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It was recently discovered that, depending on their symmetries, collinear antiferromagnets may
break spin degeneracy in momentum space, even in absence of spin-orbit coupling. Such systems,
dubbed altermagnets, have electronic bands with a spin-momentum texture set mainly by the com-
bined crystal-magnetic symmetry. This discovery motivates the question which novel physical prop-
erties derive from altermagnetic order. Here we show that one consequence of altermagnetic order
is a fluctuation-driven piezomagnetic response. Using the checkerboard Heisenberg hamiltonian as
a prototypical localized moment altermagnet, we determine its fluctuation induced piezomagnetic
coefficient considering temperature induced transversal spin fluctuations. We establish in addition
that magnetic fluctuations induce an anisotropic thermal spin conductivity.

I. INTRODUCTION

Altermagnetism has recently emerged as a new type
of magnetic ordering, distinct from anti-, ferri- and
ferromagnetism. Similarly to collinear antiferromag-
nets (AFMs), the net magnetization of a collinear alter-
magnet (AM) vanishes by symmetry. They differ from
AFMs because the enforcing symmetry is not merely an
inversion or translation that connects the two magnetic
sub-lattices, but also involves a rotation [1, 2]. The sym-
metry of a traditional AFMs render their non-relativistic
electronic band structure spin degenerate at all momenta,
but the rotation between the two magnetic sublattices in
AMs breaks this global degeneracy. The energy scale
that governs the splitting between the spin up and down
bands in AMs is the local exchange field, which is gener-
ally much larger than the relativistic spin-orbit coupling
energy scale.

The promise of spin current generation due to the spin
splitting of bands, renders AMs interesting spintronics
and a substantial class of AM material candidates have
been identified [3–8]. Few are metallic (e.g. RuO2 and
CrSb), but by far most are robust insulators, in particular
strongly correlated ones (e.g. CoF2). These Mott-type
insulators have localized moments and their low elemen-
tary excitations are charge neutral magnons.

The recently developed Landau theory of altermag-
netism [9] allows to relate the formation of antifertomag-
netic Néel order directly to key observables such as mag-
netization, anomalous Hall conductivity, magneto-optic
and magneto-elastic probes. It establishes in particu-
lar the presence of piezomagnetism, in a situation where
spin-orbit coupling is absent. In a piezomagnetic system,
a net magnetic moment may be induced by applying me-
chanical stress, or vice versa, a physical deformation by
applying a magnetic field. This response is governed by a
trilinear coupling between strain, ferromagnetic magne-
tization and the Néel order parameter [9, 10]. This stan-
dard free energy description implies that fluctuations of

the Néel order parameter appear to diminish the alter-
magnetic piezomagnetic response.
In contrast to this, we here show that in localized al-

termagnets transversal spin fluctuations rather have the
opposite effect and actually are the drivers of a piezomag-
netic response. To be concrete we using a checkerboard
Heisenberg hamiltonian as a model d-wave altermagnet
and show that while the fluctuation-driven piezomagnetic
response is exponentially small at low temperature when
the magnetic modes are gapped, it increases with temper-
ature and thus by thermal magnon occupation, reaching
a maximum close to the critical temperature. Analyt-
ical expressions for this fluctuation induced piezomag-
netic response compare well with numerical simulations
in which the magnetic system evolves in time according
to the stochastic Landau-Lifshitz-Gilbert equations. We
also show that the presence of magnetic fluctuations in-
duce a thermal spin conductivity, which is due to the dif-
ferent magnon branches carrying opposite magnetic mo-
ment, thus coupling the spin carried by the heat current
to the direction of that current.

