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ABSTRACT
Collective decision-making enables multi-robot systems to act au-

tonomously in real-world environments. Existing collective deci-

sion-making mechanisms suffer from the so-called speed versus

accuracy trade-off or rely on high complexity, e.g., by including

global communication. Recent work has shown that more efficient

collective decision-making mechanisms based on artificial neu-

ral networks can be generated using methods from evolutionary

computation. A major drawback of these decision-making neu-

ral networks is their limited interpretability. Analyzing evolved

decision-making mechanisms can help us improve the efficiency

of hand-coded decision-making mechanisms while maintaining

a higher interpretability. In this paper, we analyze evolved col-

lective decision-making mechanisms in detail and hand-code two

new decision-making mechanisms based on the insights gained.

In benchmark experiments, we show that the newly implemented

collective decision-making mechanisms are more efficient than

the state-of-the-art collective decision-making mechanisms voter

model and majority rule.
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1 INTRODUCTION
Collective decision-making allowsmulti-robot systems to cooperate

in complex environments by collectively making choices. Often, the

best-of-𝑛 options [14] must be chosen, where each robot has only

incomplete information about all available options and can only

communicate with its local neighborhood. Still, collective decisions

should be fast and accurate. Speed and accuracy are considered

to be conflicting goals in collective decision-making (i.e., speed
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Figure 1: Collective perception scenario in the BeeGround
simulator. The arena is bounded by walls and the environ-
mental features are represented by the black and white pat-
tern on the arena floor. Robots indicate their current opinion
via an LED on top (red stands for Black, blue forWhite).

versus accuracy trade-off) [15]. Faster decision-making leads to a

loss of decision accuracy and higher accuracy slows down deci-

sion-making. This is illustrated by two state-of-the-art collective

decision-making mechanisms: voter model and majority rule. Each

robot adopts the opinion of a random neighbor in its local neigh-

borhood when using the voter model, and the majority opinion

of its neighbors when using the majority rule. The voter model is

accurate but slow; the majority rule is less accurate but fast.

Researchers have proposed a variety of new decision-making

mechanisms to improve the efficiency of collective decision-making.

Often, the collective perception scenario introduced by Valentini

et al. [13] is used as an example problem setting. In this scenario,

robots must collectively decide which of two environmental fea-

tures is the more frequent, i.e., choose the best of two options (best-

of-𝑛 problem with 𝑛 = 2). In their paper introducing the collective

perception scenario, Valentini et al. [13] compare their previously

proposed self-organizing decision-making strategies Direct Modula-
tion of Majority-based Decisions (DMMD) [16] andDirect Modulation
of Voter-based Decisions (DMVD) [17]. In both approaches, positive

feedback is modulated by longer dissemination phases for high-

quality opinions, and a specific decision-making mechanism (i.e.,

the majority rule and the voter model, respectively) is applied. The

authors compare their approaches to the Direct Comparison (DC)

of option quality strategy where robots disseminate the quality

estimate of their current opinion. A robot will switch to the opinion

of a random neighbor only if the quality estimate of the neighbor’s

opinion is higher than the robot’s own quality estimate. Thus, the
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DC strategy relies on more information from a robot’s neighbors

than the DMMD and DMVD strategies resulting in communication

overhead. Compared to the self-organizing strategies DMMD and

DMVD, the DC strategy is more efficient for simple settings in

small multi-robot systems but faces more severe scalability issues

regarding consensus time with increasing problem difficulty and

multi-robot system size. Bartashevich and Mostaghim [4] couple

the direct modulation of positive feedback with an Ising-based col-

lective decision-making mechanism. Robots can switch between

different decision-making mechanisms (i.e., parameterizations of

the Ising model) based on their current internal preference for the

overall collective decision. The authors found that the Ising model

mostly performs similarly to DMMD. Shan and Mostaghim [12]

propose Distributed Bayesian Belief Sharing as a new collective de-

cision-making mechanism that outperforms DMVD and DC at the

cost of increased communication complexity.

Other researchers automatically generate new decision-making

strategies using evolutionary computationmethods [5]. Almansoori

et al. [1, 2] evolve neural networks as decision-making strategies

using a task-specific fitness function. In a comparative study, the au-

thors show that the evolved decision-making strategies outperform

the voter model. In our previous work [7], we evolve decision-mak-

ing mechanisms to be used in the direct modulation of positive

feedback decision-making strategy of Valentini et al. [13] using a

task-specific, a task-independent, and a hybrid fitness function. We

show that the decision-making mechanisms evolved with the task-

specific fitness function and the hybrid fitness function outperform

voter model and majority rule. In both works, the decision-making

approaches lack interpretability due to their representation as ar-

tificial neural networks. In contrast, hand-coded decision-making

mechanisms such as the voter model and the majority rule are

easily explainable and transparent. However, analyzing the evolved

decision-making mechanisms allows us to draw inspiration for new,

improved hand-coded decision-making mechanisms. In this paper,

we

(1) analyze evolved decision-making mechanisms in detail and

investigate the impact of the input features on the decision

output,

(2) develop two new hand-coded decision-making mechanisms

based on the knowledge gained,

(3) and show the effectiveness of the newly implemented deci-

sion-making mechanisms in comparison to the voter model

and the majority rule.

