by (112), it follows from (24) (with s = γ′ − 2α,

σ = 2α), (132) and (140) that

∥∥[Λ2α, ∂ℓ+1
W

]
Γ
∥∥
L1
t (B

γ′−2α
∞,1 )

≤
ℓ∑

j=0

∥∥∂jW
(
[Λ2α,W · ∇]∂ℓ−j

W Γ
)∥∥

L1
t (B

γ′−2α
∞,1 )
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≤ C

ℓ∑

j=0

∥∥[Λ2α,W · ∇]∂ℓ−j
W Γ

∥∥
L1
t

(
Bγ′−2α,j
W

)

≤ C

ℓ∑

j=0

ˆ t

0

(
‖∇W (τ)‖

B0,j
W

+ ‖W (τ)‖L∞

)
‖∂ℓ−j

W Γ(τ)‖
Bγ′ ,j
W

dτ

≤ C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖Γ(τ)‖

Bγ′ ,ℓ
W

dτ, (116)

where C > 0 depends on ‖W‖
L∞

T (Cγ+1,ℓ−1
W )

which is bounded by Hℓ(T ). For the second term of Fℓ+1

in (113), by using the formula ∇ ([R1−2α, u · ∇] θ) = [∇R1−2α, u · ∇] θ − (∇u) · ∇R1−2αθ and (26),
we see that

ε
∥∥∂ℓ+1

W ([R1−2α, u · ∇] θ)
∥∥
L1
t

(
Bγ′−2α

∞,1

)

≤ Cε‖W‖L∞
t (L∞)

∥∥∇∂ℓW
(
[R1−2α, u · ∇] θ

)∥∥
L1
t

(
Bγ′−2α

∞,1

)

≤ Cε
∥∥∂ℓW ([∇R1−2α, u · ∇] θ)

∥∥
L1
t

(
Bγ′−2α

∞,1

) + Cε
∥∥∂ℓW (∇u · ∇R1−2αθ)

∥∥
L1
t

(
Bγ′−2α

∞,1

)

+Cε
∥∥[∇, ∂ℓW

]
([R1−2α, u · ∇] θ)

∥∥
L1
t

(
Bγ′−2α

∞,1

)

:= N1 +N2 +N3.

To estimate N1, we use (24) in Lemma 2.2, the induction assumption (103) together with the estimate

(108) (with the embedding Cγ−2α+1,ℓ+1
W →֒ Bγ′+2−4α,ℓ

W ), we find

N1 ≤ Cε ‖[∇R1−2α, u · ∇] θ‖
L1
t

(
Bγ′−2α,ℓ
W

)

≤ C
(
‖∇u‖

L1
t

(
B0,ℓ
W

) + ε‖u‖L1
t (L

∞)

)
‖θ‖

L∞
t

(
Bγ′+2−4α,ℓ
W

)

≤ C,

where in the last line we have used the following estimate (which is a consequence of (50) and (52))

ε‖u‖L1
t (L

∞) ≤ C

ˆ t

0
‖εu‖

1
2

L2‖ε∇u‖
1
2
L∞dτ ≤ C

(
‖εu‖L1

t (L
2) + ‖ε∇u‖L1

t (L
∞)

)
≤ C,

and C > 0 independent of ε depends on Hℓ(T ) with Hℓ(T ) ≥ Ceexp exp(CT ). By applying (23), (25),
(103) and (108), the second term N2 can be estimated as

N2 ≤ Cε ‖∇u · ∇R1−2αθ‖L1
t

(
Bγ′−2α,ℓ
W

)

≤ Cε‖∇u‖
L1
t

(
B0,ℓ
W

) ‖∇R1−2αθ‖L∞
t

(
Bγ′−2α,ℓ
W

)

≤ Cε‖∇u‖
L1
t

(
B0,ℓ
W

)
(
‖θ‖

L∞
t

(
Bγ′+2−4α,ℓ
W

) + ‖W‖
L∞
t

(
B1,ℓ−1
W

)‖θ‖
L∞
t

(
Bγ′+2−4α,ℓ−1
W

)
)

≤ C.

For N3, we use (114), (103), Lemma 2.2, together with the estimates of N1, N2, one obtains that

N3 ≤ ε
ℓ−1∑

i=0

∥∥∥∂iW
(
∇W · ∇∂ℓ−1−i

W [R1−2α, u · ∇] θ
)∥∥∥

L1
t

(
Bγ′−2α

∞,1

)

≤ Cε
ℓ−1∑

i=0

∥∥∥∇W · ∇∂ℓ−1−i
W [R1−2α, u · ∇] θ

∥∥∥
L1
t

(
Bγ′−2α,i
W

)

≤ Cε

ℓ−1∑

i=0

‖∇W‖
L∞
t (B0,i

W )

∥∥∥∇∂ℓ−1−i
W [R1−2α, u · ∇] θ

∥∥∥
L1
t

(
Bγ′−2α,i
W

)
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≤ Cε‖W‖
L∞
t

(
B1,ℓ−1
W

)
ℓ−1∑

i=0

∥∥∥∇∂ℓ−1−i
W [R1−2α, u · ∇] θ

∥∥∥
L1
t

(
Bγ′−2α,i
W

)

≤ Cε ‖∇ ([R1−2α, u · ∇] θ)‖
L1
t

(
Bγ′−2α,ℓ−1
W

) + Cε

ℓ−2∑

i=0

∥∥∥
[
∇, ∂ℓ−1−i

W

]
([R1−2α, u · ∇] θ)

∥∥∥
L1
t

(
Bγ′−2α,i
W

)

≤ C + Cε

ℓ−2∑

i=0

ℓ−2−i∑

j=0

∥∥∥∂jW
(
∇W · ∇∂ℓ−2−i−j

W ([R1−2α, u · ∇] θ)
)∥∥∥

L1
t

(
Bγ′−2α,i
W

)

≤ C + Cε
∑

0≤i+j≤ℓ−2

∥∥∥∇W · ∇∂ℓ−2−i−j
W ([R1−2α, u · ∇] θ)

∥∥∥
L1
t

(
Bγ′−2α,i+j
W

)

≤ C + Cε
∑

0≤i+j≤ℓ−2

∥∥∥∇∂ℓ−2−i−j
W ([R1−2α, u · ∇] θ)

∥∥∥
L1
t

(
Bγ′−2α,i+j
W

) ,

where C > 0 is independent of ε and depends on Hℓ(t) with Hℓ(T ) ≥ Hℓ−1(T ) ≥ Ceexp exp(CT ). By
repeating the above process and using (87) we end up with

N3 ≤ C + Cε ‖∇ ([R1−2α, u · ∇] θ)‖
L1
t

(
Bγ′−2α

∞,1

) ≤ C.