II. HEISENBERG CHECKERBOARD
ALTERMAGNET

We start from the AM Heisenberg checkerboard Hamil-
tonian [11] as illustrated in Fig. 1. We consider two
square sublattices of discrete classical magnetic moments
µ1(Rn) and µ2(R

′
n) of fixed magnitude located in the

positions determined by the Bravais vectors of each of
the sublattices, namely Rn = a0(nxex + nyey) and
R′

n = Rn − a0

2 (ex + ey) with n = {nx, ny} ∈ Z × Z,
see Fig. 1. Here a0 denotes size of the square primitive
unit cell of the two-sublattice system. We assume that all
magnetic moments have equal amplitude µs, and there-
fore, it is instructive to introduce the dimensionless unit
vectors m1,2 = µ1,2/µs showing the magnetic moments
orientation.
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FIG. 1. Representation of the Heisenberg checkerboard
Hamiltonian in Eq.(1) which consists of two antiferromag-
netically coupled square sublattices of magnetic moments
µsm1(Rn) and µsm2(R

′
n) with m1,2 unit vectors. In ad-

dition to the AFM Heisenberg exchange of strength J acting
between the nearest neighbors (black bonds), extra Heisen-

berg interactions of strength J̃x (blue bonds) and J̃y (red
bonds) act along the corresponding diagonals within the sub-
lattices m2 and m1, respectively. We consider the range of
parameters corresponding to the compensated AFM ground
state with the antiparallel magnetization of the sublattices.
The primitive unit cell of the considered two-sublattice sys-
tem is shown by the green square with side a0.

The dynamics of the system under consideration is gov-
erned by the set of coupled Landau-Lifshitz equations
∂tm1,2 = γ

µs
[m1,2 × ∂H/∂m1,2] where γ > 0 is gyro-

magnetic ratio, number of equations is equal to the num-
ber of magnetic moments, and the coupling is provided
by the Hamiltonian

H = J
∑

⟨Rn,R′
n⟩

m1(Rn) ·m2(R
′
n) (1)

+
∑
Rn

[
J̃ym1(Rn) ·m1(Rn + a0ey)−Km2

1z −Bµsm1z

]
+
∑
R′

n

[
J̃xm2(R

′
n) ·m2(R

′
n + a0ex)−Km2

2z −Bµsm2z

]
.

Here J > 0, and, in the first sum, R′
n counts the near-

est neighbors of Rn. Amplitudes of the diagonal in-
teractions |J̃x,y| < J can generally be different, in this
way we take into account the deviation from the al-
termagnetic limit caused by applied mechanical stress.
Additionally, we take into account perpendicular easy-
axial anisotropy (K > 0) and interaction with the mag-
netic field B = Bez. Here m1z = m1(Rn) · ez and
m2z = m2(R

′
n) · ez with ez = ex × ey.

Assuming that in the ground state magnetic moments
are collinear to ez, we linearize the Landau-Lifshitz equa-
tions with respect to the perpendicular componentsm1,x,
m1,y, m2,x, and m2,y and obtain the following dispersion

(a)

(b)

(c)

FIG. 2. (a) – Dispersion relation (2) within the 1st Brillouin
zone for the case ϵx = ϵy = 0.3, κ = 0.04, and B = 0. The
value of the splitting between branches is shown by the color
code at the bottom. (b) – the comparison of the dispersion
(2) with the magnon dispersion obtained using the numerical
simulations, for detail see Appendix D. (c) – 2D “surfaces” of
constant energy ων = 0.65ω0,

relation for the linear excitations (magnons)

ων(k) = ω0

(
Fk ± Ω−

k

)
± γB,

Fk =

√(
1 +

κ

2
− Ω+

k

)2

− cos2
kxa0
2

cos2
kya0
2

,

Ω±
k =

ϵx sin
2 kxa0

2 ± ϵy sin
2 kya0

2

2
,

(2)

for details see Appendix A. Here index ν numerates two
branches corresponding to the signs ‘+’ and ‘−’ in the
right hand side. Frequency ω0 = 4Jγ/µs determines the
typical time scale of the system. κ = K/J is the normal-

