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Abstract

Quantum computers are believed to bring computational advantages in simulating quantum many
body systems. However, recent works have shown that classical machine learning algorithms are able to
predict numerous properties of quantum systems with classical data. Despite various examples of learning
tasks with provable quantum advantages being proposed, they all involve cryptographic functions and do
not represent any physical scenarios encountered in laboratory settings. In this paper we prove quantum
advantages for the physically relevant task of learning quantum observables from classical (measured out)
data. We consider two types of observables: first we prove a learning advantage for linear combinations
of Pauli strings, then we extend the result for the broader case of unitarily parametrized observables.
For each type of observable we delineate the boundaries that separate physically relevant tasks which
classical computers can solve using data from quantum measurements, from those where a quantum
computer is still necessary for data analysis. Our results shed light on the utility of quantum computers
for machine learning problems in the domain of quantum many body physics, thereby suggesting new
directions where quantum learning improvements may emerge.

1 Introduction

The very first proposed application of quantum computers can be traced back to Feynman’s idea of sim-
ulating quantum physics on a quantum device. Together with factoring, simulation of quantum many
body systems stand as the clearest example of dramatic advantages of quantum computers [Llo96]. Ma-
chine learning is another much newer area where quantum computers are believed to possibly bring ad-
vantages in certain learning problems, and in fact there are provable speed ups achieved by a quantum
algorithm [LAT21, SG04, SSHE21, JGM+21] for specific machine learning problems. Relating back to the
original Feynman’s idea of simulating quantum physics, machine learning problems in quantum many body
physics seem a natural scenario where learning advantages could arise. However, perhaps surprisingly, it
was recently shown that access to data exemplifying what the hard-to-compute function does can drastically
change the hardness of the computational task questioning the role of quantum computation in a machine
learning scenarios [HBM+21, HKT+22b]. If every quantum computation could be replicated classically pro-
vided access to data, such results would confine the practical application of quantum computers solely to
the data acquisition stage. This is however not the case, as was shown already in the examples considered
in [SG04, LAT21]. In such cases the unknown function was cryptographic in nature, and not related to
genuine quantum simulation problems. Nonetheless in [GD23] it was elucidated that learning problems with
provable speed-ups can be derived from any BQP-complete functions, facilitating connections to more phys-
ical scenarios.
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The work in [GD23] demonstrated the existence of learning problems with provable advantages based on
such reasonings, however it does not provide any natural learning setting of the kind encountered in physics.
Another significant open question, raised by the recent progress on classical algorithms with provable guar-
antees, pertains to establishing clear boundaries between classical and quantum algorithms when dealing
with data generated by quantum processes. In this work we provide substantial strides in both directions.
We specifically consider learning problems where an experimentalist wants to predict expectation values of
an unknown observable from measurements on input quantum states which can either be ground states of
local Hamiltonians or time evolved states. Our result is a proof of learning advantages for different types
of quantum observables. Firstly, we prove an exponential quantum advantage in learning observables con-
structed as an unknown linear combination of Pauli strings. Then we extend our quantum speed-up result
to the far more general case of unitarily-parametrized observables, linking our results to the extensive body
of literature on learning unknown unitaries from query access. In connection to this, we examine the Hamil-
tonian learning problem where the identification of the target function is demonstrated to be classically easy.
We summarize our main results in Table 1.

Class of observables Learning Problem
Existence of a

Learning Advantage

Linear combination of Pauli strings

Time Evolution Problem Yes

Ground State Problem Yes

Flipped Concepts No - Classically easy

Unitarily-parametrized Observables

Learning the observable Yes

Hamiltonian Learning No - Classically easy

Identifying the concept
Unknown -

Classical hardness unknown

Table 1: Main results of this paper

2 Related work

Our main results are built upon the theoretical assumption that there exists a BQP language and an input
distribution such that the language cannot be decided using HeurP/poly, for more on this see [GD23].
Building on this, the authors also proved that many learning speed-ups could arise by looking at BQP
complete problems. However, in their separation result, the concept class is limited to be of polynomial size,
and the quantum algorithm crucially leverages this to find the underlying concept in polynomial time by
brute force. In this work we take a step further from their result by considering a continuous concept class
and using a quantum algorithm which learns the unknown concept from data through a natural machine
learning method.

In recent works by [HKT+22b, LHT+24], significant progresses have been made with classical machine
learning algorithms with provable guarantees for learning ground state properties from data, restricting the
role of a quantum computer only to the data acquisition phase. In this study, we establish rigorous limitations
on the capabilities of classical algorithms when learning quantum observables. A key distinction from their
approach is that, in considering ground state problems, we investigate Hamiltonians with a polynomially
decaying spectral gap, whereas the algorithms in [HKT+22b, LHT+24] have provable guarantees only for
gapped Hamiltonians

In [YIM23] the authors proposed a family of supervised learning tasks which present a learning speed-up
with an exponentially sized concept class. Our construction, which was developed independently from [YIM23],
stems from a physically-motivated context, resulting in the utilization of different techniques for the quantum
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learning algorithm given the necessity to handle errors in the training samples. The result of Theorem 3 fur-
ther differentiates our work, as it deals with unitarily parametrized observables for which the corresponding
learning algorithm cannot be straightforwardly simplified to solving a linear system of equations, as it is in
the case of [YIM23].

3 The learning problems

We now take in consideration the first scenario where experimentalists can time evolve arbitrary input
states under a fixed Hamiltonian for constant time, however they do not have full control over the input
state preparation. We model this by allowing the input states to be sampled randomly from an unknown
distribution of quantum states, subsequently they undergo a time evolution before being measured by an
unknown observable. The experimentalists collect the corresponding measurement outcomes and the goal is
to predict expectation values of the unknown observable on new input states. This simple scenario is later
significantly generalized to cases where the inputs are known Hamiltonians, and the problem is not time
evolution but rather learning measurements on their ground states. In both cases we rigorously model the
colloquially described learning tasks using concept classes within the PAC learning framework

Let H be a Hamiltonian and fix a constant time τ , we model the time evolution learning problem by the
following concept class

FH,O
evolved = {fα(x) ∈ R | α ∈ [−1, 1]m} (1)

with fα(x) : x ∈ {0, 1}n → fα(x) = Tr[ρH(x)O(α)] & O(α) =
m∑

i=1

αiPi. (2)

In the above, x specifies the initial state |x〉, ρH(x) the constant time evolved state ρH(x) = U |x〉 〈x|U †

with U = eiHτ and each Pi is a k-local Pauli string wherem scales polynomially with n. Notice that although
we consider binary inputs x ∈ {0, 1}n, the output of each concept is a real. The goal of the ML learning
algorithm is to learn a model h(x) which approximates the unknown concept fα(x) = Tr[ρH(x)O(α)],
using as training samples data of the form T α

ǫ3
= {(xℓ, yℓ)}Nℓ=1 where yℓ ≈ǫ3 f

α(xℓ) is an additive error
ǫ3-approximation of the true expectation value Tr[ρH(xℓ)O(α)]. Considering datasets with approximated
values makes the learning problem closer to real world scenarios. In an idealized setting, the dataset would
consist of pairs (xℓ, yℓ), where yℓ represents the exact expectation value. However, in real experiments,
measurements are conducted by counting frequencies from a finite number of state copies, resulting in only
approximate estimations of expectation values due to sampling errors. Formally, we assume a maximum
(sampling) error ǫ3 on the training labels yℓ of our dataset, i.e. ǫ3 = maxℓ |Tr[ρH(xℓ)O(α)] − yℓ|. It is
now possible to formally state our learning condition. Assuming the xℓ’s in the training data come from
an unknown distribution D, we require that the ML model learns the concept class FH,O

evolved in the following
sense.

