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We predict giant susceptibility of spin-bifurcating polariton condensates to externally applied
permanent magnetic field. In the presence of spin-anisotropic polariton-polariton interactions, the
condensate spontaneously takes an elliptically polarised state, whose perturbation dynamics can be
interpreted in terms of the presence of strong effective magnetic field significantly surpassing the
external one. Surprisingly, this behaviour of the addressed strongly out-of-equilibrium system in the
vicinity of a critical point exhibits intriguing analogy with the second-order phase transition. The
predicted field-enhancement effect can be utilized for creation of topologically nontrivial states of
Bogoliubov’s excitations existing on top of the polariton condensate.

Magneto-optic phenomena lifting degeneracy of pho-
tonic modes in the presence of external magnetic field are
remarkable manifestations of light-matter coupling. As
an example, Zeeman effect for electron excitations in di-
electrics or semiconductors causes energy splitting of oth-
erwise degenerate circularly polarised photonic modes,
which, in turn, results in magneto-optic Faraday effect or
Kerr rotation [1]. The possibility of local time-reversal
symmetry breaking for electromagnetic waves due to
magneto-optic coupling is crucial for engineering topo-
logical photonic states and suppressing backscattering in
signal transmission [2, 3].

Although the magneto-optic effect is weak in the
optical frequency domain, it can be significantly en-
hanced in the strong coupling regime, where mixed
light-matter quasi-particles, such as exciton-polaritons,
emerge. In particular, topological exciton-polariton
states were demonstrated in optical cavity lattices sub-
ject to strong magnetic fields [4]. In addition, incorpo-
rating ferromagnetic materials in strongly coupled opti-
cal cavities was proposed recently to reach giant values of
the effective g-factor, which quantifies the magneto-optic
coupling strength [5].

The full potential of strongly coupled systems sup-
porting exciton polaritons is revealed in the nonlinear
regime, where the macroscopic coherent states associ-
ated with bosonic condensates are formed. In particular,
spin-anisotropic polariton-polariton interaction results in
Larmor precession of the condensate pseudospin in a self-
induced effective magnetic field even in the absence of an
externally applied one [7].

In the thermodynamic equilibrium limit, the externally
applied field and the effective self-induced one are op-
posite and even exactly compensate each other below a
certain threshold, giving rise to the spin Meissner effect
[8]. In contrast, nonequilibrium condensates can develop
spin polarisation and thus produce effective magnetic
fields spontaneously due to the spin bifurcation mech-
anism [9]. Similarly, coherently driven nonequilibrium
polariton states also exhibit spontaneous spin polarisa-
tion and spin multistability [10]. Note that the interplay
between the equilibrium effect of locked polarisation di-

rection in the spin Meissner regime and a spontaneous
choice of spin polarisation typical to driven-dissipative
condensates is still under discussion [11, 12].
Artificial gauge [13] and Zeeman [14] fields emerging in

spatially structured optical systems can replace the ex-
ternal magnetic field giving rise to topological photonic
states. Similarly, the effective field in spontaneously spin-
polarised condensate lattices was shown to result in topo-
logically nontrivial excitation spectra and unidirectional
edge states [15]. However, the underlying spin bifurcation
mechanism requires a delicate balance and degeneracy of
the spin states, rendering this system extremely suscepti-
ble to external symmetry breaking factors. This inspires
investigation of the possibility to exploit this sensitivity
to control the band topological invariants in polariton
condensate lattices.
In this work, we show that the effective field of a single

spin-bifurcating condensate is not only aligned with the
external Zeeman field, but can also significantly surpass
it in magnitude. Magnification of the weak Zeeman field
with the strong and aligned effective field can be consid-
ered as a giant enhancement of the effective g-factor. We
demonstrate that the proposed enhancement is most pro-
nounced in the vicinity of the critical bifurcation point
and identify the range of the optimal parameters.
The system of interest represents a condensate of

exciton-polaritons whose coherent state is governed by
the driven-dissipative Gross-Pitaevskii equation for a
spinor wave function Ψ = (Ψ+,Ψ−)