ized anisotropy, and ϵα = J̃α/J with α = x, y. In the
particular case κ = 0 and B = 0, dispersion (2) repro-
duces the previously obtained result [12]. An example
of the dispersion relation (2) is shown in Fig. 2, which
demonstrates the anisotropic (in k-space) splitting of the
magnon branches typical for the d-wave altermagnets [3],
which for the checkerboard AM are rotated with respect
to each other by π/2. Note the very good agreement with
the spectra obtained by means of the numerical simula-
tions, for details see Fig. 2(b) and Appendix D.
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FIG. 3. The fluctuation induced piezomagnetic coupling
constant η as a function of temperature is shown for ϵx =
−ϵy = 0.1 and for three different anisotropy values. The in-
set demonstrates the asymptotic behavior (5) (dashed lines)
in the limit of low temperature. Symbols correspond to the
results of numerical simulations.

A. Fluctuation induced piezomagnetism

We now introduce the magnetic moment as a ther-
modynamic quantity M = −∂BF [13, 14], where F is
the Helmholtz free energy and B is the applied magnetic
field [15]. For low enough temperature, magnons can
be considered as gas on noninteracting bosons, in this
case [16, 17] F = E0 + 1

β

∑
k,ν ln

(
1− e−βEk,ν

)
, where

E0 is energy of the ground state, β = 1/(kbT ) is inverse
temperature and Ek,ν = ℏων(k) is energy of a magnon.
The summation is performed over k-vectors within the
1st Brillouin zone. Taking into account that the energy
E0 of the considered ground state does not depend on the
applied field, we differentiate the free energy and present
the magnetic moment in form

M =
∑
k,ν

µk,ν

eβEk,ν − 1
, (3)

which enables one to recognize the quantity µk,ν =
−∂BEk,ν as magnetic moment of one magnon [13]. Note
that according to (2), one has µk,ν = ∓γℏ = ∓gµb with
g being the g-factor and µb > 0 being the Bohr magne-
ton. Thus, the magnons belonging to different branches
carry magnetic moments of opposite signs. With the use
of (2) and (3) we derive the following expression for the
magnetic moment density in vanishing applied magnetic

field

M =
gµb

a20

π∫∫
−π

dqxdqy
(2π)2

sinh
(
β′Ω−

q

)
cosh (β′Fq)− cosh

(
β′Ω−

q

) , (4)

where we introduced the magnetization M = M/(LxLy)
with LxLy being the altermagnet area, q = a0k is the
dimensionless wave-vector, β′ = ℏω0/(kbT ), and we pro-
ceed from the summation to integration over the 1st Bril-
louin zone, assuming the large size of the magnet. Us-
ing (2), one can easily show that M → −M under the in-
terchange ϵx ↔ ϵy. As a consequence, one has M = 0 for
ϵx = ϵy, i.e. the magnetization vanishes in the AM limit.
This property motivates us to write M = η(ϵx − ϵy) in-
troducing the piezomagnetic coupling constant η. In the
limit of low temperatures (β′ ≫ 1), we estimate integral
(4) by means of the Laplace method [18] and obtain

η ≈ gµb

a20
f(ϵx, ϵy)

∆2

β′ ln
1

1− e−β′∆
, (5)

where ∆ =
√
κ(1 + κ

4 ) is the gap size in units ℏω0. For
ϵα ≪ 1, function f can be approximated as follows f ≈
2
π

[
1− 3

2 (ϵx + ϵy)
(
1 + κ

2

)]
, for details see Appendix B.

The temperature evolution of η is shown in Fig. 3. For
the limit T → 0, it is exponentially suppressed, which
is a typical behavior for a gapped system. Anisotropy
strengthens the magnetization stiffness of the sublattices,
suppressing thermal occupation of magnons and thus the
emergent magnetic moment. This is more clearly shown
in the inset of Fig. 3. For the special gapless case (κ = 0),
the piezomagnetic coupling constant has T 3-dependence
in the limit of small temperatures for this 2D system,
namely η ≈ gµb

a2
0

6
π ζ(3)/β

′3 with ζ(x) being Riemann zeta-

function.

