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Abstract. Physics-informed neural networks (PINNs) have recently emerged as a 

novel and popular approach for solving forward and inverse problems involving partial 

differential equations (PDEs). However, achieving stable training and obtaining correct 

results remain a challenge in many cases, often attributed to the ill-conditioning of 

PINNs. Nonetheless, further analysis is still lacking, severely limiting the progress and 

applications of PINNs in complex engineering problems. Drawing inspiration from the 

ill-conditioning analysis in traditional numerical methods, we establish a connection 

between the ill-conditioning of PINNs and the ill-conditioning of the Jacobian matrix 

of the PDE system. Specifically, for any given PDE system, we construct its controlled 

system. This controlled system allows for adjustment of the condition number of the 

Jacobian matrix while retaining the same solution as the original system. Our numerical 

findings suggest that the ill-conditioning observed in PINNs predominantly stems from 

that of the Jacobian matrix. As the condition number of the Jacobian matrix decreases, 

the controlled systems exhibit faster convergence rates and higher accuracy. Building 

upon this understanding and the natural extension of controlled systems, we present a 

general approach to mitigate the ill-conditioning of PINNs, leading to successful 

simulations of the three-dimensional flow around the M6 wing at a Reynolds number 

of 5,000. To the best of our knowledge, this is the first time that PINNs have been 

successful in simulating such complex systems, offering a promising new technique for 

addressing industrial complexity problems. Our findings also offer valuable insights 

guiding the future development of PINNs. 

Keywords. PINNs, ill-conditioning, controlled system, Jacobian matrix, condition 

number. 

1 Introduction 

Recently emerged methods for solving PDEs through neural network optimization, 

such as physics-informed neural networks (PINNs) [1], deep Ritz method [2], and deep 

Galerkin method [3] have been widely used to solve forward and inverse problems 

involving PDEs. By minimizing the loss of PDE residuals, boundary conditions and 
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initial conditions simultaneously, the solution can be straightforwardly obtained 

without mesh, spatial discretization, and complicated program. With the significant 

progress in deep learning and computation capability, a variety of PINN-like methods 

have been proposed in the past few years, and have achieved remarkable results across 

a range of problems in computational science and engineering [4-7]. As a representative 

optimization-based PDE solver, PINNs offer a natural method for solving PDE-

constrained optimization problems, yielding a lot of valuable research outcomes, 

including flow visualization technology [8-10], optimal control [11-13] and inverse 

design for topology optimization [14]. In addition, PINN-like methods have also 

achieved remarkable results in solving parametric problems [3, 15-18]. 

Despite the potential for a wide range of physical phenomena and applications, 

training PINN models still encounters challenges in many complex problems [4]. A 

typical issue is that many fluid-related applications are limited to relatively low 

Reynolds numbers [15, 19, 20]. Some studies [21, 22] attribute the ill-conditioning of 

PINNs to the unbalanced loss between PDE residual and boundary condition residual, 

proposing to balance the weights of loss components during training. However, this 

only partially explains the ill-conditioning of PINNs, as challenges persist even for 

enforced boundary conditions, as indicated in [19]. Some researchers further attribute 

the ill-conditioning of PINNs to PDE-based soft constraint [23]. Nevertheless, further 

analysis of the ill-conditioning of PINNs is still lacking, severely constraining the 

progress of PINNs in addressing complex engineering problems and undermining 

confidence in this emerging technology. In this study, we explore the ill-conditioning 

of PINNs starting from the ill-conditioning in traditional numerical methods. 

We consider a dynamic system represented as:  

 ( )q f q=  (1) 

where the dot expresses the time derivative, q  represents the solution of the dynamic 

system, and f   encompasses both the PDE operator and the boundary condition 

operator. We focus on obtaining the steady solution sq  of the dynamic system, which 

satisfies ( ) 0sf q = . 

