The bifurcation measure is exponentially mixing

Henry De Thélin

Abstract

We prove general mixing theorems for sequences of meromorphic maps on compact Kähler manifolds. We deduce that the bifurcation measure is exponentially mixing for a family of rational maps of $\mathbb{P}^q(\mathbb{C})$ endowed with suitably many marked points.

Key-words: sequence of meromorphic maps, exponential mixing, families of endomorphisms, bifurcation measure.

Classification: 37A25, 37F46, 37F80.

Introduction

Given a holomorphic endomorphism of $\mathbb{P}^k(\mathbb{C})$, f, of degree $d \ge 2$, Fornæss and Sibony defined the Green current T associated with f (see [12] and [13]), whose support is the Julia set of f, that is, the set of points $x \in \mathbb{P}^k(\mathbb{C})$ for which the sequence $(f^n(x))_n$ is not normal in some neighborhood of x. This current has a continuous potential: we can therefore define its self-intersection $\mu = T^k$ (see [12]). The measure μ obtained in this way is mixing (see [12]), it is the unique measure of maximal entropy $k \log(d)$ (see [3]), and its Lyapunov exponents are bounded from below by $\frac{\log(d)}{2}$ (see [2]).

In a similar way, let now Λ be a complex Kähler manifold and $\hat{f} : \Lambda \times \mathbb{P}^1 \longrightarrow \Lambda \times \mathbb{P}^1$ an algebraic family of rational maps of degree $d \geq 2$: \hat{f} is holomorphic and $\hat{f}(\lambda, z) = (\lambda, f_{\lambda}(z))$ where f_{λ} is a rational map of degree d. Let a be a marked point, i.e., a rational function $a : \Lambda \longrightarrow \mathbb{P}^1$. As for holomorphic endomorphisms, a fundamental question is to study the bifurcation locus, that is, the set of parameters $\lambda_0 \in \Lambda$ for which the sequence $(f_{\lambda}^n(a(\lambda)))_n$ is not normal in some neighborhood of λ_0 . For example, in the historical example, $f_{\lambda}(z) =$ $z^d + \lambda$ with $\lambda \in \mathbb{C}$ and $a(\lambda) = \lambda$, the bifurcation locus is the Mandelbrot set.

DeMarco introduced in [4] a current of bifurcation $T_{\rm bif}$ on Λ : it is a positive closed current of bidegree (1, 1) whose support is exactly the bifurcation locus and Bassanelli and Berteloot ([1]) then defined its self-intersections $T_{\rm bif}^l$. The maximal intersection $\mu_{\rm bif} :=$ $T_{\rm bif}^{\dim(\Lambda)}$ is known as the bifurcation measure and in the mentioned historical example, it corresponds to the harmonic measure of the Mandelbrot set. For this harmonic measure, Graczyk and Światek (see [16]) proved that the Lyapounov exponent of $\mu_{\rm bif}$ is equal to $\log(d)$. In [6], we partially extended this result to the case of any pair (f, a) and with a quasi-projective variety Λ of dimension 1 by showing that the Lyapounov exponent is bounded from below by $\frac{\log(d)}{2}$. Moreover, we extended the notion of entropy to the context of more general parameter families in [5], and proved that the measure $\mu_{\rm bif}$ has maximal entropy.

In this article, we continue the analogy with endomorphisms, showing that the measure $\mu_{\rm bif}$ is mixing in a very general setting. In [15], Ghioca, Krieger and Nguyen proved that the Mandelbrot set is not the Julia set of a polynomial map (also refer to [17] for another similar result). So let us clarify the context and what we mean by "mixing".

Let Λ be a smooth complex quasi-projective variety and let $\widehat{f} : \Lambda \times \mathbb{P}^q \longrightarrow \Lambda \times \mathbb{P}^q$ be an algebraic family of endomorphisms of \mathbb{P}^q of degree $d \geq 2$: \widehat{f} is a morphism and $f(\lambda, z) = (\lambda, f_{\lambda}(z))$ where f_{λ} is an endomorphism of \mathbb{P}^q of algebraic degree d.

Assume that the family f is endowed with k marked points $a_1, \ldots, a_k : \Lambda \longrightarrow \mathbb{P}^q$ where the a_i are morphisms and suppose that $\dim(\Lambda) = qk$. As in the case k = q = 1, we can define T_{bif} and $\mu_{\text{bif}} = T_{\text{bif}}^{kq}$ (see the paragraph 2.1 for more details, or refer to [5] and [10]). For $n \in \mathbb{N}$, define

$$\mathfrak{a}_n(\lambda) = (f_{\lambda}^n(a_1(\lambda)), \cdots, f_{\lambda}^n(a_k(\lambda))) \quad , \ \lambda \in \Lambda$$

Let $\iota : \Lambda \hookrightarrow \mathbb{P}^m$ be an embedding of Λ into a complex projective space. We identify Λ with $\iota(\Lambda)$ and we denote by $\overline{\Lambda}$ the closure of Λ in \mathbb{P}^m . Let $p_n : \overline{\Lambda} \longrightarrow (\mathbb{P}^q)^k$ be the meromorphic map obtained by taking the closure of the graph of \mathfrak{a}_n in $\overline{\Lambda} \times (\mathbb{P}^q)^k$.

In this context, we first have (see paragraph 1.1 for a review of notions used here, such as dsh functions, locally moderate measures and PB probability measures)

Theorem 1. We assume that $\mu_{\text{bif}} \neq 0$ and $\dim(\Lambda) = qk$. Take $U \subset (\mathbb{P}^q)^k$ an open set and μ a locally moderate positive measure in U.

Let $V \subseteq U$ and $W \subseteq \Lambda$ be relatively compact sets. Then for $s \in]1, +\infty[$ and $0 \leq \nu \leq 2$, there exists a positive constant C such that

$$\left|\int \psi(p_n)\varphi \frac{p_n^*(\mu_{|\overline{V}})}{d^{kqn}} - \int \psi d\mu_{|\overline{V}} \int \varphi d\mu_{\text{bif}}\right| \le C d^{-n\nu/2} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{C^\nu}$$

for every $n \in \mathbb{N}$, $\psi \in DSH((\mathbb{P}^q)^k)$ and $\varphi \in C^{\nu}$ with compact support in \overline{W} .

