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Abstract—This paper introduces two machine learning opti-
mization algorithms to significantly enhance position estimation
in Reconfigurable Intelligent Surface (RIS) aided localization
for mobile user equipment in Non-Line-of-Sight conditions.
Leveraging the strengths of these algorithms, we present two
methods capable of achieving extremely high accuracy, reaching
sub-centimeter or even sub-millimeter levels at 3.5 GHz. The
simulation results highlight the potential of these approaches,
showing significant improvements in indoor mobile localization.
The demonstrated precision and reliability of the proposed
methods offer new opportunities for practical applications in
real-world scenarios, particularly in Non-Line-of-Sight indoor
localization. By evaluating four optimization techniques, we
determine that a combination of a Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) results in localization errors
under 30 cm in 90% of the cases, and under 5mm for close to
85% of cases when considering a simulated room of 10m by
10m where two of the walls are equipped with RIS tiles.

Index Terms—Reconfigurable intelligent surfaces, localization,
non-line-of-sight, machine learning, optimization

I. INTRODUCTION

Reconfigurable Intelligent Surfaces (RIS) have gained sig-

nificant attention in recent years due to their potential for

highly relevant applications in the scope of 6G wireless

communications [1]. A RIS has the advantage of being a low-

power solution. This low-power characteristic makes RISs a

promising choice for energy-efficient 6G wireless communica-

tion systems [2]. One of the especially interesting applications

in which this technology shows great potential is localization

in non-line-of-sight (NLoS) conditions [3], [4]. RISs have

demonstrated the ability to overcome NLoS challenges by

reflecting and manipulating wireless signals to achieve local-

ization [5], a feature relevant for applications such as robot

navigation, healthcare, and Industry 4.0 [6]. However, future

applications expect localization accuracy within the centimeter

[7] or even millimeter range [8], prompting recent works to

focus on developing RIS-aided localization algorithms. These

algorithms usually rely on a minimization of a cost function

as the last step that results in the estimated position [9]–[11].
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the period 2021 - 2026, within project NEXUS, with reference 53.

In this paper, we simulate NLoS RIS-based indoor localization

of user equipment (UE) based on a mathematical model of the

received reflections. We then apply to a cost function different

optimization methods and compare the resulting localization

error distributions.

The paper is organized as follows. Section III introduces

the problem formulation (Section III-A), its relation to the

general system model (i.e., indoor location model and RIS tile

architecture), and the evaluated optimization algorithms (Sec-

tion III-B), including our proposed algorithms for improved

accuracy. Section IV presents the experimental evaluation, de-

scribing the setup and specific simulated room parameters and

RIS tile placement (Section IV-A), and comparing the achiev-

able accuracy for each optimization method (Section IV-B).

Finally, Section V concludes the paper.

II. RELATED WORK

The significance of optimization of the final cost function in

localization algorithms becomes evident when known localiza-

tion algorithms do not deliver sufficiently accurate results for

different optimization methods. By exploring and comparing

the incorporation of different optimizations into localization

algorithms, we can find the best approaches to each specific

purpose in localization, mainly reliability and precision. Since

the cost functions are usually highly complex [9] and non-

smooth, traditional optimization methods such as gradient-

based descent may not be enough to accurately predict the UE

position due to early convergence in local minima. Exhaustive

search algorithms are also not best suited for these problems

since they are not appropriate to use in very large search spaces

[12]. Instead, we explore the application of machine learning

algorithms for the optimization step of RIS-aided localization.

Several papers [9-11] have contributed to the development of

novel localization algorithms and demonstrated localization

accuracy at the centimeter and sub-centimeter levels. However,

these papers lack explicit details regarding the optimization

algorithms employed and don’t provide information regarding

the computational effort involved in the estimation process,

even though they mention the complexity of the algorithm

as a whole. As far as the authors are aware, there is no

literature focused on the final minimization of the cost function

in localization algorithms with RIS.

http://arxiv.org/abs/2405.01928v1


Fig. 1. Room Diagram

III. PROPOSED APPROACH

We focus on evolutionary algorithms and swarm intelligence

techniques because of their capacity to find near-optimal

solutions in large and complex search spaces [12], [13]. In

addition to exploring optimization algorithms, this paper also

proposes two methods aimed at significantly improving the

mobile UE localization error considering the positive and

negative aspects of the above-mentioned techniques. The first

method involves a characterization of the error distribution

within a test room (therefore, fingerprinting-based). Since

this error distribution is deterministic, as we will show in

Section IV-B1, we can include the error pattern information in

the optimization algorithm. The second method incorporates

two optimization algorithms leveraging the best characteristics

of both, where the first algorithm is used to provide an initial

rough estimate, and the second to find an improved solution in

that reduced search area. This second method does not require

fingerprinting. With this, our objective is to improve NLoS

localization accuracy in RIS-assisted wireless communication

networks.

