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Our study applies the Two-State Formalism alongside weak measurements within a spatially
homogeneous and isotropic cosmological framework, wherein Dirac spinors are intricately coupled
to classical gravity. To elucidate this, we provide detailed formulations for computing the weak values
of the energy-momentum tensors, the Z component of spin, and the characterization of pure states.
Weak measurements appear to be a generalization and extension of the computation already made
by Finster an Hainzl, [1], in A spatially homogeneous and isotropic Einstein-Dirac cosmology. Our
analysis reveals that the acceleration of the Universe expansion can be understood as an outcome
of postselection, underscoring the effectiveness of weak measurement as a discerning approach for
gauging cosmic acceleration.
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I. INTRODUCTION

Measuring involves assigning numerical values to the
attributes or characteristics of a phenomenon. The im-
pact of the observer on measurement results is a complex
consideration in scientific research. In quantum mechan-
ics, the alteration of a quantum state after its measure-
ment is well known, but its interpretation is not obvious.
For example, the famous double-slit experiment demon-
strates that particles like electrons can behave as parti-
cles and waves, and measurement prescribes their behav-
ior [2, 3].

Weak measurements offer a procedure to measure the
system state that minimizes its disturbance with minimal
perturbation, achieved through a weak coupling between
the measurement apparatus and the system’s state. No-
tably, these measurements enable the characterization of
a particle’s trajectory in the double-slit experiment with-
out disrupting the interference pattern, as demonstrated
in previous studies [3–6]. Unlike classical or ideal mea-
surements, which result in the stochastic collapse of the
system state into one of the eigenstates of the measured
observable [7], weak measurements do not induce a col-
lapse of the state vector. Instead, they introduce a small
angular bias to the state vector, and the measurement
device exhibits a superposition of multiple values rather
than a clear eigenvalue [4]. Consequently, weak mea-
surements unveil unconventional weak values, including
complex numbers.

In literature, some authors have explored weak mea-
surement and Two-state vectors formalism within the
theoretical framework of cosmology and ontology. George
Ellis and Rotman [8] proposed a paradigm that chal-
lenges conventional notions of time and reality, termed
the Crystallizing Block Universe (CBU), an extension of
the Emergent Block Universe (EBU). According to their
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perspective, past, present, and future coalesce, amalga-
mating space-time into a singular entity. The future is
conceptualized as a superposition of myriad possibilities,
while the past remains immutable. The transition be-
tween these temporal states predominantly unfolds in
the present, albeit in a non-uniform manner. Within the
CBU framework, certain discrete patches of quantum in-
determinacy endure and are resolved later on. Further-
more, CBU models integrate the Two-time interpretation
[9] of quantum mechanics. Nevertheless, this theoretical
and ontological paradigm lies beyond the purview of our
current study.

Davies [10] is the first to propose applying weak mea-
surements theory combined with pre-and-post-selection
to quantum cosmology and to explore the potential large-
scale cosmological effects arising from this new sector
of quantum mechanics. He illustrated the theory with
a two-spacetime dimensional toy model of a scalar field
with mass m propagating in an expanding Universe with
the scale factor a(t) and metric ds2 = dt2 − a(t)dx2.
He resolved a debate regarding the coupling of pre-
and postselected quantum fields to the gravity and pro-
posed an experimental test for weak values in cosmol-
ogy. He observed that in the literature, in equation

Gµν + higher order terms in curvature =
⟨0fin|Tµν |0in⟩

⟨0fin|0in⟩
originally derived by DeWitt, who adapted the Schwinger
effective action theory of quantum electrodynamics to the
gravitational case, the source term is nothing else than
the weak values of the stress-energy-momentum tensor
Tµν , [11]. This equation was widespread in 1970, [12],
[13], [14].

After Davies’s paper [10], no research papers have been
pursued in the direction of the theory of weak measure-
ments in Cosmology until now. The subject seems to
arouse interest. Charis Anastopoulos has just published
on arχiv a paper on Final States in Quantum Cosmology:
Cosmic Acceleration as a Quantum Postselection Effect,
[15] wherein he argues that there is no compelling phys-
ical reason to preclude a probability assignment with a
final quantum state at the cosmological level and analyses
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its implications in quantum cosmology. One significant
result is that cosmic acceleration emerges as a quantum
postselection effect.

We aim to examine weak measurements of Dirac par-
ticles within the framework of time symmetry as ap-
plied to the Einstein-Dirac system in a homogeneous
and isotropic space such as the Friedman-Lemâıtre-
Robertson-Walker( FLRW) space. To the best of our
knowledge, no prior research has explored this direc-
tion. Drawing upon insights from the paper of Finster
and Hainzl, titled A Spatially Homogeneous and Isotropic
Einstein-Dirac Cosmology [1], we endeavor to extend
certain findings to the domain of weak measurements.
Among the outcomes of our investigation are the com-
putation of weak values, including those pertaining to
energy-momentum, pure states, and the Z component of
spin. Additionally, we demonstrate that the epochs of ac-
celerated expansion in the Universe may be regarded as
consequences of postselection. This corroborates earlier
studies that have explored the potential of spinor fields
to elucidate phenomena such as the inflationary period
in the early universe and, subsequently, the concept of
dark energy. Notably, Anastopoulos arrived at a similar
conclusion, albeit without invoking a spinor field or dark
energy, thus emphasizing alternative avenues for under-
standing the observed cosmological acceleration. Ribas
reached the same conclusion without resorting to weak
measurements or postselection techniques. References
to relevant literature supporting these assertions include
[16–21].

In the time-symmetric formulation of quantum me-
chanics [22], a quantum system is not characterized by
a single state vector but by Two-State vectors at a spe-
cific time. The preselected state is determined by mea-
surements conducted on the system at times prior to t0,
while the postselected state by measurements at times
t > t0. The postselected state is conceptualized as a
quantum state evolving backward in time. Weak mea-
surements occur in the interval between these conven-
tional measurements through a weak coupling between
the measurement apparatus and the system [4].

Formally, if Â is a Hermitian operator on the sys-
tem S, |ψin⟩ and |ψout⟩ (or |ψfin⟩) are the preselected
and postselected state vectors in the Hilbert space of
S, and |ϕ(x)⟩ is the state vector of the needle of the
measurement device, g(t) a coupling impulse such that∫ T
0
g(t)dt = 1, T the coupling time and P̂d the momen-

tum conjugated operator to Q̂d the position operator,
then weakly measuring an ensemble of preselected vec-
tors states |ψin⟩ with Ĥ = g(t)Â ⊗ P̂d the interaction
Hamiltonian yields the following amplitude to get the

postselected state vector: ⟨ψfin|e(−iĤT )|ψin⟩. In detail,

this is obtained as follows: let P̂ = |ψfin⟩⟨ψfin| ⊗ Î be
an operator which projects onto the postselected state

|ψfin⟩, and |ψw⟩ = e(−iĤT )|ψin⟩ ⊗ |ϕ(x)⟩ the entangled
state of the system with the collapsed state of the mea-

surement device [4],[23]. Then we get

P̂ |ψw⟩ = |ψfin⟩⟨ψfin|e(−iĤT )|ψin⟩ ⊗ |ϕ(x)⟩

Assuming that P̂d is distributed around 0 with low vari-
ance, its conjugate variable Q̂d will have high variance,
and the measurement will be weak. Hence, we shall get:

|ψfin⟩⟨ψfin|(1− iÂ⊗ P̂d · T )|ψin⟩ ⊗ |ϕ(x)⟩

= |ψfin⟩ ⊗ ⟨ψfin|ψin⟩e−i(⟨Â⟩wP̂dT)

where ⟨Â⟩w =
⟨ψfin|Â|ψin⟩
⟨ψfin|ψin⟩ is the so-called weak measure-

ment of the observable Â. The probabilities to get this
result is |⟨ψfin|ψin⟩|2.
Weak values are weak measurement results and must

be understood as statistical averages. They are also
members of a decomposition of eigenvalues weighted by
the relative probabilities of finding the out states among
the ensemble of states vectors identically prepared in
|ψin⟩. Weak measurement should then be understood as
a conditional probability where one of the events under-
goes a perturbation. Dressel [24] clarifies this probabilis-
tic understanding of weak values. He shows that weak
values characterize the relative correction to a detection
probability |⟨ψfin|ψin⟩|2 due to a small intermediate per-

turbation Û(ϵ) that results in a modified detection prob-

ability |⟨ψfin|Û(ϵ)ψin⟩|2. Alternatively, in a simple way,
he defines weak values as complex numbers that one can
assign to the powers of a quantum observable operator Â
using two states: an initial state |ψin⟩ and a final state
|ψfin⟩. Weak values might lie outside the spectrum of
eigenvalues and can be complex numbers. One interest-
ing phenomenon is the amplification obtained when the
preselected state and the postselected one are almost or-
thogonal [4, 10].
In cosmology [10], all observations and measurements

are considered weak in the quantum sense due to the
nature of the processes involved. For instance, when
observing the redshift of a galaxy, the measurement is
conducted by observing the light emitted from a large
number of photons originating from numerous sources
within the galaxy. While the emission of a single pho-
ton from an atom may not be considered weak from the
atom’s perspective, the use of a large ensemble of photons
to measure a property of the entire galaxy constitutes a
weak measurement in the quantum sense. This is because
the quantum back-reaction of the photons on the relevant
physical variable of the entire galaxy, such as its momen-
tum, is negligible. Therefore, the large-scale nature of
cosmological observations and measurements, involving
statistical averages over a large ensemble of photons, re-
sults in weak values in the quantum sense.
In the laboratory, the Two-State vectors require hu-

man interventions. In quantum cosmology, there are
many proposals, as noticed by Davies: Hartle and Hawk-
ing came up with the no-boundary wave function, which
is the state of the Universe before the Planck epoch [25].
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In a semi-classical approach, in the framework of the the-
ory of quantum fields, the initial state is taken to be a
vacuum state. As for the final state, this can be any-
thing. In weak measurement, one will ensure that the
final state is not orthogonal to the in-state.

