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Abstract. We investigate machine learning-based noise classification aimed at the

recognition of the Markovian character of a dynamics and the identification of

correlations of classical noise, as well as their interplay in small quantum networks.

We operate control based on Coherent Tunneling by Adiabatic Passage (CTAP) or

Stimulated Raman Adiabatic Passage (STIRAP) in a three-level system using different

pulse configurations as inputs to train a feedforward neural network. Our results

show that supervised learning can classify distinct types of classical diagonal noise

affecting the system. Three non-Markovian (quasistatic correlated, anti-correlated,

and uncorrelated) and Markovian noise mechanisms are classified with 99% accuracy.

Instead, correlations of Markovian noises cannot be classified with our method. The

approach is robust against statistical measurement errors keeping its effectiveness even

for physical measurements where a limited number of samples is available.

1. Introduction

Quantum systems can nowadays be controlled with impressive accuracy [1] to

perform new tasks leveraging their coherence properties, such as superposition and

entanglement [2]. However, quantum behavior fades away because of environmental

noise leading to loss of fidelity in quantum operations and decoherence [3–5]. Devising

strategies to counteract these effects is thus paramount for advances in quantum

technologies and in this context, machine learning (ML) emerges as an innovative and

powerful diagnostic tool [6–8]. Approaches based on ML have been applied to various

quantum control protocols [9–12], to quantum state tomography [13–15], to characterize

quantum systems [16–18], to simulate open quantum systems [13, 18–20], to investigate
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non-Markovian dynamics [21, 22] and, in a spirit similar to this work, to characterize

system-environment interactions [23, 24] and perform noise spectroscopy [25–27].

Mitigating decoherence effects is necessary to achieve quantum advantage. Several

strategies have been developed in the last two decades both for quantum computation

and in the broader perspective of quantum control. Error-avoidance (or passive

stabilization) strategies consist of storing and processing information in suitably

designed subspaces of the Hilbert space, which are protected from the interaction with

the environment [28–30]. Examples of error-correcting (or active stabilization) strategies

are Quantum Error Correction which relies on non-local information encoding [5, 31, 32],

and Dynamical Decoupling [30, 33–35] consisting in repeated application of pulsed or

switched control which has been used in solid-state coherent nanoscience to counteract

1/f noise [28, 36–38]. Specific strategies rely on the availability of information about the

environment, whose characterization is thus a very important step towards the design of

optimized systems and protocols. For individual qubits, this program has been carried

out successfully in several platforms such as trapped ions [39, 40], photonic qubits [41],

nuclear magnetic resonance [42, 43], and nitrogen-vacancy centres in diamond [44, 45].

Superconducting systems are the forefront examples in this context, with decoherence

times that have improved from a few nanoseconds to milliseconds in about 15 years [46].

On the contrary, characterization of more complex systems such as multilevel

nodes and multi-qubit architectures is still a challenge. In particular, the need of

characterizing correlations between noises affecting different transition [47] or different

nodes of the quantum architecture [48] is an emerging issue. A strong motivation of

principle is that spatially correlated noise between physical qubits may spoil one of

the pillars of digital quantum computation namely error correction in logical qubits,

besides the fact that correlated errors are indeed observed in noisy intermediate-scale

quantum structures [49]. Effects of spatially-correlated low-frequency noise between

two quantum devices have been observed since several decades [50] and their impact on

decoherence was investigated [48] since the first two-qubit superconducting gates were

demonstrated. Recently, low-frequency noise correlations between pairs of qubits have

been characterized by direct measurement of the noise power spectra [51–53]. However,

the full characterization of noise acting on a controllable quantum system is a difficult

task requiring exceedingly large resources as the systems scale up. In this work, we seek

to pursue a different avenue passing through the classification of the multivariable noise

acting on a quantum architecture. Our primary focus is to find a ML-based procedure

that recognizes the presence of noise correlations. We will see that this possibility is

intimately related to the (non-)Markovian character of the dynamics, and might thus be

useful in the investigation of the effect that non-Markovianity has in the establishment

of many-body phenomena [54, 55].

For the sake of simplicity, we illustrate our ML method to identify correlations in

the simplest case of a three-level network affected by diagonal classical noise. Physically,

the model describes a qutrit operated by two AC classical electromagnetic fields or a

system of three single-level quantum dots with tunable tunneling rate. In the latter
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case, we exploit a control protocol yielding coherent tunneling by adiabatic passage

(CTAP) [56], which is conventionally meant to be used for population transfer, as a tool

for noise classification. We use supervised learning to classify five types of noise:

(1) Non-Markovian correlated noise;

(2) Non-Markovian anti-correlated noise;

(3) Non-Markovian uncorrelated noise;

(4a) Markovian correlated noise;

(4b) Markovian anti-correlated noise.