B. Fluctuation induced thermal spin conductivity

Let us now consider the possibility of the generation of
spin current j by the applied temperature gradient ∇T :

jα = σαβ∂βT, (6)

where σαβ is tensor of thermal spin conductivity. Within
the relaxation time approximation [19] we obtain

σαβ =
τrlx
LxLy

∑
k,ν

ck,ν (vk,ν)α (vk,ν)β , (7)

where τrlx is the relaxation time – the average time be-
tween magnons collisions, (vk,ν)α = ∂ων(k)/∂kα is group
velocity, and

ck,ν = ∂T
µk,ν

eβEk,ν − 1
(8)

is spin capacity per magnon. Based on definition (7)
and dispersion relation (2) one can show that σxy = 0.
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FIG. 4. Diagonal elements of the spin conductivity ten-
sor (7) computed for ϵx = ϵy = 0.1 and for three different
anisotropy values. The inset demonstrates the asymptotic
behavior (10) (dashed lines) in the limit of low temperature.

For the case ϵx = ϵy, the additional symmetry σxx =
−σyy takes place and the conductivity tensor obtains the
following form

[σαβ ] = σ

[
−1 0
0 1

]
. (9)

The temperature dependence of the conductivity ampli-
tude σ is shown in Fig. 4. According to (9), spin current
j flows at angle π − φ to the direction ex where φ =
∠(∇T, ex). For the case of low temperature kbT ≪ ℏω0

we obtain −σxx ≈ σyy ≈ σ with

σ ≈ γkb
ω0τrlx
2π

∆2(ϵx + ϵy) ln
1

1− e−β′∆
. (10)

For the exact expressions for the components of σαβ , see
Appendix C.

III. CONCLUSIONS

We analyzed the contribution of magnons to the ther-
modynamic properties an altermagnetic film whose mag-
netic subsystem is approximated by the checkerboard
model. This AM has two important features: (i) it results
in the anisotropic (in k-space) splitting of the magnon
spectra typical for d-wave altermagnets, and (ii) it al-
lows an easy relation between the magnetic properties
and the applied strain ∝ (J̃x − J̃y). The Landau the-
ory for altermagnets implies a trilinear coupling between
strain, ferromagnetic magnetization and the Néel order

parameter. Therefore an applied strain leads in general
to a ferrimagnetic state: a strain that breaks the AM
symmetry allows the magnitude of the moments on the
two sublattices to become different (see Appendix E and
Ref. [9]). Due to the trilinear coupling this longitudi-
nal response is present in the ground state and vanishes
together with the Néel parameter when temperature in-
creases.

Here we have identified a piezomagnetic response that
instead grows with temperature, because it is driven
by thermally excited magnons and is described by for-
mula (4). This piezomagnetic response is due to transver-
sal magnetic fluctuations and can thus also be expected
for systems with fixed local moments. It reaches a max-
imum in a temperature region just below Tn. Interest-
ingly, the thermally-induced piezomagnetism is dominant
for materials with small magnetic moments µs ≪ µb in
the temperature regime T ≲ Tn. We have also shown
that in presence of magnetic fluctuations a spin current
is generated by an applied temperature gradient due to
different magnon branches carrying opposite magnetic
moment. The spin carried by the heat current couples
to the direction of that current. These results are eas-
ily generalized to higher dimensions and different lattice
geometries.

This fluctuation induced piezomagnetic effect may be
of interest for the control of AM domains, which is
key for development of AM-based spintronics because
macroscopic altermagnetic properties and responses van-
ish when domains are averaged over. As AM domains are
related by time-reversal symmetry [10, 11], their piezo-
magnetic response has an opposite sign. Thus an energy
difference between domains can be induced by applying
simultaneously strain and magnetic field in the appropri-
ate directions. Particularly, applying these two during
cooling across Tn opens an efficient route to favor only
one of the domains. As we have shown here precisely in
this temperature regime magnetic fluctuations strongly
affect the piezomagnetic response.
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Appendix A: Dispersion relation for the Heisenberg
checkerboard model