We have $\mu_{\text{bif}} = T_{\text{bif}}^{kq}$ where the T_{bif} has locally Hölder potentials, hence the measure μ_{bif} is locally moderate (see [9]), and we deduce

Corollary 1. We assume that $\mu_{\text{bif}} \neq 0$ and that Λ is a Zariski open set in $(\mathbb{P}^q)^k$.

Let $V \subseteq \Lambda = U$ be a relatively compact set. Then for $s \in]1, +\infty[$ and $0 \le \nu \le 2$, there exists a positive constant C such that

$$\int \psi(p_n)\varphi \frac{p_n^*(\mu_{\mathrm{bif}}|\overline{V})}{d^{kqn}} - \int \psi d\mu_{\mathrm{bif}}|\overline{V} \int \varphi d\mu_{\mathrm{bif}}|\overline{V}| \leq C d^{-n\nu/2} |\psi|_{L^s(\mu_{\mathrm{bif}}|\overline{V})} |\varphi|_{C^{\nu}}$$

for every $n \in \mathbb{N}$, $\psi \in DSH((\mathbb{P}^q)^k)$ and $\varphi \in C^{\nu}$ with compact support in \overline{V} .

This means that the bifurcation measure is exponentially mixing.

To prove the Theorem 1, we first establish a very general mixing theorem for sequences of meromorphic maps. The proof follows the approach used by Dinh, Nguyen and Sibony to prove stochastic properties for holomorphic endomorphisms in $\mathbb{P}^{k}(\mathbb{C})$ (see [9] and also [8]). Let us explain the context.

Let (X, ω) and (X', ω') be compact Kähler manifolds of dimension l and consider a sequence of dominant meromorphic maps $p_n : X \longrightarrow X'$.

Fix $U \subset X'$ an open set, and let μ be a locally moderate positive measure on U. Then, we have

Theorem 2. Let $V \subseteq U$ be a relatively compact set and take λ a PB probability measure on X'. Then for $s \in]1, +\infty[$ and $0 \leq \nu \leq 2$, there exists constants C_1, C_2 such that

$$\left|\int \psi(p_n)\varphi \frac{p_n^*(\mu_{|\overline{V}})}{\delta_l(p_n)} - \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\lambda)}{\delta_l(p_n)}\right| \le C_1 \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{DSH}$$

for every $n \in \mathbb{N}$, $\psi \in DSH(X')$ and $\varphi \in DSH(X)$ and

$$\left|\int \psi(p_n)\varphi \frac{p_n^*(\mu_{|\overline{V}})}{\delta_l(p_n)} - \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\lambda)}{\delta_l(p_n)}\right| \le C_2 \left(\frac{\delta_{l-1}(p_n)}{\delta_l(p_n)}\right)^{\nu/2} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{C^{1/2}}$$

for every $n \in \mathbb{N}$, $\psi \in DSH(X')$ and $\varphi \in C^{\nu}(X)$. Here $\delta_l(p_n) = \int p_n^*(\omega'^l)$ and $\delta_{l-1}(p_n) = \int p_n^*(\omega'^{l-1}) \wedge \omega$.

Here is the outline of this paper: In the first paragraph, we review the various notions used in these statements (locally moderate measures, PB probability measures, etc.) and explain why the integrals in Theorem 2 are well-defined. Then we will demonstrate Theorem 2. In the second paragraph, we begin with some background about parameter families and we will prove Theorem 1, using crucially Theorem 2 and pluripotential theory.

Acknowledgments: Thanks to Gabriel Vigny for many useful discussions on this article.

1 Proof of Theorem 2

1.1 Preliminaries

Let (X, ω) be a compact Kähler manifold. We start with some reminders about dsh functions, PB measures and locally moderate measures (see [8]).

A function φ is quasi-plurisubharmonic (qpsh) if it is locally written as the sum of a psh function and a C^{∞} one. Such a function verifies $dd^c \varphi \ge -c\omega$ in the sense of currents for a constant $c \ge 0$. A set of X is said to be pluripolar if it is contained in $\{\varphi = -\infty\}$

where φ is a qpsh function. We call dsh function, any function defined outside a pluripolar set, which is written as the difference of two qpsh functions. Let us denote DSH(X) the set of dsh functions on X. If φ is a dsh function, there are two positive closed currents T^{\pm} of bidegree (1,1) such that $dd^c \varphi = T^+ - T^-$. We can then define a norm (see [9] paragraph 3):

$$\|\varphi\|_{\text{DSH}} := \|\varphi\|_{L^1(X)} + \inf \|T^{\pm}\|$$

with T^{\pm} as above.

A positive measure μ is PB if qpsh functions are integrable with respect to this measure. In particular, PB measures have no mass on pluripolar sets. Let μ be a non-zero PB positive measure on X. For $\varphi \in DSH(X)$, define

$$\|\varphi\|_{\mu} := |\langle \mu, \varphi \rangle| + \inf \|T^{\pm}\|$$

with T^{\pm} as above.

The semi-norm $\|.\|_{\mu}$ is in fact a norm on DSH(X) which is equivalent to $\|.\|_{\text{DSH}}$ (see Proposition A.4.4 in [8]).

The measure μ is said to be locally moderate (see [9]) if for any open set $U \subset X$, any compact set $K \subset U$ and any compact family \mathcal{F} of psh functions on U, there are constants $\alpha > 0$ and c > 0 such that

$$\int_{K} e^{-\alpha \varphi} d\mu \le c \quad \text{for } \varphi \in \mathcal{F}.$$

By using Proposition 2.1 in [7] and Cauchy-Schwarz inequality, if μ is locally moderate, for any open set $U \subset X$, any compact set $K \subset U$ and any compact family \mathcal{D} of dsh functions on X, there are constants $\alpha > 0$ and c > 0 such that

$$\int_{K} e^{\alpha |\varphi|} d\mu \le c \quad \text{for } \varphi \in \mathcal{D}.$$

1.2 About the definition of the integrals in Theorem 2

We begin by showing that all the integrals in Theorem 2 are well-defined.

Take $\xi \leq 0$ a qpsh function and K a compact set. Then, since μ is locally moderate, there exists $\alpha > 0$ such that $\int_{K} -\alpha \xi d\mu \leq \int_{K} e^{-\alpha \xi} d\mu < +\infty$. It implies that μ gives no mass to analytic subsets in X' and integrates dsh functions (μ is PB).