In traditional grid-based numerical methods, the initial step is to discretize the 

system on a given mesh, yielding a large discrete system 

 ( ) 0=f q  (2) 

where 
Nq   represents the set of state variables describing the solution at each 
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spatial location of the mesh in the domain  , and : N N →f  is differentiable 

and represents the discrete residuals. Subsequently, addressing this discrete system 

often involves solving a linear system A b=q . In numerous numerical methods, such 

as those based on the Newton’s method, matrix A  is the Jacobian matrix 
N NJ   

corresponds to the linearization of the discrete residual f  around 0q : 

 

0

0( )J
=


=


q q

f
q

q
 (3) 

The Jacobian matrix J   is a large sparse matrix that is crucial to the dynamic 

system. The eigenvalues of )( sJ q  characterize the stability of the system. Pursuing a 

steady solution typically indicates that the system is stable, signifying that all 

eigenvalues of )( sJ q  have a real part less than zero. The condition number of )( sJ q  

serves as an indicator of the system’s ill-conditioning. The convergence speed of many 

iterative methods is based on the spectral properties of the matrices, and hence ill-

conditioned systems can converge slowly. Therefore, in traditional numerical methods, 

countless preconditioning techniques have been developed over the years to alleviate 

ill-conditioning and expedite convergence. Computational experience accumulated in 

the past couple of decades indicates that a good preconditioner holds the key for an 

effective iterative solver. 

Inspired by the ill-conditioned analysis of traditional numerical methods, a 

reasonable conjecture is whether the ill-conditioning of PINNs also originates from the 

ill-conditioning of the Jacobian matrix (or the Fréchet derivative in the infinite-

dimensional situation, denoted as 
qD f ). Despite being fundamentally an optimization 

problem, we seek to relate the convergence of PINNs to the system’s Jacobian matrix 

rather than the Hessian matrix of the loss function. This is done to decouple the ill-

conditioning of PINNs from neural network, as it is widely acknowledged that the 

powerful capability of neural networks to approximate nonlinear functions has been 

extensively validated. Attributing the ill-conditioning of PINNs to complex nonlinear 

equations rather than neural networks helps to provide a clearer understanding of 

PINNs’ ill-conditioning and establishes new solutions.  

The main contributions of our work can be summarized as follows: 

1. A controlled system with an adjustable condition number of the Jacobian matrix 

is proposed to visualize the correlation between the ill-conditioning of the Jacobian 

matrix and the ill-conditioning of PINNs. 

2. Building upon the analysis of ill-conditioning and a natural extension of 



 

4 

 

controlled systems, a general solution to mitigate the ill-conditioning of PINNs is 

proposed. 

3. Successful resolution of the flow around the 3-dimensional M6 wing at a 

Reynolds number of 5,000 is achieved, which represents nearly the maximum Reynolds 

number allowable for incompressible laminar flow over this shape. 

The remainder of the paper is organized as follows. Section 2 provides a brief 

introduction to PINNs and reformulates its loss function. In Section 3, we construct a 

controlled system to visualize the correlation between the ill-conditioning of the 

Jacobian matrix and that of PINNs. Section 4 proposes an approach for mitigating the 

ill-conditioning of PINNs and provides validation. Finally, Section 5 presents 

concluding remarks and directions for future research.  

2 Physics-informed neural networks 

In this section, we briefly introduce PINNs and reformulate its loss function for 

subsequent analysis. A typical PINN employs a fully connected deep neural network 

architecture to represent the solution q  of the dynamical system. The network takes 

the spatial x  and temporal [0, ]t T  as the input and outputs the approximate 

solution )ˆ( , ;q x t   . The spatial domain typically has 1-, 2- or 3-dimensions in most 

physical problems, and the temporal domain may be nonexistent for time-independent 

(steady) problems. The result of PINNs is determined by the network parameters  , 

which are optimized with respect to PINNs loss function during the training process.  

For example, to obtain the steady solution of the dynamic system represented by 

Equation (1), we calculate the residual ( )f q  over a series of m collocation points 

1{ }m

i iD x ==  by automatic differentiation [24], and then minimize the loss 
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1

( ))
N

=  f q  (4) 

Throughout all cases, we employ a fully connected DNN architecture, equipped with 

the hyperbolic tangent activation functions (tanh), and trained using the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) optimizer. 