Hence, it follows from (110), (113), (115), (116) and the above estimates on N1-N3 that

‖Γ‖
L1
t

(
Bγ′,ℓ+1
W

) =
∥∥∂ℓ+1

W Γ
∥∥
L1
t

(
Bγ′

∞,1

) + ‖Γ‖
L1
t

(
Bγ′,ℓ
W

) ≤ C

(
1 +

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖Γ(τ)‖

Bγ′ ,ℓ
W

dτ

)
, (117)

and (recall that 0 < γ < γ′)

∥∥∇2∇⊥Λ−2Γ
∥∥
L1
t

(
Cγ−1,ℓ+1
W

) ≤ C + C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖Γ(τ)‖

Bγ′ ,ℓ
W

dτ. (118)

Then, using (106), (109) and (118), we find that for all (γ, γ′) such that

0 < γ ≤ 2α− 1 < γ′ < min
{
1, 4α − 2− 2

p , γ + 2α− 1
}
,

∥∥∂ℓW∇2W (t)
∥∥
Cγ−1 +

∥∥∂ℓ+1
W ∇2u

∥∥
L1
t (C

γ−1)
≤ C

ˆ t

0

(
‖Γ‖

Bγ′,ℓ
W

+ ‖∇u‖
Cγ,ℓ
W

+ 1
)
‖W‖

Cγ+1,ℓ
W

dτ + C,

(119)
where C > 0 is independent of ε and depends on Hℓ(T ) ≥ Ceexp exp (CT ). By using (112), (114) and
Lemma 2.2 and Lemma 6.2, we infer that

∥∥[∇2, ∂ℓW
]
W (t)

∥∥
Cγ−1 ≤

ℓ−1∑

j=0

∥∥∂jW
(
∇2W · ∇∂ℓ−1−j

W W
)∥∥

L∞
t (Cγ−1)

+ 2

ℓ−1∑

j=0

∥∥∂jW
(
∇W · ∇2∂ℓ−1−j

W W
)∥∥

L∞
t (Cγ−1)

≤
ℓ−1∑

j=0

∥∥∇2W · ∇∂ℓ−1−j
W W

∥∥
L∞
t

(
Cγ−1,j
W

) + 2

ℓ−1∑

j=0

∥∥∇W · ∇2∂ℓ−1−j
W W

∥∥
L∞
t

(
Cγ−1,j
W

)

≤ C

ℓ−1∑

j=0

(∥∥∇2W
∥∥
L∞
t (Cγ−1,j

W )

∥∥∇∂ℓ−1−j
W W

∥∥
L∞
t (B0,j

W )

+ ‖∇W‖
L∞
t (B0,j

W )

∥∥∇2∂ℓ−1−j
W W

∥∥
L∞
t

(
Cγ−1,j
W

)
)

≤ C‖W‖
L∞
t

(
Cγ+1,ℓ−1
W

)‖W‖
L∞
t

(
B1,ℓ−1
W

)
(
1 + ‖W‖

L∞
t (B1,ℓ−1

W )

)

≤ C,
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and

∥∥[∇, ∂ℓ+1
W

]
∇u

∥∥
L1
t (C

γ−1)
≤

ℓ∑

j=0

∥∥∂jW
(
∇W · ∇∂ℓ−j

W ∇u
)∥∥

L1
t (C

γ−1)

≤
ℓ∑

j=0

∥∥∇W · ∇∂ℓ−j
W ∇u

∥∥
L1
t

(
Cγ−1,j
W

)

≤ C

ℓ∑

j=0

ˆ t

0
‖∇W‖

B0,j
W

∥∥∇∂ℓ−j
W ∇u

∥∥
Cγ−1,j
W

dτ

≤ C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖∇u(τ)‖

Cγ,ℓ
W

dτ.

Consequently, taking advantage of the following estimates

‖W (t)‖
Cγ+1,ℓ
W

≤
∥∥∂ℓWW (t)

∥∥
Cγ+1 + ‖W (t)‖

Cγ+1,ℓ−1
W

≤ C
∥∥∇2∂ℓWW (t)

∥∥
Cγ−1 +

∥∥∆−1∂
ℓ
WW (t)

∥∥
L∞ + C

≤ C
∥∥∂ℓW∇2W (t)

∥∥
Cγ−1 +

∥∥[∇2, ∂ℓW
]
W (t)

∥∥
Cγ−1 + ‖W (t)‖L∞

∥∥∂ℓ−1
W W (t)

∥∥
L∞ + C

≤ C
∥∥∂ℓW∇2W (t)

∥∥
Cγ−1 + C,

and

‖∇u‖
L1
t

(
Cγ,ℓ+1
W

) ≤
∥∥∂ℓ+1

W ∇u
∥∥
L1
t (C

γ)
+ ‖∇u‖

L1
t

(
Cγ,ℓ
W

)

≤ C
∥∥∇∂ℓ+1

W ∇u
∥∥
L1
t (C

γ−1)
+

∥∥∆−1∂
ℓ+1
W ∇u

∥∥
L1
t (L

∞)
+ C

≤ C
∥∥∂ℓ+1

W ∇2u
∥∥
L1
t (C

γ−1)
+ C

∥∥[∇, ∂ℓ+1
W

]
∇u

∥∥
L1
t (C

γ−1)

+C‖W‖L∞
t (L∞)

∥∥∂ℓW∇u
∥∥
L1
t (L

∞)
+ C

≤ C
∥∥∂ℓ+1

W ∇2u
∥∥
L1
t (C

γ−1)
+ C

ˆ t

0
‖W (τ)‖

B1,ℓ
W
‖∇u(τ)‖

Cγ,ℓ
W

dτ + C,

and in combination with the estimates (117), (119), we deduce that for all 0 < γ ≤ 2α − 1 and
2α− 1 < γ′ < min

{
1, 4α − 2− 2

p , γ + 2α− 1
}
,

‖W (t)‖
Cγ+1,ℓ
W

+ ‖∇u‖
L1
t

(
Cγ,ℓ+1
W

) + ‖Γ‖
L1
t

(
Bγ′,ℓ+1
W

)

≤ C

ˆ t

0

(
‖Γ(τ)‖

Bγ′ ,ℓ
W

+ ‖∇u(τ)‖
Cγ,ℓ
W

+ 1
)
‖W (τ)‖

Cγ+1,ℓ
W

dτ + C,

where C > 0 depends on Hℓ(T ) but is independent of ε. Grönwall’s inequality and assumption (103)
guarantee that

‖W‖
L∞

T

(
Cγ+1,ℓ
W

) + ‖∇u‖
L1
T

(
Cγ,ℓ+1
W

) + ‖Γ‖
L1
T

(
Bγ′,ℓ+1
W

)

≤ C exp

{
C‖∇u‖

L1
T

(
Cγ,ℓ
W

) + C‖Γ‖
L1
T

(
Bγ′,ℓ
W

) + CT

}
≤ Hℓ+1(T ),

which corresponds to (104), as desired. Therefore, the estimate (101) is proved.

