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Abstract

In the fields of photogrammetry, computer vision and computer graphics, the task of neural 3D scene reconstruction has led to
the exploration of various techniques. Among these, 3D Gaussian Splatting stands out for its explicit representation of scenes
using 3D Gaussians, making it appealing for tasks like 3D point cloud extraction and surface reconstruction. Motivated by its
potential, we address the domain of 3D scene reconstruction, aiming to leverage the capabilities of the Microsoft HoloLens 2 for
instant 3D Gaussian Splatting. We present HoloGS, a novel workflow utilizing HoloLens sensor data, which bypasses the need
for pre-processing steps like Structure from Motion by instantly accessing the required input data i.e. the images, camera poses
and the point cloud from depth sensing. We provide comprehensive investigations, including the training process and the rendering
quality, assessed through the Peak Signal-to-Noise Ratio, and the geometric 3D accuracy of the densified point cloud from Gaussian
centers, measured by Chamfer Distance. We evaluate our approach on two self-captured scenes: An outdoor scene of a cultural
heritage statue and an indoor scene of a fine-structured plant. Our results show that the HoloLens data, including RGB images,
corresponding camera poses, and depth sensing based point clouds to initialize the Gaussians, are suitable as input for 3D Gaussian
Splatting.

1. Introduction

3D scene reconstruction is a fundamental task in the fields of
computer vision, computer graphics and photogrammetry. Re-
cently, however, methods have been gaining popularity that
have the potential to revolutionize the classical workflows. This
has been particularly initiated by the pioneering research on
Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020).

NeRFs and HoloLens. NeRFs enable the rendering of novel
views with the so-called view synthesis of a 3D scene in space
with a neural network. The neural network is trained based
on a set of images and corresponding camera poses and es-
timates a position-dependent density value and view-dependent
RGB color values per position. Through the volume density
of points in a continuous space, geometries can be extracted.
However, this requires techniques such as density threshold-
ing or other methods of generating explicit 3D (surface) recon-
structions from continuous neural network outputs (Oechsle et
al., 2021; Wang et al., 2021; Yariv et al., 2021; Darmon et al.,
2022; Park et al., 2019; Zhang et al., 2022; Li et al., 2023; Jäger
and Jutzi, 2023), while the density carries an inherent uncer-
tainty (Jäger et al., 2023). Most commonly, traditional methods
like Structure from Motion (SfM) are used to calculate the in-
terior orientation and the camera poses needed for training the
NeRFs in a pre-processing step. As an alternative to SfM, the
Microsoft HoloLens has proven to be an interesting interface,
since it enables the extraction of the required input data, the im-
ages and corresponding poses (Jäger et al., 2023). Moreover,
it has consistently demonstrated its efficacy as a mapping sys-
tem (Weinmann et al., 2020; Weinmann et al., 2021, Hou et al.,
2024) and enables the real-time (Haitz et al., 2023), highly de-
tailed, colorized, 3D scene reconstruction and mobile mapping
(Jäger et al., 2023) with NeRFs.
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Gaussian Splatting and HoloLens. With regard to 3D scene
reconstruction, particularly 3D Gaussian Splatting (GS) (Kerbl
et al., 2023) is outstanding due to its explicit representation
of the scene utilizing 3D Gaussians. During optimization,
these Gaussians are densified and adapted, undergoing growth,
shrinkage, and adjustments in color and shape, until the photo-
metric error between rendered images and training images be-
comes minimal. In contrast to the continuous radiance field rep-
resentation of NeRF, these Gaussians explicitly represent the
scene geometry, enabling direct access to it. When it comes
to photogrammetry and 3D computer vision, this is particu-
larly of interest for 3D point cloud extraction and surface re-
construction. In contrast to most NeRF methods, further input
data in the form of a point cloud is required for 3D Gaussian
Splatting, for which the sparse point cloud from SfM is usually
used. This point cloud is used to initialize the Gaussians. Thus,
pre-processing and calculation steps are required to compute
the camera poses and sparse point cloud from the images. At
this point, the Microsoft HoloLens once again becomes relev-
ant. Alongside the RGB images and their corresponding cam-
era poses, the HoloLens provides depth images and correspond-
ing camera poses, which can be transformed into the required
point cloud. This enables instant 3D scene reconstruction with
3D Gaussian Splatting, i.e. without additional time-consuming
pre-processing steps.