For the Einstein-Dirac in FLRW context, the prese-
lected state will be the spinor solution of the Einstein-
Dirac equation in the limit of the massless Universe, that
is, the radiation Universe, whereas the final state will
be the spinor solution of the Einstein-Dirac equation for
the dust Universe. The implementation of weak mea-
surement in this specific context is intended to acquire
geometrical information about the Universe. The sub-
sequent computational analysis is made feasible by the
association between weak measurement and the Berry
phase [7]. This has never been explored before, as far as
we know.

Regarding the Einstein-Dirac system, it investigates
the interaction between particles with a spin of 1/2 and
the gravitational field. The Einstein field equations es-
sentially relate the geometry of spacetime to the distri-
bution of matter and energy within that spacetime. In
simpler terms, they describe how matter and energy, rep-
resented here by the stress tensor applied on spinors, in-
fluence the curvature of spacetime and how the curva-
ture of spacetime influences the motion of matter and
energy. Finster [1] investigated the nonlinear coupling of
gravity to matter in a time-dependent, spherically sym-
metric Einstein-Dirac system. He showed that quantum
oscillations of the Dirac wave functions can prevent the
formation of a big bang or big crunch singularity.

Weak measurements present numerous advantages,
foremost among them being the capability to detect ex-
ceedingly subtle effects while minimizing disturbance to
the system state. Onur Hosten and Paul Kwiat [26] ex-
emplified the utility of weak measurement techniques in
amplifying the spin Hall effect, Meng-Jun Hu [27] dis-
cussed in his paper the proposal for Weak Measurements
Amplification based Laser Interferometer Gravitational-
wave Observatory (WMA-LIGO) to detect gravitational
waves using weak measurements to amplify ultra-small
phase signals, while Dixon et al. [28] applied these meth-
ods to enhance the detection of minute transverse de-
flections in an optical beam. This facet of weak mea-
surements proves highly advantageous in cosmology, en-
abling the amplification and measurement of wave func-
tions originating in the remote past, close to singularities.

This paper is organized as follows: After the introduc-
tion, we give a summary of the Einstein-Dirac system
and then find the spinor solutions for the radiation Uni-
verse and the dust one. In section III, we give the re-
sults of our main computations on weak measurements
on the Einstein-Dirac solutions.In section IV, we give a
conclusion. The appendices provide some details of our
computations.

II. THE EINSTEIN-DIRAC SOLUTION IN
FRIEDMANN-LEMAÎTRE-ROBERTSON-

WALKER SPACE

In this section, we provide an overview of the
Einstein-Dirac solution within the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) space framework. For a more
comprehensive treatment, readers are encouraged to refer
to [1] and [29].
The Einstein-Dirac (ED) equations are given by

Rij −
1

2
Rδij = 8πκT ij , (D −m)Ψ = 0, (1)

where κ represents the gravitational constant, T ij the
energy-momentum tensor of the Dirac particles, D the
Dirac operator, m the mass of the Dirac particles, and Ψ
the Dirac wave function.
Our Einstein-Dirac equations are formulated within

the FLRW space, a spacetime manifold with a (1,3) sig-
nature. This simple cosmological model is characterized
by a metric described by the homogeneous and isotropic
line element

ds2 = dt2 −R2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (2)

where t ∈ R represents time, (θ, ϕ) ∈ (0, π) × [0, 2π)
are angular coordinates, r is the radial coordinate, R(t)
the scale function, dΩ2 the line element on S2, and k can
take values of -1, 0, or 1, corresponding to open, flat, and
closed universes, respectively. We adopt ”Planck units”
where c = ℏ = G = 1.
In this article, we specifically consider the case of a

closed universe with k = 1, although similar computa-
tions can be extended to other cases. In this scenario,
the line element simplifies to

ds2 = dt2 −R2(t)

(
dr2

1− r2
+ r2dΩ2

)
. (3)

In this case, the coordinate r will vary in the interval
(0, 1). After conducting detailed calculations, outlined in
the appendices of [1] and [29], the Dirac operator takes
the following form[

iγ

(
∂t +

3

2

Ṙ

R

)
−R(t)m+

(
0 DH

−DH 0

)]
Ψ = 0, (4)

where DH represents the purely spatial operator on S3,
given by

DH = iσr
(
∂r +

f − 1

rf

)
+ iσθ∂θ + σϕ∂ϕ, (5)

where σr, σθandσϕ are linear combinations of the Pauli
matrixes defined as follows

 σr := f(r)
(
cos θσ3 + sin θ cosϕσ1 + sin θ sinϕσ2

)
σθ := 1

r

(
− sin θσ3 + cos θ cosϕσ1 + cos θ sinϕσ2

)
σϕ := 1

r sin θ

(
− sinϕσ1 + cosϕσ2

)
.

(6)
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and the function

f(r) =
√
1− r2, r ∈ (0, 1) (7)

This spatial operator DH has a purely discrete spectrum

σ(DH) =

{
±3

2
,±5

2
,±7

2
, . . .

}
, (8)

and the dimension of the corresponding eigenspace is
given as:

dim ker (DH − λ) = λ2 − 1

4
. (9)

An orthonormal eigenvector basis in terms of spherical
harmonics and Jacobi polynomials is provided in the ap-
pendix of [29] and is denoted by ψ±

njk, where n ∈ N0,

j ∈ N0 +
1
2 , and k ∈ {−j,−j + 1, . . . , j}.

The spatial differential operator on the eigenvector can
be represented as follows

DHψ
±
njk = λψ±

njk, where λ = ±(n+ j + 1). (10)

We represent the normalized eigenfunction of DH re-
lated to the eigenvalue λ by ψλ ∈ L2(S3)2.

To further analyze the system, we employ a separation
ansatz for

Ψ =
1

R(t)
3
2

(
α(t)ψλ(r, θ, ϕ)
β(t)ψλ(r, θ, ϕ)

)
. (11)

This ansatz enables the derivation of a coupled system of
ordinary differential equations (ODEs) for the complex-
valued functions α(t) and β(t):

i
d

dt

(
α(t)
β(t)

)
=

(
m − λ

R(t)

− λ
R(t) −m

)(
α(t)
β(t)

)
. (12)

The spinors are normalized according to:

|α|2 + |β|2 = λ2 − 1

4
. (13)

These spinors enter the Einstein equation via the energy-
momentum tensor of the wave function, ensuring a cou-
pling with the Dirac equation. The non-vanishing com-
ponents of the energy-momentum tensor are computed
in Appendix B of [1] and are given by

T 0
0 = R−3

[
m
(
|α|2 − |β|2

)
− 2λ

R
Re
(
αβ̄
)]
, (14)

T rr = T θθ = Tϕϕ = R−3 2λ

3R
Re
(
αβ̄
)
. (15)

A short calculation for the Einstein tensor Gjk, given
in [1], yields

G0
0 = 3

(
Ṙ2 + 1

R2

)
, (16)

Grr = Gθθ = Gϕϕ = 2
R̈

R
+
Ṙ2 + 1

R2
. (17)

Knowing that :

Gij = 8πκT ij , where Gij = Rij −
1

2
Rδij ,

we set κ = 3
8π for a convenient computation as in [1].

This yields the following expression, the Einstein equa-
tion

Ṙ2 + 1 = R2T 0
0 , (18)

which in terms of two level system is given as

Ṙ2 + 1 =
m

R

(
|α|2 − |β|2

)
− 2λ

R2
Re
(
αβ̄
)
. (19)

We derive also the acceleration of the Universe rep-
resented here by the second derivative with respect to
time of the scale function given firstly in terms of the
energy-momentum tensors as

R̈ =
R

2

(
3T jj − T 0

0

)
. (20)

Then in terms of spinors we shall have

R̈ = − m

2R2

(
|α|2 − |β|2

)
+

2λ

R3
Re
(
αβ̄
)
. (21)

One sees immediately that the acceleration of the Uni-
verse is caused by the spinor field, and this is consistent
along the lines of [16–21]. We will later on show some
behaviours of the acceleration of the scale function.
At this stage, we are left with two differential equa-

tions, equations (12) and (19), in which the spinor

(
α
β

)
is considered as a two-level quantum state.
As suggested by Finster and Hainzl in [1], the Einstein-

Dirac equation can be rewritten in terms of a Bloch vector
v⃗, where

v⃗ =

⟨ξ|σ1|ξ⟩
⟨ξ|σ2|ξ⟩
⟨ξ|σ3|ξ⟩

 , (22)

b⃗ = 2
λ

R
e⃗1 − 2me⃗3. (23)