It remains to prove the estimate (102). One may follow the same steps as the proof of the estimate

(101) up to possibly minor modifications. The main issue is the estimate of ‖[∆, ∂ℓ+1
W ]Γ‖

L1
t (B

γ′−2
∞,1 )

but

it was already done in [7] (the notation must be adapted as γ′ used here corresponds to γ′ + 1). For
the proof of (102) in the case ε = 1 and D = R2 we also refer to [7]. Hence, the proof of Theorem
1.1 is completed.
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5. Infinite Prandtl number limit in the torus T2

This section is devoted to the proof of Theorem 1.2 concerning the passage to the limit when the
Prandtl number Pr goes to infinity. Before that, we present a general convergence result of the system
(Bα) without assuming the temperature patch structure.

Proposition 5.1. For each ε ∈ (0, 1], consider (uε, θε) a global regular solution of the Boussinesq-
Navier-Stokes system (Bα) defined on T2 for α ∈ (12 , 1] with uniformly bounded initial data (uε0, θ

ε
0) ∈

(H1 ×L∞)(T2), ∇ · uε0 = 0 and
´

T2 θ
ε
0dx = 0. We suppose that the initial data converge to (u0, θ0) ∈

(H1 × L∞)(T2) as ε→ 0.
Then, as ε → 0, up to extraction of a subsequence, (uε, θε) converges to a global unique weak

solution (u, θ) ∈ L∞([0, T ],H1(T2)) × L∞([0, T ] × T2) of the (fractional) Stokes-transport system
(STα) given by (3).

Remark 5.1. Concerning the existence and uniqueness of the global weak solution for the (fractional)
Stokes-transport system (3), one refers to the work [29] (see Corollary 7) for the case α = 1 and to
[14] (see Theorem 1.5) for the case α ∈

(
1
2 , 1

)
. Note that from the assumption we have

´

T2 θ0dx = 0,
which is the compatibility condition for the system (3).

Proof of Proposition 5.1. Since θ̂ε0(0) =
´

T2 θ
ε
0(x) dx = 0, from the equation verified by θ in (1) we

find
ˆ

T2

θε(x, t) dx =

ˆ

T2

θε0(x) dx = 0, ∀t > 0.

Integrating the evolution equation in u in (1) over the spatial variable gives

ε
d

dt

ˆ

T2

uε(x, t) dx =

ˆ

T2

θε(x, t)e2dx = 0, that is,

ˆ

T2

uε(x, t) dx =

ˆ

T2

uε0(x) dx.

Thanks to Poincaré’s inequality, one gets

‖uε(t)‖H1(T2) ≤ ‖∇uε(t)‖L2 +
∥∥∥uε(·, t) − 1

|T2|

ˆ

T2

uε(x, t)dx
∥∥∥
L2

+ C
∣∣∣
ˆ

T2

uε(x, t)dx
∣∣∣

≤ C ‖∇uε(t)‖L2(T2) + C
∣∣∣
ˆ

T2

uε0(x)dx
∣∣∣.

According to Propositions 3.1, 3.2, we have that uε is uniformly bounded in L∞
T (H1(T2)) and θε is

uniformly bounded in L∞
T (L∞(T2)). Thus, up to extraction of subsequences, we have the weak-∗

convergence, as ε→ 0,

uε ⇀∗ u, in L∞
T

(
H1(T2)

)
, (120)

θε ⇀∗ θ, in L∞
T

(
L∞(T2)

)
.

It follows from the lower semicontinuity of weak limit that u ∈ L∞
T (H1(T2)) and θ ∈ L∞

T (L∞(T2)).
From the equation ∂tθ

ε = −div (uε θε) and

‖div (uε θε)‖L∞

T (H−1) ≤ C‖uε θε‖L∞

T (L2) ≤ C‖uε‖L∞

T (L2)‖θε‖L∞

T (L∞) ≤ C,

we know that ∂tθ
ε is uniformly bounded in L∞

T (H−1(T2)). Since L2(T2) →֒ H− 1
2 (T2) is compact, we

use the Aubin-Lions lemma or the Rellich compactness theorem (see Lemma 2.10 or [42]) to infer the
strong convergence:

θε → θ, in C
(
[0, T ],H− 1

2 (T2)
)
. (121)

Now we can pass the limit to show that (u, θ) solves the (fractional) Stokes-transport system (3).
We only need to show the convergence of the nonlinear terms, since the linear ones can be dealt with
in a standard way. For all ζ ∈ S(T2 × [0, T ]), we have that as ε→ 0,

ε
∣∣∣
ˆ T

0

ˆ

T2

(
uε · ∇uε

)
ζdxdt

∣∣∣ ≤ ε‖uε‖L∞

T (L4)‖∇uε‖L∞

T (L2)‖ζ‖L1
T (L4) ≤ Cε‖uε‖2L∞

T (H1)‖ζ‖L1
T (L4) → 0,
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and
∣∣∣
ˆ T

0

ˆ

T2

div (uε θε) ζdxdt−
ˆ T

0

ˆ

T2

div (u θ) ζdxdt
∣∣∣

≤
∣∣∣
ˆ T

0

ˆ

T2

(uε − u) · ∇ζ θ dxdt
∣∣∣+

∣∣∣
ˆ T

0

ˆ

T2

uε · ∇ζ (θε − θ)dxdt
∣∣∣

≤
∣∣∣
ˆ T

0

ˆ

T2

(uε − u) · ∇ζ θ dxdt
∣∣∣+ ‖uε · ∇ζ‖

L1
T (H

1
2 )
‖θε − θ‖

L∞

T (H−
1
2 )

→ 0, (122)

where the convergence in (122) follows from (120), (121) and the estimate that

‖uε · ∇ζ‖
L1
T (H

1
2 )

≤ ‖uε · ∇ζ‖L1
T (H1) ≤ C‖uε‖L∞

T (H1)‖ζ‖L1
T (W 2,∞) ≤ C.

�

Corollary 5.1. Under the assumptation of Proposition 5.1, one can get θε and θ in Proposition 5.1
satisfies θε → θ in Lr

T (L
q(T2)) for all 1 ≤ q, r <∞.