All figures and additional material are available on Zenodo [6].

2 METHOD
2.1 Collective Perception Scenario
2.1.1 Arena. We simulate the collective perception scenario in the

BeeGround simulator [8] using the same arena and robot parame-

ters as in the original collective perception experiments by Valentini

et al. [13]. The arena has a size of 2 m × 2 m and is bounded by

walls. The two environmental features are represented by black

and white tiles of 10 cm × 10 cm each, see Fig. 1. Task difficulty 𝜌∗

is defined as

𝜌∗ = min

(
𝜌
white

𝜌
black

,
𝜌
black

𝜌
white

)
, (1)

exploration

dissemination

decision-making

mechanism

start

after

𝑡
exp

𝑛

after 𝑡dis𝑛

after

decision

(a) decision-making strategy

straight motion

obstacle

avoidance

unstuck

rotation

𝜁𝑛 < 0

obstacle

detected

turned

by 𝛽𝑛

after 𝑡 str𝑛

after 𝑡 rot𝑛

no obstacle

detected

(b) random walk motion routine

Figure 2: Probabilistic finite state machine for decision-mak-
ing (a) and finite state machine for robot motion (b) based
on Valentini et al. [13]. Time periods 𝑡𝑒𝑥𝑝𝑛 , 𝑡𝑑𝑖𝑠𝑛 , 𝑡𝑟𝑜𝑡𝑛 , 𝑡𝑠𝑡𝑟𝑛 and
angle 𝛽𝑛 are randomly sampled. Buffer values 𝜁𝑛 < 0 indicate
that the robot is potentially stuck between obstacles.

where 𝜌
white

and 𝜌
black

are the percentages of white and black

tiles in the environment, respectively. A problem difficulty of 1

means that half of the tiles are white and half of the tiles are black.

We vary task difficulty 𝜌∗ by using different ratios of black and

white tiles.

2.1.2 Robots. Each robot has a differential drive with a maximum

speed of 10
cm

s
, an LED on top indicating its current opinion, and

five horizontal proximity sensors to the front with a range of 10 cm.

A binary ground sensor indicates whether the arena surface below is

black (0) or white (1). Robots can broadcast their current opinion in

the range of 70 cm (i.e., local communication) and store the opinions

of up to four unique neighbors in a message queue. The information

stored in themessage queue𝑄 is aggregated into two virtual sensors.

We normalize both sensors to reduce the dependency on the queue

size. Sensor 𝑙 (𝑡) gives the number of received messages normalized

by the maximum length of the message queue. It is defined as

𝑙 (𝑡) = |𝑄 (𝑡) |
4

, (2)

where |𝑄 (𝑡) | is the length of the message queue 𝑄 at time

step 𝑡 . Sensor𝑤 (𝑡) gives the percentage of neighbors with opinion

White (1) in the message queue (excluding the robot’s own opinion).

It is defined as

𝑤 (𝑡) = |{𝑞 ∈ 𝑄 (𝑡) : 𝑞 = 1}|
|𝑄 (𝑡) | . (3)

We randomly distribute 𝑁 = 20 robots in the arena at the be-

ginning of each run. Half of the robots are initialized with opin-

ion White, the other half with opinion Black.

2.1.3 Robot Motion and Decision-Making Routines. We closely fol-

low the setup of Valentini et al. [13] for the basic behavioral routines

of the robots. On each robot, we concurrently execute a probabilistic

finite state machine (PFSM) for decision-making, which implements

the decision-making strategy and a random walk motion routine,

see Fig. 2.

The decision-making PFSM implements the direct modulation

of positive feedback, see Fig. 2a. Each robot first explores its en-

vironment by sampling the local ground color for a time period
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𝑡
exp

𝑛 drawn from an exponential distribution with a mean of 10 s to

determine a quality estimate 𝜌𝑛 for its current opinion. The longer

a robot perceives the color matching its current opinion during

the current exploration phase, the higher the quality estimate. In

the subsequent dissemination phase, a robot broadcasts its current

opinion to its local neighborhood at 1 Hz for a time period 𝑡 send𝑛

sampled from an exponential distribution with a mean of 𝑇
send

𝜌𝑛 .

In our experiments, design parameter𝑇
send

is set to 10 s. As a result,

higher-quality opinions lead to longer dissemination phases, result-

ing in a modulation of positive feedback. After sending its opinion,

a robot receives the opinions of its neighbors for 𝑡 receive𝑛 = 3 s. After

𝑡dis𝑛 = 𝑡 send𝑛 + 𝑡 receive𝑛 , the robot applies a decision-making mech-

anism to update its current opinion. Different decision-making

mechanisms (i.e., voter model, majority rule, evolved decision-mak-

ing mechanisms, and the two new hand-coded decision-making

mechanisms here) can be executed, allowing comparisons using the

same overall decision-making strategy. Finally, the robot returns to

the exploration state.