In this work, we present HoloGS (Figure 1), for an instant 3D
scene reconstruction by 3D Gaussian Splatting with Microsoft
HoloLens 2 data. This is done directly based on sensor inform-
ation, since the HoloLens enables to access the required input
data, i.e. the images, camera poses and the point cloud from
depth sensing in real-time. We investigate whether the data
quality of the HoloLens is sufficient for 3D Gaussian Splatting.
In order to evaluate our workflow, we additionally follow the
traditional pipeline, which uses COLMAP (Schönberger and
Frahm, 2016), to estimate the camera poses and the sparse point
cloud. Our analysis includes examining the training process
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and evaluating the rendering quality of our results by using the
Peak Signal-to-Noise Ratio (PSNR) and photometric loss. Fur-
thermore, we report the geometric 3D accuracy quantitatively
as well as qualitatively of the resulting densified point clouds
from the Gaussian centers using cloud-to-cloud Chamfer Dis-
tance. Thereby, we envision a refilling of the (sparse) input
point cloud, comparable to a post-processing step by Multi-
View Stereo.

HoloLens

Images Poses

Point Cloud

Densified Point Cloud

RGB Depth

Sensor Streaming

3D Gaussian Splatting

Point Cloud Computation

Images Poses

Figure 1. Flowchart of HoloGS: Via the HoloLens 2 sensor
streaming, the required data is directly extracted and processed
during data capturing. From the depth data, a point cloud is in-
stant created which, together with the RGB images and corres-
ponding camera poses, is then fed into 3D Gaussian Splatting.

We demonstrate that HoloGS with Microsoft HoloLens 2 data,
comprising the RGB images with corresponding camera poses,
and the point cloud from depth sensing, is suitable as input for
3D Gaussian Splatting. The rendered images reasonably reflect
the geometry and appearance. Furthermore, HoloGS enables
refilling by the extraction of a densified point cloud from Gaus-
sian centers.

2. Methodology

Section 2.1 outlines the principles of the methods used to de-
termine the input data for 3D Gaussian Splatting: via the stand-
ard method with external data from SfM and via our approach
for instant 3D Gaussian Splatting with internal data from Mi-
crosoft HoloLens 2. Subsequently, Section 2.2 presents the
implementation details for Gaussian Splatting. Finally, Sec-
tion 2.3 describes our method for extracting the densified point
cloud from Gaussian Splatting after the training process.

2.1 Initialization

External SfM data. As mentioned, the standard workflow
uses SfM to determine the camera poses and the sparse point
cloud in a pre-processing step. SfM in general describes the
procedure of the reconstruction of a 3D scene from a set of im-
ages, which taken from different directions and positions by
a camera in motion. It relies on the calculation and match-
ing of point correspondences within an image sequence from
overlapping images. Most commonly by using methods such
as SIFT (Lowe, 2004). The resulting products are the camera

poses, the camera intrinsics as well as a sparse point cloud from
the point correspondences. In addition, the fundamental SfM
sparse point cloud allows a following Multi-View Stereo (MVS)
pipeline (Schönberger and Frahm, 2016) regarding a dense re-
construction, which densifies the SfM point cloud. We consider
the MVS dense reconstruction as a reference point cloud for
comparison. In this paper, the (incremental) SfM technique by
(Schönberger and Frahm, 2016) from the original implement-
ation of 3D Gaussian Splatting 1 is used for the external data
calculation of the camera poses and the sparse point cloud. This
process is conducted using the same HoloLens RGB images to
ensure uniform conditions similar to those of the following in-
ternal data approach.