Proof of Corollary 5.1. Since θε is uniformly bounded in L∞
T (L∞(T2)) and θ ∈ L∞

T (L∞(T2)), thanks
to the interpolation and embedding properties of Lebesgue spaces, we only need to show θε → θ in
L2
T (L

2(T2)). Since (u, θ) ∈ L∞([0, T ],H1(T2))× L∞([0, T ] × T2) is a global unique weak solution of
the (fractional) Stokes-transport system (3), one gets ‖θ‖L2(T2) = ‖θ0‖L2(T2) and ‖θ‖L2([0,T ]×T2) =

T 1/2‖θ0‖L2(T2). Similarly we have ‖θε‖L2([0,T ]×T2) = T 1/2‖θε0‖L2(T2). Since θε0 converges to θ0 in

L∞(T2) ⊂ L2(T2), one finds that ‖θε‖L2([0,T ]×T2) converges to ‖θ‖L2([0,T ]×T2) as ε → 0. Taking

advantages of θε ⇀ θ in L2([0, T ] × T2), one gets that θε → θ in L2
T (L

2(T2)). �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let Xε
t be the particle-trajectory generated by the velocity uε, that is, Xε

t

solves

d

dt
Xε

t (y) = uε
(
Xε

t (y), t
)
, Xε

t (y)|t=0 = y. (123)

Denote by Xε,−1
t the inverse map of Xε

t , then Xε,−1
t satisfies

Xε,−1
t (x) = x−

ˆ t

0
uε
(
τ,Xε

τ ◦Xε,−1
t (x)

)
dτ. (124)

Thanks to Proposition 3.3, we have the following uniform estimates, ∇uε ∈ L1
T (C

2α−1(T2)) for

α ∈ (12 , 1) and ∇uε ∈ L1
T (B

1
∞,∞(T2)) for α = 1. Since

ûε(0, t) =

ˆ

T2

uε(x, t)dx =

ˆ

T2

uε0(x)dx ≤ C0‖uε0‖L2

for all t ∈ [0, T ], we get that uε ∈ L1
T (C

2α(T2)) uniformly in ε if α ∈ (12 , 1) and uε ∈ L1
T (C

1+γ(T2)),
for all γ ∈ (0, 1) uniformly in ε if α = 1. Therefore, using (11) we find that the system (123) has a
unique solution Xε

t (·) : T2 → T2 on [0, T ] which is a measure-preserving homeomorphism satisfying

that Xε
t and its inverse Xε,−1

t belong to L∞
T (C2α(T2)) if α ∈ (12 , 1) and belong to L∞

T (C1+γ(T2)),
γ ∈ (0, 1) if α = 1. Besides, from the equation of θ in (1), it holds that

θε(x, t) = θ̄0
(
Xε,−1

t (x)
)
1Dε(t)(x), with Dε(t) = Xε

t (D0). (125)

By using the equations (123) and (124), we also know that ∂tX
ε,±1
t ∈ L∞

T (H1(T2)) uniformly in ε,

thus Aubin-Lions lemma guarantees that there exist Xt(·) : T2 → T2 and its inverse X−1
t (·) : T2 → T2

such that, as ε→ 0 and up to the extraction of a subsequence,

Xε,±1
t → X±1

t , in C
(
[0, T ];C1+γ̃(T2)

)
, γ̃ ∈ (0, 2α − 1).

Moreover, Xt(·) is a measure-preserving homeomorphism that solves the limit equation (2) in the sense
of distribution, and also X±1

t ∈ L∞
T (C2α(T2)) if α ∈ (12 , 1) and X±1

t ∈ L∞
T (C1+γ(T2)), ∀γ ∈ (0, 1)
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if α = 1. Passing to the limit in (125), we recover that θ(x, t) which solves the first equation in (3)
satisfies

θ(x, t) = θ̄0
(
X−1

t (x)
)
1D(t)(x), with D(t) = Xt(D0).

If k = 1, the regularity of X±1
t implies the global persistence of the regularity C1+γ of ∂D(t), that

is, (13) with k = 1 holds. If k ≥ 2, then recalling that ϕ0(x) ∈ Ck+γ(T2) satisfying (6) is the
level-set characterization of D0, we have that the domain Dε(t) can be characterized by ϕε(x, t) =

ϕ0

(
Xε,−1

t (x)
)

satisfying that

∂tϕ
ε + uε · ∇ϕε = 0, ϕε|t=0(x) = ϕ0(x).

Since ϕε is bounded in L∞
T (C2+γ(T2)) (see (98) and (99)) and uε is controlled in L∞

T (H1(T2)), one
gets that ∂tϕ

ε belongs to L∞
T (H1(T2)) uniformly in ε. Since C2+γ(T2) →֒ C2+γ1(T2) (γ1 < γ) is

compact, Lemma 2.10 yields that, up to the extraction of a subsequence,

ϕε → ϕ, in C
(
[0, T ], C2+γ1(T2)

)
, 0 < γ1 < γ. (126)

By letting ε→ 0 in the equation of ϕε, we find that ϕ(x, t) = ϕ0(X
−1
t (x)) is the level-set characteri-

zation of the domain D(t) and it solves the equation (in the sense of distribution)

∂tϕ+ u · ∇ϕ = 0, ϕ|t=0(x) = ϕ(x).

Besides, it follows from the weak-∗ limit of ϕε that ϕ ∈ L∞
T (C2+γ(T2)), and this proves that the

global persistence of the C2+γ regularity of ∂D(t).

For the case k > 2, in light of (100) and (102), we have ∂k−1
W ε W ε ∈ L∞

T (Cγ(T2)) uniformly in ε,

with W ε := ∇⊥ϕε. From the equation (80) and the fact that [∂W ε , ∂t + uε · ∇] = 0, we get

∂t
(
∂k−1
W ε W

ε
)
+ uε · ∇

(
∂k−1
W ε W

ε
)
= ∂k−1

W ε

(
W ε · ∇uε

)
.

The uniform estimates (100) and (102) together with (26) and the striated estimate (23) imply that

‖uε · ∇∂k−1
W ε W

ε‖L1
T (Cγ−1) ≤ C‖uε‖L1

T (L∞)‖∂k−1
W ε W

ε‖L∞

T (Cγ) ≤ C,

and

‖∂k−1
W ε (W

ε · ∇uε)‖L1
T (Cγ−1) ≤ ‖W ε · ∇uε‖

L1
T (Cγ−1,k−1

Wε )
≤ C‖W ε‖

L∞

T (B0,k−1
Wε )

‖∇uε‖
L1
T (Cγ−1,k−1

Wε )
≤ C,

where C > 0 is independent of ε, thus it follows that ∂t
(
∂k−1
W ε W ε

)
∈ L1

T (C
γ−1(T2)) uniformly in ε.

Using the Aubin-Lions lemma ensures that, up to an extraction of a subsequence,

∂k−1
W ε W

ε → fk, in L2([0, T ], Cγ2(T2)), 0 < γ2 < γ. (127)

We claim that fk = ∂k−1
W W with W := ∇⊥ϕ. Indeed, if k = 3, it follows from (126) that f3 = ∂2WW .