We show that, by measuring the efficiency of CTAP under three different combinations

of pulse amplitudes, we can train a neural network to classify noise belonging to four

of the five classes listed above. In particular, our model can accurately classify noise of

the first three classes and Markovian noise (classes 4a and 4b together) while it cannot

distinguish between correlated and anti-correlated Markovian noise. Referring to actual

experiments, we analyze in detail how to extract this information also in the case of a

finite number of samples.

The paper is structured as follows: in Sec. 2 we define the models of system and

noise that we address in our study. In Sec. 3 we introduce the CTAP protocol and the

figures of merits we use in the training phase. In Sec. 4 we give a brief overview of

supervised learning and neural networks (NN) [6, 57–59] and describe how we classify

among the noises introduced in Sect. 2. Sec. 5 presents the results on the classification

for a finite number of samples and imperfect measurements. The conclusions are drawn

in Sec. 7, together with a physical interpretation of the results.

2. Noisy three-level system

To fix the ideas we consider a system of three single-level quantum nodes with eigenbasis

{|i⟩, i = 0, 1, 2} and on-site energies ϵi. This model may describe a system of three

quantum dots with an electron tunneling between them [56]. The tunneling rates

between the first and the second dot, Ωp(t), and between the second and the third dot,

Ωs(t), can be controlled by time-dependent external gates. The same model describes a

three-level atom driven by two external fields in a multiple rotating frame [60].

The Hamiltonian of the system is Hsys = H0+Hc, where H0 and Hc(t) are the free

energy and the control term, respectively (throughout the manuscript we use units such

that ℏ = 1), reading

H0 = δp|1⟩⟨1|+ δ|2⟩⟨2|, (1a)

Hc =
Ωp(t)

2
(|0⟩⟨1|+ |1⟩⟨0|) + Ωs(t)

2
(|1⟩⟨2|+ |2⟩⟨1|) , (1b)

where, in the language of the three-dot network, we defined the detunings δp = ϵ1 − ϵ0
and δ = ϵ2 − ϵ0.
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We consider diagonal noise, i.e. noise affecting the energy levels of the three dots,

which may arise from charge noise, for instance [61]. We model it as the following

classical stochastic process added to the diagonal entries of the Hamiltonian

Hnoise = x̃1(t)|1⟩⟨1|+ x̃2(t)|2⟩⟨2|. (2)

Here, x̃i(t) (i = 1, 2) is a random variable [62] with normalized probability density

p(xi, t). The total Hamiltonian H(t) in the basis {|0⟩, |1⟩, |2⟩} thus reads

H(t) = Hsys(t) +Hnoise(t) =

 0 Ωp(t)/2 0

Ωp(t)/2 δp + x̃1(t) Ωs(t)/2

0 Ωs(t)/2 δ + x̃2(t)

 . (3)

We now link the five classes of noise listed in Sec. 1 to the features of the stochastic

mechanism introduced here. We thus consider

• Non-Markovian types of noise: When addressing non-Markovian noise, we will

make the assumption of quasistatic processes where the noise mechanism has a

long correlation time and can thus be considered constant over the evolution of

the system. The random variables x̃i(t) are assumed to be picked from Gaussian

distributions with zero mean, thus describing the cumulative effects of independent

microscopic sources. Needless to say, while x̃i(t) remains constant throughout a

single realization of the protocol, it varies between different realizations. We identify

the following three classes

(1) Correlated: x2(t) = ηx1(t) with η > 0;

(2) Anti-correlated: x2(t) = ηx1(t) with η < 0;

(3) Uncorrelated: x2(t) and x1(t), are independent of each other.

• Markovian types of noise: The associated dynamics will be ruled by zero-

mean, delta-correlated stochastic processes x̃i making the dynamics of the system

dependent only on its current state rather than its past history. We will thus set

⟨x̃i(t)⟩ = 0, ⟨x̃i(t)x̃i(t′)⟩ = γδ(t− t′) (4)

and consider the two classes

(4a) Correlated: x2(t) = ηx1(t), with η > 0;

(4b) Anti-correlated: x2(t) = ηx1(t), with η < 0.

3. Dynamics

Our method is based on population transfer by CTAP and the closely related stimulated

Raman adiabatic passage (STIRAP) scheme, which has found ample use in atomic

physics [60, 63]. We shortly review the CTAP/STIRAP approaches and discuss how we

solve the equations and then calculate the classification performances in the presence of

the different classes of noise considered.
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3.1. CTAP/STIRAP

CTAP [56] (and its spin equivalent spin-CTAP [64]) is a protocol that ideally

achieves population transfer from |0⟩ to |2⟩ by adiabatically following a “trapped

state” (often referred to as a dark state) that contains no contribution from the

intermediate state |1⟩, which is thus never populated during the protocol. Under

ideal conditions, CTAP/STIRAP yields ∼ 100%-efficiency population transfer with

remarkable robustness against parametric fluctuations and state-selectivity.