Simultaneously with the decision-making PFSM, each robot per-

forms a random motion behavior, alternating between straight

motion and rotation on the spot in a random direction, see Fig. 2b.

The random duration of straight motion is sampled from an expo-

nential distribution with a mean of 40 s, and the random duration

of rotation is sampled from a uniform distribution with bounds

[0 s, 4.5 s]. A robot will rotate by 𝛽𝑛 = 180
◦ + 𝑥

rand
where 𝑥

rand

is sampled from a uniform distribution with bounds [−25◦, 25◦] if
it detects an obstacle (i.e., a wall or another robot) while moving

straight. The unstuck state is used to prevent thrashing and is en-

abled when a robot has recently turned most of the time, indicating

that it may be stuck between obstacles. A buffer value of 𝜁𝑛 < 0

means that a robot has recently been rotating mostly. The buffer

value decreases when a robot is rotating, either in the rotation or

obstacle avoidance state. The value increases up to a maximum of

7.5 s when the robot is moving straight. When the unstuck state

is enabled, the robot will rotate in a random direction until no

obstacles are detected.

2.2 Benchmarks
For a fair comparison, we will benchmark the different decision-

making mechanisms using the same initial settings (i.e., initial robot

poses and opinions, ground patterns of black and white tiles). We

evaluate each collective decision-making mechanism for 400 s in

1 000 different settings each for the more frequent feature White
and the more frequent feature Black per problem difficulty 𝜌∗ ∈
{0.25, 0.52, 0.67, 0.82}. The ground patterns of black and white tiles

and the initial robot opinions for White-dominant environments

and for Black-dominant environments are mirrored. This way we

can investigate whether the decision-making mechanisms work

equally well for both features.

2.3 Evaluation Metrics
To evaluate the efficiency of the collective decision-making mecha-

nisms, we use two common metrics: mean consensus time 𝑇𝑁 to

measure decision speed and exit probability 𝐸𝑁 to measure deci-

sion accuracy. Consensus time 𝑇𝑁 is the time it takes a multi-robot

system to reach a first consensus (regardless of whether it is right

𝑤 (𝑡)

𝑙 (𝑡)

𝑔(𝑡)

𝑜 (𝑡 − 1)

𝑜 (𝑡)

Figure 3: Topology of the evolved decision-making mecha-
nisms. Inputs are the percentage of neighbors with opinion
White 𝑤 (𝑡), the normalized length of the message queue of
neighbor opinions 𝑙 (𝑡), the ground sensor value 𝑔(𝑡) at cur-
rent time step 𝑡 , and the robot’s previous opinion 𝑜 (𝑡 −1). The
ANN outputs the robot’s current opinion 𝑜 (𝑡).

or wrong) and mean consensus time 𝑇𝑁 is the average consensus

time over all runs that lead to a consensus. Exit probability 𝐸𝑁 is

the percentage of runs in which 100 % of the robots successfully

reached a consensus for the more frequent feature.

2.4 Evolved Decision-Making Mechanisms
We evolve the weights of three-layer feedforward artificial neural

networks (ANN), see Fig. 3, as decision-making mechanisms using

a simple evolutionary algorithm. Each ANN receives four inputs:

(i) the percentage of neighbors with opinionWhite𝑤 (𝑡), (ii) the nor-
malized queue length 𝑙 (𝑡), (iii) the current ground sensor value 𝑔(𝑡),
and (iv) the robot’s previous opinion 𝑜 (𝑡 − 1). The ANN outputs

the robot’s current opinion 𝑜 (𝑡). As in our previous work [7], our

fitness function 𝐹 rewards higher percentages of robots with the

correct opinion in the last time step𝑇 −1 of the evaluation. Fitness 𝐹
is given by

𝐹 =
1

𝑁

𝑁−1∑︁
𝑛=0

𝑓𝑛 , (4)

with

𝑓𝑛 =


1 if 𝑜𝑛 (𝑇 − 1) = 1 and dominant feature = White

or 𝑜𝑛 (𝑇 − 1) = 0 and dominant feature = Black
0 otherwise

, (5)

size of the multi-robot system 𝑁 , and opinion 𝑜𝑛 (𝑇 − 1) of robot 𝑛
in the last time step 𝑇 − 1 of the run. Opinion 𝑜𝑛 is 0 for Black
and 1 forWhite. An initial population of 50 genomes is randomly

generated that are evaluated on homogeneous multi-robot systems,

i.e., each robot executes a copy of the same decision-making ANN.

Each genome is evaluated for 200 s in three different environments

with random black-and-white patterns of problem difficulty 𝜌∗ =
0.25 and in environments with the inverse of those patterns to

avoid bias toward one feature (i.e., six evaluations in total). We

restrict ourselves to problem difficulty 𝜌∗ = 0.25 since our previous

work [7] has shown that decision-making mechanisms evolved

in easier settings scale better with problem difficulty. The overall

fitness of a genome is set to the minimum fitness observed in these

six evaluations. We run evolution for 600 generations, use fitness
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proportionate parent selection, age-based survivor selection, elitism

of 1, a mutation rate of 0.2, and no crossover. In total, we do ten

independent evolutionary runs. For each evolutionary run, we select

the best-evolved individual of the last generation for a more detailed

analysis.