Now assume that fℓ = ∂ℓ−1
W W for each ℓ ∈ {3, · · · , k − 1}, we shall show that fℓ+1 = ∂ℓWW . Noting

that by using (126) and (127), we find that for all ζ ∈ S(T2 × [0, T ]),

ˆ T

0

ˆ

T2

(
∂ℓW εW ε

)
ζ dxdt = −

ˆ T

0

ˆ

T2

(
∂ℓ−1
W ε W

ε
) (
∂W εζ

)
dxdt

→ −
ˆ T

0

ˆ

T2

fℓ
(
∂W ζ

)
dxdt =

ˆ T

0

ˆ

T2

(∂W fℓ) ζ dxdt,

and it follows from the uniqueness of the limit that fℓ+1 = ∂W fℓ = ∂ℓWW . Thus the induction method

ensures that fk = ∂k−1
W W , as desired.

Furthermore, the weak-∗ limit of ∂k−1
W ε W ε implies that ∂k−1

W W ∈ L∞
T (Cγ(T2)). In combination with

(100), this shows the global persistence of Ck+γ regularity of the boundary patch ∂D(t). Therefore,
the proof of Theorem 1.2 is finished. �
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6. Proof of Lemma 2.2: striated estimates

Let us denote

Rq (α1, . . . , αm) :=

ˆ

[0,1]m

ˆ

Rd

m∏

i=1

αi

(
x+ fi(τ)2

−qy
)
h(τ, y) dydτ,

where q ∈ N, h ∈ C
(
[0, 1]m;S

(
Rd

))
, fi ∈ L∞ ([0, 1]m) for all τ ∈ (0, 1)m. Note that when fi ≡ 0 and

´

Rd h(τ, y)dy = 1, the identity becomes Rq (α1, . . . , αm) =
m∏
i=1

αi(x).

First we recall the following important result whose proof can be found [7].

Lemma 6.1. Let (k,N) ∈ Z+×Z+, ρ ∈ (0, 1), and W = {Wi}1≤i≤N be a set of regular divergence-free

vector fields of Rd satisfying that

‖W‖
C̃1+ρ,k−1
W

:=

k−1∑

λ=0

∥∥ (TW·∇)
λ W

∥∥
C1+ρ <∞. (128)

Let αi (i = 1, . . . ,m) be such that supp α̂i ⊂ B (0, Ci2
q), Ci ≥ 1, and let ψ be a smooth function with

compact support in a ball. Then, we have that for all s ∈ R, (p, r) ∈ [1,∞]2 and ℓ ∈ {0, 1, . . . , k},
∥∥(TW·∇)

ℓRq (α1, . . . , αm)
∥∥
Lp ≤ C min

1≤i≤m

( ∑

|µ|≤ℓ

‖(TW·∇)
µi αi‖Lp

∏

1≤j≤m,j 6=i

‖(TW·∇)
µj αj‖L∞

)
,

(129)

with µ = (µ1, . . . , µm) and |µ| = µ1 + · · · + µm, and

∥∥(TW·∇)
ℓψ

(
2−qD

)
φ
∥∥
Lp ≤ C

ℓ∑

λ=0

∥∥(TW·∇)
λφ

∥∥
Lp , (130)

and
∥∥∥
(
2qs

∥∥ (TW·∇)
ℓ∆qφ

∥∥
Lp

)
q≥−1

∥∥∥
ℓr
+

∥∥∥
(
2q(s−1)

∥∥ (TW·∇)
ℓ∇∆qφ

∥∥
Lp

)
q≥−1

∥∥∥
ℓr

≤ C‖φ‖
B̃s,ℓ
p,r,W

, (131)

and

‖∇φ‖
B̃s,ℓ
p,r,W

≤ C‖φ‖
B̃s+1,ℓ
p,r,W

. (132)

In the above the positive constant C depends on ‖W‖
C̃1+ρ,k−1
W

.

Based on Lemma 6.1, we obtain the following useful striated estimates.

Lemma 6.2. Let W = {Wi}1≤i≤N be a set of regular divergence-free vector fields of Rd satisfying

(128) with (k,N) ∈ Z+×Z+, ρ ∈ (0, 1). Let m(D) := Λσm0(D), σ > −1, and m0(D) be a zero-order
pseudo-differential operator with m0(ξ) ∈ C∞

(
Rd\{0}

)
. Then, there exists a positive constant C

depending on ‖W‖
C̃1+ρ,k−1
W

such that the following statements hold for all ℓ ∈ {0, 1, . . . , k}.
(i) We have that for all q ≥ −1,

∥∥∆q (TW·∇)
ℓ∇m(D)φ

∥∥
Lp ≤ C

ℓ∑

λ=0

2q(1+σ)
∥∥(TW·∇)

λφ
∥∥
Lp , (133)

and for all q ∈ N,

2q
∥∥(TW·∇)

ℓ∆qφ
∥∥
Lp ≤ C

∑

q1∈N,|q1−q|≤Nℓ

ℓ∑

λ=0

∥∥(TW·∇)
λ∆q1∇φ

∥∥
Lp , (134)

with Nℓ ∈ N depending only on ℓ.
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(ii) For all s < 0, we have

‖Tvw‖B̃s,ℓ
p,r,W

≤ Cmin

{ ℓ∑

µ=0

‖v‖
B̃0,µ
W

‖w‖
B̃s,ℓ−µ
p,r,W

,
ℓ∑

µ=0

‖v‖
B̃s,µ
p,r,W

‖w‖
B̃0,ℓ−µ
W

}
, (135)

and

‖Tvw‖B̃0,ℓ
p,r,W

≤ C

ℓ∑

µ=0

‖v‖B̃0,µ
W

‖w‖
B̃0,ℓ−µ
p,r,W

. (136)

While for all s < 1,

‖T∇wv‖B̃s,ℓ
p,r,W

≤ C

ℓ∑

µ=0

‖w‖C̃s,µ
W

‖v‖
B̃1,ℓ−µ
p,r,W

, (137)

and for all s ∈ R,

‖T∇wv‖B̃s,ℓ
p,r,W

≤ C

ℓ∑

µ=0

‖∇w‖B̃0,µ
W

‖v‖
B̃s,ℓ−µ
p,r,W

. (138)

(iii) Assume that v is a divergence-free vector field of Rd, then we have that for all s > −1,

‖R(v·,∇w)‖
B̃s,ℓ
p,r,W

. min

{ ℓ∑

µ=0

‖v‖
B̃0,µ
W

‖∇w‖
B̃s,ℓ−µ
p,r,W

,
ℓ∑

µ=0

‖v‖
B̃s,µ
p,r,W

‖∇w‖
B̃0,ℓ−µ
W

,
ℓ∑

µ=0

‖v‖
B̃1,µ
W

‖w‖
B̃s,ℓ−µ
p,r,W

}
.