Definition 1 (Efficient learning condition). A concept class F is efficiently learnable with respect to the
distribution D if for every ǫ, ǫ3 > 0 and 0 < δ < 1, there exists a poly(1/ǫ, 1/δ, 1/ǫ3, n)-time algorithm A
such that for any fα in F and for any training set T α

ǫ3
of poly(1/ǫ, 1/δ, 1/ǫ3, n) size, h(.) = A(T α

ǫ3
, .) satisfies

with probability 1− δ:
Ex∼D

[
|fα(x)− h(x)|2

]
≤ ǫ (3)

Notice that the learning algorithm possesses no prior knowledge regarding the observable O(α), except
for the fact that it is a k-local operator. Any additional information regarding O(α) can exclusively be
derived from the training samples within T α

ǫ3
. In particular the vector α, which defines the specific concept

in the concept class, is unknown to the learning algorithm. While the classical hardness of the learning
problem relies on considering a specific α for which the evaluation of fα(x) is known to be hard, the
quantum algorithm will use a LASSO regression to infer a parameter w ∈ [−1, 1]m close to the target α so
that condition (3) is satisfied.
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We emphasize here that our learning definition demands that the trained classical model can label new
points. This stands in contrast to other settings, e.g. Hamiltonian learning problems, where the task would
be identifying the vector α. In the prior case, a learning advantage is more easily established as explained in
[GD23] where the hardness of evaluating versus identifying a concept was discussed. Later, we will explore
this difference further and present an example of an identification problem closely related to the concept
class of Eq. (1), which indeed can be solved by a classical algorithm.

We can now state the first result of this paper, namely the existence of a concept class for the time
evolution learning problem learnable by a quantum algorithm but for which no classical algorithm can meet
the learning condition of Eq. (3).

Theorem 1 (Learning advantage for the time evolution problem). Under the assumption that there exists

a distribution D′ such that BQP 6⊂ HeurPD′

/poly1, then for any BQP-complete language there exists an
associated distribution D over the input values x ∈ {0, 1}n, a Hamiltonian Hhard and a set of observables
{O(α)}α such that no classical algorithm can solve the time evolution learning problem, formalized by the

concept class FHhard,O
evolved , in the sense of Def. 1 given data T α

ǫ3
= {(xℓ, yℓ ≈ǫ3 f

α(x))}Nℓ=1 sampled from D.

However, there exists a quantum algorithm which learns FHhard,O
evolved under any distribution D.

In the remainder of this Section we prove Theorem 1 by explicitly constructing an example of a provable
classically hard time evolution problem and providing a quantum algorithm with learning guarantees. We
sketch the proof ideas in the following paragraphs of the main text, while the full proofs can be found in the
Appendix.

Classical hardness The hardness condition relies on the assumption BQP 6⊂ HeurPD/poly for some
distribution D. Notice that it is a widely believed assumption as, for example, the discrete logarithm problem
is believed to not be in HeurBPP/poly if the input values are sampled from the uniform distribution [BM19].
In general, by Lemma 3 in [GD23] if there exists a single L ∈ BQP that is not in HeurP/poly under some
distribution, then for every BQP-complete problem there exists a distribution under which the problem is
not in HeurP/poly.

Lemma 1 (Classical hardness of the time evolution learning problem). Under the assumption that there

exists a distribution D′ such that BQP 6⊂ HeurPD′

/poly, then for any BQP-complete language there exists an
associated input distribution D and a Hamiltonian Hhard such that no randomized polynomial-time classical
algorithm Ac is such that hcl(.) = Ac(T

α, .) satisfies the learning condition of Def. 1 for the concept class

FHhard,O
evolved with x sampled from D.

We now show an appropriate choice of the Hamiltonian Hhard such that the time evolution problem
lies outside HeurP/poly for a specific input distribution D. Let L be a BQP-complete language and D a
distribution over input values such that (L,D) 6⊂ HeurP/poly. Since L ∈ BQP there exists a quantum
circuit UBQP which decides input bitstrings x ∈ {0, 1}n correctly on average with respect to D. As shown
more rigorously in the Appendix, measuring the Z operator on the first qubit of the state UBQP |x〉 will
output a positive or negative value depending if x ∈ L or not. Therefore, considering the observable
O′ = Z ⊗ I ⊗ ... ⊗ I the quantum model fO′

(x) = Tr[O′ρUBQP
(x)], with ρUBQP

(x) = UBQP |x〉 〈x|U †
BQP ,

correctly decides every input x. We then show in the Appendix that if a classical algorithm can learn the
function g(x) = Tr[O′ρUBQP

(x)] up to the learning condition in Def. 1, then it would be able to heuristically
decide the language L with respect to the distribution D. Finally, using Feynman’s idea [Fey85, Nag10] it is
possible to construct a local Hamiltonian which time-evolves the initial state |x〉 into UBQP |x〉 in constant
time [Chi04]. Considering as Hhard such constructed Hamiltonian concludes our proof. In fact, since there
exists at least one concept (namely the one labeled by α

′ such that O(α′) = O′) which is not learnable by
a classical algorithm, then we can conclude that for such kind of Hamiltonians the time evolution problem
is not classically learnable.

1We define the class HeurPD/poly as the class of languages L that can be decided in HeurP/poly under the distribution D,
i.e. HeurPD/poly = {L | (L,D) ∈ HeurP/poly}
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Quantum learnability To establish the quantum learnability of the classically hard concept class
constructed above for the time evolution problem, we present a quantum algorithm directly. This algorithm
accurately predicts any concept in the associated learning problem with high probability when provided
with a sufficient number of training data samples. Crucially, we prove that the algorithm meets the learning
condition of Definition 1 using only polynomial training samples and running in polynomial time. The central
idea involves leveraging the capability of the quantum algorithm to efficiently prepare the time-evolved states
ρH(x), for any input local Hamiltonians H and, in particular, for the hard instances of Hhard considered in
our hardness result of Lemma 1.

Lemma 2 (Quantum learnability of the time evolution learning problem). There exist a quantum algorithm

Aq such that for any concept fα ∈ FHhard,O
evolved considered in Lemma 1, Aq satisfies the following. Given

n, ǫ, δ ≥ 0, and any training dataset Tα
ǫ3

of size

N = O
(
log(n/δ)n

ǫ

)

(4)

with probability 1− δ the quantum algorithm Aq outputs a model h∗(.) = A(Tα
ǫ3
, .) which satisfies the learning

condition of Def. 1:
E
x∼D(x)

[
|fα(x) − h∗(x)|2

]
≤ ǫ (5)

where D is the distribution the training data is sampled from.

The idea for the quantum algorithm is the following. For every point xℓ we construct a vector φ(xℓ) ∈
[−1, 1]m of expectation values of the single Pauli strings present in O on the time evolved quantum states.
The model h(x) = w · φ(x) is then trained on the data samples with a LASSO regression to find a w∗ so
that the trained model is in agreement with the training samples, i.e. h∗(xℓ) = w∗ · φ(xℓ) ≈ yℓ for any
(xℓ, yℓ) ∼ T α

ǫ3
. As the ℓ1-norm of the optimal wopt = α scales polynomially in n, imposing the constraint

||w||ℓ1 ≤ B with B = O(n) in the LASSO regression will allow to obtain an error ǫ in the generalization
performance using a training set of at most polynomial size. This is because the generalization error for the
LASSO regression is bound linearly by B [MRT18]. We write here the description of the quantum algorithm,
while we leave the precise analysis of its sample and time complexity in the Appendix.

Algorithm 1 Quantum Algorithm

1. For every training point in Tα
ǫ3

= {(xℓ, yℓ)}Ni=1 the quantum algorithm prepares poly(n) copies of
the state ρH(xℓ) and computes the estimates of the expectation values 〈Pj〉ℓ = Tr[ρH(xℓ)Pj ] ∀j =
1, ...,m up to a certain precision ǫ1. Note that m scales at most polynomially in n as {Pj}mj=1 are
local observables.

2. Define the model h(x) = w · φ(x), where φ(x) is the vector of the Pauli string expectation values
φ(x) = [Tr[ρH(x)P1], ...,Tr[ρH(x)Pm]] computed at Step 1. Then given as hyperparameter a B ≥ 0
the LASSO ML model finds an optimal w∗ from the following optimization process:

min
w∈R

m

||w||1≤B

1

N

N∑

l=1

|w · φ(xl)− yl|2 (6)

with {(xl, yl = Tr[ρH(xl)O(α)])}Nl=1 being the training data.

Importantly, to meet the learning condition the optimization does not need to be solved exactly, i.e.
w∗ = α. As we will make it clear in the Appendix, it is sufficient to obtain a w∗ whose training error
is ǫ2 larger than the optimal one.
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3.1 Generalizations: quantum advantages for fixed inputs and for ground state

problems

We showed that the concept class defined in Eq. (1) leads to a learning advantage. It is important to note
that, unlike many other common learning scenario settings, the physical problem modeled by such concept
class implies that the experimentalists cannot select the initial input states. However, they do possess precise
control over the Hamiltonian governing the evolution of these input states. It is natural to ask if we can
generalize the result and provide other cases of exponential learning advantages where the experimentalist
has instead only little control over the Hamiltonian employed.