Internal HoloLens data. For an instant 3D scene recon-
struction with 3D Gaussian Splatting directly from Microsoft
HoloLens 2, HoloGS targets three main steps, according to Fig-
ure 1: Sensor streaming, real-time point cloud computation,
and instant 3D Gaussian Splatting. The HoloLens 2 server ap-
plication (Dibene and Dunn, 2022) is used for requesting the
data in the Microsoft HoloLens 22. The system provides ac-
cess to all of the HoloLens 2 sensors, including the RGB im-
ages from the 1920× 1080 camera, interior orientation (cam-
era intrinsics) and corresponding camera poses, as well as the
depth sensor for depth images and corresponding poses. Firstly,
through the sensor streaming of the HoloLens, the RGB images
and corresponding camera poses including the interior orient-
ation as well as the depth images and their camera poses are
queried and extracted from the sensor system during data ac-
quisition. Secondly, the depth images are each transformed into
a 3D point cloud by calculating the corresponding 3D point for
each pixel in the depth image based on the interior orientation
of the depth camera and the depth information. These point
clouds are subsequently merged into a joint point cloud via the
camera poses. Lastly, the required data, i.e., the RGB images
with corresponding camera poses and the point cloud from the
depth information transformed to the coordinate system of the
RGB camera, is fed to 3D Gaussian Splatting as initial data. In
this context, the RGB images serve as training data for optimiz-
ing the Gaussians by minimizing the photometric error between
rendered images and their real counterparts at the same camera
poses. The 3D points of the point cloud from the depth in-
formation forms the centers of the initial Gaussians. The other
parameters of the Gaussians are initialized as in the original im-
plementation of Kerbl et al., i.e. isotropic Gaussians with axes
equal to the mean of the distance to the closest three points.

2.2 3D Gaussian Splatting Implementation

After initialization, 3D Gaussian Splatting is processed accord-
ing to the original implementation. We train on the default para-
meters with learning rates of 0.0025 for spherical harmonics
features, 0.05 for opacity adjustments, 0.005 for scaling opera-
tions and 0.001 for rotation transformations, while the training
incorporates 30 000 iterations on a NVIDIA RTX3090 GPU.
The photometric loss for the optimization is given by the fol-
lowing loss function 1.

L = (1− λ)L1 + λLD-SSIM (1)

with λ = 0.2 by default, L1-Norm of the per pixel color differ-
ence and LD-SSIM-Term (Kerbl et al., 2023).
1 https://github.com/graphdeco-inria/

gaussian-splatting (last access 12/01/2023)
2 https://www.microsoft.com/en-us/hololens/hardware

(last access 02/08/2024)

https://github.com/graphdeco-inria/gaussian-splatting
https://github.com/graphdeco-inria/gaussian-splatting
https://www.microsoft.com/en-us/hololens/hardware


2.3 3D Point Cloud Extraction

As mentioned above, the point clouds from the external SfM or
from the internal depth information of the HoloLens serve as
initial Gaussians. Through the optimization process of Gaus-
sian Splatting, additional points are generated based on color
information of the images. In doing so, Gaussians grow, split,
shrink or are removed. Based on this, we envision a refilling of
the sparse input point cloud, comparable to a post-processing
step by MVS. Especially, since the SfM sparse point cloud in
particular is only created based on the features from SIFT point
correspondences, it is, as the name implies, relatively sparse.
After the training of 3D Gaussian Splatting, the densified and
optimized point cloud can be extracted. On the assumption that
3D information containing color also exists as actual geometry
in the scene, we consider the centers of the Gaussians, which
represent each the mean of each Gaussian, as 3D geometry in
our approach.

3. Dataset

Our experiments are based on two datasets that we captured
with Microsoft HoloLens 2: An outdoor scene of a cultural her-
itage statue, called ’Denker’ (Figure 2), and an indoor scene,
called ’Ficus’ of a fine-structured plant. Both datasets con-
tain 111 images each of size 1920× 1080 with camera poses,
captured in a hemispherical camera framing, as well as the re-
spective depth maps and poses, whereby we mask out depth in-
formation above 3m. The respective initialization type (Section
2.1) of the input data results in different point clouds: The SfM
sparse point cloud (Figure 3(a)) including over 40 000 points,
and the point cloud (Figure 3(b)) from the depth images from
HoloLens including over 620 000 points .

(a) (b)

Figure 2. (a) Data capturing with Microsoft HoloLens 2 and its
streaming application (Dibene and Dunn, 2022). (b) Point cloud
based on depth data of the scene ’Denker’ and camera poses visu-
alized by colored coordinate frames.

(a) (b)

Figure 3. Initialization input 3D point clouds. (a) sparse point
cloud from SfM and (b) point cloud calculated based on the depth
images from HoloLens.

4. Experiments and Results

In this section, we present our experiments and results by a
quantitative evaluation on analyzing the training process by ren-
dering quality in Section 4.1. This is followed by a qualitat-
ive analysis of the rendered images in Section 4.2. Finally, we
evaluate the geometric 3D reconstruction based on the densified
point clouds from the Gaussian centers quantitative as well as
qualitative in Section 4.3.