(139)
(iv) We have that

‖φ‖
Bs,ℓ
p,r,W

≤ C‖φ‖
B̃s,ℓ
p,r,W

≤ C‖φ‖
Bs,ℓ
p,r,W

, ∀ s ∈ (−1, 1), (140)

‖φ‖
B1,ℓ
W

≤ C‖φ‖
B̃1,ℓ
W

≤ C‖φ‖
B1,ℓ
W

, (141)

‖W‖
B̃s,ℓ
p,r,W

≤ C‖W‖
Bs,ℓ
p,r,W

, ∀ s > −1, (142)

and,
‖φ‖

B̃s,ℓ
p,r,W

≤ C‖φ‖
Bs,ℓ
p,r,W

+ C‖φ‖
B1,ℓ
W

‖W‖
Bs,ℓ
p,r,W

, ∀ s ≥ 1. (143)

Proof of Lemma 6.2. The only statement which needs to be proved is (133) since the other estimates
are the same as Lemma 5.2 in [7]. We prove it via the induction method. We first remark that (133)
for ℓ = 0 is true: this follows from Lemma 2.5. Assume that it holds for all ℓ′ ∈ {0, · · · , ℓ} with some
ℓ ∈ {0, 1, · · · , k − 1}, we want to prove that (133) is true at the rank (ℓ + 1). Similarly as (30), we
notice that

(TW·∇)∇m(D)f = −
[
∇m(D), TW·∇

]
f +∇m(D) (TW·∇) f

= −
∑

q1∈N

[
∇m(D), Sq1−1W ·∇

]
∆q1f +∇m(D) (TW·∇) f

= −
∑

q1∈N

[
∇m(D)ψ̃

(
2−q1D

)
, Sq1−1W · ∇

]
∆q1f +∇m(D) (TW·∇) f,

and [
∇m(D)ψ̃

(
2−q1D

)
, Sq1−1W · ∇

]
∆q1f

= 2q1(d+1+σ)

ˆ

Rd

h̃1(2
q1y)

(
Sq1−1W(x− y)− Sq1−1W(x)

)
· ∇∆q1f(x− y)dy

= 2q1(1+σ)

ˆ

Rd

h̃1(y)
(
Sq1−1W

(
x− 2−q1y

)
− Sq1−1W(x)

)
· ∇∆q1f

(
x− 2−q1y

)
dy

= −2q1σ
ˆ 1

0

ˆ

Rd

h̃1(y)y · ∇Sq1−1W
(
x− τ2−q1y

)
· ∇∆q1f

(
x− 2−q1y

)
dy dτ,
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with h̃1 := F−1(iξm(ξ)ψ̃(ξ)) ∈ S(Rd). Thus by using the induction assumption together with
Lemma 6.1, we infer that for all q ≥ −1,
∥∥∆q (TW·∇)

ℓ+1 ∇m(D)φ
∥∥
Lp ≤

∥∥∆q (TW·∇)
ℓ ([∇m(D), TW·∇]φ)

∥∥
Lp +

∥∥∆q (TW·∇)
ℓ∇m(D) (TW·∇)φ

∥∥
Lp

.
∑

q1∈N,q1∼q

∑

µ1+µ2≤ℓ

2q1σ
∥∥(TW·∇)

µ1Sq1−1∇W
∥∥
L∞

∥∥(TW·∇)
µ2∇∆q1φ

∥∥
Lp

+ 2q(1+σ)
ℓ∑

λ=0

∥∥(TW·∇)
λ+1φ

∥∥
Lp

.

ℓ∑

λ=0

2q(1+σ)
∥∥(TW·∇)

λφ
∥∥
Lp +

ℓ+1∑

λ=1

2q(1+σ)
∥∥(TW·∇)

λφ
∥∥
Lp

.

ℓ+1∑

λ=0

2q(1+σ)
∥∥(TW·∇)

λφ
∥∥
Lp ,

where in the last line we have used (130) and the following estimate

‖(TW·∇)
µ1 ∇Sq1−1W‖L∞ ≤

q1−1∑

q2=−1

2−q2ρ
(
2q2ρ ‖(TW·∇)

µ1 ∆q2∇W‖L∞

)

≤ C‖∇W‖C̃ρ,µ1
W

≤ C‖W‖
C̃
1+ρ,µ1
W

<∞.

Hence, by induction, we have proved (133) which is the wanted control. �

Then, we turn to the proof of Lemma 2.2.

Proof of Lemma 2.2. Since (23) was already proved in Lemma 2.4 in [7], we only need to prove
statements (ii) and (iii). We shall prove (24) and (25) again by induction on the index k. For k = 0,
(24) follows directly from (28), while (25) follows from (29) together with the estimate

‖m(D)φ‖Bs
p,r

≤ C‖∆−1m(D)φ‖Lp + C
∥∥(2js‖∆jm(D)φ‖Lp

)
j∈N

∥∥
ℓr

≤ C‖∆−1m(D)φ‖Lp + C
∥∥(2j(s+σ)‖∆jφ‖Lp

)
j∈N

∥∥
ℓr

≤ C1{−1<σ≤0}‖∆−1m(D)φ‖Lp + C‖φ‖Bs+σ
p,r

, (144)

where C > 0 is a universal constant (the norm ‖W‖
C1+ρ,k−1
W

plays no role).

Assume that (24) and (25) holds for ℓ ∈ {0, 1, . . . , k−1} (where k = 0 when ℓ = 0 ) with ℓ in place
of the k-index, we intend to prove that they also hold for the ℓ+ 1 case. For the estimation of (24),
thanks to Bony’s decomposition, we have

[m(D), u · ∇]φ =
∑

j∈N

[m(D), Sj−1u · ∇]∆jφ+
∑

j∈N

[m(D),∆ju · ∇]Sj−1φ

+
∑

j≥3

m(D) div
(
∆ju∆̃jφ

)
−

∑

j≥3

div
(
∆ju m(D)∆̃jφ

)

+
∑

−1≤j≤2

[m(D),∆ju · ∇] ∆̃jφ

:=

5∑

j=1

Ij .

It follows from (140) that

‖[m(D), u · ∇]φ‖
Bs,ℓ+1
p,r,W

≤ C
∥∥(I1, I2, I3, I4, I5

)∥∥
B̃s,ℓ+1
p,r,W

.
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For I1, noticing that m(D)ψ̃
(
2−jD

)
= 2j(d+σ)h̃

(
2j ·

)
∗ with h̃ := F−1(mψ̃) ∈ S

(
Rd

)
, and

[
m(D), Sj−1u·∇

]
∆jφ(x) =

[
m(D)ψ̃

(
2−jD

)
, Sj−1u ·

]
∇∆jφ(x)

= 2jσ
ˆ

Rd

h̃(y)
(
Sj−1u

(
x− 2−jy

)
− Sj−1u(x)

)
· ∇∆jφ

(
x− 2−jy

)
dy

= −2j(σ−1)

ˆ 1

0

ˆ

Rd

h̃(y)y · ∇Sj−1u
(
x− τ2−jy

)
· ∇∆jφ

(
x− 2−jy

)
dydτ,

we apply Lemma 6.1 and Lemma 6.2 to obtain that for all λ ∈ {0, 1, . . . , ℓ+ 1},