Note that unlike traditional grid-based numerical methods where boundary 

conditions are precisely embedded, boundary conditions in PINNs are often treated as 

soft constraints. Therefore, ( )f q  encompasses both the PDE residual ( )g q  and the 

boundary condition residual ( )h q , requiring a trade-off between different components 

through appropriate relative weights PDE  and BC , expressed as follows:  
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where 
gN  and hN  are the dimension of the PDE residual and boundary condition 

residual respectively. /g hN N  is introduced to balance the influence of the number 

of collocation points, thus ensuring equivalence with the loss function of standard 

PINNs. For time-dependent problems, ( )f q  should further include initial condition 

residual ( )/IC g iN N i q . 

3 An analysis of ill-conditioning in PINNs 

3.1 Controlled system 

Inspired by the ill-conditioned analysis of traditional numerical methods, we 

speculate that the ill-conditioning of PINNs originates from the ill-conditioned Jacobian 

matrix. Unfortunately, we are unable to obtain the explicit Jacobian matrix in PINNs. 

This limitation prevents us from establishing a connection between the convergence 

challenges of PINNs and the ill-conditioning of the Jacobian matrix. To address this 

issue, we construct a controlled system. The system modifies the eigenvalues of 

Jacobian matrix by adding a linear forcing term to original system based on control 

theory. The modified system is written as 

 ( ) ( ) ( 0) 0,c sf q f q q q − == −   (6) 

where sq  is the steady solution of the system, and   is the control gain. Obviously, 

the controlled system shares identical solution as the original system, but all 

eigenvalues of the controlled system’s Jacobian matrix are equal to those of the original 

system minus gain. For a stable system, the real parts of all eigenvalues of the Jacobian 

matrix are less than 0. Consequently, as the gain increases, all eigenvalues of the 

controlled system synchronously deviate in the negative direction away from zero, 

resulting in the system becoming increasingly well-conditioned. 

Therefore, although we cannot explicitly obtain the Jacobian matrix and its 

condition number, we can mitigate its ill-conditioning by adjusting the gain of the 

controlled system. As the gain tends to infinity, the original PDE-solving task will 

degrade into a supervised learning task, a well-known well-conditioned problem. By 

observing the convergence speed and accuracy of PINNs at different gains, we can 

establish the relationship between the ill-conditioning of PINNs and the ill-conditioning 

of the Jacobian matrix. 
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3.2 Two illustrative examples 

A. Lid-driven cavity flow 

We consider a lid-driven cavity problem, which is a classical benchmark in 

Computational Fluid Dynamics (CFD). The system is governed by the two-dimensional 

incompressible Navier-Stokes equations: 

 

1
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where ( , )u v=u   is velocity vector, p   is pressure. The computational domain 

(0,1) (0,1)=    is a two-dimensional square cavity, where 0   is its top boundary 

and 1  is the other three sides. Despite its simple geometry, the driven cavity flow 

retains a rich fluid flow physics manifested by multiple counter rotating recirculating 

regions on the corners of the cavity as Re increases [25]. In this example, we choose 

Re=2500. This is the flow regime where standard PINNs fail to solve the problem.  

We solve controlled systems with varying gains using a network with 5 hidden 

layers and 128 neurons per hidden layer. We utilize a 500*500 uniform grid to enforce 

the PDE residual and boundary condition residual, and evaluate the relative L2 error. 