For the transfer process to be successful it is essential to work at small detuning,

δ ≪ Ωp,s. In particular, at the so-called two-photon resonace condition δ = 0, the

trapped state is an instantaneous eigenstate of the Hamiltonian Hsys(t) of the form

|ϕD(t)⟩ = cos θ(t)|0⟩ − sin θ(t)|2⟩ (5)

with θ(t) = tan−1
[
Ωp(t)/Ωs(t)

]
. The protocol is operated in the time interval [ti, tf ] by

applying pulses Ωp,s(t) in a counterintuitive manner [60]: Ωs is applied before Ωp, while

ensuring that the two pulses overlap in a fraction of the duration of the sequence. In this

case, the trapped state |ϕD(t)⟩ at the initial time ti coincides with |0⟩ and at the final

time tf with the target state |2⟩. If the evolution is adiabatic and the system is prepared

in |0⟩ = |ϕD(ti)⟩, the system evolves following the trapped state |ϕD(t)⟩ throughout the
evolution as prescribed by the adiabatic theorem [65, 66]. The requested adiabaticity

of the process can be cast in the form of the global adiabaticity condition [60]

Ωmax
p/s τ ≥ 10, (6)

where τ is the characteristic time scale of the pulses overlap and Ωmax
p/s = maxtΩp/s(t).

Under two-photon resonance condition, a counterintuitive sequence satisfying the

global adiabaticity request is robust against the actual shape of Ωp and Ωs. In fact,

several pulse shapes [67] have been used in literature. In this work, we consider Gaussian

pulses (see Fig. 1) of the form

Ωp(t) = Ωmax
p e−( t−τ

T
)2 , Ωs(t) = Ωmax

s e−( t+τ
T

)2 , (7)

and we let the system evolve in the time interval t ∈ [−5T, 5T ] with τ = 0.7T . More

details about CTAP/STIRAP can be found in Appendix B.

3.2. Figures of merit

The efficiency ξ of the population transfer is defined as the population of the target

state |2⟩ at the final time tf , averaged over all the possible realizations of the noise [68]

ξ = lim
N→∞

1

N

N∑
r=1

|⟨2|ψ(r)(tf)⟩|2 = lim
N→∞

1

N

N∑
r=1

ξ(r) (8)

with ξ(r) = |⟨2|ψ(r)(tf)⟩|2 the population of |2⟩ for a single trajectory |ψ(r)(t)⟩ identified
by an individual realization of noise, i.e. a choice of {x(r)1 (t), x

(r)
2 (t)}. The index

r = 1, . . . , N identifies the trajectory being considered.
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Figure 1. (a) Example of the pump Ωp(t) and Stokes Ωs(t) pulses, Eqs. (7), as

a function of time t. The parameters used are Ωmax
p = Ωmax

s = 50/T , τ = 0.7T

and t ∈ [−5T, 5T ]. (b) Instaneous eigenvalues for δ = 0: CTAP/STIRAP achieves

100% population transfer by adiabatically following the trapped state |ΦD(t)⟩ (red

line). (c) Instaneous eigenvalues for δ ̸= 0: The trapped state is not an instantaneous

eigestate and an adiabatic evolution produces only partial population transfer.

The quasistatic noise is constant during an individual trajectory thus the index

r can be unambiguously mapped to the two real values x
(r)
1 and x

(r)
2 of the random

processes x̃1 and x̃2. Therefore ξ
(r) = ξ(x

(r)
1 , x

(r)
2 ). In this case, the efficiency in Eq. (8)

is obtained by averaging over the random processes

ξ =

∫
ξ(x1, x2)p(x1, x2)dx1dx2. (9)

If the noise is (anti-)correlated, then x
(r)
2 = ηx

(r)
1 and Eq. 9 simplifies to

ξ =

∫
ξ(x1, ηx1)p1(x1)dx1. (10)

For Markovian noise, the average is calculated via the density matrix ρ(t) of the system

which solves a master equation in the Lindblad form (cf. Appendix A for the derivation)

ρ̇(t) = −i[H0 +Hc(t), ρ(t)]−
γ

2
(O2ρ(t) + ρ(t)O2 − 2Oρ(t)O), (11)

where O = |1⟩⟨1|+η|2⟩⟨2|, and γ is the dephasing rate given by ⟨x̃1(t)x̃1(t′)⟩ = γδ(t−t′).
The efficiency is given by

ξ = ⟨2|ρ(tf)|2⟩. (12)

4. Classification with neural networks

4.1. Neural Networks

Supervised learning requires a labeled dataset, {(xi, ŷi)}i=1,...,N , where the input data

xi (features, also called input feature vector) are paired with the correct output ŷi
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(labels or target values) the index i iterating over all the N data points (also called

samples). To perform classification, we employ a feedforward neural network, specifically

a multilayer perceptron (MLP), as our machine learning model. An MLP consists of

three primary parts: the input layer, the hidden layer(s), and the output layer. Each

layer is composed of neurons, which are the fundamental units of a neural network. In

a fully connected neural network, each neuron in a layer receives an input from each

neuron of the preceding layer and calculates a real-valued output which is passed on to

the next layer.