Here, ξ represents the spinor

(
α
β

)
, σi are the Pauli

matrices, and e⃗i are the standard basis vectors in R3

(i ∈ {1, 2, 3}).
The Einstein-Dirac equations can then be expressed as

˙⃗v = b⃗ ∧ v⃗, Ṙ2 + 1 = − 1

2R
b⃗ · v⃗. (24)

Here, ‘∧’ and ‘·’ denote the cross and scalar product in
Euclidean space R3, respectively. We rewrite also the
scale acceleration in terms of the Bloch vector compo-
nents as
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R̈ = − m

2R2
v3 +

λ

R3
v1. (25)

To simplify the analysis, a rotation“U” around the e⃗2-

axis is applied to b⃗, making b⃗ parallel to e⃗1. This results
in a transformed vector w⃗

w⃗ = Uv⃗ =

w1

w2

w3

 (26)

where the components of w⃗ are given by

w1 =
1√

λ2 +m2R2

(
2λRe

(
αβ̄
)
−mR

(
|α|2 − |β|2

))
, (27)

w2 = 2Im
(
αβ̄
)
, (28)

w3 =
1√

λ2 +m2R2

(
2mRe

(
αβ̄
)
+ λ

(
|α|2 − |β|2

))
. (29)

At this stage, the Einstein-Dirac equations reduce to
a system of ODEs involving the scale function R(t) and
the complex functions α(t) and β(t)

˙⃗w = d⃗ ∧ w⃗, Ṙ2 + 1 = − 1

R2

√
λ2 +m2R2w1, (30)

where d⃗ is defined as

d⃗ :=
2

R

√
λ2 +m2R2e⃗1 −

λmR

λ2 +m2R2

Ṙ

R
e⃗2. (31)

The length of the Bloch vector is constant, and the
normalization convention is

|w⃗| = λ2 − 1

4
= N. (32)

Within weak measurement and the Two Vectors State
Formalism this research primarily explores solutions to
the Einstein-Dirac equation under specific conditions.
These conditions involve both the mass parameter (m)
and the coupling constant (λ) approaching zero. In this
regime, we distinguish between preselected states and
postselected states, the solutions of (30) for respectively
m = 0 and λ = 0.

In the case where m = 0, the Einstein-Dirac equation
simplifies to the well-known FLRW equation, describ-
ing the Universe’s behaviour in the radiation-dominated
phase. Conversely, in the second scenario, where λ = 0,
corresponds to a dust-dominated Universe. Notably, for
sufficiently large values of the scale factor R, the Uni-
verse exhibits classical behaviour similar to the dust-
dominated case.

The above assumption could be seen easily from the
complete and classical Friedmann general equation with
k = 1, 0,−1 corresponding to closed, flat and opened
universe respectively

Ṙ2 + k = −
(ρm
R

+
ρr
R2

− ΛR2
)
, (33)

where ρm is the density of matter, ρr is the density of
radiation and Λ is the vacuum energy. Just after the Big
Bang, the Universe was too small. For R ≪ 1, what-
ever the terms in the right side of the expression (33),
the radiative one would dominate in the evolution of the
Universe. The expression becomes

Ṙ2 + k = −
( ρr
R2

)
. (34)

While, ignoring the vacuum energy, if R ≫ 1, the mass
term would dominate and the expression (33) becomes

Ṙ2 + k = −
(ρm
R

)
, (35)

This equation describes a dust-dominated Universe.

FIG. 1. Preselection and Postselection à tin and tout

It is essential to note that the radiation-dominated
Universe pertains to a brief period near the initial singu-
larity. In contrast, the dust-dominated universe extends
over a much longer timeframe, including the present day.

A. | Ψin⟩: Solution of the Einstein-Dirac equation
for m = 0.

When m = 0, the ODEs in (30) becomes


ẇ1 = 0
ẇ2 = − 2λ

R w
3

ẇ3 = 2λ
R w

2,
(36)
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(
dR

dt

)2

+ 1 = − 1

R2
λw1. (37)

We set the following conditions. The expression 37 must
very that at a certain time t = tB ,

dR
dt |tB = 0 andR(tB) =

R0. This implies that w1 = −R2
0

λ . The meaning is that,
at time tB , the radiative energy ceases to be the driving
force and the matter takes over. Of course, the solution
is a simplification of the big picture. The solutions to the
differential scale function equation is

R(t) =

√
− (t−R0)

2
+R2

0. (38)

The form of this solution is confirmed by scale func-
tion for the radiation dominated Universe proposed by
Plebanski and Krasinski in [30] in page 289. It reads as

R(t) =

√
−k
(
t− tB − 1

k

√
ϵ0
3

)2

+
ϵ0
3k
, when k ̸= 0,

R(t) =

√
ϵ0
3
(t− tB), when k = 0,

where ϵ0 is the radiation density, k takes values 1 or− 1.

FIG. 2. dR(t)
dt

from time t = 0 to t = R0. If one considers
the today scale function is set R = 1, the scale function being
without unity, we may calibrate time so that, when the ra-
diative forces cease to be the driving one, the corresponding
time would be t = R0. In the literature we know that the ra-
diation dominated Universe epoch elapsed ≈ 72000years [31],
page 331.

Having the initial condition to the Bloch vector differ-
ential equation

w⃗(0) =

−
R2

0

λ
,

√
N2 −

R4
0

λ2
sin(ϕ0),

√
N2 −

R4
0

λ2
cos(ϕ0)

 , (39)

and substituting R(t) into (36), and based on the rela-
tionship between spherical and hyperbolic trigonometry,
we can find the subsequent solutions:


w1 = −R2

0

λ ,

w2 = −
√
N2 − R4

0

λ2 sin(4λG(t)),

w3 =

√
N2 − R4

0

λ2 cos (4λG(t)) ,

(40)

where G(t) = tan−1
(

t
R(t)

)
and ϕ0 = 0 . We can notice

that the Bloch vector is a function of the scale function
R(t).

FIG. 3. R(t) increasing from time t = 0 to t = R0.

Subtsituting m = 0 into the components of w⃗ in (27),
(28) and (29), we obtain

 w1 = 2Re
(
αβ̄
)

w2 = 2Im
(
αβ̄
)

w3 = |α|2 − |β|2.
(41)

Replacing α by ρin1e
iηin1 and β by ρin2e

iηin2 into (41),
where ρ is the modulus of α and η its argument. We dif-
ferentiate modulus and arguments from preselected and
postselected states with indices. We obtain w1 = 2ρin1ρin2 cos(ηin1 − ηin2),

w2 = 2ρin1
ρin2

sin(ηin1
− ηin2

),
w3 = ρ2in1

− ρ2in2
.

(42)

These results constitute additional constraints for the so-
lutions (40). Consequently w1, w2, w3 must be real num-
bers. For G(t) to be real, It has to be in the interval
]− π/2, π/2[.
From the expression (42) we obtain

ηin1 − ηin2 = − arctan

(√
λ2N2 −R4

0 sin(4λG(t))

R2
0

)
.(43)
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Also from (42) and using the norm from equation (32),
we obtain

ρin1 =

√
2

2

√
N +

√
N2 − R4

0

λ2
cos (4λG(t)), (44)

ρin2 =

√
2

2

√
N −

√
N2 − R4

0

λ2
cos (4λG(t)). (45)

To sum up, | Ψin⟩ is represented by the knowledge of
the components of the three-vector w⃗ or αin = ρ1e

iη1 and
βin = ρ2e

iη2 at a certain tin chosen such that the scale
function is real.

For the scale function to be real, R(tin) must be real.
This implies that 0 ≤ tin ≤ R0. Within this period, the
scale function increases with time. In our approxima-
tion the scale function stops to increase at R0. But in
the general picture, the driving force due to matter takes
over and the Universe continues to expand. Let us point
out also that the period within the radiation-dominated
Universe is very short compared to the lifespan of the
Universe. This period is approximated as 72000 years vs
13, 9Gyrs today [31]. We also remind that within this
period, the scale function is very small. The radiative
period ceases where the scale function R approximately
attains the value R ≈ 3.10−4. Finster in [1] shows a
bouncing behaviour of the scale function around singu-
larity.

We can illustrate the behaviour of the scale accelera-
tion in the presence of the fermions field. This graphic is
constructed only for a Universe without matter.

FIG. 4. The scale acceleration in the Universe dominated by
fermions.

B. | Ψout⟩: Solution of the Einstein-Dirac equation
for λ = 0.

When λ = 0, the ODEs in (30) becomes:

 ẇ1 = 0
ẇ2 = −2mw3

ẇ3 = 2mw2,
(46)

(
dR

dt

)2

+ 1 = − 1

R
mw1. (47)

We differ from Finster in [1] and we set that at
tmax,

dR
dt |tmax = 0, and R(tmax) = Rmax. This implies

that w1 = −Rmax

m . One easily sees that the two differ-
ential equations decouple. The block vector solution will
not depend on the scale function. These equations yield
the following solutions

R(g) =
Rmax
2

(1− cos(g)) , (48)

t(g) =
Rmax
2

(g − sin (g)) , (49)

where g is a parameter varying between 0 and 2π.

FIG. 5. This parametric solution is set for Rmax = 10. This
value is taken from Finster in [1]. The time is derived from
the formula t(g) = Rmax

2
(g − sin (g)).