Let Γ_{p_n} be the graph of p_n in $X \times X'$ and α_1, α_2 the projections of Γ_{p_n} onto X and X', respectively. Take φ a continuous map, then $\alpha_{2*}(\alpha_1^*\varphi)$ is continuous outside an analytic subset of X'. Hence, if λ is a PB positive measure on X', as it gives no mass to analytic subset in X', we can define a positive measure $p_n^*\lambda$ with the formula:

$$\langle p_n^*\lambda,\varphi\rangle := \langle \lambda,\alpha_{2*}(\alpha_1^*\varphi)\rangle.$$

Now, let φ be a DSH function in X. With the above notations, $p_{n*}\varphi = \alpha_{2*}(\alpha_1^*\varphi)$ is DSH (see paragraphs 2.3 and 2.4 in [7]). By definition, since λ is a PB probability measure, qpsh functions are λ -integrable, hence $\langle p_n^* \lambda, \varphi \rangle := \langle \lambda, p_{n*} \varphi \rangle$ is well-defined.

Finally, let ψ_1, ψ_2 be two negative qpsh functions in X'. We have

$$\begin{split} \int |\psi_1\psi_2| \, d\mu_{|\overline{V}} &\leq \left(\int |\psi_1|^2 d\mu_{|\overline{V}}\right)^{1/2} \left(\int |\psi_2|^2 d\mu_{|\overline{V}}\right)^{1/2} \\ &\leq \frac{2}{\alpha^2} \left(\int e^{\alpha|\psi_1|} d\mu_{|\overline{V}}\right)^{1/2} \left(\int e^{\alpha|\psi_2|} d\mu_{|\overline{V}}\right)^{1/2} < +\infty \end{split}$$

where we used that μ is locally moderate and the inequality $\frac{\alpha^2 x^2}{2} \leq e^{\alpha x}$ for $x \geq 0$.

We deduce that $\int \psi(p_n) \varphi \frac{p_n^*(\mu_{|\overline{V}})}{\delta_l(p_n)} := \int \psi \frac{p_{n_*}(\varphi)}{\delta_l(p_n)} d\mu_{|\overline{V}}$ is well defined for $\psi \in DSH(X')$ and $\varphi \in DSH(X)$, since $p_{n_*}\varphi$ is DSH in X'.

1.3 **Proof of Theorem 2:**

In this paragraph, we prove Theorem 2. We follow the ideas of Dinh-Sibony-Nguyen used in [9] to prove that the measure of maximal entropy for a holomorphic endomorphism of $\mathbb{P}^k(\mathbb{C})$ is exponentially mixing. In particular, in what follows, we use their notation $\Lambda_n(\varphi) := \frac{p_{n_*}(\varphi)}{\delta_l(p_n)}$. For $\psi \in DSH(X')$ and $\varphi \in DSH(X)$, we have

$$\begin{split} \left| \int \psi(p_n) \varphi \frac{p_n^*(\mu_{|\overline{V}})}{\delta_l(p_n)} - \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\lambda)}{\delta_l(p_n)} \right| &= \left| \int \psi \Lambda_n(\varphi) d\mu_{|\overline{V}} - \int \psi d\mu_{|\overline{V}} \int \Lambda_n(\varphi) d\lambda \right| \\ &= \left| \int \psi \left(\Lambda_n(\varphi) - \int \Lambda_n(\varphi) d\lambda \right) d\mu_{|\overline{V}} \right| \\ &= \left| \int \psi \widetilde{\Lambda_n}(\varphi) d\mu_{|\overline{V}} \right| \end{split}$$

where we denote $\widetilde{\Lambda_n}(\varphi) = \Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle$. We can estimate the norm of this function by using the following Lemma.

Lemma 1. There exists a constant r > 0 which depends only on X such that

$$\left|\widetilde{\Lambda_{n}}(\varphi)\right|_{DSH(\lambda)} \leq r|\varphi|_{DSH} \frac{\delta_{l-1}(p_{n})}{\delta_{l}(p_{n})}$$

for every $\varphi \in DSH(X)$.

Proof. Write $dd^c \varphi = S^+ - S^-$ with S^{\pm} positive closed (1,1)-currents. We have

$$dd^{c}\widetilde{\Lambda_{n}}(\varphi) = dd^{c}\Lambda_{n}(\varphi) = \frac{p_{n*}(dd^{c}\varphi)}{\delta_{l}(p_{n})} = \frac{p_{n*}(S^{+})}{\delta_{l}(p_{n})} - \frac{p_{n*}(S^{-})}{\delta_{l}(p_{n})}.$$

In the above, the push-forward $p_{n*}(S^{\pm})$ is well-defined using Meo's result (see [18]) and the projections from the graph of p_n (taking a desingularization if necessary), since S^{\pm} are positive (1, 1)-currents.

By definition

$$\left|\widetilde{\Lambda_{n}}(\varphi)\right|_{DSH(\lambda)} = \left|\langle\widetilde{\Lambda_{n}}(\varphi),\lambda\rangle\right| + \min \|R^{\pm}\|$$

where the minimum is taken on positive closed (1, 1)-currents R^{\pm} such that $dd^{c}\widetilde{\Lambda_{n}}(\varphi) = R^{+} - R^{-}$. Hence,

$$\left|\widetilde{\Lambda_{n}}(\varphi)\right|_{DSH(\lambda)} \leq \left\|\frac{p_{n*}(S^{\pm})}{\delta_{l}(p_{n})}\right\|$$

and it remains to estimate the norm of the term on the right.

By using Proposition 2.2 in [7], there exists a constant r > 0 that depends only on X such that $S^+ = \beta + dd^c u$ with β a smooth (1, 1)-form, u a qpsh function and

$$-r\|S^+\|\omega \le \beta \le r\|S^+\|\omega.$$

Finally,

$$\frac{p_{n*}(S^+)}{\delta_l(p_n)} \bigg\| = \langle \frac{p_{n*}(S^+)}{\delta_l(p_n)}, \omega'^{l-1} \rangle = \langle \beta, \frac{p_n^*(\omega'^{l-1})}{\delta_l(p_n)} \rangle \le r \|S^+\| \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} \rangle$$

and the Lemma follows.