2qs
∥∥∆q (TW·∇)

λ I1
∥∥
Lp . 2qs

∑

j∈N,j∼q

∥∥∥∆q(TW·∇)
λ
([
m(D)ψ̃

(
2−jD

)
, Sj−1u · ∇

]
∆jφ

)∥∥∥
Lp

. 2qs
∑

j∈N,j∼q

∑

λ1+λ2≤λ

2j(σ−1)
∥∥ (TW·∇)

λ1 ∇Sj−1u
∥∥
L∞

∥∥ (TW·∇)
λ2 ∇∆jφ

∥∥
Lp

.
∑

j∈N,j∼q

∑

λ1+λ2≤λ

( ∑

j′≤j−1

∥∥ (TW·∇)
λ1 ∇∆j′u

∥∥
L∞

)
2j(σ+s−1)

∥∥(TW·∇)
λ2∆j∇φ

∥∥
Lp

. cq

ℓ+1∑

λ1=0

‖∇u‖
B̃
0,λ1
W

‖∇φ‖
B̃
σ−1+s,ℓ+1−λ1
p,r,W

. cq

ℓ+1∑

λ1=0

‖∇u‖
B̃
0,λ1
W

‖φ‖
B̃
s+σ,ℓ+1−λ1
p,r,W

. ‖∇u‖
B0,ℓ+1
W

‖φ‖
Bs+σ,ℓ+1
p,r,W

,

with {cq}q≥−1 satisfying ‖cq‖ℓr = 1. It immediately leads to

‖I1‖B̃s,ℓ+1
p,r,W

≤ C‖∇u‖
B0,ℓ+1
W

‖φ‖
Bσ+s,ℓ+1
p,r,W

.

Then, we use the strategy as the proof of (30), that is, we decompose I2 as

I2 =
∑

j∈N

m(D)ψ̃(2−jD)
(
∆ju · ∇Sj−1φ

)
−

∑

j∈N

∆ju · ∇m(D)Sj−1φ := I2,1 + I2,2.

For I2,1, by using the induction assumptions and taking advantages of (129), (132), (134) and (140),
we find that for all λ ∈ {0, 1, . . . , ℓ+ 1},

2qs
∥∥∆q (TW·∇)

λ I2,1
∥∥
Lp . 2qs

∑

j∈N,j∼q

∥∥∥∆q (TW·∇)
λm(D)ψ̃(2−jD)(∆ju · ∇Sj−1φ)

∥∥∥
Lp

. 2qs
∑

j∈N,j∼q

λ∑

λ1=0

2jσ
∥∥(TW·∇)

λ1(∆ju · ∇Sj−1φ)
∥∥
Lp

.
∑

j∈N,j∼q

∑

λ2+λ3≤λ

2j(s+σ)
∥∥(TW·∇)

λ2∆ju
∥∥
L∞

∥∥(TW·∇)
λ3∇Sj−1φ

∥∥
Lp

.
∑

j∈N,j∼q

∑

λ2+λ3≤λ

2j(s+σ−1)

( ∑

q1∈N,q1∼j

λ2∑

λ4=0

∥∥(TW·∇)
λ4∆q1∇u

∥∥
L∞

)

×
( ∑

j′≤j−1

∥∥(TW·∇)
λ3∇∆j′φ

∥∥
Lp

)

.
∑

j∈N,j∼q

∑

λ4+λ3≤λ

‖∇u‖
B̃
0,λ4
W

∑

j′<j−1

2(j−j′)(s+σ−1)2j
′(s+σ−1)

∥∥(TW·∇)
λ3∇∆j′φ

∥∥
Lp

. cq‖∇u‖B̃0,ℓ+1
W

λ∑

λ3=0

‖∇φ‖
B̃
σ−1+s,λ3
p,r,W
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. cq‖∇u‖B̃0,ℓ+1
W

‖φ‖
B̃σ+s,ℓ+1
p,r,W

. cq‖∇u‖B0,ℓ+1
W

‖φ‖
Bσ+s,ℓ+1
p,r,W

,

and

2qs
∥∥∆q (TW·∇)

λ I2,2
∥∥
Lp . 2qs

∑

j∈N,j∼q

∥∥∆q (TW·∇)
λ (∆ju · ∇m(D)Sj−1φ

)∥∥
Lp

. 2qs
∑

j∈N,j∼q

∑

λ1+λ2≤λ

∥∥(TW·∇)
λ1∆ju

∥∥
L∞

∥∥(TW·∇)
λ2∇m(D)Sj−1φ

∥∥
Lp

.
∑

j∈N,j∼q

∑

λ1+λ2≤λ

2j(s−1)

( ∑

q1∈N,q1∼j

λ1∑

λ3=0

∥∥(TW·∇)
λ3∆q1∇u

∥∥
L∞

)
×

(∥∥(TW·∇)
λ2∇m(D)∆−1φ

∥∥
Lp +

∑

0≤j′≤j−1

∥∥(TW·∇)
λ2∇m(D)∆j′φ

∥∥
Lp

)

.
∑

j∈N,j∼q

∑

λ2+λ3≤λ

‖∇u‖
B̃
0,λ3
W

2j(s−1)

(
‖∇m(D)∆−1φ‖Lp

+
∑

0≤j′≤j−1

λ2∑

λ4=0

2j
′(1+σ)

∥∥(TW·∇)
λ4∆j′φ

∥∥
Lp

)

. ‖∇u‖
B̃0,ℓ+1
W

×
∑

j∈N,j∼q

2j(s−1)

(
‖∆−1φ‖Lp +

λ∑

λ4=0

∑

0≤j′≤j−1

2j
′(1−s)2j

′(s+σ)
∥∥(TW·∇)

λ4∆j′φ
∥∥
Lp

)

. cq‖∇u‖B̃0,ℓ+1
W

λ∑

λ2=0

‖φ‖
B̃
s+σ,λ2
p,r,W

. cq‖∇u‖B̃0,ℓ+1
W

‖φ‖
B̃s+σ,ℓ+1
p,r,W

. cq‖∇u‖B0,ℓ+1
W

‖φ‖
Bs+σ,ℓ+1
p,r,W

where {cq}q≥−1 satisfies ‖cq‖ℓr = 1. Then the above estimates readily give

‖I2‖B̃s,ℓ+1
p,r,W

≤ C‖∇u‖
B0,ℓ+1
W

‖φ‖
Bs+σ,ℓ+1
p,r,W

.