The solution to the Bloch vector differential equation
for the following conditions

w⃗(tmax) =
(
w1

max, ρ cos(ϕmax), ρ sin(ϕmax)
)
, (50)

gives the following solution:


w1 = −Rmax

m

w2 =
√
N2 − R2

max

m2 cos(2mt+ ϕmax − 2mtmax)

w3 =
√
N2 − R2

max

m2 sin(2mt+ ϕmax − 2mtmax),

(51)

where m is the mass of Dirac particle.
Subtsituting λ = 0 into the components of w⃗ in (27-

29), we obtain

 w1 = −
(
|α|2 − |β|2

)
w2 = 2Im

(
αβ̄
)

w3 = 2Re
(
αβ̄
)
.

(52)
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Replacing α by ρout1e
iηout1 and β by ρout2e

iηout2 into
(41), we obtain w1 = −

(
ρ2out1 − ρ2out2

)
w2 = 2ρout1ρout2 sin(ηout1 − ηout2)
w3 = 2ρout1ρout2 cos(ηout1 − ηout2).

(53)

These results constitute additional constraints for the so-
lutions (40). Consequently w1, w2, w3 must be real num-
bers.

From the expression (53) we obtain

ηout1 − ηout2 =
π

2
− 2mt− ϕmax + 2mtmax. (54)

We also obtain from (53) and the norm (32):

ρout1 =

√
2

2

√
N +

Rmax
m

, (55)

ρout2 =

√
2

2

√
N − Rmax

m
. (56)

FIG. 6. Rate of change the scale function in an Universe
dominated by matter.

FIG. 7. The acceleration of the scale function in an Universe
dominated by matter.

To sum up, | Ψout⟩ is represented by the knowledge
of the components of the three-vector w⃗ or αout =
ρout1e

iηout1 and βout = ρout2e
ηout2 at a certain tout chosen

such that the scale function is real.

III. WEAK MEASUREMENT ON THE
EINSTEIN-DIRAC SOLUTIONS

The general formula of a weak measurement of any
observable is given by

⟨Â⟩w =
⟨ψout(t)|Â|ψin(t)⟩
⟨ψout(t)|ψin(t)⟩

. (57)

wherein, ⟨ψout(t)| = ⟨ψout(tout)|U†(t, tout) and
|ψin(t)⟩ = U(t, tin)|ψin(tin)⟩.
A pictorial description of a weak measurement in our

context is like in figure 8.

FIG. 8. Weak measurement at time t.

The solutions of Einstein-Dirac equation |ψin(tin)⟩ and
|ψout(tout)⟩ are defined at the respective times tin and
tout. We must construct the evolutionary operator to
allow the weak measurement to occur at time t between
tin and tout.
Because of the time dependency of the scale func-

tion, an exact evolutionary operator is impossible to
compute. Still, it can be approximated by using the
Wentzel–Kramers–Brillouin (WKB) method. Following
Finster [29], the smallness of the Compton wavelength
compared to the lifetime of the Universe justifies the use
of WKB-type approximation. Therefore, we define the
approximated unitary evolutionary operator as

U(t, t0) = U−1(t)

(
e−iF (t,t0) 0

0 eiF (t,t0)

)
U(t0). (58)
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wherein F (t, t0) = −F (t0, t) =
∫ t
t0

√
R2(t)m2+λ2

R(t) dt.

U(t) is defined such that

U(t)

(
m − λ

R(t)

− λ
R(t)

−m

)
U(t)−1 =

√
R2(t)m2 + λ2

R(t)

(
1 0
0 −1

)
.

(59)

The equation (59) yields g(t) = 1
2 arctan(

λ
mR(t) ) for the

unitary matrix given by

U(t) =

(
cos(g(t)) − sin(g(t))
sin(g(t)) cos(g(t))

)
. (60)

The computation of

(
e−iF (t,t0) 0

0 eiF (t,t0)

)
follows

Finster in [29].
Let us point out here that U(t, tin) is given by

U−1(t)

(
e−iF (t,tin) 0

0 eiF (t,tin)

)
U(tin)

wherein the preselected state is taken from the radiation-
dominated Universe with m = 0, which yields
g(tin) = 1

2 arctan(
λ

m∗R(tin)
) = π

4 + kπ for m = 0. For

k = 0, the matrix will be given by

U(tin) =

√
2

2

(
1 −1
1 1

)
.

Whereas the postselected state is taken from the dust-
dominated Universe wherein λ = 0. This will yield
g(t) = 1

2 arctan(
λ

m∗R(tin)
) = 0 + kπ for λ = 0, and for

k = 0 this results in U(tout) is the identity matrix

U(tout) =

(
1 0
0 1

)
.

Knowing that U†(t, tout) = U(tout, t) , this later is
given by

U−1(tout)

(
e−iF (tout,t) 0

0 eiF (tout,t)

)
U(t).

The unitary operator approximated, we can now com-
pute the weak measurement of some observable starting
from the Energy-momentum Tensor.

A. Weak measurement of the Energy-momentum
tensor .

In this section, we compute the weak measurement of
the energy-momentum tensor given by

⟨Tµν⟩w =
⟨ψout(t)|Tµν |ψin(t)⟩
⟨ψout(t)|ψin(t)⟩

. (61)

More explicitly, we have

⟨Tµν⟩w =
1

2

⟨ψout(t)| (iGµDν + iGνDµ) |ψin(t)⟩
⟨ψout(t)|ψin(t)⟩

. (62)

where Gµ are the linear combinations of the Dirac ma-
trices of Minkowski space given by:

G0 = γ0, (63)

Gr =
f(r)

R(t)

(
cosϑγ3 + sinϑ cosφγ1 + sinϑ sinφγ2) , (64)

Gϑ =
1

rR(t)

(
− sinϑγ3 + cosϑ cosφγ1 + cosϑ sinφγ2) ,

(65)

Gφ =
1

rR(t) sinϑ

(
− sinφγ1 + cosφγ2) , (66)

with f(r) =
√
1− r2. Note that Gµ = gµνG

ν .
The Dirac matrices are given as

γ0 =

(
I 0
0 −I

)
, γα =

(
0 σα

−σα 0

)
,

where I is the 2 × 2 identity matrix and σα are the
Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
The differential operator is given by Dµ = ∂µ − iEµ,

and Gµ obeys to the anti-commutation rule.

{Gµ, Gν} ≡ GµGν +GνGµ = 2gµν14.

The so-called spin coefficients are given by Eµ.
For an orthogonal metric, the combination GµEµ takes

the simple form (for more details see [1])

GµEµ =
i

2
√
|g|
∂µ

(√
|g|Gµ

)
with g = det gij ,

making it unnecessary to compute the spin connection
coefficients or even the Christoffel symbols.
To compute the numerator part of the weak measure-

ment of the energy-momentum tensor, following Finster

in[29], we adapt the object P (t, x⃗; t′, x⃗′) to our need

=
(
R(t)R(t′)

)− 3
2 Eλ(x⃗, x⃗′)⊗

(
αin(t)αout(t′)− αin(t)βout(t′)

βin(t)αout(t′)− βin(t)βout(t′)

)
.

(67)

wherein Eλ denote the spectral projectors of DS3 ,

given by E±|λ| =

|λ|− 3
2∑

n=0

j∑
k=−j

ψ±
njk(x)ψ

±
njk(x́). Then,

the numerator part of the energy-momentum tensor,
⟨ψout|Tµν |ψin⟩(t, x⃗) can be expressed in terms of P by

=
1

2
TrC4

{
(iGµDν + iGνDµ)P (t, x⃗; t′, x⃗′)

}∣∣∣∣∣
t′=t,x⃗′=x⃗

.

(68)
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Because of the homogeneity and the isotropy of the
FLRW space, only the diagonal energy-momentum ten-

sor components are different from 0. We get the following
results after computations and normalization

⟨T 0
0 ⟩w =

⟨ψout(t)|T 0
0 |ψin(t)⟩

⟨ψout(t)|ψin(t)⟩
=

[
mR(t)

(
αin(t)αout(t)− βin(t)βout(t)

)
− λ

(
αin(t)βout(t) + βin(t)αout(t)

)]
R(t)

(
αout(t)αin(t) + βout(t)βin(t)

) , (69)

and

⟨T jj ⟩w =
⟨ψout(t)|T jj |ψin(t)⟩
⟨ψout(t)|ψin(t)⟩

=
λ
(
αin(t)βout(t) + βin(t)αout(t)

)
3R(t)

(
αout(t)αin(t) + βout(t)βin(t)

) , (70)

where j represents r, ϑ, φ. Due to spherical symmetry and
homogeneity of the space, T rr = Tϑϑ = Tφφ are all equal.

One sees here that if |ψin(t)⟩ = |ψout(t)⟩, the weak
measurement of the energy-momentum tensor will coin-
cide with the one computed in [1]. In this regard, weak
measurements are generalizations of classical ones.

Another quick observation is that if

αout(t)αin(t) + βout(t)βin(t) ≈ 0,

an amplification phenomenon occurs. This is realized
when αout(t) ≈ −kβin(t) and βout(t) ≈ kαin(t), where k
is a factor or a phase.