We continue the proof of Theorem 2. Take r > 0 such that $\frac{1}{s} + \frac{1}{r} = 1$. By using Proposition A.4.4 in [8], the sequence

$$\left(\widetilde{\Lambda_n}(\varphi)\frac{\delta_l(p_n)}{\delta_{l-1}(p_n)}\right) = \left(\left(\Lambda_n(\varphi) - \langle\Lambda_n(\varphi),\lambda\rangle\right)\frac{\delta_l(p_n)}{\delta_{l-1}(p_n)}\right)$$

is bounded in DSH(X) for $\varphi \in DSH(X)$ with $|\varphi|_{DSH} \leq 1$ (recall that λ is a PB probability measure). Hence, since μ is locally moderate and \overline{V} is a compact set, there exist positive constants α, C such that $\langle e^{\alpha|\psi|}, \mu_{|\overline{V}} \rangle \leq C$ for every ψ in the above sequence.

By using the inequalities $x^r \leq r! e^x \leq r^r e^x$ for $x \geq 0$ (consider integer parts of r, if necessary), we obtain

$$\left\langle \left(\alpha | \Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle | \frac{\delta_l(p_n)}{\delta_{l-1}(p_n)} \right)^r, \mu_{|\overline{V}} \right\rangle \le Cr^r$$

for $\varphi \in DSH(X)$ with $|\varphi|_{DSH} \leq 1$. Thus,

$$|\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle|_{L^r(\mu_{|\overline{V}})} \le \frac{rC^{1/r}}{\alpha} \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} |\varphi|_{DSH}$$
(1)

for every $\varphi \in DSH(X)$.

We deduce,

$$\begin{split} \left| \int \psi(p_n) \varphi \frac{p_n^*(\mu_{|\overline{V}})}{\delta_l(p_n)} - \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\lambda)}{\delta_l(p_n)} \right| &= \left| \int \psi \left(\Lambda_n(\varphi) - \int \Lambda_n(\varphi) d\lambda \right) d\mu_{|\overline{V}} \right| \\ &\leq |\psi|_{L^s(\mu_{|\overline{V}})} |\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle|_{L^r(\mu_{|\overline{V}})} \\ &\leq \frac{rC^{1/r}}{\alpha} \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{DSH} \end{split}$$

which proves the first inequality.

Remark 1. As mentioned above, if ψ is DSH with $|\psi|_{DSH} \leq 1$, we have $|\psi|^s \leq \left(\frac{s}{\alpha}\right)^s e^{\alpha|\psi|}$ and $\langle e^{\alpha|\psi|}, \mu_{|\overline{V}} \rangle \leq C$. Hence, there exists a positive constant C' which does not depend on ψ such that $|\psi|_{L^s(\mu_{|\overline{V}})} \leq C' |\psi|_{DSH}$. It means that we can replace $|\psi|_{L^s(\mu_{|\overline{V}})}$ with $|\psi|_{DSH}$ in the first inequality of Theorem 2.

The second inequality follows classically from the theory of interpolation between the Banach spaces C^0 and C^2 (see [8] p.34).

Let $L: \mathcal{C}^0 \longrightarrow L^r(\mu_{|\overline{\mathcal{V}}})$ be the linear operator $L(\varphi) = \Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle$. We have

$$|\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle|_{L^r(\mu|\overline{V})} \le 2|\varphi|_{\mathcal{C}^0} \mu(\overline{V})^{1/4}$$

for $\varphi \in \mathcal{C}^0$. Since $|\varphi|_{DSH} \lesssim |\varphi|_{\mathcal{C}^2}$ for $\varphi \in \mathcal{C}^2$, by using the inequality (1), we deduce

$$\begin{split} |\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle|_{L^r(\mu_{|\overline{V}})} &\leq \frac{rC^{1/r}}{\alpha} \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} |\varphi|_{DSH} \\ &\leq C'' \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} |\varphi|_{\mathcal{C}^2}. \end{split}$$

By applying the theory of interpolation to L, for $0 \le \nu \le 2$, there exists a positive constant A_{ν} , independent of L such that

$$|\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle|_{L^r(\mu_{|\overline{V}})} \le A_\nu \left(2\mu(\overline{V})^{1/r} \right)^{1-\nu/2} \left(C'' \frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} \right)^{\nu/2} |\varphi|_{\mathcal{C}^\nu}.$$

We obtain

$$\begin{split} \left| \int \psi(p_n) \varphi \frac{p_n^*(\mu_{|\overline{V}})}{\delta_l(p_n)} - \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\lambda)}{\delta_l(p_n)} \right| &= \left| \int \psi \Lambda_n(\varphi) d\mu_{|\overline{V}} - \int \psi d\mu_{|\overline{V}} \int \Lambda_n(\varphi) d\lambda \right| \\ &= \left| \int \psi \left(\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle \right) d\mu_{|\overline{V}} \right| \leq |\psi|_{L^s(\mu_{|\overline{V}})} |\Lambda_n(\varphi) - \langle \Lambda_n(\varphi), \lambda \rangle|_{L^r(\mu_{|\overline{V}})} \\ &\leq C_2 \left(\frac{\delta_{l-1}(p_n)}{\delta_l(p_n)} \right)^{\nu/2} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{\mathcal{C}^{\nu}}. \end{split}$$

This gives the second inequality in the Theorem. Notice that we can replace $|\psi|_{L^s(\mu|\overline{V})}$ with $|\psi|_{DSH}$ as in the previous remark.

2 Proof of Theorem 1

2.1 Background in bifurcation theory:

In this paragraph, we follow the presentation of [5] (see also [11] and [10]).

Let Λ be a smooth complex quasi-projective variety and let $f : \Lambda \times \mathbb{P}^q \longrightarrow \Lambda \times \mathbb{P}^q$ be an algebraic family of endomorphisms of \mathbb{P}^q of degree $d \geq 2$: \hat{f} is a morphism and $\hat{f}(\lambda, z) = (\lambda, f_\lambda(z))$ where f_λ is an endomorphism of \mathbb{P}^q of algebraic degree d.

Assume that the family f is endowed with k marked points $a_1, \ldots, a_k : \Lambda \longrightarrow \mathbb{P}^q$ where the a_i are morphisms.