Fixed inputs, unknown Hamiltonians A first example that naturally arises from the case discussed
above is when the experimentalists prepare a fixed initial state and time evolves it under a Hamiltonian
within a fixed family of Hamiltonians but over which they do not have control. Specifically the Hamiltonians
in such a family will be labeled by some input bitstring x, which for example could parameterize the strength
of the coupling interactions. Each initial state will then be evolved by a different Hamiltonian in the family
accordingly to the input x, which comes from an unknown underlying distribution. It is easy to see that the
mathematical description of such a learning problem is again defined by the concept class in Eq.(1). The
only change is in the definition of ρH(x), now being ρH(x) = U(x) |0〉 〈0|U(x)† with H(x) the Hamiltonian
associated to the quantum circuit U(x) by the Feynmann construction [Fey85]. A learning advantage exists
for such concept class as well, as the general definition of a language L in BQP implies the existence of a
family of circuits {U(x)}x which correctly decides every x ∈ L.

Ground state problem As our next example we consider the task of predicting ground state properties
of local Hamiltonians. Here, the states to be measured are no longer time evolved quantum states but rather
ground states of local Hamiltonians. Specifically, the experimentalist is capable of preparing ground states
of input k local Hamiltonians, which once again belong to a family of Hamiltonians. However, they lack
control over the coupling parameters that, instead, are random values drawn from an underlying distribution.
This situation occurs, for example, in the context of the random Ising [Nat98] or random Heisenberg model
[OS01]. The mathematical formalization of such a learning problem is the following. Consider a family of
parametrized local Hamiltonians H = {H(x) | x ∈ {0, 1}n}. Let us define the concept class for the ground
state learning problem similarly to the time evolution case of Eq. (1), where now the unknown observable
O(α) is measured on the states ρH(x), which correspond to the ground states of the Hamiltonians H(x) ∈ H,
then we define:

FH,O
g.s. = {fα(x) ∈ R | α ∈ [−1, 1]m} (7)

with fα(x) : x ∈ {0, 1}n → fα(x) = Tr[ρH(x)O(α)] & O(α) =

m∑

i=1

αiPi. (8)

Considering the training data T α
ǫ3

= {(xℓ, yℓ ≈ǫ3 f
α(xℓ))}Nℓ=1, the learning condition remains the same as

in Definition 1. From the hardness result of Lemma 1, we obtain the following Theorem

Theorem 2 (Learning advantage for the ground state learning problem). Under the assumption that there

exists a distribution D′ such that BQP 6⊂ HeurPD′

/poly, then for any BQP-complete language there exists
an associated distribution D over the input values x ∈ {0, 1}n and a family of Hamiltonians Hhard such that
no classical algorithm can learn the ground state problem, formalized by learning the concept class FHhard,O

g.s.

in the sense of Def.1 given data T α
ǫ3

= {(xℓ, yℓ ≈ fα(x))}Nℓ=1 sampled from D. However, there exists a
quantum algorithm which learns FHhard,O

g.s. under any distribution D.

Proof. The existence of a class of Hamiltonian Hhard for which the ground state problem is classically hard
to learn is guaranteed by the argument above regarding the hardness of time evolution case. The structure
of the proof is exactly the same of the proof for Theorem 1 rigorously written in the Appendix. The only
missing step for the ground state version is that now the states ρH(x) we are considering in Eq. (7) are
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ground state of Hamiltonians H(x) and not time evolved states. However, using the Kitaev’s construction
[KSV02, KR03], it is possible to create for any x ∈ {0, 1}n and U a local Hamiltonian H(x) such that its
ground state will have a large overlap with U |x〉, with U an arbitrary quantum circuit with a polynomial
depth. This completes our proof of classical hardness as we consider the family of Hamiltonian Hhard to
exactly be the set of such {H(x)}x with U implementing a BQP-complete computation2. Same as before, it
is still the case that there is at least one concept which can not be evaluated by polynomially sized classical
circuits. Finally, also the quantum algorithm with learning guarantees for the concept class FHhard,O

g.s. closely
follows Algorithm 1. The only missing point to prove here is that the ground states ρHhard

(x) are easily
preparable on a quantum computer. Recall that the class of hard Hamiltonian Hhard considered in the
hardness result of the ground state problem are the one derived from the Kitaev’s circuit-to-Hamiltonian
construction from a BQP-complete circuit. It is well known that those Hamiltonians present a Ω(1/poly(n))
gap (in contrast to the classically learnable Hamiltonians in [HKT+22b]) and it is possible to construct the
ground state ρHhard

from the description of the corresponding Kitaev’s Hamiltonian, known to the learner
through the description of the concept class and the input x. This then concludes our proof for the quantum
learnability of FHhard,O

g.s. , thus completing the entire proof of Theorem 2

Notice that if our interest is only about the classical hardness or the quantum learnability of the ground
state problem we can consider concept classes associated to more general Hamiltonian families than the
Kitaev’s family Hhard used in our provable advantage result. Specifically, classical hardness for the time
evolution problem is guaranteed for a number of physically motivated Hamiltonians, such as the Heisenberg
model whose dynamics can efficiently be simulated on a quantum computer. Notice that for the ground state
version of the learning problem considering generic local Hamiltonian might make the problem quantum not
solvable. It is in fact known that finding ground states of even two local Hamiltonians, as for example the
Heisenberg model, is QMA-hard. Concept classes for which the quantum learnability condition is met are
the ones associated to any family of Hamiltonian Hquantum for which a quantum algorithm can prepare the
corresponding ground state given the Hamiltonian description. In that regard a learning speed-up can still
be achieved if we consider providing to the algorithm guiding states for any family of local Hamiltonians,
this in fact will make the problem BQP-complete [GHGM22].

We note that the ground state learning problem defined by the class in Eq.(7) very much resembles
the ML problem studied in the works [HKT+22b] and [LHT+24] where the authors showed that a classical
algorithm could solve the task. As their result holds for any local Hamiltonian with constant gap, this gives
a constraint on the family of local Hamiltonians H one would like to consider in order to prove a quantum
advantage in learning.

The “flipped case” As a final remark, it is interesting to observe that if we consider the case of fixed
input state, which could be a fixed initial state ρ0(x) = |x〉 〈x| in the time evolution scenario modeled by
the concept class in Eq. (1) or a single ground state ρH(x) of a fixed Hamiltonian H(x) in the ground state
problem, then the learning problem becomes trivially classically easy. Such learning scenario is formally
equivalent to considering a “flip concept” of the ones defined above. Let us for example consider the task
of learning an unknown quantum process from many measurements, in this case the learning problem is
still modeled by the concept class FH,O

evolved of Eq. (1) with the distinction that now the role of x and α

are switched. Namely, the concepts are defined as fx(α) so that the their expressions remain the same of
fα(x). The difference lies in the labeling, where x now denotes the concept while α represents the input
vectors. As x is constant for an instance of the learning problem, specified by the concept that generates
the data, the training samples are measurements of the same quantum state ρH(x) with different observables
corresponding to different α. Since O(α) =

∑

j αjPj , we can make use of data to solve the linear system and
obtain the expectation values of each local Pauli string Tr[ρHhard

(x)Pi]. It then becomes easy to extrapolate
the value of Tr[ρHhard

(x)O(α)] for every new α.

2More rigorously it means that for every n, we consider U = Un
BQP from the family {Un

BQP }n of quantum circuits which
correctly decide a BQP-complete language L
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3.2 Generalization of the quantum learning mechanism to quantum kernels

In [LAT21], considerable effort was invested to construct a task with provable learning speed-up where the
quantum learning model is somewhat generic (related to natural QML models studied in literature), while
still being capable of learning a classically unlearnable task. In our construction, it is possible to view
the entire learning process as a quantum kernel setting, similarly to the approach in [YIM23]. However,
in standard kernel approaches, especially those stemming from support vector machines, the optimization
process is solved in the dual formulation where the hypothesis function is expressed as a linear combination
of kernel functions. In contrast, the LASSO optimization employed here solves the optimization in the primal
form with a constrain on the ℓ1 norm. This is an issue making our learner not technically a quantum kernel.
While the LASSO formulation does not straightforwardly convert into a kernel method, one could attempt
to address the regression problem outlined in Equation (6) using an alternative optimization approach that
supports a kernel solution, such as kernel ridge regression. In this case the optimization is done for vectors
with bounded ℓ2 norms, nevertheless there exist bounds on the generalization performance of such procedures
as well [MRT18].