For better analysis, we construct a complex Bloch vec-
tor since it is constructed in the same manner as a
Bloch vector, but the components are complex functions.
Aharonov and Gruss constructed a density operator from
the Two-State vectors in their paper Two-time interpre-
tations of quantum mechanic [9]. This complex Bloch
vector is linked to that density operator. One should
note that if the preselected state is equal to the postse-
lected one, then we shall get the same construction as in
the paper of Finster and Hainzl on page 14 in [1].

v⃗f,i =

v1f,iv2f,i
v3f,i

 =

⟨ξout(t)|σ1|ξin(t)⟩
⟨ξout(t)|σ2|ξin(t)⟩
⟨ξout(t)|σ3|ξin(t)⟩



wherein ξout(t) =

(
αout(t)
βout(t)

)
and ξin(t) =

(
αin(t)
βin(t)

)
.

We also define v0f,i as ⟨ξout(t)|I2×2|ξin(t)⟩ where I2×2

is the 2 dimensional identity matrix. This will yield
αout(t)αin(t) + βout(t)βin(t).
We can now redefine the weak energy-momentum tensor
as

⟨T 0
0 ⟩w =

[
mR(t)

(
v3f,i

)
− λ

(
v1f,i

)]
R(t)

(
v0f,i

)
⟨T jj ⟩w =

λ
(
v1f,i

)
3R(t)

(
v0f,i

)
(71)

Let us express the energy-momentum tensor weak val-
ues in terms of αin(tin) and αout(tout) wherein
A = ei(F (tout,tin)), Ā = e−i(F (tout,tin)),
B = ei(F (t,tin)+F (t,tout)) and B̄ = e−i(F (t,tin)+F (t,tout)).
Because of the lengthiness of the expression, we break it
as follows

v0f,i =

√
2

2
(αout(tout)αin(tin)− αout(tout)βin(tin)) Ā+

√
2

2

(
βout(tout)βin(tin) + βout(tout)αin(tin)

)
A, (72)

v3f,i =

√
2

2
αin(tin)αout(tout)

[
sin (2g(t))B + cos (2g(t))Ā

]
+

√
2

2
βin(tin)βout(tout)

[
− sin (2g(t))B̄ − cos (2g(t))A

]
+

√
2

2
αin(tin)βout(tout)

[
sin (2g(t))B̄ − cos (2g(t))A

]
+

√
2

2
βin(tin)αout(tout)

[
sin (2g(t))B − cos (2g(t))Ā

]
,

(73)

v1f,i =

√
2

2
αin(tin)αout(tout)

[
− sin (2g(t))Ā+ cos (2g(t))B

]
+

√
2

2
βin(tin)βout(tout)

[
sin (2g(t))A− cos (2g(t))B̄

]
+

√
2

2
αin(tin)βout(tout)

[
sin (2g(t))A+ cos (2g(t))B̄

]
+

√
2

2
βin(tin)αout(tout)

[
sin (2g(t))Ā+ cos (2g(t))B

]
.

(74)

We can deduce the orthogonality condition for v0f,i ≈ 0. This is obtained if αout(tout) ≈:

−
√
2

2
αin(tin)

[
− sin (g(tout))e

−iF (tout,tin) + cos (g(tout))e
iF (tout,tin)

]
−

√
2

2
βin(tin)

[
sin (g(tout))e

−iF (tout,tin) + cos (g(tout))e
iF (tout,tin)

]
.

(75)
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and βout(tout) ≈

√
2

2
αin(tin)

[
cos (g(tout))e

−iF (tout,tin) + sin (g(tout))e
iF (tout,tin)

]
+

√
2

2
βin(tin)

[
− cos (g(tout))e

−iF (tout,tin) + sin (g(tout))e
iF (tout,tin)

]
.

(76)

As it is difficult to have a simple expression of the weak
measurement of the energy-momentum tensor to make an
interpretation, let us compute a concrete example with
values that make the computation easy. Let us consider
λ = 3/2, the eigenvalue of the Dirac operator DH, tin ≊ 0
and R0 = 10−3. Theses conditions imply G(tin) = 0 in
(40). They will yield the following expression: ρin1

≈ 2
and ρin2

≈ 0 and ηin1
−ηin2

= 0. For simplicity, we shall
consider ηin1

= ηin2
= 0.

We also remind that the preselected state is taken from
the radiation-dominated Universe with m = 0 which
yields g(tin) = 1

2 arctan(
λ

0∗R(tin)
) = π

4 + kπ. For k = 0,

the matrix will be given by U(tin) =
√
2
2

(
1 −1
1 1

)
. There-

fore the preselected state at tin will be αin(tin) = 2 and
βin(tin) = 0.

As for the postselected state vector, the scale function
and the time expressed R(g) = Rmax

2 (1− cos(g)), t(g) =
Rmax

2 (g − sin(g)), we have the following observations

• A maximal R(g) will be Rmax, and the maximal t,
that is tout will be Rmaxk

π
2 .

• We shall have: ρout1 =
√

2 + Rmax

m ,

ρout2 =
√

2− Rmax

m and ηout1 − ηout2 = π
2 − ϕmax.

We remind that the postselected state is taken from the
dust-dominated Universe wherein λ = 0. This will yield
g(t) = 1

2 arctan(
0

m∗R(tin)
) = 0 + kπ . This will lead, for

k = 0, to U(tout) =

(
1 0
0 1

)
, an identity matrix.

The postselected state tout will be

αout(tout) =

√
2 +

Rmax

m
ei(

π
2 −ϕmax),

βout(tout) =

√
2− Rmax

m
.

(77)

For simplicity, let us consider a weak measurement
taking place at t = tout Universe and Rmax = 10 and
m = 21.5. This implies that(

αin(tout)
βin(tout)

)
= U(tout, tin)

(
αin(tin)
βin(tin)

)
,

where

U(tout, tin) =
1√
2

(
e−iπmRmax −e−iπmRmax

eiπmRmax eiπmRmax

)
,

and U(tout, tout) = I. F (tout, tin) = mtout. These ele-
ments yield the following state vectors

αin(tout) =
1√
2
(αin − βin)e

−iπmRmax,

βin(tout) =
1√
2
(αin + βin)e

iπmRmax.

(78)

Since the weak measurement is taking place at t = tout,
the postselected stated is fixed.
The values in the weak measurement of the energy-

momentum tensor in the following expression

⟨T 0
0 ⟩w =

[
mR(tout)

(
v3f,i

)
− λ

(
v1f,i

)]
R(tout)

(
v0f,i

)
⟨T jj ⟩w =

λ
(
v1f,i

)
3R(tout)

(
v0f,i

)
(79)

will be:

v0f,i = 1.6eiπmRmax − (2.3i)eiϕmax−iπmRmax

v1f,i = (2.3i)ei(πmRmax+ϕmax) + 1.6e−iπmRmax

v3f,i = (2.3i)
(
−eiϕmax−iπmRmax

)
− 1.6eiπmRmax

(80)

What we can conclude is that weak measurements re-
veal unusual values, such as complex numbers. In our
case, for fixed m and Rmax, the numerical result will de-
pend on ϕmax.
In (20) the acceleration of the Universe is given in

terms of the energy momentum tensor. In (25), the ac-
celeration of the Universe is given in terms of the Bloch
vector. But in the Two-State Formalism, the Hopf trans-
formation yields a complex Bloch vector. The Two-State
Formalism generalizes the One-State Formalism since it
suffices to consider the same state vector in the Two-
State Formalism to have the classical Bloch vector. We
propose to give here the acceleration of the universe in
terms of weak measurements of the energy-momentum
tensors and derive it in terms of Complex Bloch vector.
The acceleration of the Universe would then be given as

R̈ =
R

2

(
3⟨T jj ⟩w − ⟨T 0

0 ⟩w
)
,

R̈ =

[
−mR

(
v3f,i

)
+ 2λ

(
v1f,i

)]
2
(
v0f,i

) .
(81)

In this formula, one clearly sees that the acceleration of
the Universe may be comprehended from the Two-State
Formalism and weak measurements theories. Assuming a
different postselected state vector may change the shape
of the acceleration of the Universe. We remind here that
the real and the imaginary parts of a weak value can
be measured. The real part of a weak value may be
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interpreted as the conditioned average associated with
an observable in Two Vector Formalism, [24], [32], and
they represent the shift of the average detected position
due to postselection. The imaginary part of the weak
value represents the shift of the average impulsion due to
postselection.

The computation of the acceleration of the Universe
with the above condition would yield

R̈ = Re


[
−mR

(
v3f,i

)
+ 2λ

(
v1f,i

)]
2
(
v0f,i

)
 (82)

This example shows that the acceleration is not Zero
and depends here on the postselection.

FIG. 9. The real part of the weak values of the acceleration
of the Universe in function of time for m = 21.5, Rmax =
10, ϕmax = 0 and λ = 3

2

Figure (9) is about the weak measurement of the accel-
eration of the Universe as a function of time in a matter
Dominated Universe.

FIG. 10. The real part of the weak values of the accelera-
tion of the Universe in function of time for m = 21, Rmax =
10, ϕmax = π

4
and λ = 3

2
.

The difference between Figure 9 and 10 shows how the
acceleration of the Universe may change with a differ-
ent postselection. We have postselected a state vector
with ϕmax = 0 in Figure 9 and ϕmax = π

4 in Figure
10. It is clear that, this difference causes more acceler-
ation in Figure 10 than in Figure 9. In conclusion, we
have shown how to compute the weak measurement of
the Energy-momentum tensor. We derived how to am-
plify weak values of the energy-momentum tensor using
an appropriate state vector almost orthogonal to the pre-
selected one. We have finally derived the weak values of

the acceleration of the Universe and have showed how
sensitive it is compared to classical acceleration.