The relative L2 error between the predicted value q̂  and the reference value 
refq  is 

defined as 
2 2

ˆ /ref ref−q q q  .The relative weights are 2PDE =   and 1BC =  . To 

facilitate comparison, we also solved the controlled system using the finite difference 

method (FDM) combined with the Newton-Krylov iteration. The finite difference 

method allows us to derive an explicit Jacobian matrix and calculate its condition 

number for controlled systems with varying gains. We estimate the variation of the 

condition number of the Jacobian matrix with respect to the gain in PINNs by observing 

those in FDM. For PINNs, the steady solution within the controlled system is obtained 

by finite difference method on a very fine mesh (1000*1000). In the case of FDM, to 

derive the explicit Jacobian matrix and calculate its condition number while tracking 

the convergence history, we simply use a coarse mesh (80*80) and employ its own 

solution as the steady solution within controlled system. 

Figure 1 (a) and (b) respectively depict the convergence history of controlled 

systems with different gains obtained through PINNs and FDM. We observe that FDM 

achieves stable linear convergence for any gain. As the gain increases, the condition 

number of the Jacobian matrix of the controlled system significantly decreases (Table 
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1), thus yielding a faster convergence rate. PINNs fail to achieve any meaningful results 

for the original system (i.e., the controlled system with 0 =  ), consistent with 

previous observations [26]. With the increase in gain and the consequent decrease in 

the condition number of the latent Jacobian matrix, PINNs attain faster convergence, 

akin to FDM. Despite being constrained by the representation capacity of neural 

networks and optimization challenges, PINNs typically fail to achieve stable linear 

convergence. We still observe that, at any given error level, larger gains correspond to 

greater convergence rates, consistent with the convergence behavior in FDM. 

  

Figure 1. Convergence history of controlled systems with varying positive gains obtained by (a) 

PINNs and (b) FDM. 

Table 1. The condition numbers of the Jacobian matrices of controlled systems with different gains 

in the Newton method.  

gain 0 0.1 0.2 0.5 1.0 2.0 

condition number 12542 6605 4296 1982 1028 502 

gain / -0.1 -0.2 -0.5 -1.0 -2.0 

condition number / 6*105 5*104 2*105 1*1016 5*108 

To allay a concern that the rapid convergence of the controlled system might be 

attributed to the introduction of steady solution, we also illustrate the convergence 

behavior for negative gains, as depicted in Figure 2. Since negative gains may lead to 

eigenvalues very close to or greater than 0, they typically exacerbate the condition 

number of the system (Table 1), resulting in unpredictable convergence behavior in 

FDM (Figure 2(b)). For optimization-based solvers like PINNs, the introduction of 

steady-state solution in the controlled system often results in rapid error reduction in 

the initial optimization stages. However, as negative gains fail to improve the condition 

number of Jacobian matrix, all errors eventually stagnate, precluding stable descent, as 

shown in Figure 2(a). 
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Figure 2. Convergence history of controlled systems with varying negative gains obtained by (a) 

PINNs and (b) FDM. 

B. Allen-Cahn equation 

Although we initiate our analysis with a consideration of time-independent 

dynamical systems, the analysis in Section 3.1 evidently extends to time-dependent 

problems as well. To further corroborate the applicability of the current perspective to 

time-dependent problems, we examine the one-dimensional Allen-Cahn equation, a 

benchmark in PINNs. We solve controlled systems with varying gains using a network 

with 4 hidden layers and 128 neurons per hidden layer. We utilize a 257*101 uniform 

grid to enforce the PDE residual and boundary condition residual. The relative weights 

are 1PDE = , 0.1BC =  and 5IC = . 

Figure 3 (a) and (b) respectively illustrate the convergence history of controlled 

systems with different positive and negative gains obtained through PINNs. Table 2 

shows the condition numbers of the Jacobian matrices under different gains in FDM, 

providing a rough estimation of those in PINNs. We observe that for positive gains, as 

the gain increases and the potential condition number of the Jacobian matrix decreases, 

PINNs achieve progressively faster convergence, consistent with the observations in 

Figure 1. For negative gains, as the system’s condition number does not undergo any 

improvement, despite the controlled systems experiencing rapid initial descent due to 

the introduction of steady solution, they ultimately fail to exhibit any improvement in 

convergence behavior compared to the original system. 
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Figure 3. Convergence history of controlled systems with (a) positive gains and (b) negative gains. 