Let $\omega_{\mathbb{P}^q}$ be the Fubini-Study form on \mathbb{P}^q , $\pi_{\Lambda} : \Lambda \times \mathbb{P}^q \longrightarrow \Lambda$ and $\pi_{\mathbb{P}^q} : \Lambda \times \mathbb{P}^q \longrightarrow \mathbb{P}^q$ be the canonical projections.

If we denote $\widehat{\omega} := (\pi_{\mathbb{P}^q})^* \omega_{\mathbb{P}^q}$, we have $\frac{\widehat{f^*\widehat{\omega}}}{d} = \widehat{\omega} + dd^c u$ with u a smooth function (see [11] Proposition 3.1). In the classical manner, the sequence

$$\frac{(\widehat{f^n})^*\widehat{\omega}}{d^n} = \widehat{\omega} + \sum_{i=0}^{n-1} dd^c \frac{u \circ \widehat{f^i}}{d^i} = \widehat{\omega} + dd^c u_n$$

(where $u_n = \sum_{i=0}^{n-1} \frac{u \circ \widehat{f}^i}{d^i}$) converges to a closed positive (1, 1)-current $\widehat{T} = \widehat{\omega} + dd^c u_{\infty}$ on $\Lambda \times \mathbb{P}^q$ and this current has locally Hölder potential (see [8] Proposition 1.2.3).

For $j = 1, \dots, k$, let Γ_{a_j} be the graph of the marked point a_j and we consider

$$\mathfrak{a} = (a_1, \cdots, a_k) : \Lambda \longrightarrow (\mathbb{P}^q)^k.$$

Definition 1. For $0 \leq j \leq k$, the bifurcation current T_{a_j} of the point a_j is the positive closed (1, 1)-current on Λ defined by

$$T_{a_j} = (\pi_\Lambda)_* (\widehat{T} \wedge [\Gamma_{a_j}])$$

and we define the bifurcation current $T_{\mathfrak{a}}$ of the k-uple \mathfrak{a} as

$$T_{\mathfrak{a}} = T_{a_1} + \cdot + T_{a_k}.$$

For $n \in \mathbb{N}$, write

$$\mathfrak{a}_n(\lambda) = (f_\lambda^n(a_1(\lambda)), \cdots, f_\lambda^n(a_k(\lambda))) = (a_{1,n}(\lambda), \cdots, a_{k,n}(\lambda)) \quad , \ \lambda \in \Lambda.$$

Lemma 2. (See [11] Proposition 3.1 and [5] Lemma 3.2).

For $1 \leq j \leq k$, the support of T_{a_j} is the set of parameters $\lambda_0 \in \Lambda$ such that the sequence $(\lambda \longrightarrow f_{\lambda}^n(a_j(\lambda)))$ is not a normal family at λ_0 .

Moreover, there exists a locally uniformly bounded family of continuous functions $(u_{j,n})$ on Λ such that

$$a_{j,n}^*(\omega_{\mathbb{P}^q}) = d^n T_{a_j} + dd^c u_{j,n}$$
 on Λ .

To prove the last assertion, observe that

$$a_{j,n}^*(\omega_{\mathbb{P}^q}) = \pi_{\Lambda*}((\widehat{f}^n)^*\widehat{\omega} \wedge \Gamma_{a_j}) = \pi_{\Lambda*}(d^n\widehat{T} \wedge \Gamma_{a_j}) + \pi_{\Lambda*}(dd^c(u_n - u_\infty) \wedge \Gamma_{a_j}d^n).$$

For $1 \leq j \leq k$ and $i \geq 1$, it follows that

$$a_{j,n}^{*}(\omega_{\mathbb{P}^{q}}^{i}) = d^{ni}T_{a_{j}}^{i} + dd^{c}O(d^{(i-1)n})$$

on compact subset of Λ and in particular $T_{a_j}^{q+1} = 0$ on Λ (see [14] and [10] too).

Assume that $d_{\Lambda} := \dim(\Lambda) = qk$. Using the last property, the measure $T_{\mathfrak{a}}^{d_{\Lambda}}$ is equal to a constant multiplied by $T_{a_1}^q \wedge \cdots \wedge T_{a_k}^q$ and we define

$$\mu_{\mathrm{bif}} := T_{a_1}^q \wedge \cdots \wedge T_{a_k}^q.$$

This is the bifurcation measure of the k-uple $\mathfrak{a} = (a_1, \cdots, a_k)$.

Let $\iota : \Lambda \hookrightarrow \mathbb{P}^m$ be an embedding of Λ into a complex projective space. We identify Λ with $\iota(\Lambda)$ and we denote by $\overline{\Lambda}$ the closure of Λ in \mathbb{P}^m . Let $p_n : \overline{\Lambda} \longrightarrow (\mathbb{P}^q)^k$ be the meromorphic map obtained by taking the closure of the graph of \mathfrak{a}_n in $\overline{\Lambda} \times (\mathbb{P}^q)^k$.

We can now proceed to the proof of Theorem 1, by using Theorem 2 and pluripotential theory.

2.2 Proof of Theorem 1

Pick $\psi \in DSH((\mathbb{P}^q)^k)$ and $\varphi \in C^{\nu}$ with compact support in \overline{W} .

Let $pr_j : (\mathbb{P}^q)^k \longrightarrow \mathbb{P}^q$ be the projection onto the *j*-th factor of the product $(\mathbb{P}^q)^k$ $(j = 1, \dots, k)$ and consider $\Omega = \sum_{j=1}^k pr_j^* \omega_{\mathbb{P}^q}$. We will apply Theorem 2 with λ equal to Ω^{qk} normalized to be a probability, i.e., $\Omega_{nor}^{qk} = pr_1^* \omega_{\mathbb{P}^q}^q \wedge \dots \wedge pr_k^* \omega_{\mathbb{P}^q}^q$ $(\omega_{\mathbb{P}^q}^j = 0 \text{ for } j > q$ and take the normalization $\int \omega_{\mathbb{P}^q}^q = 1$).

In particular, we need estimates on $\delta_l(p_n)$ and $\delta_{l-1}(p_n)$ with l = kq, which are stated in the following Lemma:

Lemma 3. Suppose $\mu_{\text{bif}} \neq 0$. Then there exists a positive constant ϵ such that

$$\epsilon d^{kqn} \le \delta_{kq}(p_n) \le \frac{1}{\epsilon} d^{kqn} \quad and \quad \delta_{kq-1}(p_n) \le \frac{1}{\epsilon} d^{kqn-n}$$

for every $n \in \mathbb{N}$. Here, $\delta_{kq}(p_n) := \int p_n^*(\Omega^{qk})$ and $\delta_{kq-1}(p_n) := \int p_n^*(\Omega^{qk-1}) \wedge \omega$, where ω is the Fubini-Study form on $\mathbb{P}^m(\mathbb{C})$.