⊺
:

iΨ̇± = − i

2
(i∆+W − Γ− ηNpol)Ψ± − 1

2
(ε+ iγ)Ψ∓

+
1

2

(
α1 |Ψ±|2 + α2 |Ψ∓|2

)
Ψ±, (1)

where Ψ+(−) stands for spin-up (down) projections of the
polariton state on the structure growth axis correspond-
ing to the right (left) circular polarisation of the emitted
photons. Here Γ is the polariton decay rate, W is the
rate of stimulated scattering from the incoherent particle
reservoir, η is the strength of the gain saturation pro-
portional to the condensate occupation Npol, while ε and
γ are respectively the energy splitting and the loss-rate
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difference of the two linearly polarised polariton states.
Finally, α1(2) is the interaction constant for polaritons
with the same (opposite) spin.

Following Ref. [9], we treat the system using the clas-
sical pseudospin vector S = 1/2Ψ†σΨ defined via Pauli
vector σ with the magnitude S proportional to the con-
densate occupation and the direction characterising its
spin state. Note that the pseudospin S is directly con-
nected to the Stokes parameters of the laser emission as
S = S0, Sx = S1, Sy = S2, Sz = S3. The pseudospin
dynamics is described with the following system of equa-
tions:

Ṡx = (W − ηS − Γ)Sx − γS − (αSz +∆)Sy, (2a)

Ṡy = (W − ηS − Γ)Sy + εSz + (αSz +∆)Sx, (2b)

Ṡz = (W − ηS − Γ)Sz − εSy. (2c)

In analogy with the classical spin in magnetic field, the
pseudospin vector S is precessing about the z-axis due to
the mixed effect of Zeeman splitting ∆ from the external
out-of-plane magnetic field and a self-induced effective
field αSz [6, 7]. The latter is governed by the interaction
constant α= α1 − α2 > 0, which accounts for the strong
spin anisotropy of polariton-polariton interactions.

In what follows, we use the dimensionless form of sys-
tem (2):

ṡx = (p− s)sx − gs− (asz + δ)sy, (3a)

ṡy = (p− s)sy + sz + (asz + δ)sx, (3b)

ṡz = (p− s)sz − sy, (3c)

with the effective splitting field δ = ∆/ε, the dimension-
less time τ = tε and a couple of dimensionless parame-
ters a = α/η, g = γ/ε. We also define the effective pump
strength p = (W−Γ)/ε and the normalized Stokes vector
s = ηS/ε.
In the absence of an external magnetic field, δ = 0, a

couple of linearly polarised (sz = sy = 0) trivial solu-
tions of system (3) are characterised by the magnitudes
s±(p) = p ± g. These states are pinned to the x-axis,

sx = ∓s
(0)
± . At g > 0 (the upper linearly polarised mode

dissipates stronger than the lower one), the s−-state is
dynamically unstable against weak perturbations accord-
ing to the regular Lyapunov stability analysis. The more
populated state s+ is stable below the critical pumping
pc = (1 − ag + g2)/a, characterised by the condensate
population sc = (g2 + 1)/a.

At p = pc, the s+-state is destabilized via a pitch-
fork bifurcation, which has a supercritical character if
a > g − g−1 and a subcritical one otherwise (see the
phase diagram in Fig. 1(a)). This gives rise to a couple
of nontrivial elliptically polarised (sz ̸= 0) states with

sx = (p− s)s/g, sy = (p− s)sz, (4a)

sz = ± s

g

√
g2 − (p− s)2

1 + (p− s)2
, (4b)

and the condensate population s given by the positive
root of the quadratic equation(

a

g
− 1

)
s2 −

(
a

g
− 2

)
ps− (p2 + 1) = 0. (5)