A. Position Estimation from RIS Reflections

We consider all scenarios represented by Figure 1, where

a large ”one-dimensional” RIS is deployed in an indoor

environment, operating the system under near-field conditions

in a downlink OFDM scenario between a single base station

(BS), i.e. a transmitter (TX), and a single UE. The RIS

is composed of K tiles with known positions, which are

composed of Nx × Ny unit cells, as shown in Figure 2.

The phase of the reflection coefficient of each tile can be

controlled independently of the other tiles, and all the unit cells

composing the same tile have the same phase. Additionally,

each tile will have a predefined sequence of phases (this means

that the tile’s phase will have a specific value for each reflected

OFDM pilot symbol). Each tile is considered to work in far-

field conditions, as opposed to the entire RIS that operates in

near-field conditions.

Fig. 2. RIS diagram

The used system model defines the coefficient of the channel

between the TX and each tile of the RIS, with k = 1, 2, ...,K ,

as:

g
(r)
k =ξk

√

GTPT/Ntλ

4π ‖pTX − pk‖
(1)

× exp

(

−
2πfc
c

‖pTX − pk‖+ 2πfct0 + φ0

)

And the coefficient of the channel between each RIS tile and

the UE is modeled by:

b
(r)
k = ηk

√
GRλ

4π ‖p− pk‖
exp

(

−
2πfc
c

‖p− pk‖
)

(2)

We are not considering the multipath component, so the

coefficient of the cascaded channel for each tile is given by:

h
(r)
k (p, t0, φ0) = b

(r)
k g

(r)
k (3)

As Equation (3) shows, the channel depends on the unknown

variables (p, t0, φ0). This formulation is the same as the

one proposed in [9], which presents a much more detailed

explanation of the system’s model. Finally, the localization

algorithm used is the Direct Positioning method proposed

also in [9] with narrow-band localization. According to this

algorithm, the function to be minimized is the following:

p̂ = arg min
{p,φ0}

T
∑

t=1

ã2t
σ2

sin2
(

φ̃t − φt(p) − φ0

)

(4)

With t = 1, 2, ..., T , where T is the number of OFDM pilot

symbols, σ2 is the noise power, ãt, φ̃t represent the absolute

and phase value of the received signal, respectively. The phase

offset is represented by φ0, the time offset by t0 and φt(p) is a

hypothetical set that only depends on p, the UE real position.

B. Optimization Algorithms

We evaluated two state-of-the-art algorithms to optimize the

formulation presented above, namely, Particle Swarm Opti-

mization (PSO) and a Genetic Algorithm (GA). Additionally,

we developed two new algorithms based on PSO and GA to

address observed limitations.



1) Particle Swarm Optimization: is a type of artificial

intelligence (AI) optimization algorithm that emulates the

social behavior of a flock of birds. The algorithm starts with

a random initialization of the swarm positions and velocities

[14]. Each particle represents a potential solution within the

search space. Particle positions and velocities are updated

iteratively based on the best solution found by the swarm.

PSO can search for global optima and is suitable for han-

dling difficult non-smooth functions, but it may suffer from

early convergence in local minima [15], [16]. Increasing the

swarm size can enhance convergence chances but comes with

increased computation time [17].
2) Genetic Algorithm: These algorithms are optimization

algorithms inspired by the process of natural evolution and

selection [18]. The algorithm initializes a random population

of chromosomes, each of them will evaluate the cost function,

and the fittest chromosomes will pass to the next generation,

then random pairs of the fittest will be selected to reproduce.

A fraction of the population will suffer a mutation in the next

generation. This loop will repeat until some stopping criteria

have been met [19].
3) A Priori Guided PSO: This approach begins by estimat-

ing the position with PSO, then the value of the cost function

is evaluated, allowing us to classify estimates as reliable or

unreliable. When the estimates are identified as unreliable, the

method performs another PSO run, but allocates additional

resources to the problematic regions. This consists of dou-

bling the swarmsize, with half being random initialized and

the other half being distributed along critical regions. These

areas are recognizable due to their deterministic patterns. The

method is concisely explained in Algorithm 1.