To illustrate the concept, consider a MLP consisting of L+1 layers (as depicted in

Fig. 2), with the input layer identified by the index l = 0 and the output layer by the

index l = L. The value of the D(l) neurons in layer l are calculated from the values of

the D(l−1) neurons in layer l − 1, with

y(l) = f (l)(z(l)), (13a)

where f (l) is a nonlinear funtion called the activation function, and

z(l) = w(l)y(l−1) + b(l). (13b)

Here w(l) ∈ RD(l)×D(l−1)
is the weight matrix, b(l) ∈ RD(l)

is called the bias vector and

y(l−1) ∈ RD(l−1)
are the values of the neurons in layer l−1. The values of the input layer

x1

x2

xD(0)

y
(l)
1

y
(l)
2

y
(l)
3

y
(l)

D(l)

y1

y2

yD(L)

w(l)

w(1) w(L)

layer
number

0 1 l − 1 l L− 1 L

Figure 2. Schematic representation of a Multi Layer Perceptron (MLP) with L − 1

hidden layers. (x1, x2, . . . , xD(0)) are the inputs to the MLP, w(l) are the weights

connecting layer l − 1 with layer l and (y1, y2, . . . , yD(L)) are the outputs. Details on

its working are given in the text.
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l = 0 are set to be the input feature vector y(0) = x, while the values of the output layer

y(L) is the output that the model associates to the given input: it is called predicted

output and we indicate it simply as y = y(L). The weight matrices, together with the

biases and the activation functions, govern the collective influence of the neurons from

one layer to the next.

The training process consists in finding weights W = {w(l)}l=1,2,...,L and biases

B = {b(l)}l=1,2,...,L such that the model predicts the correct output given an input,

and is able to generalize to unseen inputs. This is done by minimizing a cost

function C({yi, ŷi}i|W ,B) which measures the average distance (“error”) between

the NN predicted output yi and the target output ŷi. Typically, this minimization

process is executed using algorithms such as stochastic gradient descent or its

variants. The gradients needed for these optimization algorithms are computed through

backpropagation, a highly efficient algorithm that leverages the chain rule to propagate

errors backward through the network.

We use a neural network consisting of two hidden layers and the leaky rectified

linear unit (LeakyReLU) [69] as an activation function for both the hidden layers, for

details see Tab. 1. LeakyReLU is defined as

fLReLU(z) =

{
z if z ≥ 0,

αz if z < 0,
(14)

where α is a constant that we set to the value 0.01. This activation function helps to

avoid the “dying ReLU” problem [70], that is problem of obtaining always the same

output (often the null one), regardless of the input.

As we are performing a classification task, the output of the NN represents the

possible classes (labels). This is accomplished with one-hot encoding: each class is

represented by a binary vector with a length D(L) equal to the number of classes, where

all elements are zero except for the one corresponding to the specific class, which is set to

one. This representation ensures that categorical values are treated as distinct entities

by the model, avoiding any implicit ordering that might be inferred from numerical

encoding. The output of the network for a given input xi is then a vector where each

Layer # neurons Activation function

input 3

hidden 1 128 LeakyReLU

hidden 2 100 LeakyReLU

output 4 or 5 Softmax

Table 1. Structure of the neural network used for classification of the 4 or 5 classes

of noise.
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element corresponds to the probability that xi belongs to one of the possible classes.

This is achieved by the use of the softmax activation function for the output layer

y = fsoftmax(z
(L)) =

ez
(L)∑D(L)

k=1 e
z
(L)
k

, (15)

which ensures the normalization of y (the exponentiation is intended to act component-

wise). Finally, the class with the highest probability is taken as the model’s prediction

for the input’s class.

We employ the Categorical cross-entropy as cost function defined as

C({yi, ŷi}i) = − 1

N

N∑
i=1

D(L)∑
j=1

ŷij ln(yij), (16)

where yij denotes the components of the predicted output yi, i.e. the probability

assigned by the model for xi to belong to the class j = 1, . . . , D(L) while ŷij gives

the components of the one-hot encoded target vector ŷi.

4.2. Data generation

In order to efficientlys classify between the different noise types it is imperative

to identify features which are sensitive to the distinct characteristics of the classes

introduced in Sec. 2. To this end, we choose as features the efficiency of the

CTAP/STIRAP protocol under three different driving conditions. Referring to Eqs. (7)

we consider: (i) Ωmax
p = Ωmax

s , (ii) Ωmax
p > Ωmax

s , (iii) Ωmax
p < Ωmax

s . For each type of

noise, we solve numerically the dynamics of the system under the three driving conditions

and compute the efficiency as described in Sec. 3. We denote the efficiencies as ξp=s,

ξp>s, and ξp<s, for the driving conditions (i), (ii), and (iii) respectively, and we use

x = (ξp=s, ξp>s, ξp<s) as input feature vector to the NN, see Fig. 3. The parameters we

use are (i) Ωmax
p = Ωmax

s = 50/T , (ii) Ωmax
p = 20

√
10/T > Ωmax

s = 10
√
10/T , and (iii)

Ωmax
p = 10

√
10/T < Ωmax

s = 20
√
10/T with evolution time t ∈ [−5T, 5T ], τ = 0.7T and

σ1 ≈ 17.6/T being the standard deviation of the Gaussian distribution p1(x1, t).