4 Generalization to observables parametrized by unitaries

We have demonstrated the existence of a quantum advantage for the learning problem of predicting k-local
observables from time evolved states and from ground states. Critically, we considered observables of the
type O(α) =

∑

iαiPi and we exploited the linear structure of O(α) to ensure quantum learnability through
LASSO regression. It is however natural to ask if quantum learnability can be achieved for other types
of observables, while maintaining the classical hardness. In this section we consider the far more general
case where the unknown observable is parameterized through a unitary matrix, i.e. O(α) =W (α)OW †(α)
where O is an hermitian matrix. Our findings in this scenario will be of two kinds. First we show as a
general result that for every method which learns a unitary W given query access on a known distribution of
input quantum states there exists a learning problem which exhibits a classical-quantum advantage. Then we
concretize the general result by presenting a constructed example of a learning problem defined by a class
of unitary-parameterized observables, showcasing a provable speed-up. Before stating our findings, let us
properly introduce the learning problem under consideration. Imagine the scenario where the experimen-
talist once more measures observables on evolved quantum states. However, in this case, they lack control
over the entire evolution, with a portion of it remaining unknown. Specifically, the experimentalist will
receive measurements on input-dependent states |ψ(x)〉 = W (α)U(x) |0〉 for an unknown fixed α. Their
objective remains predicting expectation values on states |ψ(x′)〉 for new inputs x′. Concretely such scenario
corresponds to the following concept class:

MU,W,O = {fα(x) ∈ R | α ∈ [−1, 1]} (9)

with fα(x) : x ∈ X ⊆ {0, 1}n → Tr[ρU (x)O(α)] ∈ R & O(α) =W (α)OW †(α). (10)

where ρU (x) = U(x) |0〉 〈0|U †(x) and O is a hermitian matrix. Given as training data T α = {(xℓ, yℓ)}Nℓ=1

with E[yℓ] = Tr[ρU (xℓ)O(α)], the goal of the learning algorithm is again to satisfy the learning condition of
Def. 1. We are now ready to state our main general result of this Section:

Theorem 3 (Learning advantage for unitarily-parametrized observables). Every (non-adaptive)3 learning al-
gorithm AW for learning a unitary W (α) ∈ {W (α)}α, where the probe states {|ψl〉}land observables {Qm}m
come from discrete sets S = {|ψℓ〉}ℓ and Q = {Qm}m (or they can be discretized with controllable error),
induces a classical-input-classical-output learning problem with a quantum-classical learning advantage.

In other words, Theorem 3 guarantees that whenever there is an efficient method to learn a unitary from
query access on a set of arbitrary input states and observables it is also possible to construct a learning

3Non-adaptive means that the algorithm probes the unitary with some input states and measures some observables which
are chosen independently, meaning they do not have any choice which depends on previous outcomes.
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problem of the kind Eq. (9) which exhibits a learning speed-up. We will more mathematically formalize the
statement of Theorem 3 and provide a rigorous proof in the Appendix. The nontrivial part of our result
lies in the fact that in the majority of the works present in the literature, which provide efficient algorithms
to learn a unitary, the set of required probe states {|ψℓ〉}ℓ is restricted to specific quantum states, often
classically describable (e.g. stabilizer states). On such a set of states, our hardness results from the previous
section can not directly be applied as a classical learning algorithm could simply prepare those states as the
quantum algorithm would do.

The detailed proof of Theorem 3 can be found in the Appendix, here we outline the main ideas.

Proof sketch. The main idea of the proof is to construct a concept class of the kind of Eq.(9) which can
be learned by a quantum algorithm using the learning algorithm AW , while maintaining classical harndess.
Consider the circuit in Figure 1. Let U(x) be a unitary that, depending on the first bit x1 of the input
x ∈ {0, 1}n, prepares the |ψnS

U (x)〉 on the nS qubit register in two different ways. If x1 = 0, then |ψnS

U (x)〉
is exactly one of the states |ψℓ〉 ∈ S, labeled by the final nS bits xS ∈ {0, 1}nS of the input bitstring
x, i.e. xS = xn−nS

...xn. If x1 = 1, then U(x) prepares the state |ψnS

U (x)〉 as the result of a BQP-
complete computation. Regarding the observable, we define a controlled unitary VA, controlled by the first
1 + nQ qubits register, such that when x1 = 0 VA acts on the target nS qubit register by rotating the nS

qubit measurement operator O into one of the Qm in the set Q required by the learning algorithm. The
description of which Qm the unitary VA implements is contained in the nQ bitstring xQ ∈ {0, 1}nQ with
xQ = x2x3...xnQ+1. When x1 = 1, VA acts as the identity matrix on the nS qubit register. Suppose now
the input bits are sampled from the following distribution D on x ∈ {0, 1}n:

• The first bit x1 of x is randomly selected with equal probability between 0 and 1.

• If x1 = 0 then the other n − 1 bit x2x3...xn are sampled from the required distribution4 by AW to
learn the unitary W (α).

• If x1 = 1 then the nS bits in xS are sampled according to a hard distribution which makes the BQP
computation of U(x) classically hard on average. As discussed before, such distribution always exists

for BQP-complete problems assuming the existence of an input distribution BQP 6⊂ HeurPD′

/poly.

Taking W (0) = I⊗nS for α = 0 and O = I ⊗ I⊗nQ ⊗ Z ⊗ InS−1, it is clear that the concept f0 =

Tr[ρU (x)VAOV
†
A] cannot be learned by any classical algorithm. In particular, by the result of our Lemma

1 any classical algorithm can not meet the learning condition of Def.(1) on more than half of the inputs x

coming from D, namely it is guaranteed to fail for the inputs for which x1 = 0. To prove quantum learnability
we notice that for every α the dataset T α associated to the concept class MU,W,O contains exactly the pairs
of state and measurement outcomes needed by the learning algorithm AW in order to learn the unitary
W (α). Namely, half of the training samples, characterized by x1 = 0 in their input x, allows the algorithm
to recover the unknown W (α). Therefore the quantum algorithm is able to learn the unknown observable
O(α) and evaluate it on each quantum state associated to every input x ∈ {0, 1}n.

As a corollary of Theorem 3, we construct a concrete example of learning advantage for observables
parametrized by shallow unitaries by exploiting the recent results on learning shallow unitaries in [HLB+24].

Corollary 1 (Learning advantage for shallow unitaries). There exists a family of parametrized unitaries
{U(x)}x and parametrized shallow circuits {W (α)}α, a measurement O and a distribution D over x ∈ {0, 1}n
such that the concept class MU,W,O is not classically learnable with respect to the input distribution D.
However, there exists a quantum algorithm which learns MU,W,O on the input distribution D.

The full proof of Corollary 1 can be found in the Appendix.

4Note that the distribution of probes states and measurements required by AW to learn the unitary W (α) could be very
complicated involving perhaps a joint distribution on probe states and measurements. Nevertheless every target distribution
can be obtained by post-processing of samples from the uniform distribution, which can be done coherently by taking uniformly
random input bitstrings.
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nQ

...

|x1〉

U(x) VA

|xQ〉

nS

|0〉

W (α) 〈O〉

|0〉

|ψU (x)〉|ψU (x)〉

Figure 1: Quantum model which exhibits a learning speed-up for the concept class MU,W,O. The unitary
U(x) prepares the state |ψU (x)〉 = |x1〉⊗ |xQ〉⊗ |ψnS

U (xS)〉 where the form of |ψnS

U (xS)〉 depends on x1, the
first bit of each input x ∈ {0, 1}n. If x1 = 0, then |ψnS

U (xS)〉 = |ψxS
〉 ∈ S is the nS qubit state described by

the bitstring xS = x2x3...xnS
of the set S of polynomially describable quantum states needed to learnW (α).

If x1 = 1, then |ψnS

U (xS)〉 is the quantum state which decides the nS input bits xS , considered as input of a
BQP-complete language L over the bitstrings xS ∈ {0, 1}nS . W (α) is an unknown parametrized unitary, in
order to prove classical hardness it is sufficient to considerW (α = 0) = I⊗nS and the measurement operator
to be O = Z ⊗ I ⊗ ...⊗ I on the nS qubits register. The unitary VA rotates the measurement operator O so
that, when x1 = 0, the final measurement is an operator QxQ

described by the bitstring xQ. This provides
the right training samples to learn W (α), as explained in the proof of Theorem 3.