Algorithm 1 A Priori Guided PSO

Input: Measured signal
Output: UE position

1: Define threshold for cost function value l
2: Initialize the PSO population with size ss randomly within the

predefined search area
3: Terminate PSO when change in fitness is less than threshold
4: if cost function(solution) ≥ l then
5: Initialize the first PSO subpopulation with size ss randomly

within the predefined search area
6: Initialize the second PSO subpopulation with size ss ran-

domly within the predefined problematic regions
7: Terminate PSO after change in fitness less than a specified

value
8: return PSO estimate
9: end if

10: return PSO estimate

4) GA-PSO Hybrid: After observing the consistent and

reliable performance of GA in identifying solutions within

a region near the optimal solution, as well as the possible

extremely high precision achieved by PSO, we formulated a

hybrid approach. This approach aims to combine GA’s ro-

bustness with PSO’s precision to develop an optimized hybrid

strategy. By leveraging the observed exploring capability of

GA with the exploitative capability of PSO, our approach

seeks to minimize completely incorrect predictions while

achieving sub-mm precision. Hybridization of GA-PSO has

been done before [20], but our approach offers an advantage:

we did not modify the logic of the algorithms, we maintain

the original functionality of both GA and PSO. The simplicity

lies in the application of GA to find the most likely region

of optimality, and then PSO to find the best solution within

that bounded reduced search area, and since this area is much

smaller than the main search area, the swarmsize can be

smaller than when using just PSO. The method is illustrated

in Algorithm 2.

Algorithm 2 GA-PSO Hybrid

Input: Measured signal
Output: UE position

1: Initialize the step size in each axis, xstep and ystep
2: Define a value areaval for the area of the confined region
3: Initialize the GA population with size ps randomly within the

predefined search area
4: Evaluate the fitness of each individual
5: Perform selection, crossover, and mutation operations
6: Terminate GA after a fixed number of generations
7: Define a small region with area = areaval around GA estimate

8: Initialize the PSO population randomly within the new bounded
area

9: Terminate PSO after change in fitness less than a specified value

10: return PSO estimate

The first approach we present benefits from the fingerprint-

ing of the room that allows us to detect where PSO tends to

fail, and the second algorithm benefits from combining global

exploration of GA with local exploration of PSO, mitigating

flaws detected while evaluating the simulations obtained with

standalone PSO and GA. The following section presents

localization accuracy results relying on the formulation shown

in Section III-A when each of these optimization methods is

applied.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

For our simulations, we consider the formulation of signal

reflections received by the UE presented in Eq. 4 (Sec-

tion III-A). The simulated test area and RIS placements are

also as shown in Figures 1 and 2. The area is a room of 10 by

10 meters and a height of 3 meters. The RISs are deployed in

an L shape from (x, y, z) = (−5, 0, 1) to (5, 0, 1) to (5, 10, 1).
The physical configuration of the set of RIS tiles along the

walls is shown in Figure 2. The base station (BS) is placed at

the center, (0, 5, 1), and the UE will be placed at a variable

position inside the region delimited by points (−4, 1, 1) and

(4, 10, 1), which represents a search area of 72 m2.

In all the simulations we will consider the condition of

NLoS between the BS and UE, placing a hypothetical obstacle

between them. The UE will estimate its position (x, y) based

on the reflections of the RIS, using OFDM pilot symbols sent

by the BS. We assume that the BS sends 32 OFDM pilot sym-

bols, using a single pilot subcarrier (narrowband localization),



TABLE I
SIMULATION PARAMETERS

Parameter Value Units

Frequency 3.5 GHz

Pilot subcarriers 1 -
OFDM pilot symbols 32 -

RIS Tiles 100 -
RIS cells per tile 4 x 25 -

Subcarrier bandwidth 120 kHz

Cell width λ/2 m

Cell height λ/2 m

RIS tiles spacing 20 cm
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(a) High resolution heatmap
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(b) Validation heatmap

Fig. 3. Localization error [cm] heatmaps for PSO with swarmsize = 400

out of a total of 2048 subcarriers.The phase sequence of the

RIS is random binary, this means that reflection phases take

the values {0, π} with similar probability.

Finally, Table I shows the values chosen for the parameters

available to the formulation used, with λ = c/fc. All other

parameters are presented in detail by Dardari et al. [9]. All

estimations and time measurements were performed on an

Intel Core i7 6700 (3.4GHz), and all optimization algorithms

considered were tested with the same setup.