The proof of this Lemma is given at the end of the paragraph.

By using it with Theorem 2, there exists a positive constant C (independent of $n \in \mathbb{N}$, $\psi \in DSH((\mathbb{P}^q)^k)$ and $\varphi \in C^{\nu}$) such that

$$\left|\int \psi(p_n)\varphi \frac{p_n^*(\mu_{|\overline{V}})}{d^{kqn}} - \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}}\right| \le C d^{-n\nu/2} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{C^\nu},$$

so it remains to prove

$$\left|\int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \psi d\mu_{|\overline{V}} \int \varphi d\mu_{\text{bif}}\right| \le C' d^{-n\nu/2} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{C^\nu},$$

for a positive constant C' (independent of $n \in \mathbb{N}$, $\psi \in DSH((\mathbb{P}^q)^k)$ and $\varphi \in C^{\nu}$ with compact support in \overline{W}). We will again use interpolation theory between \mathcal{C}^0 and \mathcal{C}^2 .

So, fix $\varphi \in \mathcal{C}^2(\overline{\Lambda})$ with compact support in \overline{W} . We have

$$\int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} = \int_{\overline{W}} \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} = \int_{\overline{W}} \varphi \frac{\mathfrak{a}_n^*(pr_1^*\omega_{\mathbb{P}^q}^q \wedge \dots \wedge pr_k^*\omega_{\mathbb{P}^q}^q)}{d^{kqn}}$$
$$= \int_{\overline{W}} \varphi \frac{a_{1,n}^*\omega_{\mathbb{P}^q}^q \wedge \dots \wedge a_{k,n}^*\omega_{\mathbb{P}^q}^q}{d^{kqn}}$$
$$= \int \varphi \frac{(d^n T_{a_1} + dd^c u_{1,n})^q \wedge \dots \wedge (d^n T_{a_k} + dd^c u_{k,n})^q}{d^{kqn}}$$

where the $u_{j,n}$ are uniformly bounded on \overline{W} (split \overline{W} independently of φ and use cut-off functions if necessary).

By Stokes' formula, the last integral is equal to

$$\int \varphi T_{a_1} \wedge (T_{a_1} + dd^c \frac{u_{1,n}}{d^n})^{q-1} \wedge \dots \wedge (T_{a_k} + dd^c \frac{u_{k,n}}{d^n})^q + \int \frac{u_{1,n}}{d^n} dd^c \varphi \wedge (T_{a_1} + dd^c \frac{u_{1,n}}{d^n})^{q-1} \wedge \dots \wedge (T_{a_k} + dd^c \frac{u_{k,n}}{d^n})^q = A + B$$

with obvious notations.

Let $0 \leq \theta_1 \leq \cdots \leq \theta_{qk} \leq 1$ be smooth functions with compact support, $\theta_1 \equiv 1$ on a neighborhood of \overline{W} and $\theta_{i+1} \equiv 1$ on a neighborhood of support(θ_i) for $i = 1, \cdots, qk - 1$.

There exists a positive constant C_1 such that $-C_1\theta_1|\varphi|_{\mathcal{C}^2}\omega \leq u_{1,n}dd^c\varphi \leq C_1\theta_1|\varphi|_{\mathcal{C}^2}\omega$ for every n, where ω is the Fubini-Study form of \mathbb{P}^m . Hence

$$|B| \leq \frac{|\varphi|_{\mathcal{C}^2}}{d^n} \int C_1 \theta_1 \omega \wedge (T_{a_1} + dd^c \frac{u_{1,n}}{d^n})^{q-1} \wedge \dots \wedge (T_{a_k} + dd^c \frac{u_{k,n}}{d^n})^q.$$

Now, we prove that the previous integral is bounded by a constant independent of n. Indeed, write it as

$$C_1 \int \theta_1 \omega \wedge T_{a_1} \wedge (T_{a_1} + dd^c \frac{u_{1,n}}{d^n})^{q-2} \wedge \dots \wedge (T_{a_k} + dd^c \frac{u_{k,n}}{d^n})^q + C_1 \int \frac{u_{1,n}}{d^n} dd^c \theta_1 \wedge \omega \wedge (T_{a_1} + dd^c \frac{u_{1,n}}{d^n})^{q-2} \wedge \dots \wedge (T_{a_k} + dd^c \frac{u_{k,n}}{d^n})^q$$

As above, there exists a positive constant C_2 such that $-C_2\theta_2\omega \leq u_{1,n}dd^c\theta_1 \leq C_2\theta_2\omega$

and we iterate this process for both integrals, by using $\theta_1, \dots, \theta_{qk-1}$ successively. At the end the integral $\int \theta_1 \omega \wedge (T_{a_1} + dd^c \frac{u_{1,n}}{d^n})^{q-1} \wedge \dots \wedge (T_{a_k} + dd^c \frac{u_{k,n}}{d^n})^q$ is bounded above by a sum of terms like

$$C_1 \cdots C_l \int \theta_l \omega^l \wedge T_{a_1}^{\alpha_1} \wedge \cdots \wedge T_{a_k}^{\alpha_k}$$

with $\alpha_1 + \cdots + \alpha_k = qk - l$ and $l = 1, \cdots, qk$. All these integrals are bounded by a constant independent on n since the potentials of the T_{a_j} are continuous.