Table 2. The condition numbers of the Jacobian matrices of controlled systems with different gains 

in FDM.  

gain 0 0.1 0.2 0.5 1.0 2.0 

condition number 3448 3168 2913 2271 1518 716 

gain / -0.1 -0.2 -0.5 -1.0 -2.0 

condition number / 3754 4090 5302 8247 20533 

The numerical examples above suggest that the ill-conditioning of PINNs 

primarily stems from the ill-conditioning of the Jacobian matrix. Mitigating the ill-

conditioning of the Jacobian matrix contributes to stable convergence of PINNs in 

complex problems. 

4 A solution of ill-conditioning in PINNs 

4.1 Improved time-stepping-oriented neural network 

As observed in the previous section, mitigating the ill-conditioning of the Jacobian 

matrix is crucial to enabling PINN to solve complex problems. In fact, the controlled 

system not only provides a visualization of the ill-conditioning in PINNs but also 

presents a solution. The key challenge lies in how to substitute known quantities for sq  

in the controlled system, as it is always not available in practice. A simple strategy is to 

substitute the output )ˆ( ;n nq q=    of the neural network at the nth optimization step 

for sq , yielding 

 0( )) ( nf q q q− − =  (8) 

We minimize the residual of Equation (8), referred to as inner iteration. When it 

achieves appropriate convergence after K-step optimization, we proceed to the next 

optimization step, and update nq  with the latest network output, referred to as outer 

iteration. Algorithm 1 provides detailed steps. In practice, the inner iteration in 
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Algorithm 1 can be replaced by the internal iterations of the L-BFGS algorithm, where 

the maximum number of iterations is set to K. For the L-BFGS optimizer, we restart it 

at each outer iteration to adapt to changes of the loss function, while resampling 

collection points randomly. In the event of encountering NaN (Not a Number) or other 

failures during model training, we discard the current model and load the model of the 

previous outer iteration step to continue training. Based on our experience, these 

strategies greatly enhance the robustness of the training. Furthermore, these strategies 

also address the incompatibility between the L-BFGS optimizer and batching, 

eliminating the necessity to provide a dataset representing the full solution at each 

epoch. This enables the solving of large-scale problems, such as high-dimensional 

parametric problems [17]. 

Algorithm 1: TSONN 

Input: Initial  , collocation points, outer iterations N, inner iterations K, gain  . 

1: for 1,2, ,n N=  do 

2:    )( ;n =  q q  

3:    for 1,2, ,k K=  do 

4:       (a) Compute the loss 
21

) ( ))( ( ; ( ;( ) )n
N

= − −   f q q q  

5:       (b) Update the parameters   via gradient descent )( −     

6:    end 

7: end 

Output: ˆ( ; )q    

Despite different starting points, Algorithm 1 is partially similar to the time-

stepping-oriented neural network (TSONN) proposed in our previous study [26], which 

introduces pseudo-time derivative to decompose the originally ill-conditioned problem 

of PINNs into a series of well-conditioned sub-problems over given pseudo time 

intervals. Indeed, Equation (8) can be readily transformed into the following implicit 

pseudo time-stepping scheme, where the gain   is equivalent to 1/  . 

 ( )nq
f

q
q


=

−
 (9) 

We refer to it as pseudo time-stepping rather than time-stepping for two reasons. The 

first reason is that the current algorithm is applicable to both time-independent and 

time-dependent problems, where the latter already involve the presence of a time 

dimension. The second reason is that we are not concerned with whether the 

convergence history of TSONN accurately follows the temporal evolution process, but 

rather focus solely on the accuracy of the converged solution. 