We start from the linearization of the Landau-Lifshitz
equations ∂tm1,2 = γ

µs
[m1,2 × ∂H/∂m1,2] with respect

to the perpendicular components m1,2;x,y on the top of

the ground state m0
1 = ez, m

0
2 = −ez:

∂tm1α(Rn) = −εαβ
γ

µs

∂H(2)

∂m1β(Rn)
,

∂tm2α(R
′
n) = εαβ

γ

µs

∂H(2)

∂m2β(R′
n)

,

(A1)

where α = x, y, and the harmonic part of Hamiltonian (1)
is as follows

H(2) =
∑

α=x,y

{
J

∑
⟨Rn,R′

n⟩

m1α(Rn)m2α(R
′
n) +

∑
Rn

[
J̃ym1α(Rn)m1α(Rn + a0ey) +

(
2J − J̃y +K +

µsB

2

)
m2

1α(Rn)
]

+
∑
R′

n

[
J̃xm2α(R

′
n)m2α(R

′
n + a0ex) +

(
2J − J̃x +K − µsB

2

)
m2

2α(R
′
n)

]}
(A2)

Next, we utilize the Fourier transforms on the periodic
lattice

f(Rn) =
1√
N

∑
k∈1.BZ

f̂(k)eik·Rn ,

f̂(k) =
1√
N

∑
Rn

f(Rn)e
−ik·Rn

(A3)

supplemented with the completeness relation∑
Rn

ei(k−k′)·Rn = Nδk,k′ . Here N is the number

of magnetic moments in one sublattice. Applying (A3)
to (A1), we obtain the equations of motion in reciprocal
space

∂tm̂1α(k) = −εαβ
γ

µs

∂H(2)

∂m̂1β(−k)
,

∂tm̂2α(k) = εαβ
γ

µs

∂H(2)

∂m̂2β(−k)
,

(A4)

Note that the Fourier transform for the sublattice R′
n

coincides with (A3) up to the replacement Rn → R′
n.

In reciprocal space, the harmonic part of he Hamiltonian
(A2) is as follows

H(2) =
∑

k∈1.BZ

[
4J cos

a0kx
2

cos
a0ky
2

m̂1α(k)m̂2α(−k)

+

(
2J − 2J̃y sin

2 kya0
2

+K +
µsB

2

)
m̂1α(k)m̂1α(−k)

+

(
2J − 2J̃x sin

2 kxa0
2

+K − µsB

2

)
m̂2α(k)m̂2α(−k)

]
,

(A5)

where the summation over the repeating index α ∈ {x, y}
is assumed. With (A5), we write Eqs. (A4) in the form

∂tξ = ω0Mξ, (A6)

where ξ = (m̂1x, m̂1y, m̂2x, m̂2y)
t, and matrix M is as

follows

M =

 0 −(By + b) 0 −A
By + b 0 A 0

0 A 0 Bx − b
−A 0 −(Bx − b) 0

 (A7a)

with b = µsB/(4J) and

A = cos
kxa0
2

cos
kxa0
2

, (A7b)

Bα = 1 +
κ

2
− ϵα sin2

kαa0
2

. (A7c)

Parameters ω0, κ, and ϵα are defined in the main text.
System (A6) has solution ξ = ξ0e

−iωt, which is nontriv-
ial (ξ0 ̸= 0) if ω = iω0λν with λν being the eigenval-
ues of matrix M. The eigenvalues λν are imaginary and
compose two complex-conjugated pairs. The pair of the
non-negative eigenfrequencies is presented in (2). Note
that γB = ω0b.