For the correlated and anti-correlated noise, data are generated by randomly

sampling the correlation parameter η in the intervals [0.1, 5] and [−5,−0.1], respectively.

For each randomly selected η we calculate three efficiencies, one for each of the pulse

conditions (i), (ii), and (iii), thus generating the input feature vector x. The efficiencies

are calculated using Eq. (10) for non-Markovian quasistatic noise (with p1(x1, t) being

a Gaussian distribution) and Eq. (12) for Markovian noise.

For uncorrelated, non-Markovian quasistatic noise, the values of x̃1 and x̃2
are independently sampled from two Gaussian probability distributions p1(x1, t) and

p2(x2, t) with mean µ1 = µ2 = 0. The standard deviation σ1 of the first distribution

is kept fixed, while the standard deviation σ2 of the distribution p2(x2, t) is randomly

sampled in the interval [−5σ1, 5σ1]. As mentioned in Sec. 4.1, the classes are one-hot
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ξp=s

ξp>s

ξp<s

P1

P2

P3

P4a

P4b

Figure 3. Schematic representation of our model. The efficiencies obtained with the

three driving conditions Ωmax
p = Ωmax

s , Ωmax
p > Ωmax

s , and Ωmax
p < Ωmax

s are given as

input to the neural network. The Neural Network is composed of 2 hidden layers with

128 and 100 neurons respectively, and activation function LeakyReLU, Eq. (14). The

output layer composed of 4 or 5 neurons represent the probability of assigning each

data to the relative noise class. This is achieved with the softmax activation function,

Eq. (15), on the output layer.

encoded, thus the output of the neural network is a layer with four or five neurons. For

each noise class, we generate 500 samples such that the total data consists of 2000 or

2500 data points {x, ŷ}. We then split the data in a training, validation and test set

with a ratio of 0.6 : 0.2 : 0.2, respectively.

In order to evaluate the efficacy of the model we use the accuracy A defined as the

number of correct predictions divided by the number of total predictions N

A =
1

N

N∑
i=1

δ(argmaxyi, argmax ŷi), (17)

where the argmax function yields the index j of the maximal component of y and δ(·)
is the Kronecker delta.

5. Results

The ML model and the training are performed with TensorFlow [71] and the results

are shown in Fig. 4. The accuracy A for the training and validation sets is shown in

Fig. 4(a). After training on the test set the accuracy of the model is A ≈ 0.81 and

varies within the values of approx 0.79 and 0.81 depending on the random initialization

of the NN weights and the random shuffling of the data for the splitting in the three

sets. For the same test set, we report in Fig. 4(b) how the value of the cost function

C changes during training. In Fig. 5, we show the confusion matrix for the trained

model, a tabular representation used to evaluate the performance of a classification

model. It cross-tabulates the actual class labels with the model’s predictions, providing

insight into the correct and incorrect classifications made by the model. Thus it helps to
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Figure 4. (a) Accuracy, Eq. (17), and (b) value of the cost function, Eq. (16), for

the training (blue for four noises and green for five noises) and validation (orange for

four noises and red for five noises) sets versus the number of epochs of training. The

accuracy on the test set is A ≈ 1 for four noise classes and A ≈ 0.81 for five noise

classes.

identify which classes are not easily distinguishable from each other posing a challenge to

the classification. Each row of the matrix represents the instances of the actual classes,

while each column represents the instances of the predicted classes. It is apparent from

Fig. 5(a) that classes 4a and 4b are not distinguishable from each other with the input

features of our choice and almost all the samples collapse in class 4a.

We then repeat the same analysis considering the Markovian noise as a single class,

i.e. by grouping together correlated and anti-correlated noise and taking η ∈ [−5, 5]. As

expected, the effectiveness of the model increases reaching an accuracy A ≈ 1 that varies

between ≃ 0.97 and 1 depending on the random initialization. The accuracy A and the

value of the cost function C during the training are shown in Fig. 4. The confusion

matrix for this model is reported in Fig. 5(b) showing that now the four classes are

clearly distinguishable with the chosen input features.

5.1. Results for a finite number of measurement

The analysis performed in the previous section describes the ideal physical situation that

the data are obtained from an infinite number of 100%-efficiency of projective quantum

measurements. While very large efficiency can be achieved by quantum non-demolition

measurements [72], in this section we analyze how the training and the accuracy of the

model are affected by the number of measurements M being finite. To this end, we

employ the same method described in Sec. 4.2 but compute the efficiency ξM as the

one resulting from a set of individual “quantum” trajectories. The result of unravelling

each trajectory is simulated by extracting each time the value 1 with probability equal

to the population of the target state |2⟩. The output y is produced by averaging over

the M quantum trajectories. We produce 500 distinct datasets, each corresponding
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Figure 5. Confusion matrix for the MLP model for the classification of the classes of

noise comsidered in this work. Each row of the matrix represents the instances of the

true classes, while each column represents the instances of the predicted classes. It is

apparent that classes 4a and 4b, i.e. Markovian correlated and anti-correlated, are not

easily distinguishable.

to a different measurement count M = 10, . . . , 5000 (in steps of 10). For each M , we

train the model and evaluate its accuracy using the same methodology as previously

described.