To emphasize the strong correlation of Algorithm 1 with time-stepping, we still 
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refer to it TSONN. This current work can be regarded as an explanation and refinement 

of TSONN. An important improvement is that, based on the current analysis, linear 

forcing terms (or pseudo-time derivative terms in TSONN) should not only be applied 

to the PDE operator but also to the boundary condition operator and the initial condition 

operator (if any). To expedite convergence, for the initial condition operator or the 

Dirichlet boundary condition operator, known values can be directly substituted for sq  

instead of using the predicted values of the neural network. In this case, it is equivalent 

to the relative weights varying with gain. When Algorithm 1 is associated with time-

stepping, its global convergence is ensured by one of the main principles of dynamics, 

namely that stable dynamical systems converge to their steady solutions for any initial 

value after a sufficiently long period of time. In addition, negative gain implies a 

“reversed-time” system, which is ill-posed as it is impossible to deduce the flow history 

from its steady-state solution. 

Note that having the correct form for ( )f q   is crucial for TSONN. In PINNs, 

Equation (5) can be expressed in four equivalent forms, as listed in Equation (10). 

However, their Jacobian matrices are different, and only one of these forms can ensure 

that the system has entirely negative eigenvalues. A simple guideline is to ensure that 

the Jacobian matrices of the PDE operator, boundary condition operator, and initial 

condition operator (if any) each have negative eigenvalues. Some typical examples are, 

for the form of 1( )f q , the Burgers’ equation should be ( ) t x xx− += −g q q qq q , the 

Poisson’ equation should be ( ) xx yy+=g q q q , and the initial condition and Dirichlet 

boundary condition operators should be ( ) c= −h q q  , where c   is a known target 

value. 
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 (10) 

The original version of TSONN has been demonstrated to successfully solve the 

Allen-Cahn equation (time-dependent system) and the lid-driven cavity flow within the 

Reynolds number range of 100 to 5000 (time-independent system). In this paper, we 

consider complex engineering problems governed by the incompressible Navier-Stokes 

equation. 



 

12 

 

4.2 The flow around the NACA0012 airfoil 

We first consider the flow around the classical NACA0012 airfoil with Re = 5000. 

Despite TSONN inherits the mesh-free property of PINNs, we still employs the mesh 

points from a background grid (Figure 1) as collocation points. The mesh distribution 

offers fundamental insights into boundary layers. The wall boundary conditions are 

0, 0u v= = . The velocity inlet boundary conditions are cos( ), sin( )u v = = , where 

  is the angle of attack. The pressure outlet boundary conditions is 0p = . We adopt 

a volume-weighted PDE residual, which has been validated to perform better in non-

uniform mesh distributions and has successfully solved airfoil flow at Re = 400 [20]. 

Consequently, ( )g q  is redefined as: 

 

2

(
/

( )
)=

gN

g q s
g q

s
 (11) 

where the vector s  encompasses the grid volume at each residual point, and the 

denominator in Equation (11) normalizes the influence of s . It is important to note 

that both volume weighting and relative weighting alter the condition number of the 

underlying Jacobian matrix. Therefore, as a general strategy for mitigating ill-

conditioning, pseudo-time stepping should be positioned at the outermost layer of the 

loss function. This is also the fundamental reason for our reformulation of the PINNs 

loss as Equation (4). We solve this system with varying pseudo time steps   using 

a network with 5 hidden layers and 128 neurons per hidden layer. The relative weights 

are 100PDE =  and 1BC = . 

  

Figure 4. Background grid of the NACA0012 airfoil. The red boundary represents the velocity 

inlet, while the green boundary represents the pressure outlet. 

Figure (a) and (b) respectively present the convergence histories of the loss 
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function and the relative L2 error for different pseudo time steps. We observe that PINNs 

fail to achieve any meaningful result, highlighting its ill-conditioning. When the time 

step size is large ( 1/ 10  = =  ), TSONN obtains convergence histories almost 

identical to PINNs, validating PINNs as a special case of TSONN when the pseudo 

time step tends to infinity (i.e., gain tends to 0). As the time pseudo step decreases (i.e., 

the gain increases), the PDE system becomes increasingly well-conditioned, thus 

achieving more stable convergence. In the controlled system of Figure 1, the 

introduction of steady-state solutions leads to faster convergence with smaller pseudo 

time steps. However, for TSONN, smaller pseudo time step implies more iterations 

required for the flow to evolve from an initial value to its steady-state solution, 

potentially resulting in slower convergence, as depicted in Figure 5. In addition, smaller 

pseudo time steps typically entail more pronounced oscillations in convergence 

histories, consistent with CFD experience. Ultimately, TSONN achieves a relative error 

of 2%. The pressure contour plots and wall pressure coefficient distributions are 

illustrated in Figure 6 and Figure 7, respectively. 