Appendix B: Magnetization for low temperature

The explicit form of function f(ϵx, ϵy) is as follows

f =
2

π2δϵ

π∫
0

{[
1 +

(
1 +

κ

2

)
(ϵ̄+ δϵ cosχ)

]2
−∆2(δϵ+ ϵ̄ cosχ)2

}−1

(δϵ+ ϵ̄ cosχ) dχ,

(B1)

where we introduced δϵ = (ϵx−ϵy)/2 and ϵ̄ = (ϵx+ϵy)/2.
In the limit δϵ ≪ 1, we obtain

f =
2/π{[

1 + (1 + κ
2 )ϵ̄

]2 −∆2ϵ̄2
}3/2

+ O(δϵ2). (B2)
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Assuming ϵ̄ ≪ 1, one obtains the approximation pre-
sented in the main text.

Appendix C: Tensor of thermal spin conductivity

The exact expressions for σαβ defined in (7) are as
follows

σxx = −γkbβ
′2 τrlxω0

64

π∫∫
−π

dqxdqy
(2π)2

sin2 qx

×

{
(Fq +Ω−

q )
[

1
Fq

(
cos2

qy
2 − ϵx

(
1 + κ

2 − Ω+
q

))
+ ϵx

]2
sinh2

[
β′

2 (Fq +Ω−
q )

]
−

(Fq − Ω−
q )

[
1
Fq

(
cos2

qy
2 − ϵx

(
1 + κ

2 − Ω+
q

))
− ϵx

]2
sinh2

[
β′

2 (Fq − Ω−
q )

] }
(C1)

and

σyy = −γkbβ
′2 τrlxω0

64

π∫∫
−π

dqxdqy
(2π)2

sin2 qy

×

{
(Fq +Ω−

q )
[

1
Fq

(
cos2 qx

2 − ϵy
(
1 + κ

2 − Ω+
q

))
− ϵy

]2
sinh2

[
β′

2 (Fq +Ω−
q )

]
−

(Fq − Ω−
q )

[
1
Fq

(
cos2 qx

2 − ϵy
(
1 + κ

2 − Ω+
q

))
+ ϵy

]2
sinh2

[
β′

2 (Fq − Ω−
q )

] }
(C2)

and σxy = σyx = 0.

Appendix D: Numerical simulations of the
Heisenberg checkerboard

We consider a square lattice with lattice constant a0.
Each node is characterized by a magnetic moment mi,
and index i defines the position of magnetic moment
on the lattice with size N1 × N2. The dynamics of the
magnetic system is governed by the stochastic Landau–
Lifshitz equations

dmi

dt
= − γ

1 + α2
[1 + αmi×]mi ×Heff

i ,

Heff
i = − 1

µs

∂H

∂mi
+Hth

i ,

(D1)

where α is a Gilbert damping parameter, H is defined
in (1), and Hth

i is a stochastic thermal field given by

Hth
i (t) =

√
2Dζi (t) =

√
2
αkbT

γµs
ζi (t) , (D2)

where the magnitude is given by the fluctuation-
dissipation theorem and ζi is white noise, such that the
ensemble average and variance of the thermal field ful-

fill ⟨Hth
iα (t)⟩ = 0 and

〈
Hth

iα (0)H
th
jβ (t)

〉
= 2Dδijδαβδ(t),

respectively. To achieve these properties in an imple-
mentation, the vectors ζi can each be created from three
independent standard normally distributed random val-
ues at every time step. Note also that in time-integration
schemes, to fulfill the fluctuation-dissipation relation, the
thermal field needs to be normalized by the time step
with a factor 1/

√
δt.

To evolve a magnetic system in time according to
equation (D1) we used Heun’s method for temperature-
induced effects [20–22], and a fourth-order Runge-Kutta
method in other cases. During the integration process,
the condition |mi(t)| = 1 is controlled.

1. Simulation of spinwaves

To simulate spinwaves we considered a system with a
size of N1×N2 = 500×500 magnetic moments. The sim-
ulations are carried out in two steps. In the first step, we
simulate the dynamics of the system in the external mag-
netic field Bi = B0 sinc (2π k ·Ri) sinc [2πω0 (t− t0)],
where t0 = tsim/2 is a center of temporal part of field pro-
file and H0 is an amplitude of the applied field. The sim-
ulations are performed in the low damping regime with
α = 10−3.