4.1 Training

We evaluate the training process with the Peak Signal-to-Noise
Ratio (PSNR) (Mildenhall et al., 2020), which is a common
metric in NeRF context. Figure 4 shows the change in PSNR
and training loss (Kerbl et al., 2023) (Equation 1) over the it-
erations. It demonstrates that HoloGS with internal HoloLens
data, including RGB images, corresponding camera poses, and
point clouds derived from the depth map, leads to relatively
smooth convergence of 3D Gaussian Splatting. Convergence
occurs after approximately 25,000 iterations, reaching a max-
imum PSNR (Table 1) of around 20.55 dB for the scene ’Den-
ker’ and 20.17 dB for the scene ’Ficus’. Notably, the con-
vergence is rapidly achieved with the HoloLens data for both
scenes. In contrast, utilizing external SfM data yields higher
PSNR values of 27.54 dB for the scene ’Denker’ and 26.21
dB for the scene ’Ficus’. Conversely, the loss for the internal
HoloLens data during training is higher than for the external
SfM data for both scenes. Interestingly, the curves show peaks
every 3000 iterations up to iteration 15000. These peaks can
be explained by the density moderation technique of Gaussian
Splatting. This technique sets the opacity values close to zero
every 3000 iterations to prevent the method from getting stuck
with floaters close to the camera poses which could cause an
unjustified increase in the density of Gaussians (Kerbl et al.,
2023).

External SfM data Internal HoloLens data
Denker 27.54 20.17
Ficus 26.21 20.55

Table 1. Peak Signal-to-Noise Ratio (PSNR) ↑ in dB after 30 000
iterations for the scenes ’Denker’ and ’Ficus’ each with external
SfM and internal HoloLens data.

4.2 Rendering Quality

The results of the rendered images in Figure 5 closely corres-
pond to the numerical results obtained during the training pro-
cess. Particularly, the external SfM data computed during pre-
processing demonstrates significantly improved performance.
For the scene ’Denker’, HoloGS produces satisfactory results
for the statue itself, comparable to those derived from SfM data.
Furthermore, in scene ’Ficus’, HoloGS struggles to accurately
represent the fine structures of the plant, leading to noise. Over-
all, HoloGS generally results in blurry edges of objects in the
scene. In addition, large, foggy and blurry floater artifacts can
be recognized in these scenes. In contrast, for the external SfM
data, these artifacts are only evident in a limited number of
areas, e.g. above the head of the statue in the scene ’Denker’
and in the unobserved area of the scene ’Ficus’ on the ceiling.



(a)

(b)

Figure 4. Comparison of the Peak Signal-to-Noise Ratio (PSNR)
↑ in dB and loss ↓ during the training processes with 30 000 it-
erations with 3D Gaussian Splatting with different types of input
data. Top: (a) external SfM and internal HoloLens data on scene
’Denker’. Bottom: (b) external SfM and internal HoloLens data
on scene ’Ficus’. The red curves show the PSNR, the blue curves
the training loss.

4.3 3D Point Cloud Extraction

We extract the densified point cloud, which is generated during
the training process like described in Section 2.3. The extracted
densified point clouds of the Gaussians (Figure 6) illustrate the
differences in Gaussian Splatting for 3D scene reconstruction
between the external SfM data and the internal HoloLens data.
For the scene ’Denker’, there is an overall good coverage with
the SfM data, where the structure of the object is clearly visible
with sharp edges. Nonetheless, some gaps in the point cloud are
evident, particularly on the platform and on the statue’s arms
and legs. In these areas the color differs from the rest and ap-
pears more homogeneous and low-textured. When using the
internal HoloLens data, there is an identifiable structure of the
object through the centers of the Gaussians. Although, the point
cloud is overall noisy, with indistinct and fuzzy object edges.
Additionally, large artifacts are present in the point clouds, cor-
responding to the floater artifacts in the rendered images. For
the scene ’Ficus’, a similar pattern emerges. The point cloud
from external SfM data exhibits clear and sharp edges, accur-
ately capturing the fine structure of the vegetation of the plant.
However, gaps are noticeable, especially in the pot area, char-
acterized by a uniform, low-textured color. Additionally, small
floater artifacts appear intermittently above the object, partic-
ularly in areas with lower scene coverage from the captures.
When using the HoloLens data, the structure of the object is
also clearly recognizable, with a high coverage. Nonetheless,
the point cloud remains heavily noisy, with numerous floater

artifacts, especially in areas above the object. Again, the low-
textured pot of the plant is not full reconstructed.