The results are presented in Fig. 6, where we report the accuracy versus the number

of measurements. As expected, the accuracy improves for increasing M , approaching

the value obtained in the ideal case, which lies in the range A ≈ [0.97, 1].

0 1000 2000 3000 4000 5000

number of trajectories

0.6

0.8

1.0

a
cc
u
ra
cy

Figure 6. Accuracy of the classification task for four classes of noise versus the

number M of projective measurements on quantum trajectories. The shaded orange

region corresponds to the accuracy obtained with ideal measurements.
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6. Phisical implementation and interpretation of the results

6.1. Physical implementations of the model

Spatially correlated noise in solid-state quantum information processing is a topic of

current experimental investigation in superconducting [51] and semiconducting [53]

quantum devices. Hardware CTAP has been demonstrated in arrays of quantum

dots [73]. In superconducting devices STIRAP has been demonstrated in Vee

configuration [74–76] whereas the Lambda configuration we study in this work could

be implemented either directly [77–79] or by a detuning-modulated protocol [80]

generalizing hyper-STIRAP [60] which bypasses parity selection rules enforced at noise-

protected operating points.

Diagonal noise such as the one addressed here describes the effect of sources

producing a fluctuating electrical polarization of charges. In principle, noise and

correlations may also affect the tunneling amplitudes, thus giving rise to fluctuations of

the non-diagonal entries of the Hamitlonian. However, as long as the noise is smaller

than (δ, δp), as in our case, off-diagonal noise affects the dynamics only at second

order and gives rise to a higher-order effect that can be neglected. For STIRAP in

multilevel artificial atoms, noise correlations stem due to the fact that each noise source

is coupled to the device via a single operator. In particular, noise coupled by an operator

commuting with the undriven Hamiltonian (referred as “longitudinal”) yields stochastic

fluctuations of the energy splittings of the devices which are related to each other. The

main effect is diagonal noise, the off-diagonal entries being negligible if noise is smaller

than the Autler-Townes splitting ∝
√

Ω2
p + Ω2

s (see Appendix B). Notice that in this

case, the parameter η is fully determined by the first derivatives of the band structure

at the point where the device is biased.

6.2. Interpretation of the results

We now seek an explanation of the ability to classify among differently correlated non-

Markovian quasistatic noises. To this end, we analyze the stability plots (efficiency

versus the detunings δ and δp) for the three driving conditions, shown in Fig. 7

Ideally, the system is operated at zero detunings, δ = δp = 0. The effect of

quasistatic noise is to move, at each individual repetition of the protocol, the point

associated with the operations of the system to somewhere else in the space of parameters

[cf. Fig.7]. The efficiency for correlated and anti-correlated noise types, is calculated

as a weighed average over the line δ = ηδp, see Eq. (10). The corresponding efficiency

depends on the ratio between Ωmax
p and Ωmax

s , this dependence being different for η > 0 or

η < 0. Fig. 7 reports as an example the lines δ = ηδp for η ≷ 0: it is clear that for η > 0

the efficiency of CTAP with Ωmax
p < Ωmax

s is higher than the one with Ωmax
p > Ωmax

s , and

vice versa for η < 0. For a more extensive analysis of this behavior we refer to Ref. [81].

For uncorrelated noise, instead, the average is over the whole δ − δp plane – cf. Eq. (9)

– and its dependence on the three different driving conditions is not as explicit.
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Figure 7. Efficiency of CTAP for the three driving conditions (i) Ωmax
p = Ωmax

s = 50/T

(red, solid line), (ii) Ωmax
p = 20

√
10/T > Ωmax

s = 10
√
10/T (blue, dotted line), and (iii)

Ωmax
p = 10

√
10/T < Ωmax

s = 20
√
10/T (green dashed line). The shaded areas within

the boundary lines highlight the regions, in the parameter space, where the efficiency is

> 0.7 (the efficiency being exactly 0.7 along the boundary curves). The efficiencies are

calculated with Eqs. (9) and (10). The dashed gray lines represent correlation (η > 0)

or anti-correlation (η < 0) between the detunings δ and δp. The other parameter is

τ = 0.7T .

Such analysis cannot be replicated for Markovian noise, as individual trajectories

cannot be represented as single points in Fig. 7. Instead, the noise assumes all values

along the line δ = ηδp during each repetition of the protocol.

7. Conclusions

We have proposed a ML-based method for categorizing correlated classical noise affecting

a three-level quantum system. We have considered various instances of non-Markovian

and Markovian noise, including(anti-)correlated and uncorrelated mechanisms.