2.5 Analysis
First, we analyze the performance (i.e., mean time to consensus and

exit probability) of the best-evolved individual of each run relative

to the voter model and the majority rule in our benchmark settings

(see Sec. 2.2) to identify differences between the ten independent

evolutionary runs. We then generate a global explanation of our

evolved decision-making mechanisms using the SHAP (SHapley

Additive exPlanations) framework [9]. We compute the mean fea-

ture importance measures using the shap Python package and all

possible network input combinations to determine the impact of

each input feature on the decision output. Since our sensor inputs

specifying the percentage of neighbors with opinion White 𝑤 (𝑡)
and the normalized length of the message queue 𝑙 (𝑡) are highly
correlated (i.e., possible values 𝑤 depend on the queue length 𝑙),

we group both input features in our analysis, as is done for cor-

related variables in other work [10]. In addition, we analyze the

distribution of the actual values of the input features during an

evaluation. This allows us to determine whether some input fea-

tures have (mostly) fixed values. We use the insights gained to

hand-code two new decision-making mechanisms (see Sec. 3.2),

which offer higher interpretability than the evolved decision-mak-

ing mechanisms. Finally, we compare the two new hand-coded

decision-making mechanisms to the voter model, the majority rule,

and the evolved decision-making mechanisms in the benchmark

settings. For the overall comparison, we quantify the performance

of the ten evolved decision-making mechanisms using their median

values for the mean consensus time𝑇𝑁 and the exit probability 𝐸𝑁 .

We test for statistical significance using the Mann-Whitney U test.

3 RESULTS
3.1 Evolved Decision-Making Mechanisms
3.1.1 Overall Performance. We find a median best fitness of 1.0

in the last generation of the evolutionary runs when rewarding

higher percentages of robots with the correct opinion in the last

time step of an evaluation (see Eq. 4). The best-evolved individ-

uals of all 10 evolutionary runs reach the correct consensus in

all of their six evaluations, i.e., an exit probability 𝐸𝑁 of 100 % is

achieved. The mean consensus time 𝑇𝑁 is within [51.2 s, 71.0 s]
with a median of 54.1 s. We assume that slower decision-making

mechanisms will be removed by the evolutionary process, since

not all robots may have the correct opinion at the end of all six

evaluations for these mechanisms, leading to an implicit prefer-

ence for faster decision-making mechanisms. Overall, evolution

successfully optimizes the artificial neural networks as collective

decision-making mechanisms for problem difficulty 𝜌∗ = 0.25.

3.1.2 Efficiency of the Best-Evolved Individuals. In our benchmark

settings (see Sec. 2.2), we compare the best-evolved decision-mak-

ing mechanisms of the ten evolutionary runs against each other

as well as against the voter model and the majority rule as a base-

line, see Fig. 4. For problem difficulty 𝜌∗ = 0.25 (i.e., the easiest

setting), all evolved decision-making mechanisms achieve 100 %

decision accuracy for both White-dominant and Black-dominant

environments. Thus, they are as accurate as the voter model and

slightly outperform the majority rule (𝐸𝑁 = 96.7 %). Nine out of ten

individuals are faster than the majority rule, and all ten individuals

are faster than the voter model (p< 0.05). On average, the evolved

decision-making mechanisms are thus more efficient than the voter

model and the majority rule for the problem difficulty used during

the optimization process (see Sec. 2.4). With increasing problem dif-

ficulty, the number of best-evolved individuals that outperform the

voter model and the majority rule in decision accuracy decreases

for bothWhite-dominant and Black-dominant environments. We

find seven out of ten best-evolved individuals for problem diffi-

culty 𝜌∗ = 0.52, six out of ten runs for problem difficulty 𝜌∗ = 0.67

(see Fig. 4b), and four out of ten runs for problem difficulty 𝜌∗ = 0.82

(see Fig. 4d) that outperform voter model and majority rule in both

White-dominant and Black-dominant environments. Similarly, the

number of best-evolved individuals that outperform the majority

rule and the voter model in terms of decision speed decreases with

increasing problem difficulty. For problem difficulty 𝜌∗ = 0.52, two

out of the ten best-evolved individuals outperform the majority rule

(p< 0.05). For problem difficulties 𝜌∗ = 0.67 and 𝜌∗ = 0.82, none of

the ten best-evolved individuals outperform the majority rule in

decision speed (p< 0.05). However, eight of the ten best-evolved

individuals in problem difficulty 𝜌∗ = 0.67 (see Fig. 4a) and seven

of the ten best-evolved individuals in problem difficulty 𝜌∗ = 0.82

(see Fig. 4c) outperform the voter model (p< 0.05).