The visual appearance of the densified point clouds is further
evaluated quantitatively and qualitatively by their geometric 3D
accuracy (Jensen et al., 2014) using the Chamfer cloud-to-cloud
Distance from the point cloud to the reference from MVS. Con-
sistent with the training and rendering results, the extracted
point cloud exhibits similar geometric characteristics, as shown
quantitatively in Table 2 and qualitatively in Figures 7 and 8.
The quantitative results in Table 2 highlight clear differences in
the geometric accuracy of the extracted densified point clouds,
especially regarding the two types of initial input data. For the
scene ’Denker’, with a mean accuracy of 0.021 and a stand-
ard deviation of 0.061 for external SfM data, contrasting with a
significantly lower accuracy of 0.298 and a standard deviation
of 0.534 for internal HoloLens data. Similar results are ob-
tained for the scene ’Ficus’, where the use of external SfM data
shows a mean geometric accuracy of 0.045, with a standard de-
viation of 0.261. In contrast, the use of internal HoloLens data
again results in a significantly lower accuracy of 0.596, with a
standard deviation of 0.891. The point clouds, illustrating the
Chamfer Distances, visually underscore the quantitative find-
ings, as shown in Figure 7 for the scene ’Denker’. It is evident
that the external SfM data yields a high accuracy for the statue’s
surface, although a lower geometric accuracy is noticeable on
low-textured, homogeneous areas. The same trend is seen for
the internal HoloLens data, where lower geometric accuracy is
reflected in noisy edges and floater artifacts. Figure 8 shows a
similar pattern for the scene ’Ficus’. The SfM data performs
well in capturing details, while the HoloLens data shows re-
duced accuracy, especially on fine-structured object parts like
the branches.

External SfM data Internal HoloLens data
mean std mean std

Denker 0.021 0.061 0.298 0.534
Ficus 0.045 0.261 0.596 0.891

Table 2. Geometric 3D accuracy via Chamfer Distance ↓. Mean
distance (mean) and standard derivation (std) for the scenes ’Den-
ker’ and ’Ficus’ each with external SfM and internal HoloLens
data. Note that the reference point clouds and therefore the
Chamfer Distances are non-metrical.

5. Discussion

In this paper, we introduce HoloGS to investigate the applica-
tion of instant 3D Gaussian Splatting using data from the in-
ternal sensors of the Microsoft HoloLens 2. Specifically, the
input data consists of RGB images with corresponding camera
poses and a point cloud from the depth data of the HoloLens
as initial Gaussian centers. We have shown both quantitatively
and qualitatively that the internal HoloLens data is suitable for
this application as it enables convergence of the Gaussian Splat-
ting optimization process. The optimization of the training pro-
cess based on the rendered RGB images converges quickly and
reaches a maximum PSNR value of 20.17 for the scene ’Den-
ker’ and 20.55 for ’Ficus’. This convergence enables the render-
ing of novel synthetic images from different views which rep-
resent the scene visually well. Additionally, the optimization of
the Gaussians during the training process enables the extraction
of the densified point cloud from the Gaussian centers.

Nevertheless, limitations exist, as the results of the externally
preprocessed SfM data outperform the results of the internal



(a) (b) (c) (d)

Figure 5. Rendered images. From left to right: (a) external SfM data and (b) internal HoloLens data on scene ’Denker’, as well as (c)
external SfM data and (d) internal HoloLens data on scene ’Ficus’.

(a) (b) (c) (d)

Figure 6. Point clouds by extracting the center of each Gaussian after training process. From left to right: (a) external SfM data on
scene ’Denker’, (b) internal HoloLens data on scene ’Denker’, (c) external SfM data on scene ’Ficus’, (d) internal HoloLens data on
scene ’Ficus’.

HoloLens data. Thereby, a higher maximum PSNR is reached
during the training, and the rendered images appear less blurry
and contain less floater artifacts in comparison to the internal
HoloLens data. In addition, the geometric accuracy of the 3D
reconstruction of the densified point clouds with HoloLens per-
forms 10 times weaker on average, although this may be due to
floater artifacts, which weigh heavily. We suspect the cause of
these discrepancies lies in the less precise camera poses of the
RGB images of the internal HoloLens data, leading to blurry
results and artifacts in the rendered images as well as the densi-
fied point clouds. Moreover, it could be assumed that the initial
point cloud from the depth sensor may not match the correct po-
sitions of the RGB images in the coordinate system. However,
since the PSNR does not continue to increase during training as
Gaussians grow, shrink or are removed, we reject this assump-
tion as a potential cause.