Note that at g < 0, the symmetry-breaking bifurcation
does not alter stability properties of s±-states. In this
regime, the more populated state s− always remains the
only stable linearly polarised solution. In what follows,
we focus on the case g > 0, corresponding to experimen-
tal conditions [9].
To describe the impact of the external magnetic field,

we start with the limit of perturbatively weak field δ.
In the first approximation, stationary solutions acquire a

correction s(1) =
(
s
(1)
x , s

(1)
y , s

(1)
z

)⊺
linear in δ:

s(1) = δ ×
[
J
(
s(0)

)]−1 (
s(0)y ,−s(0)x , 0

)⊺
, (6)

where J(s(0)) is the Jacobi matrix of the system (3) cal-
culated at the unperturbed fixed point solution s(0).
In the case of the linearly polarised fixed point s+ with

s
(0)
x = −(p+ g) which is stable below the critical pump-
ing pc, the correction (6) provides a non-zero interaction-

driven field as
(1)
z = δs(0) /(pc − p) . The condensate re-

sponse can thus be characterized by the field enhance-

ment parameter χ = as
(1)
z /δ and the effective g-factor

geff = 1 + χ =
sc

pc − p
(7)

responsible for the condensate pseudospin precession fre-
quency δgeff according to equations (3).
Since geff > 0 at p < pc, the induced field is aligned

with the external one. Note that expression (7) diverges
at the critical point similarly to the susceptibility be-
haviour in Landau theory of second order phase tran-
sitions, and linearly scales with the condensate popula-
tion, as shown in Fig. 1(b). Moreover, as p approaches
pc from above, p → p+c , the field enhancement parameter
χ, which is now governed by the response of the elliptical
states (4), has a similar asymptotic behavior. However, it
is important to note that geff > 0 only for the state whose

built-in field is aligned with the external one, s
(0)
z /δ > 0

(the upper elliptical state in Fig. 1(b)). For the anti-
aligned state, a real Zeeman splitting reduces the total
effective field. That is why we consider the aligned states
only. In the supercritical case their response diverges as
sc/(2|p − pc|) near p = pc. However, in the subcritical
regime, dynamically unstable states emerging from the

pitchfork exhibit a negative response, as
(1)
z /δ < 0, re-

ducing the effective field magnitude, – see the red dashed
lines in Fig. 1(c).
Figures 1(b) and 1(c) show that close to the critical

pumping, polariton pseudospin perceives up to hundred-
fold increase in the Zeeman field magnitude. One of the
striking manifestations of this strong field enhancement
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FIG. 1. Fig. 1. (a) The phase diagram of the spontaneous symmetry breaking pitchfork bifurcation at δ = 0. Pseudospin
projection sz (left axis) and field enhancement parameter χ (right axis) in the supercritical regime at g = 0.1 and a = 2.28 [9].
The solid lines correspond to stable states while dashing shows dynamically unstable solutions. (c) The same as on panel (b)
but in the subcritical regime at g = 3 and a = 1. The dotted blue curve corresponds to the field-enhancement χ of the upper
stable elliptically polarised state which appears in the fold bifurcation.

effect can be observed in the topological properties of Bo-
goliubov excitations in polariton lattices [15, 16]. Since
emergence of nontrivial topological phases typically re-
quires time-reversal symmetry breaking, the strong mag-
netic field is needed – up to 5 T in Ref. [4]. However, the
elementary excitations emerging in the condensate are
also subject to the effective field, created by the conden-
sate pseudospin polarisation and potentially significantly
exceeding the external one.

In order to estimate the efficiency of the proposed field-
enhancement principle for manipulating topology of bo-
golons, we proceed with the analysis of the dynamics of
single condensate elementary excitations. In particular,
we focus on the precession of weakly perturbed station-
ary pseudospin in the presence of finite magnetic field
δ.