The voter model and the majority rule perform equally well

forWhite-dominant and Black-dominant environments. For most

of the evolved decision-making mechanisms, we find increasing

differences in decision speed and accuracy depending on whether

White or Black is the most frequent feature as problem difficulty

increases. The solutions are randomly biased for one of the two

features potentially caused by ANN weights that favor one feature

when the feature ratio is low. Especially for the higher problem

difficulties 𝜌∗ = {0.67, 0.82}, the differences in efficiency can be

severe (p< 0.05). It should be noted that the decision-making mech-

anisms were evolved in problem difficulty 𝜌∗ = 0.25 where no

differences in decision accuracy (p> 0.05) and only in six out of

ten runs significant differences in decision speed (p< 0.05) can be

found depending on whetherWhite or Black is the most frequent

feature. Thus, not all evolved decision-making mechanisms per-

form similarly well in different problem difficulties when rewarding

higher percentages of robots with the correct opinion in the last

time step. A refinement of the fitness function and the evolution

of collective decision-making mechanisms in different problem dif-

ficulties during an evolutionary run could lead to improvements

in this respect. When drawing insights from the evolved collective

decision-making strategies for our new hand-coded decision-mak-

ing mechanisms, we should weigh insights from the best-evolved

individuals that perform similarly for White-dominant environ-

ments and Black-dominant environments in all problem difficulties

higher. We find that the best-evolved individuals of evolutionary

runs 3 and 8 perform best across problem difficulties in terms of
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(d) 𝐸𝑁 for 𝜌∗ = 0.82

Figure 4: Mean consensus time𝑇𝑁 and exit probability 𝐸𝑁 for each of the ten best-evolved individuals in problem difficulties 𝜌∗ ∈
{0.67, 0.82}. We split up the data betweenWhite-dominant (gray bars, left) and Black-dominant (black bars, right) environments.
Red dashed lines indicate the best performance of our baselines voter model and majority rule, i.e., the speed (i.e., lowest 𝑇𝑁 )
of the majority rule and the accuracy (i.e., highest 𝐸𝑁 ) of the voter model. Plots for 𝜌∗ ∈ {0.25, 0.52} are available on Zenodo [6].

similar exit probabilities 𝐸𝑁 and mean consensus times𝑇𝑁 for both

White-dominant and Black-dominant environments, see Fig. 4. The

best-evolved individual of run 3 has higher exit probabilities 𝐸𝑁
than the best-evolved individual of run 8 while the best-evolved

individual of run 8 leads to lower mean consensus times 𝑇𝑁 . This

is consistent with the well-known speed versus accuracy trade-

off, although some of the evolved decision-making mechanisms

may outperform voter model and majority rule in speed and ac-

curacy. Next, we will analyze the impact of the input features on

the decision output. We will weigh the insights gained from the

best-evolved individuals of runs 3 and 8 higher but to get an over-

all impression of the input features favored by evolution, we will

analyze and base our conclusions on all evolved decision-making

mechanisms.

3.1.3 Impact of Input Features. We study the impact of the input

features on the decision output by calculating the SHAP values

for each of the ten best-evolved collective decision-making mech-

anisms. Overall, we find three different approaches for collective

decision-making in the evolved decision-making mechanisms. All

have similar efficiency.

The first approach is used by the majority of best-evolved indi-

viduals (i.e., seven out of ten) and depends most strongly on the

opinions of a robot’s neighbors, i.e., on the percentage of neighbors

with opinion White 𝑤 (𝑡) and the normalized queue length 𝑙 (𝑡).
In six of these runs, the ground sensor value 𝑔(𝑡) has the second
highest impact (see Fig. 5c), and in one run the robot’s previous

opinion 𝑜 (𝑡 − 1) ranks second (see Fig. 5d). The influence of the

ground sensor 𝑔(𝑡) and the robot’s previous opinion 𝑜 (𝑡 − 1) varies
between these best-evolved individuals. We find the whole range

from ground sensor 𝑔(𝑡) and previous opinion 𝑜 (𝑡 − 1) having a

strong impact to both sensors having only a low influence on the

decision.

In the second evolved decision-making approach, the ground

sensor 𝑔(𝑡) has the highest impact. We find two best-evolved indi-

viduals where this is the case. In one of the two decision-making

mechanisms, the opinions of a robot’s neighbors𝑤 (𝑡) + 𝑙 (𝑡) have
a stronger impact than the robot’s previous opinion 𝑜 (𝑡 − 1). In
the other decision-making mechanism, the robot’s previous opin-

ion 𝑜 (𝑡 −1) and the opinions of a robot’s neighbors𝑤 (𝑡) + 𝑙 (𝑡) have
similar impact, see Fig. 5b.

As a third approach, we find one best-evolved individual where

the robot’s previous opinion 𝑜 (𝑡 − 1) has the highest impact, but

ground sensor 𝑔(𝑡) and the opinions of a robot’s neighbors𝑤 (𝑡) +
𝑙 (𝑡) have only a slightly lower influence (see Fig. 5a).