Hence there exists a positive constant D such that

$$|B| \le \frac{D}{d^n} |\varphi|_{\mathcal{C}^2}.$$

Now for A we follow the same method and we have

$$A = \int \varphi T_{a_1}^q \wedge \dots \wedge T_{a_k}^q + \epsilon_n$$

with $|\epsilon_n| \leq \frac{D'}{d^n} |\varphi|_{\mathcal{C}^2}$. We obtain

$$\left| \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \varphi T_{a_1}^q \wedge \dots \wedge T_{a_k}^q \right| \le \frac{D''}{d^n} |\varphi|_{\mathcal{C}^2}$$
(2)

for $\mathcal{C}^2(\overline{\Lambda})$ maps φ with compact support in \overline{W} . When φ is $\mathcal{C}^{0}(\overline{\Lambda})$, applying Lemma 3, we have

$$\left|\int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \varphi T_{a_1}^q \wedge \dots \wedge T_{a_k}^q \right| \le \left(\frac{c}{\epsilon} + \mu_{\text{bif}}(\Lambda)\right) |\varphi|_{\mathcal{C}^0}$$

where the constant c > 0 is such that $\Omega_{nor}^{qk} = c \Omega^{qk}$. Using interpolation theory for the linear operator

 $L: \{\varphi \in \mathcal{C}^0 \text{ with compact support in } \overline{W}\} \longrightarrow L^r(\mu_{|\overline{V}})$

defined by

$$L(\varphi) = \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \varphi T_{a_1}^q \wedge \dots \wedge T_{a_k}^q,$$

we obtain that there exists a constant A_{ν} such that

$$\left| \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \varphi T_{a_1}^q \wedge \dots \wedge T_{a_k}^q \right|_{L^r(\mu_{|\overline{V}})}$$

is bounded above by

$$A_{\nu}\left(\left(\frac{c}{\epsilon}+\mu_{\mathrm{bif}}(\Lambda)\right)\mu(\overline{V})^{1/r}\right)^{1-\nu/2}\left(\frac{D''\mu(\overline{V})^{1/r}}{d^n}\right)^{\nu/2}|\varphi|_{C^{\nu}},$$

for $\varphi \in C^{\nu}$ with compact support in \overline{W} . Finally,

$$\begin{aligned} \left| \int \psi d\mu_{|\overline{V}} \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \psi d\mu_{|\overline{V}} \int \varphi d\mu_{\text{bif}} \right| &= \left| \int \psi \left(\int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \varphi d\mu_{\text{bif}} \right) d\mu_{|\overline{V}|} \right| \\ &\leq |\psi|_{L^s(\mu_{|\overline{V}})} \left| \int \varphi \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \varphi T_{a_1}^q \wedge \dots \wedge T_{a_k}^q \right|_{L^r(\mu_{|\overline{V}})} &\leq C' d^{-n\nu/2} |\psi|_{L^s(\mu_{|\overline{V}})} |\varphi|_{C^\nu} \end{aligned}$$

for $\varphi \in C^{\nu}$ with compact support in \overline{W} , and Theorem 1 follows.

It now remains to prove Lemma 3.

Proof of Lemma 3:

Since $\mu_{\text{bif}} \neq 0$ by assumption, there exists a smooth function $0 \leq \theta_0 \leq 1$ with compact support in Λ and $\int \theta_0 d\mu_{\text{bif}} > 0$.

Following the same method as in the previous proof with $\varphi = \theta_0$ and $W = \Lambda$, we obtain, as in inequality (2),

$$\left|\int \theta_0 \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} - \int \theta_0 T_{a_1}^q \wedge \dots \wedge T_{a_k}^q\right| \le \frac{C}{d^n}.$$

Therefore, using $\Omega_{nor}^{qk} = c \Omega^{qk}$, we have

$$\delta_{kq}(p_n) := \int p_n^*(\Omega^{qk}) = \frac{1}{c} \int p_n^*(\Omega_{nor}^{qk}) \ge \frac{1}{c} \int \theta_0 p_n^*(\Omega_{nor}^{qk})$$
$$\ge \frac{1}{c} \left(\int \theta_0 T_{a_1}^q \wedge \dots \wedge T_{a_k}^q - \frac{C}{d^n} \right) d^{kqn} \ge \epsilon d^{kqn}$$

where $\epsilon = \frac{1}{2c} \int \theta_0 T_{a_1}^q \wedge \cdots \wedge T_{a_k}^q$ and *n* large enough (so for every *n*, up to reducing ϵ). To find the upper bounds of $\delta_{kq}(p_n)$ and $\delta_{kq-1}(p_n)$, we use Bezout's theorem like in [19].

First, $\delta_{kq}(p_n) := \int p_n^*(\Omega^{qk}) = \frac{1}{c} \int p_n^*(\Omega_{nor}^{qk})$, so it is equal to the cardinal of $p_n^{-1}(b)$ with b generic in $(\mathbb{P}^q)^k$ multiplied by the constant $\frac{1}{c}$. Thus, to compute it, we need to find the number of solutions to the equation $p_n(\lambda) = b$, or equivalently (by genericity), to the equation

$$\mathfrak{a}_n(\lambda) = (f_{\lambda}^n(a_1(\lambda)), \cdots, f_{\lambda}^n(a_k(\lambda))) = b.$$

Let $b = (b_1, \dots, b_k) \in (\mathbb{P}^q)^k$ be a generic point. For $j = 1, \dots, k$, write

$$b_j = [b_{j,0} : \cdots : b_{j,q}]$$

and

$$f_{\lambda}^{n}(a_{j}(\lambda)) = [F_{\lambda,0}^{n}(a_{j}(\lambda)) : \dots : F_{\lambda,q}^{n}(a_{j}(\lambda))$$

where $F_{\lambda,0}^n, \dots, F_{\lambda,q}^n$ are homogeneous polynomials of degree d^n in z_0, \dots, z_q which define f_{λ}^n (here $[z_0 : \dots : z_q]$ are the coordinates in \mathbb{P}^q).

We are reduced to k systems of equations as

$$\begin{cases} F_{\lambda,0}^{n}(a_{j}(\lambda)) = \frac{b_{j,0}}{b_{j,q}}F_{\lambda,q}^{n}(a_{j}(\lambda)) \\ \vdots \\ F_{\lambda,q-1}^{n}(a_{j}(\lambda)) = \frac{b_{j,q-1}}{b_{j,q}}F_{\lambda,q}^{n}(a_{j}(\lambda)) \end{cases}$$
(3)

(there is always a $b_{j,i_j} \neq 0$ and we assumed here $i_j = q$ to simplify the exposition).