Dynamics of the perturbation s of the fixed point state
s is governed by the linearized system (3), i.e. its Jacobi
matrix, ṡ = J(s)s. Therefore, its naturally expected
that the excitation experiences the same effective field as

the pseudospin state, geffδ = as
(0)
z + δ. However, due to

the intrinsic non-Hermiticity of J , the evolution of the
weak perturbation strongly differs from the correspond-
ing pseudospin dynamics.

The s(t)-evolution can be given in terms of eigenvalues
λi and eigenvectors vi of J(s). Since the Jacobian of (3)
is purely real, it has either three real or a single real and
two complex conjugate eigenvalues. We are interested in
the latter case where the perturbation dynamics reads:

σ(t) = C1e
−γpt [u1 cos(Ωt+ φ)−

u2 sin(Ωt+ φ)] + C2v3e
−Γpt. (8)

Here v1 = u1 + iu2 is the eigenvector corresponding to
either of complex conjugate eigenvalues λ1,2 = −γp± iΩ,
v3 is the eigenvector for purely real λ3 = −Γp. Coeffi-
cients C1,2 and φ are real.

The long-term evolution (8) of a weak excitation shown
in Fig. 2(a) represents the dumped rotation with the fre-
quency Ω in the plane determined by u1,2. The normal
n ⊥ (u1,u2) assigns direction to the effective magnetic
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FIG. 2. Fig. 2. (a) A schematic evolution of the Bogoliubov’s
elementary excitation s(t) shown with the blue line in the
pseudospin space. The end-point to which the spiral curls
up corresponds to the dynamically stable stationary state s.
The pale orange plane contains vectors u1,2 while the vector
Ω is its normal. (b) Comparison between definitions of the
effective magnetic field acting on the Bogoliubov’s elementary
excitation no top of the stable pseudospin states at δ = 0.1,
a = 2.28 and g = 0.1. The p-dependencies of the precession
frequency Ω and the effective magnetic field Ωz illustrated in
the panel (a). The vertical gray line indicates position of the
fold bifurcation, – cf. with Fig. 1(c).

field Ω = nΩ whose z-component Ωz is responsible for
time-reversal symmetry breaking for Bogoliubov’s exci-
tations. The axis of pure relaxation v3 is misaligned with
Ω in contrast to the problem of a classical spin in mag-
netic field.

In general, Ω differs from the effective field geffδ acting
on a pseudospin itself. However, in the limit of strong
pumping, the excitation dynamics is dominated by the

interaction-driven field as
(0)
z that implies Ωz ≈ geffδ. In

contrast, in the vicinity of the bifurcation point, where
the giant enhancement of the external field occurs, this
simple asymptotics fails.

The values of Ωz and geffδ near the fold (saddle-node)
bifurcation are compared in Fig. 2(b). Despite significant
difference in the involved dynamics, the magnitudes of
the effective field for a pseudospin s and for Bogoliubov’s
excitations s follow the same trend. In addition, the
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existing mismatch quickly vanishes with the increase of
the real field amplitude δ.

In the case of coupled condensate lattices, the topolog-
ical gap is expected to open in the Bogoliubov’s excita-
tion spectrum in the presence of symmetry breaking and
spin-anisotropic interactions [15]. Moreover, in the effec-
tive field approximation, the uniform spin polarisation is
equivalent to a conservative polariton Zeeman field and
reduces to Hermitian spin-splitting diagonal terms in the
Bogoliubov matrix. These terms responsible for topolog-
ical gap opening are proportional to both the uniform
spin polarisation and the strength of spin-anisotropic in-
teraction, rendering the corresponding effective Zeeman
field identical to the self-induced field asz in Eqs. (3).

In order to find the field-enhancement strength beyond
perturbative approach, we numerically search for stable
stationary solutions of system (3). The resulting g-factor
geff = (asz + δ)/ δ is shown in Fig. 3(a) on the (δ, p)
parameter plane. Even away from the region of fast di-
vergence, polariton condensate is able to amplify external
magnetic field up to an order of magnitude.