Overall, a high influence of the opinions of a robot’s neigh-

bors𝑤 (𝑡) + 𝑙 (𝑡) is to be favored by evolution, while the impact of

the ground sensor 𝑔(𝑡) and the robot’s previous opinion 𝑜 (𝑡 − 1)
varies. In Sec. 3.1.2, we found that the best-evolved individuals

of the evolutionary runs 3 and 8 scaled best with problem diffi-

culty. The decision-making mechanism of run 3 follows the second

strategy, i.e., the ground sensor 𝑔(𝑡) has the highest impact, see

Fig. 5b. While this strategy leads to high accuracy (i.e., high exit

probability 𝐸𝑁 ), it is slower than the best-evolved individual of run

8. The decision-making mechanism of run 8 follows the first strat-

egy, where the opinions of a robot’s neighbors𝑤 (𝑡) + 𝑙 (𝑡) have the
strongest impact, see Fig. 5d. In this case, the ground sensor𝑔(𝑡) and
the robot’s previous opinion 𝑜 (𝑡 − 1) have only a small influence on

the decision. Based on these insights, we will give the opinions of a
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Figure 5: Mean SHAP values for four representative runs
where𝑤 (𝑡) is the percentage of neighborswith opinionWhite,
𝑙 (𝑡) the normalized length of the message queue of neighbor
opinions, 𝑔(𝑡) the ground sensor value, and 𝑜 (𝑡−1) the robot’s
previous opinion. 𝑤 (𝑡) and 𝑙 (𝑡) are grouped as their values
are highly correlated. Plots for all other runs and beeswarm
plots are available on Zenodo [6].

robot’s neighbors𝑤 (𝑡) + 𝑙 (𝑡) the highest impact in our hand-coded

decision-making mechanisms.

3.1.4 Network Input Values. In the next step, we analyze the dis-

tribution of the input values during an evaluation to investigate

whether the input values vary or are rather static. Fig. 6 visual-

izes the sensor values of all robots for a run of 200 s when using

one of the evolved decision-making mechanisms in problem diffi-

culty 𝜌∗ = 0.25. It is representative of all evolved decision-making

mechanisms and evaluation runs. We find that the percentage of

neighbors with opinionWhite 𝑤 (𝑡) has a value corresponding to
the more dominant environmental feature (i.e., 0 for Black and 1 for
White). But the normalized length of the message queue 𝑙 (𝑡) has
a value of 1.0 most of the time, regardless of the more dominant

w(t) l(t) g(t) o(t-1)
sensor

0.0
0.2
0.4
0.6
0.8
1.0
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e

(a) dominant feature: Black
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(b) dominant feature: White

Figure 6: Sensor values of all robots for one representative
best-evolved decision-making mechanism with (a) Black
and (b)White as the more frequent environmental feature.
𝑤 (𝑡) gives the percentage of neighbors with opinionWhite,
𝑙 (𝑡) the normalized length of the message queue of neighbor
opinions, 𝑔(𝑡) the current ground sensor value, and 𝑜 (𝑡 − 1)
the robot’s previous opinion.

environmental feature. Consequently, 𝑙 (𝑡) plays a similar role as a

bias value in calculating the decision output. For this reason, we

do not include the normalized length of the message queue 𝑙 (𝑡)
in our hand-coded decision-making mechanism and focus on the

percentage of neighbors with opinion White 𝑤 (𝑡). The values of
ground sensor 𝑔(𝑡) and the robot’s previous opinion 𝑜 (𝑡 − 1) match

mainly the dominant feature and have a similar value distribution.

Since the ground sensor 𝑔(𝑡) often has a high impact in the evolved

decision-making mechanisms (see Sec. 3.1.3), we will integrate it

as a second factor in the hand-coded decision-making mechanisms

and exclude the robot’s previous opinion 𝑜 (𝑡 − 1).

3.2 New Decision-Making Mechanisms
3.2.1 Implementation. We hand-code two new decision-making

mechanisms based on the insights gained from our analysis. As

discussed above, we will integrate both the percentage of neighbors

with opinionWhite𝑤 (𝑡), and ground sensor value𝑔(𝑡), but𝑔(𝑡) will
have a much lower impact than𝑤 (𝑡) (see Sec. 3.1.3). Since𝑤 (𝑡) is
normalized, the new decision-making mechanisms are independent

of queue sizes. We propose two new decision-making mechanisms:

(i) a weighted sum of the two sensor inputs and (ii) a decision-

making mechanism based on conditional statements.

We define decision-making mechanism HC1 as

𝑜 (𝑡) =
{
1 if 0.75𝑤 (𝑡) + 0.25𝑔(𝑡) >= 0.5

0 otherwise

, (6)

with robot opinion 𝑜 (𝑡), percentage of neighbors with opinion

White𝑤 (𝑡), and ground sensor value 𝑔(𝑡) at the current time step 𝑡 .