4.1 Relationship to Hamiltonian learning

In order to further elucidate the lines between settings with and without classical/quantum learning advan-
tages, we can establish a connection between the task of learning Hamiltonians from time-evolved quantum
states and learning unitarily-parametrized observables. The setting of the Hamiltonian learning problem is
the following. Given an unknown local Hamiltonian in the form of H(λ) =

∑

i λiPi, the objective of the
Hamiltonian learning procedure is to recover λ. In the version of the problem we consider, we are given
a black box which implements the time evolution under the unknown Hamiltonian H(λ) on any arbitrary
quantum state. The black box action on arbitrary inputs ρ is given by

ρ→ UρU † (11)

with U = eitH(λ), where the evolution time t is known to us. In [HKT22a] the authors provide a classical
algorithm which learns the unknown λ from the expectation values of the Pauli string Pi on polynomially
many copies of the evolved state UρU †, for particular choices of initial states ρ’s. We can rephrase the
Hamiltonian learning task in terms of a learning problem with many similarities to the ones we considered
before. Concretely we define the corresponding concept class

Fλ = {fλ(x) ∈ R | λ ∈ [−1, 1]} (12)

with fλ(x) : x ∈ X ⊆ {0, 1}n → Tr[ρ(x)O(λ)] & O(λ) =

m∑

i

U(λ)†PiU(λ). (13)

where x describes the input state ρ(x), and U = eitH(λ). Considering T λ = (xℓ,Tr[ρ(xℓ)O(λ)])ℓ as training
data, the connection to the Hamiltonian learning task of [HKT22a] becomes evident if we demand that
the learning algorithm needs only to identify, rather than evaluate, the correct concept that generated the
data. It is worth noting that the concept class Fλ closely resembles the concept class for the time evolution
problem described earlier, for which a learning advantage was demonstrated. The main difference is that in
Fλ the unknown observable is no longer a linear combination of Pauli strings, instead each Pauli string in
O(λ) is parameterized by a unitary. As we are requiring to only identify the correct concept and considering
that the authors in [HKT22a] provide an algorithm capable of solving the Hamiltonian Learning problem in
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polynomial time (for sufficiently small t), one might suppose that the classical difficulty associated with the
learning advantage presented in this work arises solely from the challenge of evaluating the correct concept
rather than from the task of identifying it. This would answer another question left open in [GD23], at
least in the case of concepts labeled by observables with an unknown unitary parameterization. However it
must be noted that for the Hamiltonian learning algorithm in [HKT22a] to work, the input states ρ(x) in
Eq.(12) are of a very particular and simple form and do not come from a distribution D of BQP complete
quantum states ρHhard

(x) as we assumed in our classical hardness result. For general input distributions,
the hardness of identification thus remains elusive. In this regard it is important to note that the task of
identification can take various forms. For instance, here we are focusing on identifying the concept within
the concept class that generated the data, and in this case, it is generally unclear when this setting allows
a classical-efficient solution. In a more general scenario one could ask if the learning algorithm is able to
identify a model from a hypothesis class that differs from the concept class but that it is still capable of
achieving the learning condition. Colloquially here the question becomes: can traditional machine learning
determine which quantum circuit could accurately label the data, even though classical computers lack the
capability to evaluate such quantum circuits. In [GD23] it was proven that in this broader context provable
speed-ups in identification are no longer possible. This is because the classical algorithm can successfully
identify a sophisticated quantum circuit that carries out the entire quantum machine learning process as
its subroutine, thereby delegating the learning aspect to the labeling function itself, prior to evaluating a
data point. Thus the task of identification is indeed only interesting when the hypothesis class is somehow
restricted, which is often the case in practically relevant learning scenarios.
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A Proof of Theorem 1

As anticipated in the main text, the proof of the main theorem of our work consists of two parts. First,
we show that there exists a family of hamiltonians Hhard ∈ Hhard and observables O such that the concept
class FHhard,O

evolved is not classically learnable, unless BQP ⊆ HeurPD/poly for every distribution D. Second,

we rigorously prove that Algorithm 1 learns FHhard,O
evolved in polynomial time. We formally derive the proofs

for the concept class FHhard,O
evolved of measurements on time-evolved states. However, as we discussed in the

main text, the same proofs can be easily extended for the class FH,O
g.s. of measurements on ground state of

local Hamiltonians through the Kitaev’s circuit-to-hamiltonian construction. Before stating the main proof,
let prove an useful lemma which guarantees the BQP-completeness of constant time Hamiltonian evolution
following the idea in present in [Chi04].

Lemma 3 (Constant time evolution is BQP-complete). For any k−gate quantum circuit U = Uk...U2U1

which acts on n qubits there exists a local Hamiltonian H such that for any n qubit inital state |ψ〉 :
eiHt |ψ〉 |0〉 = Uk...U2U1 |ψ〉 |k〉 (14)

for t = π.

Proof. Consider the Feymann clock Hamiltonian [Fey85, Nag10]:

H :=

k∑

j=1

Hj (15)

where:
Hj = Uj ⊗ |j〉 〈j − 1|+ U †

j ⊗ |j − 1〉 〈j| (16)

notice that using the common unary encoding for the clock register, such Hamiltonian is 4 local [Nag10].
Furthermore, the Hamiltonian H acts on two different registers: the first register (“work register”) consists
of n qubit and it will store the computation of the circuit U , the second register (“clock register”) contains
k+1 qubit and it acts as a counter which records the progress of the computation. Now, if we evolve an initial
state |ψ0〉 = |ψ〉 |0〉 under the Hamiltonian H the evolved state will be in the space spanned by the k + 1
states {|ψj〉 = Uj ...U2U1 |ψ〉 |j〉}kj=0. After letting the system evolve for a time τ , if now we measure the clock
register and obtain a value L then the work register will exactly contains the computation of the quanutm
circuit U on the initial state |ψ〉. This of course will happen only with a certain probability and while there
are many ways to boost such probabilities of getting the desired final state |ψk〉 = Uk...U2U1 |ψ〉 |k〉 we will
show how to modify the Feynmann’s Hamiltonian in Eq. (15) in order to make the evolution perfect as in
Eq. (14).

Notice first that in the subspace spanned by the vectors {|ψj〉}kj=0 the non zero entries of the matrix H
are

〈ψj |H |ψj±1〉 = 1 (17)

We now follow the idea in [Chi04] and modify the Hamiltonian in (15) in the following way:

H ′ :=

k∑

j=1

√

j(k + 1− j) Hj (18)

The idea in [Chi04] is to associate each state in {|ψj〉}kj=0 to a quantum system of total angular momentum
k
2 (

k
2 − 1) with z component j − k

2 . The association is possible by the fact that a system with total angular

momentum k
2 (

k
2 − 1) will allow k + 1 states with z components of values −k

2 ,−k
2 + 1, ..., k2 − 1, k2 . These

are exactly the k + 1 states in {|ψj〉}kj=0 and it is possible to move among them defining the corresponding
ladder operators :

L− |ψj〉 =
√

j(k + 1− j) |ψj−1〉 (19)

L+ |ψj〉 =
√

(k − j)(j + 1) |ψj+1〉 (20)
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By the algebra of the angular momentum, the x component of the total angular momentum Jx can be
expressed as

Jx =
1

2
(L+ + L−) (21)

Comparing Eq.(17) with Eq. (19) it is clear that H ′ is exactly the x component of the angular momentum
operator defined over the states {|ψj〉}kj=0. As Jx rotates between the states with z component ±k

2 in time
t = π, this concludes the proof.

A.1 Classical hardness

Theorem 4 (Lemma 1 in the main text). Under the assumption that there exists a distribution D′ such that

BQP 6⊂ HeurPD′

/poly, then for any BQP-complete language there exists an associated input distribution
D and a Hamiltonian Hhard such that no randomized polynomial-time classical algorithm Ac is such that
hcl(.) = Ac(T

α, .) satisfies the learning condition of Def. 1 for the concept class FHhard,O
evolved with x sampled

from D.