For I3, by applying Lemma 6.1 and Lemma 6.2, we find that for all λ ∈ {0, 1, . . . , ℓ+ 1},

2qs
∥∥∆q (TW·∇)

λ I3
∥∥
Lp . 2qs

∑

j≥max{3,q−Nλ}

∥∥∥∆q (TW·∇)
λ∇m(D)

(
∆ju∆̃jφ

)∥∥∥
Lp

. 2q(1+s+σ)
λ∑

λ1=0

( ∑

j≥max{3,q−Nλ}

∥∥(TW·∇)
λ1
(
∆ju ∆̃jφ

)∥∥
Lp

)

. 2q(1+s+σ)
∑

j≥max{3,q−Nλ}

∑

λ2+λ3≤λ

∥∥(TW·∇)
λ2∆ju

∥∥
L∞

∥∥(TW·∇)
λ3∆̃jφ

∥∥
Lp

.
∑

λ2+λ3≤ℓ+1

∑

j≥max{3,q−Nλ}

2(q−j)(1+s+σ)2j
∥∥(TW·∇)

λ2∆ju
∥∥
L∞

× 2j(σ+s)
∥∥(TW·∇)

λ3∆̃jφ
∥∥
Lp

.

ℓ+1∑

λ2=0

∑

j≥max{3,q−Nλ}

2(q−j)(1+s+σ)

( ∑

j1∼j

λ2∑

λ4=0

∥∥(TW·∇)
λ4∆j1∇u

∥∥
L∞

)

× ‖φ‖
B̃σ+s,ℓ+1
p,∞,W
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. cq‖∇u‖B̃0,ℓ+1
W

‖φ‖
B̃σ+s,ℓ+1
p,r,W

. cq‖∇u‖B0,ℓ+1
W

‖φ‖
Bσ+s,ℓ+1
p,r,W

,

which guarantees that

‖I3‖B̃σ+s,ℓ+1
p,r,W

≤ C‖∇u‖
B0,ℓ+1
W

‖φ‖
Bσ+s,ℓ+1
p,r,W

.

For I4, similarly as above, we infer that for each λ ∈ {0, 1, . . . , ℓ+ 1},

2qs
∥∥∆q (TW·∇)

λ I4
∥∥
Lp . 2qs

∑

j≥max{3,q−Nλ}

∥∥∥∆q (TW·∇)
λ div

(
∆ju∆̃jm(D)φ

)∥∥∥
Lp

. 2q(1+s)
λ∑

λ1=0

∑

j≥max{3,q−Nλ}

∥∥(TW·∇)
λ1
(
∆ju ∆̃jm(D)φ

)∥∥
Lp

. 2q(1+s)
∑

j≥max{3,q−Nλ}

∑

λ2+λ3≤λ

∥∥(TW·∇)
λ2∆ju

∥∥
L∞

∥∥(TW·∇)
λ3∆̃jm(D)φ

∥∥
Lp

.
∑

λ2+λ3≤ℓ+1

∑

j≥max{3,q−Nλ}

2(q−j)(1+s)2j
∥∥(TW·∇)

λ2∆ju
∥∥
L∞

×
(
2j(s+σ)

λ3∑

λ4=0

∥∥(TW·∇)
λ4∆̃jφ

∥∥
Lp

)

.

ℓ+1∑

λ2=0

∑

j≥max{3,q−Nλ}

2(q−j)(1+s)

( ∑

j1∼j

λ2∑

λ5=0

∥∥(TW·∇)
λ5∆j1∇u

∥∥
L∞

)
‖φ‖

B̃s+σ,ℓ+1
p,∞,W

. cq‖∇u‖B̃0,ℓ+1
W

‖φ‖
B̃s+σ,ℓ+1
p,r,W

. cq‖∇u‖B0,ℓ+1
W

‖φ‖
Bσ+s,ℓ+1
p,r,W

,

Therefore, we get

‖I4‖B̃s,ℓ+1
p,r,W

≤ C‖∇u‖
B0,ℓ+1
W

‖φ‖
Bσ+s,ℓ+1
p,r,W

.

Taking advantages of Lemma 2.5, the term I5 can be easily estimated as follows:

‖I5‖B̃s,ℓ+1
p,r,W

≤
Nℓ∑

q=−1

ℓ+1∑

λ=0

2∑

j=−1

(∥∥∆q(TW·∇)
λm(D) div

(
∆ju ∆̃jφ

)∥∥
Lp

+
∥∥∆q(TW·∇)

λ
(
∆ju · ∇m(D)∆̃jφ

)∥∥
Lp

)

≤ C

2∑

j=−1

(∥∥m(D) div
(
∆ju ∆̃jφ

)∥∥
Lp +

∥∥∆ju · ∇m(D)∆̃jφ
∥∥
Lp

)

≤ C‖u‖L∞

( ∑

−1≤j≤2

∥∥∆̃jφ
∥∥
Lp

)
≤ C‖u‖L∞‖φ‖

Bσ+s,ℓ+1
p,r,W

.

Hence, gathering the above estimates, we find the wanted inequality (24).

Then, to prove the control (25), thanks to (22) and (144), we have that

‖m(D)φ‖
Bs,ℓ+2
p,r,W

= ‖∂W (m(D)φ)‖
Bs,ℓ+1
p,r,W

+ ‖m(D)φ‖Bs
p,r

≤ C‖W · ∇(m(D)φ)‖
Bs,ℓ+1
p,r,W

+ C‖φ‖Bs+σ
p,r

+ C1{−1<σ≤0} ‖∆−1m(D)φ‖Lp

≤ ‖[m(D),W · ∇]φ‖
Bs,ℓ+1
p,r,W

+ ‖m(D)∂Wφ‖Bs,ℓ+1
p,r,W

+ C‖φ‖Bs+σ
p,r

+ C1{−1<σ≤0} ‖∆−1m(D)φ‖Lp .
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Thanks to the induction assumptions of (24)-(25) and using (32), one can get

‖[m(D),W ·∇]φ‖
Bs,ℓ+1
p,r,W

≤ C‖φ‖
Bs+σ,ℓ+1
p,r,W

(
‖∇W‖

B0,ℓ+1
W

+ ‖W‖L∞

)

≤ C‖φ‖
Bs+σ,ℓ+1
p,r,W

‖W‖
B1,ℓ+1
W

,

and

‖m(D)∂Wφ‖Bs,ℓ+1
p,r,W

≤ C‖∂Wφ‖Bs+σ,ℓ+1
p,r,W

+ C‖W‖
B1,ℓ
W

(
‖∂Wφ‖Bs+σ,ℓ

p,r,W
+ ‖∆−1m(D)div (W φ)‖Lp

)

≤ C‖φ‖
Bs+σ,ℓ+2
p,r,W

+ C‖W‖
B1,ℓ
W

(
‖φ‖

Bs+σ,ℓ+1
p,r,W

+ ‖φ‖Bs+σ
p,r

)

≤ C‖φ‖
Bs+σ,ℓ+2
p,r,W

,

where C > 0 depends on ‖W‖
C1+ρ,k−1
W

. Collecting the above estimates allows us to conclude that (25)

holds in the step ℓ+ 1, this ends the proof. �
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