It is a weighted sum that weights the percentage of neighbors with

opinion White 𝑤 (𝑡) three times higher than the ground sensor

value 𝑔(𝑡). Thus, 𝑔(𝑡) has a low impact, similar to the best-evolved

individual of run 8. Intuitively speaking, a robot will switch di-

rectly to opinionWhite if at least two-thirds of its neighbors have
White as their current opinion (i.e., 𝑤 (𝑡) ≥ 2

3
). A robot will di-

rectly adopt opinion Black if less than one-third of its neighbors

have opinion White (i.e., 𝑤 (𝑡) < 1

3
). The robot’s ground sensor
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Algorithm 1 decision-making mechanism HC2

1: if 𝑙 (𝑡) == 0 then ⊲ no neighbor opinions received

2: 𝑜 (𝑡) ← 𝑜 (𝑡 − 1) ⊲ keep own opinion

3: else
4: if 𝑤 (𝑡) ≥ 0.75 then ⊲ majority has opinionWhite
5: 𝑜 (𝑡) ← 1 ⊲ new opinion:White
6: else if 𝑤 (𝑡) ≤ 0.25 then ⊲ majority has opinion Black
7: 𝑜 (𝑡) ← 0 ⊲ new opinion: Black
8: else
9: if 𝑔(𝑡) == 1 then ⊲ ground sensor value:White
10: 𝑜 (𝑡) ← 1 ⊲ new opinion:White
11: else ⊲ ground sensor value: Black
12: 𝑜 (𝑡) ← 0 ⊲ new opinion: Black

value 𝑔(𝑡) will influence the decision output 𝑜 (𝑡) only in the other

cases, i.e., when there is no clear majority for one environmental

feature. A drawback of this approach is that there is an imbalance

in the adoption of White or Black as the current opinion. This is

because a robot will adopt White as its opinion if two-thirds of

its neighbors have opinionWhite (i.e.,𝑤 (𝑡) = 2

3
) regardless of the

ground sensor value 𝑔(𝑡), but it will only switch to opinion Black
if two-thirds of its neighbors have opinion Black (i.e., 𝑤 (𝑡) = 1

3
)

and the ground sensor value 𝑔(𝑡) is also Black. This imbalance is

caused by the encoding of the neighbor opinions as the percentage

of neighbors with opinionWhite𝑤 (𝑡). We will investigate the effect

of this imbalance on the decision-making in our benchmarks in the

next section.

To remove the inherent bias for opinionWhite in the weighted

sum, we propose decision-making mechanism HC2 that is based

on conditional statements, see Alg. 1. HC2 works similarly to the

weighted sum of HC1, except that the ground sensor 𝑔(𝑡) is the de-
ciding factor when one-third to two-thirds of the robot’s neighbors

have opinionWhite (i.e., 1
3
≤ 𝑤 (𝑡) ≤ 2

3
).

3.2.2 Efficiency. We compare the two new hand-coded decision-

making mechanisms HC1 and HC2 with our evolved decision-mak-

ing mechanisms, the voter model, and the majority rule in our

benchmark settings (see Sec. 2.2). Mean consensus times 𝑇𝑁 and

exit probabilities 𝐸𝑁 are given in Tab. 1 and are visualized in Fig. 7

for the four different problem difficulties 𝜌∗ ∈ {0.25, 0.52, 0.67, 0.82}.
Here, we compare against the median performance of the evolved

decision-making mechanisms as a representative value. In Sec. 3.1.2,

we found differences in the efficiency of the evolved decision-mak-

ing mechanisms for White-dominant and Black-dominant environ-

ments with increasing problem difficulty. Similarly, the hand-coded

decision-making mechanism HC1 does not perform equally well for

White-dominant and Black-dominant environments (p< 0.05). This

is intuitive, since the weighted sum implementing HC1 has an inher-

ent preference forWhite. We find no significant performance differ-

ences for HC2 depending on the dominant environmental feature.

Comparing HC1 and HC2, we find differences in the mean consen-

sus time 𝑇𝑁 of up to 6 s. HC1 is significantly faster in White-domi-

nant environments for problem difficulties 𝜌∗ ∈ {0.52, 0.67, 0.82}
(p < 0.05) while HC2 leads to higher decision accuracy in Black-
dominant environments. Compared to the evolved decision-mak-

ing mechanisms, HC1 and HC2 have lower exit probabilities 𝐸𝑁

for Black-dominant environments and higher exit probabilities

forWhite-dominant environments. The difference increases with

increasing problem difficulty 𝜌∗. HC1 and HC2 are also up to

32 s faster than the evolved decision-making mechanisms for both

White-dominant and Black-dominant environments. Both hand-

coded decision-makingmechanisms outperform the voter model for

all problem difficulties in decision speed (i.e., lower mean consensus

times 𝑇𝑁 ). We find that HC1 and HC2 are faster than the majority

rule for the easier problem difficulties 𝜌∗ ∈ {0.25, 0.52}, but equally
fast or slower for the harder problem difficulties 𝜌∗ ∈ {0.67, 0.82}
(p< 0.05). The exit probabilities 𝐸𝑁 of HC1 and HC2 are higher than

for the voter model and the majority rule for all problem difficulties,

i.e., the hand-coded decision-makingmechanisms aremore accurate

than the state-of-the-art collective decision-making mechanisms.

Thus, we find that the two new hand-coded decision-making mech-

anisms are competitive with or even more efficient than the voter

model and the majority rule. Overall, the two new hand-coded

decision-making mechanisms bring advantages in terms of effi-

ciency compared to the voter model and the majority rule, and have

higher interpretability than the evolved decision-making mecha-

nisms while having lower exit probabilities 𝐸𝑁 and shorter mean

consensus times 𝑇𝑁 .