In the second step we performed a space-time trans-
form for the complex-valued parameter mx

i (t) + i my
i (t).

The resulting eigenfrequencies are plotted in Fig. 2.

2. Simulation of temperature-induced effects

Here we consider a system with a size of N1 ×
N2 = 1000 × 1000 magnetic moments. In the simu-
lations, we consider the temperature in the range T ∈
[0.15; 0.55] ℏω0/kb. The simulations were performed for
a low damping regime with α = 10−3 for a long time
scale with αtω0 ≫ 1. The averaged perpendicular net
magnetization and Néel vectors are presented in Figs. 3
and 5, respectively. Note that the averaged in-plane com-
ponents of the net magnetization vanish.

Appendix E: Continuous model and the
strain-induced ferrimagnetism

In the discrete Hamiltonian (1), we perform the Taylor
expansion mν(Rn + δR) ≈ mν(Rn) + (δR)α∂αmν +
1
2 (δR)α(δR)β∂

2
αβmν and proceed from the summation

to integration in the way
∑

Rn
(. . . ) → a−2

0

∫
(. . . )dxdy.

The continuous approximation of (1) obtained in this
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FIG. 5. Temperature dependence of perpendicular compo-
nent of Néel vector nz is shown for ϵx = −ϵy = 0.1 and for
two different anisotropy values. Symbols correspond to the
results of numerical simulations.

way is H =
∫

H dxdy with density

H =
1

a20

[
4J m1 ·m2 + J̃y|m1|2 + J̃x|m2|2

]
− J ∂αm1 · ∂αm2 −

J̃y
2
|∂ym1|2 −

J̃x
2
|∂xm2|2

− 1

a20

∑
ν=1,2

(Km2
νz +Bµsmνz).

(E1)

In terms of the Néel n = 1
2 (m1−m2) and magnetization

m = 1
2 (m1 +m2) vectors, we present (E1) in form

H ≈Hhom +Aαβ∂αn · ∂βn+ Ãαβ∂αn · ∂βm

− 2

a20
(Kn2z +Bµsmz).

(E2)

Here [Aαβ ] = diag(J − 1
2 J̃x, J − 1

2 J̃y), and [Ãαβ ] =

diag(J̃x,−J̃y), and we neglected quadratic in m terms
except the homogeneous exchange contribution

Hhom =
1

a20

[
− agl|n|2 +

bgl
2

|n|4

+ 4J |m|2 − 2(J̃x − J̃y)n ·m
]
.

(E3)

Here agl = 4J−J̃x−J̃y > 0 and additionally we introduce
the nonlinear Ginzburg-Landau term with bgl > 0 which
stabilizes the length of the Néel order parameter. Note
that |m1| ̸= |m2| if J̃x ̸= J̃y, and therefore n ·m ̸= 0 in

general case. In the leading order in J̃α the minimization
of Hhom with respect to n and m results in

m =
ϵx − ϵy

4
n, |n| ≈

√
agl
bgl

, (E4)

where ϵα = J̃α/J . The corresponding magnetic moment
density is M = ηfm(ϵx − ϵy) where ηfm = µs|n|/(2a20)
is the piezomagnetic coupling constant which originates
from the strain-induced ferrimagnetism. In contrast to
ηfm, the fluctuations related piezomagnetic constant η
does not depend on µs, see Fig. 3. This is a conse-
quence of the fact that magnetic moment of a magnon
±γℏ does not depend on µs. As a result, for materials
with µs ≪ µb, we expect that η ≫ ηfm in the limit of
high temperatures T ≲ Tn. In this temperature regime,
η has the highest value while |n| decreases leading also
to the additional decrease of ηfm.

[1] L. Šmejkal, R. González-Hernández, T. Jungwirth, and
J. Sinova, Crystal time-reversal symmetry breaking and
spontaneous hall effect in collinear antiferromagnets, Sci-
ence Advances 6, eaaz8809 (2020).
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