B. Weak measurement of σz operator.

In this section, we delve into the weak measurement of
the σz operator which is given by the following expression

σzw =
⟨ψout(t)|σz|ψin(t)⟩
⟨ψout(t)|ψin(t)⟩

. (83)

Following Kofman, Cormann and Ferraz in [33], [34]
and [7] respectively, the weak measurement of the gener-
ator of SU(2) is given by

σr,w =
f⃗ .r⃗ + r⃗.⃗i+ if⃗ .(r⃗ ∧ i⃗)

1
2 (1 + f⃗ .⃗i)

. (84)

In our case, r⃗ = ( 0 0 1 ) to get σz. Following Kofman

in [33], the vectors f⃗ and i⃗ are computed as follows

w⃗f =

⟨ξout(t)|σ1|ξout(t)⟩
⟨ξout(t)|σ2|ξout(t)⟩
⟨ξout(t)|σ3|ξout(t)⟩

 ,

where ξout(t) =

(
αout(t)
βout(t)

)
is expressed as

αout(t) =αout(tout) cos (g(t))e
−iF (tout,t)+

βout(tout) sin (g(t))e
iF (tout,t),

(85)

and

βout(t) =− αout(tout) sin (g(t))e
−iF (tout,t)+

βout(tout) cos (g(t))e
iF (tout,t).

(86)

In the same way, the preselected state is given by:

w⃗i =

⟨ξin(t)|σ1|ξin(t)⟩
⟨ξin(t)|σ2|ξin(t)⟩
⟨ξin(t)|σ3|ξin(t)⟩

 ,

where ξin(t) =

(
αin(t)
βin(t)

)
is expressed as

αin(t) =

√
2

2
αin(tin)

[
cos (g(t))e−iF (t,tin) + sin (g(t))eiF (t,tin)

]
+

√
2

2
βin(tin)

[
− cos (g(t))e−iF (t,tin) + sin (g(t))eiF (t,tin)

]
,

(87)
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and

βin(t) =

√
2

2
αin(tin)

[
− sin (g(t))e−iF (t,tin) + cos (g(t))eiF (t,tin)

]
+

√
2

2
βin(tin)

[
sin (g(t))e−iF (t,tin) + cos (g(t))eiF (t,tin)

]
.

(88)

For simplicity we shall consider tin = 0 which implies
that ηin1 − ηin2 = 0. We will set ηin1

− ηin2
= ∆in when

necessary. This implies ∆in = 0 and tout = tmax. We
obtain the following Postselected and Preselected vectors
w⃗f and w⃗i whose components are given as w⃗f =

wf
1 = −Rmax

m sin (2g(t))+√
N2 − R2

max

m2 cos
(
π
2 − ϕmax − 2F (tout, t)

)
cos (2g(t))

wf
2 =

√
N2 − R2

max

m2 sin (π2 − ϕmax − (2F (tout, t)))

wf
3 = Rmax

m cos (2g(t))+√
N2 − R2

max

m2 cos (π2 − ϕmax − 2F (tout, t)) sin (2g(t))

,(89)

and w⃗i =
w1

i =

√
N2 − R4

0
λ2 cos (2g(t)) cos (2F (t, tin)) +

R2
0

λ
sin (2g(t))

w2
i = −

√
N2 − R4

0
λ2 sin (2F (t, tin))

w3
i =

√
N2 − R4

0
λ2 sin (2g(t)) cos (2F (t, tin))− R2

0
λ

cos (2g(t))

.(90)

The vector f⃗ is equal to
w⃗f

|w⃗f | , and i⃗ =
w⃗i

|w⃗i| . The length

of both Bloch vectors are

|w⃗f | = |w⃗i| = λ2 − 1

4
.

They represent the unit vectors on the Bloch sphere of
post-selected and pre-selected state. In terms of the com-
ponents, the σz weak measurement is given by

σr,w =
wf

3 + wi
3 + i(−wf 1wi2 + wf

2wi
1)

1
2 (1 + wf 1wi1 + wf 2wi2 + wf 3wi3)

. (91)

The real part of the numerator of the weak value of
σz operator in general terms with the above conditions
(tin = 0, ∆in = 0 and tout = tmax), σr,w, is given by

wf
3 + wi

3 =

sin(2g(t))
(
∆ρ2in cos (2F (t, tin)) + 2ρout1ρout2 cos (∆out)

)
+(

∆ρ2out − 2ρin1ρin2

)
cos(2g(t)).

(92)

In terms of the preselected and postselected we have
computed, it would be√

N2 −
R4

0

λ2
cos (2F (t, tin)) sin(2g(t)) +

(
−mR2

0 + λRmax
)
cos(2g(t))

mλ
+√

N2 −
R2

max

m2
sin(2g(t)) sin (2F (tout, t) + ϕmax) .

(93)

In the same way, the imaginary part of the numerator
of the weak value of σz operator is expressed, in general

term with the above conditions as,

−wf 1wi2 + wf
2wi

1 =

2ρout1ρout2
(
∆ρ2in cos(2g(t)) sin (2F (t, tin) + ∆out)+

ρin1ρin2 sin(2g(t)) sin (∆out))−∆ρ2in∆ρ2out sin(2g(t)) sin (2F (t, tin)) .

(94)

It would explicitly be given in terms of the preselected
and postselected state as

−
sin (2F (t, tin)) sin(2g(t))

√
N2 − R4

0
λ2 Rmax

m
+

1

λ

√
N2 −

R2
max

m2

(
R2

0 cos (2F (tout, t) + ϕmax) sin(2g(t))+

λ

√
N2 −

R4
0

λ2
cos(2g(t)) cos (2F (t, tin)− 2F (tout, t)− ϕmax)

 .

(95)

Finally, the denominator part will be given in general
terms by:
(1 + wf

1wi
1 + wf

2wi
2 + wf

3wi
3) =

2∆ρ2inρout1ρout2 cos (2F (t, tin) + ∆out)− 2∆ρ2outρin1ρin2 + 1.

(96)

It would explicitly be given by:√
N2 −

R4
0

λ2

√
N2 −

R2
max

m2
cos (a)−

R2
0Rmax

λm
+ 1. (97)

wherein a = 2F (t, tin) + ∆out.
One can see that the amplification phenomenon is ob-

tained in many ways. One way is

cos(a) ≈ −
1− R2

0Rmax

λm√
N2 − R4

0

λ2

√
N2 − R2

max

m2

. (98)

We remind that ∆out = (ηout1 − ηout2 + 2F (tout, t)). By
adjusting adequately the parameters appearing in a, one
can amplify the weak values.
It is essential to note that any arbitrary observable in

a 2-level system can be expressed as Â = aI Î2 + aLα⃗.ˆ⃗σ,
where aI and aL are constants, α⃗ is a unit vector in three
dimensions, and σ denotes the Pauli matrices.
In this subsection we have derived the computation of

the weak value of the Z component of the Spin of fermions
in the context of cosmology. We have shown how it is
possible to amplify the signal by choosing adequate pa-
rameters.

C. Berry phase from the weak measurement of a
pure state.

Let us now compute the weak measurement of a pure
state which is given as:

Π̂r,w =
⟨ψout(t)|Π̂r|ψin(t)⟩
⟨ψout(t)|ψin(t)⟩

. (99)
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where Π̂r is a pure state given as 1
2

(
Î + r⃗⃗̂σ

)
. The

complete formula to compute the weak values of a pure
state is found in [33] or the appendix of [34] and [7]. It
reads as

Π̂r,w =
1 + f⃗ .r⃗ + r⃗.⃗i+ f⃗ .⃗i+ if⃗ .(r⃗ ∧ i⃗)

1
2 (1 + f⃗ .⃗i)

. (100)

The vector r⃗ is defined as sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 . (101)

For readability and simplicity we shall consider
θ = φ = π

2 , a =
(
mtout − π

2 − F (tout, tin)
)
and b =

2F (t, tin) + ∆out.

Then the real part of the numerator of Π̂r,w will be given
in general terms by

−∆ρ2in sin (2F (t, tin)) + 2ρout1ρout2 sin (∆out) + 1. (102)

In terms of the preselected and postselected state com-
puted, it would be

−
√

N2 − R4
0

λ2
sin (2F (t, tin)) +

√
N2 − R2

max

m2
sin (∆out) + 1.

(103)

The imaginary part of numerator of the Π̂r,w,

1 + f⃗ .r⃗ + r⃗.⃗i+ f⃗ .⃗i, obtained is in general terms

−∆ρ2in∆ρ
2
out cos (2F (t, tin))− 4ρin1

ρin2
ρout1ρout2 cos (∆out) .

(104)

In terms of our particular solutions for the preselected
and postselected state, it would be given by

−
Rmax

√
N2 − R4

0

λ2

m
cos (2F (t, tin))

−
R2

0

√
N2 − R2

max

m2

λ
cos (∆out) .

(105)

In the denominator, 1 + f⃗ .⃗i remains the same

2∆ρ2inρout1ρout2 cos (b)− 2∆ρ2outρin1
ρin2

+ 1. (106)

Explicitly we have√
N2 − R4

0

λ2

√
N2 − R2

max

m2
cos (2F (t, tin) + ∆out)−

R2
0Rmax

λm
+ 1.