Therefore, firstly, considering the 3D mapping aspect, the us-
age of HoloLens solely as a 3D mapping system, without the
3D scene reconstruction aspect of computer graphics, a direct
usage of the depth maps and the resulting point cloud from the
HoloLens sensor data can be considered. This results in a point
cloud with high point density and fine details, as shown by the
input data (Section 3) of the internal HoloLens data approach.
Secondly, from the aspect of computer graphics, we nonetheless
consider the combination of HoloLens and Gaussian Splatting
to be suitable. If, as suspected, the weaker results are due to the
RGB camera poses, just as with the HoloLens-NeRF combin-
ation (Jäger et al., 2023), we propose the optimization of RGB
camera poses during the training process. A strategy previously
employed in the context of NeRF and generally beneficial for
low-quality or unknown camera poses (Lin et al., 2021; Fu et
al., 2023; Chng et al., 2022; Lin et al., 2023; Meng et al., 2021;

Bian et al., 2023). By optimizing the camera poses during the
training, the quality of the rendering and the densified point
cloud from Gaussian Splatting could reach the quality of the
SfM without additional pre-processing time. Furthermore, the
real-time capability of the HoloLens offers the potential to in-
sert data into Gaussian Splatting during the optimization, which
is, with regard to SLAM approaches (Fink et al., 2023; Rosinol
et al., 2023; Zhu et al., 2022), quite appealing.

(a) (b)

(c) (d)
Figure 9. Low-textured, homogeneous surfaces. (a) Input SfM
point cloud whose points are used as initial Gaussian centers. (b)
Output densified point cloud of the Gaussian centers after train-
ing. (c) Rendered image. (d) Reference point cloud. It can be ob-
served that the homogeneous, low-textured surfaces clearly have
a lower point density of Gaussians.
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Figure 7. Geometric accuracy via Chamfer Distance ↓. Reference point cloud from MVS compared to the densified point clouds
from Gaussian Splatting by extracting the center of each Gaussian. Top: Scene ’Denker’ with external SfM data. From left to right:
(a) Reference, (b) reference and GS point cloud, (c) Chamfer Distance of the GS point cloud. Bottom: Scene ’Denker’ with internal
HoloLens data. From left to right: (d) Reference, (e) reference and GS point cloud, (f) Chamfer Distance of the GS point cloud.
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Figure 8. Geometric accuracy via Chamfer Distance ↓. Reference point cloud from MVS compared to the point clouds from Gaussian
Splatting by extracting the center of each Gaussian. Top: Scene ’Ficus’ with external SfM data. From left to right: (a) Reference, (b)
reference and GS point cloud, (c) Chamfer Distance of the GS point cloud. Bottom: Scene ’Ficus’ with internal HoloLens data. From
left to right: (d) Reference, (e) reference and GS point cloud, (f) Chamfer Distance of the GS point cloud.



Generally, gaps in the densified point cloud, for both SfM and
HoloLens data, are present, as shown in Figure 9. These gaps
probably result from areas with homogeneous color, such as
the areas around the legs of the statue in the scene ’Denker’ and
the low-textured pot of the plant in the scene ’Ficus’. There-
fore, for the densified point cloud extraction, simply extract-
ing the Gaussian centers is insufficient, due to the presence of
floater artifacts and non-uniform point density on low-textured
surfaces, where only a few individual Gaussians exist for ho-
mogeneous colors. In addition, it is not yet clear whether the
Gaussian center or the Gaussian surface best represents the sur-
face of the object geometry. These issues can be resolved by
a suitable method for 3D point cloud extraction beyond query-
ing of the Gaussian centers by further post-processing steps and
extensions. In summary, despite the challenges, we see poten-
tial for HoloGS by combining the Microsoft HoloLens 2 with
Gaussian Splatting for an instant 3D scene reconstruction and
point cloud extraction.