Proof. The main idea of the proof is to show that if there exists a classical algorithm which learns by
Def. 1 the time evolution problem for any local Hamiltonian, then such algorithm could decide any BQP
language on average implying BQP ⊆ HeurPD/poly, for any D. As in Lemma 3 in [GD23] it is proved that,
under widely believed assumptions, for any BQP complete language L there always exists a distribution D
such that (L,D) 6⊂ HeurP/poly, such classical algorithm cannot exist. Be {Un

BQP }n a family of quantum
circuit which decides the BQP complete language L, one circuit per size. Precisely, that means that for
any x ∈ {0, 1}n measuring the first qubit in the computational basis on the state Un

BQP |x〉 will output
1 (or 0) with probability greater that 2/3 if x ∈ L (x 6∈ L). It is obvious that the the quantum model
fO′

= Tr[ρ(x)O′] correctly decides every x ∈ L if ρ(x) = Un
BQP |x〉 〈x| (Un

BQP )
† and O′ = Z ⊗ I ⊗ ...⊗ I

︸ ︷︷ ︸
n−1

. In

fact measuring the first qubit of Un
BQP |x〉:

1. For all x ∈ L, fO′

(x) = Pr[the output of Un
BQP applied on the input |x〉 is 1] - Pr[the output of Un

BQP

applied to the input |x〉 is 0] ≥ 2/3− 1/3 = 1/3.

2. For all x /∈ L, fO′

(x) = Pr[the output of Un
BQP applied on the input |x〉 is 1] - Pr[the output of Un

BQP

applied to the input |x〉 is 0] ≤ 1/3− 2/3 = −1/3.

Therefore, as fO′

(x) > 0 if x ∈ L and fO′

(x) < 0 if x /∈ L such quantum model could efficiently decide the
language L. By Lemma 3 for every n there exist a 4-local Hamiltonian Hhard such that evolving the state
|x〉 for a time t = π under it will produce the state Un

BQP |x〉 (on the work register). Since such constructed
Hhard is local, its time evolution can be efficiently implemented on a quantum computer. Working towards
a contradiction, assume now that there exists an algorithm Ac which learns FHhard,O

evolved with respect to the
distribution D by Def.1. Then it means that there exists a randomized classical algorithm which makes use
of data such that hcl(.) = Ac(Hhard, T α, .) satisfies ∀ǫ ≥ 0 and ∀fα ∈ FHhard,O

evolved the condition:

Ex∼D

[
|fα(x)− hcl(x)|2

]
≤ ǫ (22)

with high probability over the choice of the training dataset and the internal randomization of Ac. We want
now to show that the classical model hcl would be able to decide the language L on average with respect
to D. Firstly notice that as the algorithm Ac succeeds with high probability, there exists a fixed dataset
T ′α and a fixed bitrsting r′ for its internal randomization such that h′cl(.) = Ac(Hhard, T ′α, r′, .) satisfies
Eq.(22). Throughout the reminder of the proof let us fix such dataset T ′α and random bitstring r′. Also,
since Def. 1 assumes Eq. (22) is satisfied for every concept α, such an Ac would be able to evaluate on
avarage the particular concept α

′ which corresponds to the observable O(α′) = O′ = Z ⊗ I ⊗ ... ⊗ I. We
now show that such classical algorithm would be able to decide the language L in HeurP/poly with respect
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to the distribution D. Remember that a language L and distribution D is in HeurP/poly if there exist a
classical algorithm A and a polynomial-size advice string ω such that

Prx∼D[A(ω,x) 6= L(x)] ≤ ǫ (23)

where L(x) = 1 if x ∈ L and 0 otherwise. Notice that Eq.(23) is equivalent to

∑

x∈Xerr

p(x) ≤ ǫ (24)

where Xerr is the set of input x such that [A(ω,x) 6= L(x)], i.e. Xerr = {x ∈ {0, 1}n | [A(ω, x) 6= L(x)},
and p(x) is the probability associated to the input x with respect to the distribution D.
Consider now the previously introduced language L and distribution D such that (L,D) 6⊂ HeurP/poly.
Consider the classical algorithm h′cl which satisfies the learning condition in Eq. (22) with an error ǫ′ = 0.09ǫ
for the concept defined by α

′ above. Let define now the set X ⊆ {0, 1}n to be the set of inputs such that
X = {x ∈ X s.t. |fα′

(x)− h′cl(x)| ≥ 0.3}, so that:

ǫ′ ≥ Ex∼D

[
|fα(x)− h′cl(x)|2

]
(25)

≥
∑

x

|fα(x)− h′cl(x)|2p(x) (26)

≥
∑

x∈X

|fα(x)− h′cl(x)|2p(x) +
∑

x 6∈X

|fα(x)− h′cl(x)|2p(x) (27)

≥ 0.09
∑

x∈X

p(x) (28)

From last equation we obtain that
∑

x∈X p(x) ≤ ǫ. Notice that the classical algorithm h′cl is such that
h′cl(x) > 0 if x ∈ L and h′cl(x) < 0 if x ∈ L for every x ∈ {0, 1}n/X . Then, the condition

∑

x∈X p(x) ≤ ǫ is
exactly the defining condition of HeurP/poly in Eq.(24). This implies that the classical algorithm Acl using
as advice T ′α and r′ is able to decide the language L in HeurP/poly with respect to the distribution D.
This concludes the proof.

A.2 Quantum Learnability

In this Section we prove that Algorithm 1 satisfies the learning condition in Def. 1 using only polynomial
resources in both time and samples. As a first step, notice that the quanutm states ρHhard

(x) in Eq. (1) of

FHhard,O
evolved are easily preparable on a quantum computer.
Since the quantum algorithm can efficiently prepare time evolved states of local Hamiltonians, the quan-

tum states ρHhard
(x) = U |x〉 〈x|U † with U = eiHhardπ can efficiently be prepared on a quantum computer.

In order to demonstrate the quantum learnability of FHhard,O
evolved , all that remains is to rigorously bound the

sample and time complexity of Algorithm 1 in the following Theorem 6. As the bound obtained on the
sample complexity derives from the generalization bound of the LASSO algorithm [MRT18, LHT+24], we
first repeat this result.

Theorem 5 (Theorem 11.16 in [MRT18]). Let X ⊆ R
A and C = {x ∈ X 7→ ~w · x : ‖~w‖1 ≤ B}. Let

S = ((x1, y1), . . . , (xN , yN)) ∈ (X × Y)N . Let D denote a distribution over X × Y according to which the
training data S is drawn. Assume that there exists r∞ > 0 such that for all x ∈ X , ‖x‖∞ ≤ r∞ and M > 0
such that |h(x) − y| ≤ M for all (x, y) ∈ X × Y. Then, for any δ > 0, with probability at least 1 − δ, each
of the following inequalities holds for all h ∈ C:

E(x,y)∼D[|h(x)− y|2] := R(h) ≤ R̂S(h) + 2r∞BM
√

2 log(2|A|)N +M
√

2 log(1/δ)/2N (C.49)

where R(h) is the prediction error for the hypothesis h and R̂S(h) is the training error of h on the training
set S.
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We are now ready to state Theorem 6 which provides a rigorous guarantee on the number of samples and
the time complexity required by Algorithm 1.

Theorem 6 (Lemma 2 in the main text). Given n, δ, ǫ ≥ 0 and a training data set T α
N = {(xℓ, yℓ)}Nℓ=1 of

size

N = O
(
log(n/δ)n

ǫ

)

(29)

where xℓ is sampled from an unknown distribution D over x ∈ {0, 1}n and |yℓ − Tr(O(α)ρ(xℓ))| ≤ ǫ for
any geometrically local observable O(α) =

∑m

i αiPi with Pi ∈ {I,X, Y, Z}⊗n and α ∈ [−1, 1]m, and ρ(x) =
U(x) |0〉 〈0|U †(x). Then there exists a quantum algorithm Aq(TN , x) = h(x) such that:

Ex∼D|h(xl)− Tr[O(α)ρ(x)]|2 ≤ ǫ (30)

with probability at least 1− δ. The computational time of the quantum algorithm is bounded in O(nN)

Proof. The proof of the theorem is based on the well known bound on the prediction error of the LASSO
algorithm of Theorem 5. Consider the algorithm described in Algorithm 1. First, we demonstrate now that
Algorithm 1 satisfies the condition of Theorem 6. In our setting, the input space of the learned model h
is X = [−1, 1]m ⊂ R

m as we consider h a function of the m−dimensional feature vector φ(x). Clearly,
||φ(x)||∞ ≤ 1 for all x ∈ X . The hypothesis class C of our algorithm is given by the set of function of the
same form of the learned h, i.e. C = {φ(x) ∈ X → w · φ(x) : ||w||1 ≤ B} with B = poly(n). With respect to
Theorem 6, we can also choose M = poly(n) so that |h(xl)− yl| < M for all l = 1, ..., N :

|h(xl)− yl| ≤ |w · φ(xl)|+ |yl| ≤ ||w||1||φ(xl)||∞ + 2 ≤ poly(n) (31)

Where the second inequalitiy follows by Hölder’s inequality. By Theorem 6 then, the bound on the prediction
error R(h) of the learned model h(x) = w∗φ(x) is

R(h) ≤ R̂(h) + 2BM

√

2 log(2m)

N
+M2

√

log δ−1

2N
(32)

where R̂(h) is the training error on the dataset Tα
N .