4 CONCLUSION
Evolved decision-making behaviors usually have lower interpretabil-

ity than hand-coded decision-making behaviors but offer more effi-

ciency in terms of decision speed and accuracy. In this paper, we

have shown that applying methods for explainable AI can help us

determine how the evolved decision-making mechanisms work.

Based on the insights gained, we can implement new decision-mak-

ing mechanisms that offer higher interpretability than the evolved

artificial neural networks and are more efficient than the state-of-

the-art mechanisms voter model and majority rule.

Although we gained enough insight into the evolved decision-

makingmechanisms to hand-code improved decision-makingmech-

anisms, the analysis did not reveal the complete strategy of the

evolved decision-making mechanisms. Here, our goal was not to

gain a complete understanding of the evolved decision-making

mechanisms, but to gain enough insight to implement better deci-

sion-making mechanisms. Analyzing the evolved decision-making

mechanisms in more detail to determine the exact way the mecha-

nisms work is an interesting aspect for future research.

We still find the speed versus accuracy trade-off in both the

evolved decision-making mechanisms and the hand-coded deci-

sion-making mechanisms. However, it is less pronounced than for

the voter model and the majority rule. There are potentially more

simple and more efficient decision-making mechanisms that do not

rely on more communication between robots but additionally only

take into account the robots’ own sensor measurements. Works on

decision-making for estimation tasks, i.e., without a desired unique

consensus as in the best-of-𝑛 problem, already take into account the

robots’ individual sensor measurements [11] and our study shows

that it can also be beneficial for cases where a global consensus is

desired.

The voter model and the majority rule can be easily scaled from

best-of-2 problems to best-of-𝑛 problems. A drawback of the evolved



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Tanja Katharina Kaiser

Table 1: Mean consensus times 𝑇𝑁 and exit probabilities 𝐸𝑁 for the benchmarks (see Sec. 2.2) with the voter model (VM), the
majority rule (MR), the evolved decision-making mechanisms (EVO), and our two hand-coded collective decision-making
mechanisms HC1 (Eq. 6) and HC2 (Alg. 1). For EVO, the median values of the 10 best-evolved individuals are given.

dominant decision-making 𝜌∗ = 0.25 𝜌∗ = 0.52 𝜌∗ = 0.67 𝜌∗ = 0.82

feature mechanism

𝑇𝑁 𝐸𝑁 𝑇𝑁 𝐸𝑁 𝑇𝑁 𝐸𝑁 𝑇𝑁 𝐸𝑁
Bl
ac
k

VM 94.9 s 100 % 154.7 s 97.1 % 192.5 s 83.4 % 206.3 s 60.2 %

MR 69.5 s 96.7 % 84.5 s 83.5 % 86.8 s 72.8 % 94.1 s 61.1 %

EVO 55.7 s 100 % 85.1 s 99.6 % 111.5 s 98.0 % 140.1 s 85.8 %

HC1 52.9 s 100 % 75.7 s 98.1 % 92.8 s 88.8 % 109.9 s 69.5 %

HC2 50.6 s 100 % 72.2 s 99.0 % 89.3 s 92.9 % 108.2 s 77.4 %

W
hi
te

VM 94.9 s 100 % 154.7 s 97.1 % 192.5 s 83.4 % 206.3 s 60.2 %

MR 69.5 s 96.7 % 84.5 s 83.5 % 86.8 s 72.8 % 94.1 s 61.1 %

EVO 54.8 s 100 % 87.2 s 98.9 % 115.3 s 87.4 % 129.6 s 59.2 %

HC1 51.5 s 100 % 70.0 s 99.2 % 87.0 s 93.9 % 103.1 s 80.9 %

HC2 51.1 s 100 % 73.2 s 99.3 % 90.8 s 92.5 % 109.4 s 75.0 %
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Figure 7: Exit probabilities 𝐸𝑁 (higher is better) and mean consensus times 𝑇𝑁 (lower is better) for the benchmark runs with
the voter model (VM), the majority rule (MR), the evolved decision-making mechanisms (EVO), and our two hand-coded
decision-making mechanisms HC1 (Eq. 6) and HC2 (Alg. 1) forWhite-dominant (left) and Black-dominant (right) environments.
For EVO the median value as well as a boxplot of the median values of the 10 best-evolved individuals are included.

and the newly hand-coded decision-making mechanisms is that

they cannot be applied as easily to best-of-𝑛 problems. The evolved

decision-making mechanisms are most likely not applicable at all to

scenarios with a different 𝑛, and new specialized decision-making

mechanisms must be evolved. The new hand-coded algorithms

need some adaptation, with the conditional statement-based HC2

possibly being easier to modify than the weighted sum of HC1.

Further studies that we leave for future work are evolving the

weights for the neighbor opinions and the ground sensor value,

varying the size of the multi-robot system, and testing the mech-

anisms in the benchmark settings proposed by Bartashevich and

Mostaghim [3].
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