We have shown that exploiting the sensitivity of a CTAP/STIRAP protocol to

correlation and Markovianity, it is possible to successfully classify with great detail the

noise mechanisms. Specifically, the efficiency of population transfer under three different

driving conditions is sufficient to distinguish among the correlations of non-Markovian

quasistatic noise, and between the latter and Markovian noise. On the contrary, this

approach is inadequate to differentiate between the correlations in Markovian noise. As

input to the ML analysis, we have used the solution of the Stochastic Schrödinger

equation and the Markovian Lindblad Master Equation which yield the result of

averaging over an infinite number of projective quantum measurements. Our study

has been complemented by the analysis of the impact of statistical measurement errors,
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showing that our approach is robust against those arising from finite statistics.

We remark that the implications of our work extend beyond noise classification.

The methodology developed herein offers a novel perspective on the use of quantum

protocols, such as CTAP/STIRAP and their multilevel/multiqubit extensions, not just

for quantum control but also as diagnostic tools for system-characterization.

Future directions of this research include investigating the potential of incorporating

alternative features of the input and extending this approach to other classes of noise,

and the use of unsupervised learning. Additionally, we aim to address the interplay

with relaxation [78, 82] and explore the application of this approach to more complex

quantum structures, such as interacting multiqubit systems [61] as well as strongly [83]

and ultrastrongly coupled [84, 85] architectures exploiting new STIRAP protocols

controlled by detunings [9, 86]. This work and the foreseen advances could provide

important elements for the development of integrated robust quantum control and error

correction techniques.
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Appendix A. Derivation of the Lindblad master equation for Markovian

diagonal classical noise

Here we derive the Lindblad master equation introduced in Eq. (11) for the description

of the dynamics of the system when it is subject to Markovian noise. As mentioned in

Sec. 2, the total Hamiltonian of the system is H = Hsys +Hnoise, where Hnoise is given

by Eq. (2). Using the correlation x2(t) = ηx1(t), we can represent Hnoise as

Hnoise = x̃1(t) (|1⟩⟨1|+ η|2⟩⟨2|) = x̃1(t)O, (A.1)

where O = |1⟩⟨1|+η|2⟩⟨2| is the noise operator. For Markovian noise, the noise has zero

mean ⟨x̃1(t)⟩ = 0 and is delta-correlated as ⟨x̃1(t)x̃1(t′)⟩ = ℏ2γδ(t− t′). Since the noise

is δ correlated, the variation of the tunneling amplitudes Ωp(t) and Ωs(t) is adiabatic,

thus we consider an instantaneous interaction picture

ρ̃(t) = e
i
ℏHsystρ(t)e−

i
ℏHsyst, (A.2)

where ρ(t) is the density operator in the Schrödinger picture. The time evolution of the

system is thus given by

˙̃ρ(t) = − i

ℏ
[H̃noise(t), ρ̃(t)], (A.3)

with H̃noise(t) = e
i
ℏHsystHnoise(t)e

− i
ℏHsyst. Integrating the above equation within the time

limits [0, t], we get

ρ̃(t) = ρ̃(0)− i

ℏ

∫ t

0

[H̃noise(t
′), ρ̃(t′)]dt′. (A.4)

Substituting ρ̃(t) in Eq. (A.3) we obtain

˙̃ρ(t) = − i

ℏ
e

i
ℏHsyst[x̃1(t)Oρ(0)−ρ(0)Ox̃1(t)]e−

i
ℏHsyst− 1

ℏ2

∫ t

0

[H̃noise(t), [Hnoise(t
′), ρ̃(t′)]]dt′.

(A.5)

Averaging over the stochastic variable at time t, we obtain

⟨ ˙̃ρ(t)⟩ = − 1

ℏ2

〈∫ t

0

[x̃(t)Õ(t), [x̃(t′)Õ(t′), ρ̃(t′)]]dt′
〉
, (A.6)

where, Õ(t) = e
i
ℏHsystOe−

i
ℏHsyst. Taking into account that t′ < t and ρ̃(t′) cannot depend

on t except for t′ = t, we can write ⟨x̃(t)x̃(t′)ρ̃(t′)⟩ = ⟨x̃(t)x̃(t′)⟩ρ̃(t′). We thus obtain

⟨ ˙̃ρ(t)⟩ = −γ
2

(
Õ2(t)ρ̃(t) + ρ̃(t)Õ2(t)− 2Õ(t)ρ̃(t)Õ(t)

)
. (A.7)

Finally, the above equation in the Schrödinger picture can be represented in the Lindblad

form as

⟨ρ̇(t)⟩ = − i

ℏ
[Hsys, ρ(t)]−

γ

2

(
O2(t)ρ(t) + ρ(t)O2(t)− 2O(t)ρ(t)O(t)

)
. (A.8)
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Appendix B. Adiabatic passage in a three-node network

Recall the Hamiltonian of the three-node network Hsys(t) = H0 +Hc(t), where H0 and