B. Experimental Results

This section presents the findings and analysis of the pro-

posed method’s performance. The simulation will consist of

fingerprinting (independent simulations) twice the room for

each state-of-the-art algorithm. The initial room fingerprinting

is performed at a high resolution to ensure the accuracy

of the results and their alignment with the actual values.

Subsequently, a second fingerprinting is conducted at a lower

resolution, primarily aimed at validating the findings from the

initial high-resolution scan. Finally, the algorithms’ perfor-

mance will be compared against a gradient-based algorithm.

1) Particle Swarm Optimization: Two heatmaps were then

generated to illustrate how the localization error varies as a

function of the UE’s real position. The first heatmap was

created with a higher resolution (7371 samples), to provide a

detailed view of the error distribution across the search area.

This high-resolution heatmap serves as the primary analysis

tool. By evaluating the consistency of the error patterns across

the different resolutions, the reliability of the optimization

algorithm can be assessed.

As seen in Figure 3, there is a clear pattern that can be vi-

sualized in the high-resolution heatmap, which is validated by

Fig. 4. PSO Localization error histogram.
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(b) Validation heatmap

Fig. 5. Discrete GA localization error [cm] heatmaps

the second heatmap, providing strong evidence of determinism

in the data, indicating a predictable relationship between the

localization error and the UE’s real position.

From the data of the higher resolution heatmap in Fig-

ure 3(a), a histogram was also drawn. The plot in Figure 4

allows us to detect a skewed pattern towards 0. This means

that there is a significant concentration of samples with a

very small error, with the 50th percentile (median) being

50th = 0.003 cm, however, the 75th percentile is near 400 cm.

These values indicate that the algorithm is capable of

extremely high precision in 50% of the estimations, however,

is also common for the estimations to be completely wrong,

suggesting that the algorithm isn’t very reliable.

2) Genetic Algorithm: We chose to use a discrete version

of GA in our application due to its suitability in searching

efficiently within a reduced search space. Additionally, the

process of discretization partially smooths the cost function,

making the algorithm less likely to end up trapped in local

minima. One process of discretizing GA is thoroughly ex-

plained here [21]. Both x and y axes were divided into 0.1 cm
steps limiting the precision of this algorithm. We conducted

the same simulation for GA and created two heatmaps with

the same resolution for visual analysis.

The two heatmaps generated exhibit a big difference from

those of PSO, proving that the optimization technique (even

for the same computational complexity) has a lot of influence

on the localization error. The consistent presence of the color

cyan in the heatmap suggests that the algorithm reliably

converges towards a solution within the same region of the

real position but with less precision than PSO. It’s possible to

see an error pattern stronger near the left and bottom walls



Fig. 6. Discrete GA localization error histogram.
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(a) PSO
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(b) Discrete GA
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(c) A Priori PSO
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(d) GA-PSO Hybrid

Fig. 7. Localization error [cm] heatmaps comparison

(opposing the RIS), except in the corner between them, and

again a high error near the opposed corner to this one, where

both segments of the RIS connect. Figure 6 shows a much

more substantial skewness to 0 than PSO with the error tending

to fall in between a much shorter interval. In this case, we

have 50th = 3.63 cm, 75th = 7.52 cm. This supports the

initial hypothesis that the algorithm can reliably converge to

a solution near the true solution, even though it is not able to

achieve the sub-mm precision of the best PSO estimates.

3) A-Priori Guided PSO & GA-PSO Hybrid: Figure 7

illustrates the high-resolution heatmaps for the PSO and GA

methods again, compared with the analogous heatmaps for our

two proposed methods. Both approaches achieve estimations

with lower error throughout the test area, when compared to

the reference techniques.

Figure 8 shows the respective cumulative error distributions

for each optimization technique. We observe that PSO achieves

extremely high accuracy in half of its measurements, however,

the algorithm completely fails to estimate the real position too,

making this method unreliable. On the other hand, discrete GA

presents a contrasting behavior. It exhibits lower accuracy than

PSO compared to its best samples but shows a smoother and

30 40 50 60 70 80 90

Percentile

10-4

10-2

100

102

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r 

[c
m

]

PSO

Discrete GA

A Priori PSO

GA-PSO Hybrid

Gradient Search

Fig. 8. Localization error as a function of the percentile for each method

lower increase in error along the percentiles, meaning that the

predictions remain consistent with centimeter-level accuracy,

with an 87% of the estimates having an error below 17 cm.