The best results can be obtained at the weak mag-
netic field where geff diverges according to the pertur-
bation theory. This regime, however, has a significant
drawback: at strong pumping which favours large geff ,
polariton condensate exhibits bistability with two sta-
ble pseudospin configurations with opposite directions of
the interaction-driven effective field. Under non-resonant
excitation, the building-up of internal magnetization in
the spin-bifurcation event occurs spontaneously with ran-
domly selected direction. In particular, in the field-free
case δ → 0, the condensate excited above the critical
pumping pc occupies either of two elliptically polarised
states (4) with equal probabilities [9].

However, in the broken symmetry case of finite δ, the
balance between spin-up and spin-down states shifts to-
wards the state with the aligned built-in magnetic field
corresponding to positive geff . In the configuration shown
in Fig. 1(c), it is the upper state with sz > 0.

The probability P of occupation of the aligned state is
shown in Fig. 3(b) in the parameter space spanned by p
and δ. Within the domain of P = 1, the condensate sup-
ports a single stable configuration. Far away from the
low-δ limit, this regime provides quite small geff about
few units, – see Fig. 3(a). Above the critical pumping
(dash-dotted line) corresponding to the fold bifurcation
shown in Fig. 1(c), the probability is continuously declin-
ing and converges to P = 0.5 as δ → 0 or p → ∞. There-
fore, the optimal regime, where strong field enhancement
is combined with the high predictability of the conden-
sate magnetization direction, is reached in a close vicinity
to the bifurcation conditions.

In conclusion, we summarize the obtained results. In-
trinsically non-equilibrium bosonic condensate of exci-
ton polaritons can spontaneously develop strong effective
magnetic fields due to the spin bifurcation phenomenon
[9]. Since the very first studies [6, 7] this field was associ-
ated with the so-called self-induced Larmor precession of

2

3

4

5

10 50

P
   =

 0
.9

5
0.

85

0.7
5

0.65

P

 0
.8

5

 0.
75

 0.65

P   = 0.95

geff 

10 100

fold bifurcation

(b)(a)

FIG. 3. Fig. 3. (a) Effective g-factor as a function of the
pump p and the external magnetic field strength δ. It is as-
sumed that the condensate occupies a stable pseudospin state
with asz/δ > 0. (b) The probability P of excitation of the
state whose interaction-driven field is co-directed with the
external one. A bistable regime with P < 1 occurs in the re-
gion on the right bottom corner of the (p,δ) parameter plane.
The dash-dotted line indicates position of the fold bifurcation
which gives birth to the stable state with anti-aligned effec-
tive field. The descending ladder of probability cuts are shown
with gray lines which are duplicated in panel (a). Each data
point was obtained by a direct numerical solution of (3) with
random initial conditions and averaging over 200 realizations.

the Stokes vector of the light emitted by the condensate.
Here we demonstrated that this phenomenon is control-
lable with an external permanent magnetic field and has
a pronounced manifestation at the level of Bogoliubov’s
excitations [15]. The nonequilibrium condensate exhibits
a very sensitive response to the applied magnetic field
providing its strong enhancement. The enhancement
strength can be characterised by the effective g-factor
which exceeds one hundred and strongly depends on the
pump intensity and the external field magnitude.

The probabilistic character of the steady condensate
spin polarisation and thus the direction of the effective
field reduces the available parameter range down to the
region near the fold bifurcation of the condensate pseu-
dospin. Outside of this range, in particular, where spin
multistability takes place, polariton spin fluctuations are
expected to destabilize the condensate at sufficiently high
temperatures [17, 18].

In addition, we notice a peculiar connection with the
Landau theory of second-order phase transitions. The
magnetic-field susceptibility of the condensate diverges
near the critical point where a circular polarisation sz ̸= 0
appears spontaneously. For the symmetry-broken states,
the divergence at p = pc is twice slower.

The obtained results pave the way to further investiga-
tions of the topological properties of Bogoliubov’s exci-
tations in the lattices of driven-dissipative polariton con-
densates.
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