 

Figure 5. The convergence history of the relative L2 error obtained by PINNs and TSONN with 

different pseudo time steps. 

 

Figure 6. The pressure field near the wall obtained by TSONN with a pseudo-time step of 0.3. 
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Figure 7. The wall pressure coefficient distribution obtained by TSONN. 

4.3 The flow around the M6 wing 

We next consider a complex three-dimensional problem, the flow around the M6 

wing, which is a benchmark geometry in CFD. We consider Re=5000, which is nearly 

the maximum Re permitted for laminar flow. Higher Re necessitates coupling the 

Navier-Stokes equations with turbulence models, which will be considered in future 

studies. Figure 8 depicts the background grid. The boundary conditions are similar to 

those of the two-dimensional NACA0012 airfoil. We increase the hidden layers of the 

network from 5 to 8 to enhance the representation capability of the neural network. 

According to the author’s experience, similar types of problems can often share the 

same relative weights [27]; therefore, the relative weights are still set as

100, 1BPDE C = = . We choose 0.3 = . 

  

Figure 8. Half of the Background grid of the M6 wing. 

As depicted in Figure 9, we have successfully resolved the flow, yielding a relative 

error of 6% in the wall pressure distribution. We observe a larger error occurring at the 
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leading edge of the wing root, coinciding with a local sharper transition in flow. To 

facilitate clearer comparison, Figure 10 shows x-p line plots at different y-coordinates. 

Apart from a significant discrepancy at the leading edge of the wing root (i.e. y=0), the 

results obtained from TSONN closely match with the reference solution at other 

locations. 

 

Figure 9. The wall pressure distribution of (a) the upper surface and (b) the lower surface 

obtained by TSONN. Left: Ref. Right: TSONN. 

 

 

Figure 10. The wall pressure coefficient distribution at different y-coordinates. 
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5 Conclusions 

This study demonstrates a physical perspective for understanding the ill-

conditioning of PINNs. We construct a controlled system with an adjustable condition 

number of the Jacobian matrix, validating that the ill-conditioning of PINNs primarily 

originates from the ill-conditioning of the Jacobian matrix. As the condition number of 

the Jacobian matrix decreases, the controlled system achieves faster convergence and 

higher accuracy. Therefore, we suggest that mitigating the ill-conditioning of PINNs 

should focus on alleviating the ill-conditioning of the Jacobian matrix, although the 

beneficial contributions of machine learning techniques such as neural network 

architectures and optimization algorithms to PINNs should not be overlooked. 

Building upon this understanding and the natural extension of controlled systems, 

we propose an approach that transforms the ill-conditioned optimization problem of 

PINNs into a sequence of well-conditioned sub-optimization problems. Physically, this 

algorithm can be interpreted as aligning the convergence process of the neural network 

with the (pseudo) temporal evolution of the physical system, hence termed as time-

stepping-oriented neural network (TSONN). An important advantage of this approach 

is that it retains almost all advantages of PINNs. We successfully resolves the flow 

around the M6 wing at a Reynolds number of 5,000. Our analysis and results suggest 

that PINNs represent a special case of TSONN when the time step tends to infinity. 

Smaller time steps in TSONN lead to more well-conditioned sub-optimization 

problems but may necessitate more steps to converge to steady solutions. 

In future research, an adaptive time step or local time step for TSONN may be 

warranted. Additionally, we recommend exploring preconditioning techniques to 

alleviate the ill-conditioning of PINNs, potentially achieving more efficient 

convergence. 
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