Hc(t) are the uncoupled and the control parts, respectively (ℏ = 1):

H0 = δp|1⟩⟨1|+ δ|2⟩⟨2|, (B.1a)

Hc =
Ωp(t)

2
(|0⟩⟨1|+ |1⟩⟨0|) + Ωs(t)

2
(|1⟩⟨2|+ |2⟩⟨1|) , (B.1b)

where δp = ϵ1 − ϵ0 and δ = ϵ2 − ϵ0 define the detunings. CTAP (Coherent Tunneling

by Adiabatic Passage) [56] (as well as its spin equivalent spin-CTAP [64]) is a protocol

that achieves population transfer from |0⟩ to |2⟩ without populating the state |1⟩ by

adiabatic following a trapped state. The atomic analogue is called STIRAP [60, 63]

where high-fidelity population transfer occurs via a dark state. These protocol have

remarkable robustness against parametric fluctuations.

The CTAP protocol is based on the counter-intuitive ordering of the pulses Ωp(t)

and Ωs(t) and the condition δ ≈ 0 is essential for the successful population transfer [63].

Considering thus δ = 0, the instantaneous eigenstates of Hsys(t), are

|ϕD(t)⟩ = cos θ(t)|0⟩ − sin θ(t)|2⟩, (B.2a)

|ϕ−(t)⟩ = sin θ(t) cosϕ(t)|0⟩ − sinϕ(t)|1⟩+ cos θ(t) cosϕ(t)|2⟩, (B.2b)

|ϕ+(t)⟩ = sin θ(t) sinϕ(t)|0⟩ − cosϕ(t)|1⟩+ cos θ(t) sinϕ(t)|2⟩, (B.2c)

with corresponding eigenvalues

λD(t) = 0, (B.3a)

λ−(t) = −ℏ
2

√
Ωp(t)2 + Ωs(t)2 tanϕ(t), (B.3b)

λ+(t) =
ℏ
2

√
Ωp(t)2 + Ωs(t)2 cotϕ(t), (B.3c)

where

θ(t) = tan−1

(
Ωp(t)

Ωs(t)

)
, (B.4)

ϕ(t) = tan−1

 √
Ωp(t)2 + Ωs(t)2

δp +
√
δ2p + Ωp(t)2 + Ωs(t)2

 . (B.5)

The eigenstate |ϕD(t)⟩ corresponding to zero eigenvalue is called the trapped state

(or also dark state) since it is trapped in the subspace {|0⟩, |2⟩} (and, in the case of an

atom, cannot absorb or emit photons). It has no component along the state |1⟩ and it is

the state that the system follows during the population transfer [10]. The states |ϕ−(t)⟩
and |ϕ+(t)⟩ are the Autler-Townes states and |λ+ − λ−| the Autler-Townes splitting.

If the pulses are counter-intuitively ordered, i.e. if Ωs is applied before Ωp:

lim
t→ti

Ωp(t)

Ωs(t)
= lim

t→tf

Ωs(t)

Ωp(t)
= 0, (B.6)
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then the dark state ϕD(t) at the initial time ti will coincide with the initial state |0⟩ and
at the final time tf will coincide with the target state |2⟩. If the evolution is adiabatic

and the system is initially prepared in |0⟩ = |ϕD(ti)⟩, by the adiabatic theorem [65,

66], the system evolves following the dark state |ϕD(t)⟩ throughout the time evolution.

Thus, the population is transferred from state |0⟩ to state |2⟩ never populating the

intermediate state |1⟩. The adiabaticity condition for this protocol is given by [56, 60]

ℏ|⟨ϕ±|ϕ̇D⟩| ≪ |λ0 − λ±|. (B.7)

Using the expressions for the dressed bases, Eqs. (B.2) and Eqs. (B.3), in equation (B.7)

we have the condition for adiabatic evolution in terms of the pulses [10, 60, 63]

|θ̇(t)| ≪ 1

2

∣∣∣δp ±√
δ2p + Ωp(t)2 + Ωs(t)2

∣∣∣ , (B.8)

which is called “local adiabaticity condition” and has to hold for all times t ∈ [ti, tf ]. By

time averaging Eq. (B.8) over τ and assuming δp ≪ Ωmax
p ,Ωmax

s one can obtain the less

strict “global adiabaticity condition” which is often reported as [60]

Ωmax
p/s τ ≥ 10, (B.9)

where τ is the characteritic time scale of the pulses overlap and Ωmax
p/s = maxt Ωp/s(t).

In this work, in order to perform the population transfer, we use Gaussian pulses

of the form

Ωp(t) = Ωmax
p e−( t−τ

T
)2 , (B.10a)

Ωs(t) = Ωmax
s e−( t+τ

T
)2 , (B.10b)

and we let the system evolve in the time interval t ∈ [−5T, 5T ] with τ = 0.7T , see Fig. 1

for an example of pulses.

We point out that our aim is not achieving an efficient population transfer, but to

exploit CTAP to get information about the noise affecting the system and deteriorating

the efficiency.
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