We now bound the training error R̂(h). Let ǫ1 be the maximum sampling error associated to the
measurement of a Pauli observable on ρ(xℓ), i.e.

ǫ1 = max
i∈[1,...,m]
x∈{0,1}n

|[ρ(x)Pi]− φ(xi)| (33)

Let also ǫ2 the maximum sampling error associated to yℓ, such that:

|yℓ − Tr[O(α)ρ(xl)]| ≤ ǫ2 ∀(xℓ, yℓ) ∈ Tα
N (34)

We can now derive a bound on the training error for the optimal value of wopt = α of the model
hopt(x) = α · φ(x):

R̂(hopt) =
1

N

N∑

ℓ=1

|hopt(xℓ)− yℓ|2 ≤ max
ℓ

|h(xℓ)− yℓ| (35)

≤ (|Tr[ρ(xℓ∗)O(α)] − h(xℓ∗)|+ |Tr[ρ(xℓ∗)O(α)] − yℓ|)2 (36)

≤
((
∑

i

|αi|
)

ǫ1 + ǫ2

)2

(37)

≤ (Bǫ1 + ǫ2)
2 (38)

15



In practice, we can require to the LASSO algorithm to obtain a w∗ which achieves a training error at most
ǫ3/2 larger than the optimal one. We can obtain such precision by setting B = poly(n). Formally, we have

R̂(h) ≤ ǫ3
2

+ min
w∈R

m

||w||1≤B

1

N

N∑

ℓ=1

|w · φ(xℓ)− Tr[ρ(xℓ)O(α)]|2 (39)

Because we have set B = poly(n), we have that the second term must be at most R̂(hopt) and therefore we
have

R̂(h) ≤ (Bǫ1 + ǫ2)
2 +

ǫ3
2

(40)

We note that as B ≤ O(poly(n)) we can bound the error ǫ′1 = Bǫ1 to scale polynomially to zero by just
reducing the sampling error ǫ1 using polynomially many more copies of each ρ(xl). Thus we can rewrite
equation (32) as

R(h) ≤ (ǫ′1 + ǫ2)
2 +

ǫ3
2

+ 2BM

√

2 log(2m)

N
+M2

√

log(δ)−1

2N
(41)

Then, in order to bound the prediction error above by ǫ = (ǫ′1 + ǫ2)
2 + ǫ3 we need to choose an N such that

2BM

√

2 log(2m)

N
+M2

√

log(δ)−1

2N
≤ ǫ3

2
(42)

By substituting M = B we obtain that:

2BM

√

2 log(2m)

N
+M2

√

log(δ)−1

2N
≤
(
B2

√
N

(
√

2 log(2O(n)) +
√

log(δ−1)

)

(43)

so that it is upper bounded by ǫ3/2 choosing N as

N = 2
B4
√

2 log(O(n)/δ)

ǫ3
(44)

∼ log(n/δ)poly(n)

ǫ3
(45)

By setting ǫ′1 = 0.2ǫ, ǫ2 = ǫ, and ǫ3 = 0.4 we have (ǫ′1 + ǫ2)
2 + ǫ3 ≤ ǫ and recover the claim of the

Theorem.
Finally we bound the efficiency of our algorithm. The training time is dominated by the creation of

the feature map φ(xℓ) for each training point and by the LASSO regression over the corresponding feature
space. To create the vector φ(x) the quantum algorithm needs to prepare multiple copies of ρ(xℓ) ∀xℓ ∈ Tα

N .
As seen before, only a polynomial number of copies are sufficient to achieve a desired error ǫ′1, so that the
whole process takes time O(nN). For the LASSO regression, it is known that to obtain a training error at
most ǫ3/2 larger than the optimal function value, the LASSO algorithm on the feature space of φ(x) can be

executed in time O
(

mφ logmφ

ǫ2
3

)

[HK12], where in our case mφ = m. It is easy to show that even this time

is bounded by O(nN). The prediction time corresponds to the time for the evaluation of the learned model
h(x) = w∗ · φ(x) which takes time O(m) ∼ O(n). In conclusion, the overall time of the quantum algorithm
is bounded by O(nN)

B Proof of Theorem 3 and Corollary 1

We rewrite here Theorem 3 form the main text, formalizing the result and providing a detailed proof.
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Theorem 7 (Theorem 3 in the main text). Given a discrete set of polynomially describle quantum states
S = {|ψℓ〉}ℓ and measurements operators Q = {Qm}m. Then for every efficient (non-adaptive) algorithm
AW which learns an arbitrary unitary W from query access to it on states from S and measured by operators
in Q there exists a distribution D over {0, 1}n, a family of unitaries {U(x)}x and a measurement O for
which the concept class MU,W,O exhibits a learning advantage.

Proof. We can think at the algorithm AW as an algorithm which receives in input pairs of {(|ψℓ〉 , ymℓ

ℓ )ℓ},
where |ψℓ〉 ∈ S and ymℓ

ℓ ∈ R is the measurement outcome of a randomly selected operator Qml
∈ Q on

|ψℓ〉, and for any ǫ ≥ 0 outputs a matrix W̃ such that ||W̃ −W || ≤ ǫ in some norm distance. The idea to
construct a MU,W,O which exhibits a separation is the following, illustrated also in Figure 1. Consider the
family of quantum states {|ψU (x)〉}x constructed by parameterized unitaries {U(x)}x in the following way,
depending on the input x ∈ {0, 1}n:

• The first 1 + nQ qubit of |ψU (x)〉 are initializated in the state |x1〉 ⊗ |x2x3...xnQ+1〉, the remaining
nS = n− (1 + nQ) qubit xS = xn−nS

xn−(nS−1)...xn are in the state |0⊗nS〉.

• If the first bit x1 is 0, then U(x) prepares on the nS qubits register the state |ψxS
〉 from the set S

described by the bitstring xS ∈ {0, 1}nS . As we assumed that every state in S allows a polynomial
classical description, we only need an input x ∈ {0, 1}n of polyinomial size. We thus have:

U(x)
(
|0〉 ⊗ |xQ〉 ⊗ |0⊗nS〉

)
= |0〉 ⊗ |xQ〉 ⊗ |ψstab(xS)〉 (46)

• If the first bit x1 is 1, then on the nS qubit register U(x) prepares the state |ψBQP (xS)〉 such that
〈ψBQP (xS)|Z ⊗ I ⊗ ... ⊗ I |ψBQP (xS)〉 outputs +1/3 if the nS bitstring xS belongs to an arbitrary
(previously fixed) BQP complete language L defined over input xS ∈ {0, 1}nS , while it outputs −1/3
otherwise. Following the same arguments used in the proof of Lemma 1, for any L ∈ BQP it always
exists such U(x). We thus have:

U(x)
(
|1〉 ⊗ |xQ〉 ⊗ |0⊗nS 〉

)
= |1〉 ⊗ |xQ〉 ⊗ |ψBQP (xS)〉 (47)

Regarding the unknown observable O(α), we will consider a measurement operator of the kind Eq.(9).
Specifically we define a controlled operator VA, controlled by the 1+nQ qubit register |x1x2x3...xnQ+1〉, such
that VA =

∑

0xQ
|0xQ〉 〈0xQ|⊗V (xQ) with xQ = x2x3...xnQ+1 if x1 = 0 and VA =

∑

1xQ
|1xQ〉 〈1xQ|⊗I⊗nS

if x1 = 1. The unitary matrices V (xQ) are defined such that they rotate the measurement O into the
observable QxQ

∈ Q described by the bitstring xQ = x2x3...xnQ+1, i.e. QxQ
= V (xQ)OV †(xQ) where O

could be taken as the local observable Z1 = Z ⊗ I⊗nS−1 on the nS qubit register. The final observable
O(α) will then be O(α) = (I⊗(1+nQ)⊗W (α) VA)O(VA I⊗(1+nQ)⊗W (α))†, withW (α) an arbitrary unitary
parameterized by α. Furthermore, we define W (α = ~0) = I⊗ ...⊗ I. We can now construct a distribution D
such that the concept class MU,W,O exhibits a learning separation. For Lemma 1, there exists a distribution

Dhard for which the concept f0 = Tr[ρU (x)VAOV
†
A] cannot be efficiently learned by a classical algorithm

when U(x) is the circuit which decides the BQP-complete language L over the nS-sized bitstrings xS . We
now define the following distribution D on the input bitsrings x ∈ {0, 1}n:

• The first bit x1 of x is extracted randomly with equal probability between 0 or 1.