6. Conclusion

In conclusion, HoloGS enables instant 3D scene reconstruction
with 3D Gaussian Splatting directly from the internal sensor
data of the Microsoft HoloLens 2. Although our results show
some weaknesses compared to more elaborate approaches of
using externally computed SfM data, such as a lower PSNR,
floater artifacts and blurring in the rendered images as well as
artifacts in the extracted point cloud, we nevertheless see po-
tential for further optimization. In particular, refining the RGB
camera poses during the training process could improve the res-
ults and enable real-time 3D reconstruction using state-of-the-
art methods and entertainment devices like the HoloLens. As
well as additional methods for point cloud and surface recon-
struction from Gaussian Splatting. HoloGS thus represents a
promising solution for using the Microsoft HoloLens 2 for in-
stant 3D Gaussian Splatting, which offers further research po-
tential in the realm of photogrammetry, computer vision and
computer graphics.
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University of Darmstadt for support regarding the HoloLens.

References

Bian, W., Wang, Z., Li, K., Bian, J.-W., Prisacariu, V. A., 2023.
Nope-nerf: Optimising neural radiance field with no pose prior.
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 4160–4169.

Chng, S.-F., Ramasinghe, S., Sherrah, J., Lucey, S., 2022. Gaus-
sian activated neural radiance fields for high fidelity reconstruc-
tion and pose estimation. Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIII, Springer, 264–280.

Darmon, F., Bascle, B., Devaux, J.-C., Monasse, P., Aubry, M.,
2022. Improving neural implicit surfaces geometry with patch
warping. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 6260–6269.

Dibene, J. C., Dunn, E., 2022. HoloLens 2 Sensor Streaming.
arXiv. https://arxiv.org/abs/2211.02648.

Fink, L., Rückert, D., Franke, L., Keinert, J., Stamminger, M.,
2023. Livenvs: Neural view synthesis on live rgb-d streams.
SIGGRAPH Asia 2023 Conference Papers, 1–11.

Fu, H., Yu, X., Li, L., Zhang, L., 2023. Cbarf: Cascaded
bundle-adjusting neural radiance fields from imperfect camera
poses. arXiv: 2310.09776.

Haitz, D., Jutzi, B., Ulrich, M., Jäger, M., Hübner, P.,
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Jäger, M., Landgraf, S., Jutzi, B., 2023. Density uncertainty
quantification with nerf-ensembles: Impact of data and scene
constraints.

Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G., 2023.
3D Gaussian Splatting for Real-Time Radiance Field Ren-
dering. ACM Transactions on Graphics, 42(4). https://repo-
sam.inria.fr/fungraph/3d-gaussian-splatting/.

Li, Z., Müller, T., Evans, A., Taylor, R. H., Unberath, M., Liu,
M.-Y., Lin, C.-H., 2023. Neuralangelo: High-fidelity neural
surface reconstruction. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Lin, C.-H., Ma, W.-C., Torralba, A., Lucey, S., 2021.
Barf: Bundle-adjusting neural radiance fields. Proceedings of
the IEEE/CVF International Conference on Computer Vision,
5741–5751.

Lin, Y., Müller, T., Tremblay, J., Wen, B., Tyree, S., Evans,
A., Vela, P. A., Birchfield, S., 2023. Parallel inversion of neural
radiance fields for robust pose estimation. 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 9377–
9384.

Lowe, D. G., 2004. Distinctive image features from scale-
invariant keypoints. International journal of computer vision,
60, 91–110.

Meng, Q., Chen, A., Luo, H., Wu, M., Su, H., Xu, L.,
He, X., Yu, J., 2021. Gnerf: Gan-based neural radiance field
without posed camera. Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 6351–6361.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., Ng, R., 2020. NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis. European Con-
ference on Computer Vision (ECCV), 405–421.



Oechsle, M., Peng, S., Geiger, A., 2021. Unisurf: Unifying
neural implicit surfaces and radiance fields for multi-view re-
construction. Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 5589–5599.

Park, J. J., Florence, P., Straub, J., Newcombe, R., Lovegrove,
S., 2019. Deepsdf: Learning continuous signed distance func-
tions for shape representation. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 165–
174.

Rosinol, A., Leonard, J. J., Carlone, L., 2023. Nerf-slam: Real-
time dense monocular slam with neural radiance fields. 2023
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 3437–3444.

Schönberger, J. L., Frahm, J.-M., 2016. Structure-from-motion
revisited. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang,
W., 2021. Neus: Learning neural implicit surfaces by volume
rendering for multi-view reconstruction. 34, 27171–27183.
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