The heatmap visualization of A Priori Guided PSO (Fig-

ure 7(c)) algorithm revealed that the error pattern shares

similarities with the normal PSO approach, but with notable

differences. Mainly, this method successfully mitigates regions

with significant errors, leading to two distinct regions where

wrong estimates are practically inexistent, near each segment

of the RIS, excluding the corners. For these two areas, the

method shows a better performance compared to the others,

being extremely unlikely to produce a completely off solution,

the method shows a 95% probability of achieving an error

of less than 0.158 cm, with each region having an area of

approximately 16m2. However, looking at the entire search

space, it becomes evident that this approach exhibits limita-

tions in terms of reliability when compared to GA-PSO Hybrid

(Figure 7(d)) and Discrete GA (Figure 7(b)). This observation

is supported by the percentiles shown in Figure 8, which

demonstrate that approximately 82.5% of the results exhibit

error levels similar to the hybrid method, but it experiences

much larger error in the 85th percentile and above, indicating

a higher tendency to produce less reliable estimates compared

to the other methods except normal PSO.

Regarding GA-PSO Hybrid method, its heatmap displays

similarities with discrete GA. However, in regions where

discrete GA exhibited cm-level errors, the hybrid method

demonstrated much better performance, providing a sub-mm-

level accuracy, proving that the PSO component in the hybrid

method effectively refines the estimates. We were able to

combine high reliability with sub-mm precision in a significant

portion of the room’s central region, achieving a 95% proba-

bility of an error less than 1 cm, and a 90% probability of an

error smaller than 1mm within the central region, covering

approximately 35m2 of the room. This algorithm shows a

limitation near the two walls opposing the RIS, and near the

corner where both RIS segments meet.

Figure 8 confirms this, showing that 75% of the estimates

achieve a sub-mm accuracy, and 85% achieve a sub-cm



TABLE II
PERCENTILES COMPARISON IN [CM]

Percentiles

Method 50th 75th 85th 90th

PSO 0.0025 366.7 424.2 529.3
Discrete GA 3.6 7.5 13.0 43.4

A Priori PSO 0.0005 0.0016 276.4 381.2
PSO-GA Hybrid 0.0005 0.0016 0.4492 29.1
Gradient-Based 127.0 353.3 410.1 445.2

TABLE III
POSITION ESTIMATION TIME BY OPTIMIZATION METHOD

Method Average Computation Time (s)

PSO 42.8
Discrete GA 42.4

A Priori PSO 66.9
PSO-GA Hybrid 64.2
Gradient Based 68.1

accuracy, evidencing that the vast majority of the estimates

are highly accurate. Considering that 90% of the estimations

are within an error lower than 30 cm, this algorithm proves to

be highly reliable in addition to its very high precision.

Finally, we also present the results for a gradient-based

algorithm with the same time complexity as the other algo-

rithms. The algorithm shows very high error for even the lower

percentiles, proving that gradient-based optimizations are not

suited to this type of problem.

Table III shows the time required to estimate a single

position for the described setup, for each method. Our two

proposed methods and the gradient-based one require similar

execution times relative to each other and require approxi-

mately 50% longer than the state-of-the-art GA and PSO.

V. CONCLUSION

A Priori Guided PSO shows high precision in two regions

of the search area, but it’s less reliable than the hybrid method

when considering the whole search area. This algorithm could

be used in an application where it’s possible to deploy the RIS

right in front of the area of interest. The method could be im-

proved by initializing a third subpopulation in the region that

separates the ’clean’ regions or adding more reliability checks,

resulting in a bigger execution time. This approach relies on

the determinism of error, making it suitable for environments

with minimal changes over time. In dynamic environments,

this method may not be applicable. Considering the results

of GA-PSO Hybrid, we can reduce the likelihood of wrong

estimates by increasing the distance of the search area to the

walls, maintaining a large area of interest. This method could

be used in both static and dynamic environments. Performance

can be improved by increasing maximum generations and

population size, leading to more computational complexity.

It is worth noting that the employed localization algorithm

exhibits an on-off behavior, so we faced completely erroneous

estimates as outliers, that could not be removed due to the

narrowband localization [9]. Despite this limitation, our meth-

ods demonstrated high accuracy. Considering the complexity

of indoor localization in NLoS conditions, achieving precise

positioning remains a critical challenge. Our research offers a

practical and effective approach to mitigate localization error,

enabling sub-centimeter and even sub-millimeter accuracy.
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