The above equations are of degree $d_{j,0}(\lambda)d^n, \dots, d_{j,q-1}(\lambda)d^n$ in $\lambda_0, \dots, \lambda_m$, where $[\lambda_0 : \dots : \lambda_m]$ are coordinates in \mathbb{P}^m . The number of solutions to $\mathfrak{a}_n(\lambda) = b$ is finite since p_n is dominant $(\int_{\Lambda} \frac{p_n^*(\Omega_{nor}^{qk})}{d^{kqn}} > 0)$, so Bezout's inequality ($\overline{\Lambda}$ can have complete intersection or not) in \mathbb{P}^m implies

$$\delta_{kq}(p_n) \le d(\lambda)d^{kqn} \le \frac{1}{\epsilon}d^{kqn}$$

for every n, up to reducing ϵ if necessary.

Now, we have to bound $\delta_{kq-1}(p_n) := \int p_n^*(\Omega^{qk-1}) \wedge \omega = \int \mathfrak{a}_n^*(\Omega^{qk-1}) \wedge \omega$ where ω is the Fubini-Study form on $\mathbb{P}^m(\mathbb{C})$ (let us recall that $\iota : \Lambda \hookrightarrow \mathbb{P}^m$ and that we identify Λ with $\iota(\Lambda)$).

Since $\Omega^{qk-1} = (\sum_{j=1}^{k} pr_j^* \omega_{\mathbb{P}^q})^{qk-1} = c(k,q) \sum_{j=1}^{k} pr_1^* \omega_{\mathbb{P}^q}^q \wedge \dots \wedge pr_j^* \omega_{\mathbb{P}^q}^{q-1} \wedge \dots \wedge pr_k^* \omega_{\mathbb{P}^q}^q$, we obtain

$$\delta_{kq-1}(p_n) = c(k,q) \sum_{j=1}^k \int a_{1,n}^* \omega_{\mathbb{P}^q}^q \wedge \dots \wedge a_{j,n}^* \omega_{\mathbb{P}^q}^{q-1} \wedge \dots \wedge a_{k,n}^* \omega_{\mathbb{P}^q}^q \wedge \omega.$$

For cohomological reasons, to compute the integral above, we are left to bound the number of points in

$$\mathcal{E} = \overline{\Lambda} \cap a_{1,n}^{-1}(b_1) \cap \dots \cap a_{j-1,n}^{-1}(b_{j-1}) \cap a_{j,n}^{-1}(L) \cap a_{j+1,n}^{-1}(b_{j+1}) \cap \dots \cap a_{k,n}^{-1}(b_k) \cap H$$

where $b_1, \dots, b_{j-1}, b_{j+1}, \dots, b_k$ are generic points in \mathbb{P}^q , L is a generic line in \mathbb{P}^q and H is a generic hyperplan in \mathbb{P}^m . Notice that this set is finite, since this is the intersection of a curve in $\overline{\Lambda}$ (as the preimage of a generic line of $(\mathbb{P}^q)^k$ by p_n , which is a dominant map) with a generic hyperplan H.

First, the points in \mathcal{E} satisfy k-1 systems of equations as (3). Then, the line L is given by the intersection of q-1 hyperplans, so by q-1 equations of the type $\alpha_0^i z_0 + \cdots + \alpha_q^i z_q = 0$ in \mathbb{P}^q (for $i = 1, \cdots, q-1$). Thus, the algebraic subset $a_{j,n}^{-1}(L)$ is given by the q-1 equations of the type

$$\alpha_0^i F_{\lambda,0}^n(a_j(\lambda)) + \dots + \alpha_q^i F_{\lambda,q}^n(a_j(\lambda)) = 0$$

which have degree $d'_{i,i}(\lambda)d^n$ (for $i = 1, \dots, q-1$).

In conclusion, by Bezout's inequality, the number of points in \mathcal{E} is bounded above by $d'(\lambda)d^{(k-1)qn+(q-1)n} = d'(\lambda)d^{kqn-n}$, and the Lemma follows.

References

- G. Bassanelli and F. Berteloot, Bifurcation currents in holomorphic dynamics on P^k, J. Reine Angew. Math., 608 (2007), 201-235.
- [2] J.-Y. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP^k, Acta Math., 182 (1999), 143-157.
- [3] J.-Y. Briend and J. Duval, Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P^k(C), IHES Publ. Math., 93 (2001), 145-159.
- [4] L. DeMarco, Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., 8 (2001), 57-66.
- [5] H. De Thélin, T. Gauthier and G. Vigny, The bifurcation measure has maximal entropy, Isr. J. Math., 235 (2020), 213-243.
- [6] H. De Thélin, T. Gauthier and G. Vigny, *Parametric Lyapunov exponents*, Bull. Lond. Math. Soc., 53 (2021), 660-672.
- [7] T.-C. Dinh and N. Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., 81 (2006), 221-258.
- [8] T.-C. Dinh and N. Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Lecture Notes in Mathematics, 1998 (2010), 165-294.

- T.-C. Dinh, V.-A. Nguyen and N. Sibony, Exponential estimates for plurisubharmonic functions, J. Diff. Geom., 84 (2010), 465-488.
- [10] R. Dujardin, The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse Math., 22 (2013), 445-464.
- [11] R. Dujardin and C. Favre, Distribution of rational maps with a preperiodic critical point, Am. J. Math., 130 (2008), 979-1032.
- [12] J.E. Fornæss and N. Sibony, Complex dynamics in higher dimensions, Complex Potential Theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer, Dordrecht (1994), 131-186.
- [13] J.E. Fornæss and N. Sibony, Complex dynamics in higher dimension I, Astérisque 222 (1994), 201-231.
- [14] T. Gauthier, Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Supér., 45 (2012), 947-984.
- [15] D. Ghioca, H. Krieger and K. Nguyen, A case of the dynamical André-Oort conjecture, Int. Math. Res. Not., 3 (2016), 738-758.
- [16] J. Graczyk and G. Światek, Lyapunov exponent and harmonic measure on the boundary of the connectedness locus, Int. Math. Res. Not., 16 (2015), 7357-7364.
- [17] Y. Luo, On the inhomogeneity of the Mandelbrot set, Int. Math. Res. Not., 8 (2021), 6051-6076.
- [18] M. Méo, Inverse image of a closed positive current by a surjective analytic map, C. R. Acad. Sci. Paris, 12 (1996), 1141-1144.
- [19] N. Sibony, Dynamique des applications rationnelles de \mathbb{P}^k , Panor. Synthèses, 8 (1999), 97-185.

Henry De Thélin, Université Paris 13, Sorbonne Paris Nord, LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

Email: dethelin@math.univ-paris13.fr