(107)

The amplification phenomenon is obtained as ex-
plained in the case of the weak value of σz.

Let us compute now the argument of the weak value
of the pure state. It is given from ([7]) as

arg Π̂r,w = arctan
f⃗ .(r⃗ ∧ i⃗)

1 + f⃗ .r⃗ + r⃗.⃗i+ f⃗ .⃗i
(108)

The berry phase would be given by arg Π̂r,w =

arctan

−
Rmax

√
N2−

R4
0

λ2

m
cos (2F (t, tin))−

R2
0

√
N2−R2

max
m2

λ
cos (∆out)

−
√

N2 − R4
0

λ2 sin (2F (t, tin)) +

√
N2 − R2

max
m2 sin (∆out) + 1

.

(109)

As a conclusion, this berry phase confirms the fact that
the Universe considered here is not flat since its argument
is not 0 or a multiple of 2π in all cases .

IV. CONCLUSION

Our objectives in this paper were to apply the theory
of weak measurement in Einstein-Dirac system in the
Friedman-Lemâıtre-Robertson-Walker space. We have
elucidated numerous conclusions, particularly regarding
the enlarged scope of weak measurements in contrast to
classical measurement paradigms. Notably, our analysis
revealed that the weak value of the energy-momentum
tensor extends beyond what is described classical energy-
momentum concepts, exhibiting unusual values as com-
plex numbers in certain instances.
We have also shown that it is possible to amplify mea-

surements with less expensive equipments through the
weak measurements process by strategically assuming
appropriate initial and final state vector. Furthermore,
weak measurements serve as a powerful tool for shedding
some lights to the geometric characteristics of the under-
lying space. By virtue of its association with the Berry
phase, weak measurements enabled us to ascertain that
the underlying space exhibits non-flat geometry, as evi-
denced by the weak measurement of fermion wave func-
tions.
Our analytical framework also demonstrates the effec-

tiveness of weak measurements in detecting the acceler-
ation of the Universe, leveraging the Two-State vector
formalism and weak measurement techniques. Notably,
we established that the scale function may be understood
as an outcome of the postselection process.
We end this paper by noticing that it is possible to use

this tool in cosmology. This should be the next step for
some future researches.
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Appendix A: Weak measurements of the Energy momentum

Let us make the computations of the energy momentum more explicit where ⟨T 0
0 ⟩w =

⟨ψout(t)|T 0
0 |ψin(t)⟩

⟨ψout(t)|ψin(t)⟩ and ⟨T jj ⟩w =

⟨ψout(t)|T j
j |ψin(t)⟩

⟨ψout(t)|ψin(t)⟩ . They are given as follows

⟨T 0
0 ⟩w =

[
mR(t)

(
αin(t)αout(t)− βin(t)βout(t)

)
− λ

(
αin(t)βout(t) + βin(t)αout(t)

)]
R(t)

(
αout(t)αin(t) + βout(t)βin(t)

) , (A1)

and

⟨T jj ⟩w =
λ
(
αin(t)βout(t) + βin(t)αout(t)

)
3R(t)

(
αout(t)αin(t) + βout(t)βin(t)

) . (A2)

1. Computation of the preselected state at time t

The spinor at time t is obtained by applying the evo-
lutionary operator on a spinor defined at a specific time.
The case of preselected state at time t is the preselected
state at time tin on which the unitary operator is applied.
It is given by(

αin(t)
βin(t)

)
= U(t, tin)

(
αin(tin)
βin(tin)

)
.

U(t, tin) is given by U−1(t)

(
e−iF (t,tin) 0

0 eiF (t,tin)

)
U(tin)

The specific case wherein the preselected state is taken
in the radiation dominated Universe with m = 0 will
yield g(tin) = 1

2 arctan(
λ

0∗R(tin)
) = π

4 + kπ. For k = 0,

the matrix will be given by U(tin) =
√
2
2

(
1 −1
1 1

)
.

This will lead to

αin(t) =

√
2

2
αin(tin)

[
cos (g(t))e−iF (t,tin) + sin (g(t))eiF (t,tin)

]
+

√
2

2
βin(tin)

[
− cos (g(t))e−iF (t,tin) + sin (g(t))eiF (t,tin)

]
.

(A3)

and

βin(t) =

√
2

2
αin(tin)

[
− sin (g(t))e−iF (t,tin) + cos (g(t))eiF (t,tin)

]
+

√
2

2
βin(tin)

[
sin (g(t))e−iF (t,tin) + cos (g(t))eiF (t,tin)

]
.

(A4)

We remind here that F (t, tin) =
∫ t
tin

√
R2(t)m2+λ2

R(t) dt.

2. Computation of the postselected state at time t

The postselected state is taken from the dust domi-
nated Universe wherein λ = 0. This will yield g(t) =
1
2 arctan(

0
m∗R(tin)

) = 0 + kπ . This will lead, for k = 0,

to U(tout) =

(
1 0
0 1

)
, the identity matrix.

Knowing that U†(t, tout) = U(tout, t) ,(
αout(t) βout(t)

)
=
(
αout(tout) βout(tout)

)
U(tout, t).

U(tout, t) is given by U−1(tout)

(
e−iF (tout,t) 0

0 eiF (tout,t)

)
U(t).

This will lead to:

αout(t) = αout(tout) cos (g(t))e
−iF (tout,t) + βout(tout) sin (g(t))eiF (tout,t).

(A5)

and :

βout(t) = −αout(tout) sin (g(t))e−iF (tout,t) + βout(tout) cos (g(t))e
iF (tout,t).

(A6)

3. Computation of numerators and denominators
of the energy-momentum Tensor

In terms of αin(tin) and αout(tout)
where

A = ei(F (tout,tin)), Ā = e−i(F (tout,tin)),

B = ei(F (t,tin)+F (t,tout)), B̄ = e−i(F (t,tin)+F (t,tout))
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•
(
αout(t)αin(t) + βout(t)βin(t)

)
is equal to:

√
2

2
(αout(tout)αin(tin)− αout(tout)βin(tin)) Ā

+

√
2

2

(
βout(tout)βin(tin) + βout(tout)αin(tin)

)
A.

(A7)

•
(
αin(t)αout(t)− βin(t)βout(t)

)
is equal to:

√
2

2
αin(tin)αout(tout)

[
sin (2g(t))B + cos (2g(t))Ā

]
+

√
2

2
βin(tin)βout(tout)

[
− sin (2g(t))B̄ − cos (2g(t))A

]
+

√
2

2
αin(tin)βout(tout)

[
sin (2g(t))B̄ − cos (2g(t))A

]
+

√
2

2
βin(tin)αout(tout)

[
sin (2g(t))B − cos (2g(t))Ā

]
.

(A8)

•
(
αin(t)βout(t) + βin(t)αout(t)

)
is equal to:

√
2

2
αin(tin)αout(tout)

[
− sin (2g(t))Ā+ cos (2g(t))B

]
+

√
2

2
βin(tin)βout(tout)

[
sin (2g(t))A− cos (2g(t))B̄

]
+

√
2

2
αin(tin)βout(tout)

[
sin (2g(t))A+ cos (2g(t))B̄

]
+

√
2

2
βin(tin)αout(tout)

[
sin (2g(t))Ā+ cos (2g(t))B

]
.

(A9)

Appendix B: Weak measurements of σz operator

The weak measurement of the generator of SU(2) is
given by

σr,w =
f⃗ .r⃗ + r⃗.⃗i+ if⃗ .(r⃗ ∧ i⃗)

1
2 (1 + f⃗ .⃗i)

. (B1)

In our case, r⃗ = ( 0 0 1 )T to get σz. Following Kof-

man in [33], the vectors f⃗ and i⃗ are computed as follow:
w⃗f =⟨ξout(t)|σ1|ξout(t)⟩

⟨ξout(t)|σ2|ξout(t)⟩
⟨ξout(t)|σ3|ξout(t)⟩

 =

 2Re
(
αout(t)β̄out(t)

)
2Im

(
αout(t)β̄out(t)

)
|αout(t)|2 − |βout(t)|2

 .

wherein ξout(t) =

(
αout(t)
βout(t)

)
.