• If x1 = 0 then the other n − 1 bit x2x3...xn are extracted from the required distribution by AW to
learn the unitary W (α).

• If x1 = 1 then the following nQ bit xQ are extracted uniformly at random while the nS bit xS are
sampled with respect to the distribution Dhard.

Classical hardness The classical hardness of the learning task comes directly from the proof of Lemma
1. Consider the concept f0 ∈ MU,W,M defined by W (0) = I⊗nS . For the same reasoning of the proof of
Lemma 1 there cannot exists a polynomial sized classical circuit which evaluates f0(x) correctly on average
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with respect to the distribution D for the cases where x1 = 1. As x1 is equally sampled between 0 and 1, no
classical algorithm can meet the learning condition of Eq. 1 on half of the input bitstrings, thus it can not
learn the concept f0 ∈ MU,W,O in polynomial time for every ǫ. As the learning algorithm must suceed for
every α, this suffices to prove the classical hardness of the learning task.

Quantum learnability Recall that the data the learning algorithm receives for a concept fα ∈ MU,W,M

are T α = {xℓ, yℓ}ℓ with E[yℓ] = Tr[ρU (xℓ)O(α)] and ρU (xℓ) = |ψU (x)〉 〈ψU (x)|. Now, in the case the first
bit of xℓ is 0, T α are exaclty the pairs {(|ψℓ〉 , ymℓ )}ℓ required by the algorithm AW to learn W (α) and thus
O(α). As x1 = 0 for half of the training samples in T α, the quantum algorithm is able to learn O(α) and
evaluate it on any input state.

We provide here the the rigorous proof of Corollary 1. The proof follows the same steps of the one for
Theorem 3 above while concretizing the result for shallows W .

First, let us repeat the result in [HLB+24] for learning shallow unitaries. Be stab1 the family of single
qubit stabilizer states stab1 = {|0〉 , |1〉 , |+〉 , |−〉 , |y+〉 , |y−〉}, then:

Lemma 4 (Lemma 10 in [HLB+24], Learning a few-body observable with an unknown support). Given an
error ǫ, failure probability δ, an unknown n-qubit observable O with ‖O‖∞ ≤ 1 that acts on an unknown set
of k qubits, and a dataset TO(N) = {|ψℓ〉 =

⊗n
i=1 |ψℓ,i〉, vℓ}Nℓ=1, where |ψℓ,i〉 is sampled uniformly from stab1

and vℓ is a random variable with E[vℓ] = 〈ψℓ|O|ψℓ〉, |vℓ| = O(1). Given a dataset size of

N =
2O(k) log(n/δ)

ǫ2
, (48)

with probability at least 1−δ, we can learn an observable O′ such that ‖O′−O‖∞ ≤ ǫ and supp(O′) ⊆ supp(O).
The computational complexity is O(nk log(n/δ)/ǫ2).

The proof of Lemma 1 then goes by explicitly constructing a family of parametrized circuit {U(x)}x and
an input distribution D such that the concept class MU,W,M is quantum learnable using Lemma 4 while still
being classically hard. Let rewrite here Corollary 1

Corollary 2 (Corollary 1 in the main text). There exists a family of parametrized unitaries {U(x)}x and
parametrized shallow circuits {W (α)}α, a measurement O and a distribution D over x ∈ {0, 1}n such that
the concept class MU,W,O is not classically learnable with respect to the input distribution D. However, there
exists a quantum algorithm which learns MU,W,O on the input distribution D.

Proof. Let first define the set of unitaries {U(x)}x, {W (α)}α, measurement operator O and input distri-
bution D on which the separation result holds. We provided a graphical representation of it in Figure 2.
Be nS =

⌊
n
3

⌋
, we define the set {U(x)}x as the set of unitaries which act on a nS + 1 qubit system in the

following way, depending on the first bit x1 of the input x.
If x1 = 0 then each U(x) is defined such that

U(x) (|x1〉 ⊗ |0nS〉) = |x1〉 ⊗ |ψstab(x)〉 (49)

where |ψstab(x)〉 =
⊗nS

i=1 |ψi
stab1(x)〉 is a nS qubit tensor product of single qubit stabilizer states |ψi

stab1(x)〉 ∈
{|0〉 , |1〉 , |+〉 , |−〉 , |y+〉 , |y−〉}. Since nS =

⌊
n
3

⌋
, the output state |ψstab(x)〉 is completely described by the

remaining n− 1 input bits x2x3...xn.
Let consider now the case when x1 = 1. Be L a BQP-complete language defined over the input x̃ ∈

{0, 1}nS . Then we define the set of {U(x)}x in the following way:

U(x) (|x1〉 ⊗ |0nS 〉) = |x1〉 ⊗ |ψBQP (x)〉 (50)

where |ψBQP (x)〉 is such that 〈ψBQP (x)|Z ⊗ I ⊗ ... ⊗ I |ψBQP (x)〉 = 1/3 if x̃ ∈ L and −1/3 if x̃ 6∈ L. As
we described in the Proof of Lemma 1, such a circuit UBQP (x) always exists for any BQP language.
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As a set of unitaries {W (α)}α we consider any set of parametrized unitaries acting on the nS qubit
register such that for each α parameter W (α) is shallow and such that W (0) = I⊗nS . The nS qubit register
is then measured by the observable M = Z ⊗ I ⊗ ...⊗ I. Finally we define the distribution D on the input
bitstrings x ∈ {0, 1}n to be the following:

• The first bit x1 ∈ {0, 1} of x is extracted randomly with equal probability.

• If x1 = 0 then the other n − 1 bit x2x3...xn are extracted following the uniform distribution over
{0, 1}n−1.

• If x1 = 1 then the following nS bits x2x3...xnS+1 are extracted following the distribution Dhard such
that (L,Dhard) 6⊂ HeurP/poly. As we assumed L ∈ BQP-complete such a distribution always exists
by Lemma 3 in[GD23]. The other n− (nS + 1) input bits are sampled uniformly at random.

We now show that the concept class MU,W,M defined in Eq. 9 with {U(x)}x, {W (α)}α and M considered
above exhibits a learning separation with respect the input distribution D.

Classical hardness The argument is exactly the same as the one presented before in the proof of
Theorem 3.

Quantum learnability The quantum learnability is guaranteed by Lemma 4 in [HLB+24]. Recall that
the training data the learning algorithm receives for a concept fα ∈ MU,W,M are T α = {xℓ, yℓ}ℓ with
E[yℓ] = Tr[ρU (xℓ)O(α)]. Now, in the case the first bit of xℓ is 0, T α is exactly the training set Tα required
by the algorithm in Lemma 4 to learn O(α). Since for every α the unitary W (α) is of shallow depth,
the locality of O(α) scales logarithmic with the number of qubit nS . Then Lemma 4 guarantees that the
learning algorithm runs in polynomial time requiring a polynomial-sized dataset, a condition met as half of
the training samples in T α will suffice.

...

|x1〉

U(x)
nS

|0〉

W (α)

|0〉

|ψU (x)〉

Figure 2: Quantum model which exhibits a learning separation for the concept class MU,W,O when W is
a shallow circuit. The unitary U(x) prepares the state |ψU (x)〉 = |x1〉 ⊗ |ψnS

U (xS)〉 where the form of
|ψnS

U (xS)〉 depends on x1, the first bit of each input x ∈ {0, 1}n. If x1 = 0, then |ψnS

U (xS)〉 = |ψstab(xS)〉 =⊗nS

i=1 |ψi
stab1(xS)〉 is the nS =

⌊
n
3

⌋
qubit tensor product of single-qubit stabilizers described by the classical

bitstring x2x3...xn. If x1 = 1, then |ψnS

U (xS)〉 is the quantum state which decides the nS input bits xS =
x2x3...xnS+1, considered as input of a BQP-complete language L over the bitstrings xS ∈ {0, 1}nS . W (α)
is a parametrized shallow unitary, to prove classical hardness it is sufficient to consider W (α = 0) = I⊗nS

and the measurement operator to be O = Z ⊗ I ⊗ ...⊗ I on the nS qubits register.
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