Some particular products are given as:

αout(t)β̄out(t) = −
(
|αout(tout)|2 − |βout(tout)|2

)
sin(g(t)) cos(g(t))

+ αout(tout)βout(tout) cos
2(g(t))e−2iF (tout,t)

− βout(tout)αout(tout) sin
2(g(t))e2iF (tout,t),

(B2)

which in terms of αout(tout) = ρout1e
iηout1 and

βout(tout) = ρout2e
iηout2 will be

Re
(
αout(t)β̄out(t)

)
=

1

2

(
ρ2out2 − ρ2out1

)
sin (2g(t))

+ ρout1ρout2 cos (2g(t)) cos (ηout2 − ηout1 − 2F (tout, t)),

(B3)

and the imaginary part in terms of
ρout1 , ρout2 , ηout2 , ηout1 will be

Im
(
αout(t)β̄out(t)

)
=

1

2

(
ρ2out2 − ρ2out1

)
sin (2g(t))

+ ρout1ρout2 sin (ηout2 − ηout1 − 2F (tout, t)).
(B4)

In the same way, the preselected state vector is com-
puted as follows w⃗i =⟨ξin(t)|σ1|ξin(t)⟩

⟨ξin(t)|σ2|ξin(t)⟩
⟨ξin(t)|σ3|ξin(t)⟩

 =

 2Re
(
αin(t)β̄in(t)

)
2Im

(
αin(t)β̄in(t)

)
|αin(t)|2 − |βin(t)|2

 ,

wherein ξin(t) =

(
αin(t)
βin(t)

)
αin(t)β̄in(t)

=
(
|αin(tin)|2 − |βin(tin)|2

)
×
(
cos2(g(t))e−2iF (t,tin) − sin2(g(t))e2iF (t,tin)

)
+ αin(tin)βin(tin)

×
(
sin(2g(t)) + sin2(g(t))e2iF (t,tin) + cos2(g(t))e−2iF (t,tin)

)
+ βin(tin)αin(tin)

×
(
sin(2g(t))− sin2(g(t))e2iF (t,tin) − cos2(g(t))e−2iF (t,tin)

)
,

(B5)

which in terms of αin(tin) = ρin1
eηin1 and βin(tin) =

ρin2e
ηin2 will be

Re
(
αin(t)β̄in(t)

)
=
(
ρ2in1

− ρ2in2

)
cos (2g(t)) cos (2F (t, tin))

+ 2ρin1ρin2 [sin (2g(t)) cos (ηin1 − ηin2)

− cos (2g(t)) sin (ηin1 − ηin2) sin (2F (t, tin))]

(B6)

and the imaginary part will be

Im
(
αin(t)β̄in(t)

)
=
(
ρ2in2

− ρ2in1

)
sin (2F (t, tin))

+ 2ρin1ρin2 sin (ηin1 − ηin2) cos (2F (t, tin)).
(B7)

In our case, r⃗ = ( 0 0 1 ) to get σz. Following Kofman

in [33], the vectors f⃗ and i⃗ are computed as follows

w⃗f =

⟨ξout(t)|σ1|ξout(t)⟩
⟨ξout(t)|σ2|ξout(t)⟩
⟨ξout(t)|σ3|ξout(t)⟩

 =

 2Re
(
αout(t)β̄out(t)

)
2Im

(
αout(t)β̄out(t)

)
|αout(t)|2 − |βout(t)|2

 ,

wherein ξout(t) =

(
αout(t)
βout(t)

)
. We obtain the following

vector w⃗f components that are given as:
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 wf
1 = −∆ρ2out sin (2g(t)) + 2ρout1ρout2 cos (2g(t)) cos (∆out)

wf
2 = 2ρout1ρout2 sin (∆out)

wf
3 = ∆ρ2out cos (2g(t)) + 2ρout1ρout2 sin (2g(t)) cos (∆out),

(B8)

where (ηout1 − ηout2 + 2F (tout, t)) = ∆out,
ρ2out1 − ρ2out2 = ∆ρ2out.

Its norm is |w⃗f | = ρ2out1 + ρ2out2 = λ2 − 1
4 . This implies

that the unit vector f⃗ would be given by

f⃗ =
1

λ2 − 1
4

w⃗f .

In the same way, the preselected state is given by:

w⃗i =

⟨ξin(t)|σ1|ξin(t)⟩
⟨ξin(t)|σ2|ξin(t)⟩
⟨ξin(t)|σ3|ξin(t)⟩

 =

 2Re
(
αin(t)β̄in(t)

)
2Im

(
αin(t)β̄in(t)

)
|αin(t)|2 − |βin(t)|2

 .

wherein ξin(t) =

(
αin(t)
βin(t)

)
.

The vector f⃗ is equal to
w⃗f

|w⃗f | , and i⃗ =
w⃗i

|w⃗i| . They repre-

sent the unit vectors on the Bloch sphere of post-selected
and pre-selected state. In terms of the components, the
σz weak measurement is given by:

σr,w =
wf

3 + wi
3 + i(−wf 1wi2 + wf

2wi
1)

1
2 (1 + wf 1wi1 + wf 2wi2 + wf 3wi3)

(B9)

We obtain the following vector w⃗i = wi
1 = ∆ρ2in cos (2g(t)) cos (2F (t, tin)) + 2ρin1

ρin2
(sin (2g(t)) cos (∆in) + cos(2g) sin(∆in) sin (2F (t, tin)))

wi
2 = −∆ρ2in sin (2F (t, tin)) + 2ρin1

ρin2
sin (∆in) cos (2F (t, tin))

wi
3 = ∆ρ2in sin (2g(t)) cos (2F (t, tin)) + 2ρin1ρin2 (− cos (2g(t)) cos (∆in) + sin (2g(t)) sin (∆in) sin (2F (t, tin))) ,

(B10)

wherein ηin1 − ηin2 = ∆in, ρ
2
in1

− ρ2in2
= ∆ρ2in, |w⃗f | = λ2 − 1

4
The real and the imaginary part of the numerator of the weak measurement of σz operator , σr,w, are given

respectively by:
wf

3 + wi
3 =

∆ρ2in cos (2F (t, tin)) sin(2g(t)) + ∆ρ2out cos(2g(t)) + 2ρin1ρin2 (− cos(2g(t)) cos (∆in) + sin (2F (t, tin)) sin(2g(t)) sin (∆in))+

2ρout1ρout2 sin(2g(t)) cos (∆out) ,

(B11)

−wf 1wi2 + wf
2wi

1 =

2ρin1ρin2

(
∆ρ2out cos (2F (t, tin)) sin(2g(t)) sin (∆in) + 2ρout1ρout2 (− cos(2g(t)) cos (2F (t, tin) + ∆out) sin (∆in) + cos (∆in) sin(2g(t)) sin (∆out))

)
+

∆ρ2in
(
−∆ρ2out sin (2F (t, tin)) sin(2g(t)) + 2ρout1ρout2 cos(2g(t)) sin (2F (t, tin) + ∆out)

) ,

(B12)

and 1 + wf
1wi

1 + wf
2wi

2 + wf
3wi

3 is given by:

1− 2∆ρ2outρin1
ρin2

cos (∆in) + 2ρout1ρout2
(
∆ρ2in cos (2F (t, tin) + ∆out) + 2ρin1

ρin2
sin (∆in) sin (2F (t, tin) + ∆out)

)
.

(B13)

Appendix C: Berry phase

The weak value of a pure is given by:

Π̂r,w =
1 + f⃗ .r⃗ + r⃗.⃗i+ f⃗ .⃗i+ if⃗ .(r⃗ ∧ i⃗)

1
2 (1 + f⃗ .⃗i)

. (C1)

We obtain from f⃗ =
w⃗f

|w⃗f | , and i⃗ =
w⃗i

|w⃗i| already computed

in general terms:

1 + f⃗ .r⃗ + r⃗.⃗i+ f⃗ .⃗i =

1 + cos(φ) sin(θ)
(
∆ρ2in cos(2g(t)) cos (2F (t, tin))−∆ρ2out sin(2g(t))

+2ρin1
ρin2

(cos(2g(t)) sin (∆in) sin (2F (t, tin)) + sin(2g(t)) cos (∆in)) + 2 cos(2g(t)) cos (∆out) ρout1ρout2)

+ cos(θ)
(
∆ρ2in sin(2g(t)) cos (2F (t, tin)) + ∆ρ2out cos(2g(t)) + 2ρin1

ρin2
(− cos(2g(t)) cos (∆in)

sin(2g(t)) sin (∆in) + sin (2F (t, tin))) + 2 sin(2g(t)) cos (∆out) ρout1ρout2)+

sin(θ) sin(φ)
(
2ρin1

ρin2
sin (∆in) cos (2F (t, tin)) +

(
−∆ρ2in

)
sin (2F (t, tin)) + 2 sin (∆out) ρout1ρout2

)
. (C2)
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The imaginary part, f⃗ .(r⃗ ∧ i⃗) is given by

sin(θ) sin(φ)
((
−∆ρ2in

)
∆ρ2out cos (2F (t, tin))− 2ρin1ρin2

(
∆ρ2out sin (∆in) sin (2F (t, tin)) + 2 cos (∆in) cos (∆out) ρout1ρout2

))
+ cos(θ)

(
2ρin1

ρin2
∆ρ2out (sin(2g(t)) sin (∆in) cos (2F (t, tin)) + 2ρout1ρout2 (− cos(2g(t)) sin (∆in) cos (2F (t, tin) + ∆out)

+ sin(2g(t)) cos (∆in) sin (∆out))) + ∆ρ2in
(
2ρout1ρout2 cos(2g(t)) sin (2F (t, tin) + ∆out)−∆ρ2out sin(2g(t)) sin (2F (t, tin))

))
+ cos(φ) sin(θ)

(
2ρin1

ρin2
∆ρ2out (cos(2g(t)) sin (∆in) cos (2F (t, tin)) + 2ρout1ρout2 (sin(2g(t)) sin (∆in) cos (2F (t, tin) + ∆out)

+ cos(2g(t)) cos (∆in) sin (∆out)))−∆ρ2in
(
2ρout1ρout2 sin(2g(t)) sin (2F (t, tin) + ∆out) + ∆ρ2out cos(2g(t)) sin (2F (t, tin))

))
.

(C3)

The denominator is the same as computed for the weak measurements of σz.
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