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Defect Image Sample Generation With Diffusion
Prior for Steel Surface Defect Recognition

Yichun Tai, Kun Yang, Tao Peng, Zhenzhen Huang, and Zhijiang Zhang

Abstract—The task of steel surface defect recognition is
an industrial problem with great industry values. The data
insufficiency is the major challenge in training a robust de-
fect recognition network. Existing methods have investigated
to enlarge the dataset by generating samples with generative
models. However, their generation quality is still limited by the
insufficiency of defect image samples. To this end, we propose
Stable Surface Defect Generation (StableSDG), which transfers
the vast generation distribution embedded in Stable Diffusion
model for steel surface defect image generation. To tackle with
the distinctive distribution gap between steel surface images
and generated images of the diffusion model, we propose two
processes. First, we align the distribution by adapting parameters
of the diffusion model, adopted both in the token embedding
space and network parameter space. Besides, in the genera-
tion process, we propose image-oriented generation rather than
from pure Gaussian noises. We conduct extensive experiments
on steel surface defect dataset, demonstrating state-of-the-art
performance on generating high-quality samples and training
recognition models, and both designed processes are significant
for the performance.

Note to Practitioners—This article introduces StableSDG, a
method that generates realistic defect images even with limited
data. It overcomes the shortcomings of current deep learning
approaches that need large datasets to train from scratch.
Our solution is to adapt a text-to-image diffusion model for
defect generation. The proposed strategy involves two processes:
training to adapt token embeddings and model parameters, and
generation from partially perturbed defect images. The results
show enhanced generation quality and improved accuracy for
recognition models trained on the expanded dataset. StableSDG
can be practically applied to efficiently enlarge a defect dataset,
even when starting with a small amount of data.

Index Terms—Text-to-image diffusion, data expansion, deep
learning, textual inversion, low-rank adaptation, defect image
generation, steel surface defect recognition.

I. INTRODUCTION

STeel surface defect recognition aims at categorizing im-
perfections found on steel products. This practice plays a

vital role in enhancing the quality of these products [1]. Tradi-
tional techniques, which require manual inspections for regular
evaluations of structural and functional necessities, are not just
time-consuming but also require significant manpower [2].

Contrarily, Automated Visual Inspection (AVI) provides
distinct benefits regarding accuracy and effectiveness. Among
existing methods for defect recognition in industrial manu-
facturing [3]–[5], deep learning techniques are increasingly
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prevalent [6]–[8]. These methods recognize defects with a
neural network, which learns the pattern of defects from a
collection of defect samples and their corresponding labels
in an end-to-end process. Unfortunately, because defects do
not occur on a predictable schedule, it often ends up with
a shortage of images for network training. This can make it
more difficult for the neural networks to work effectively.

To tackle this problem, a straightforward solution is to
expand the defect dataset. This can be done by creating more
samples using generative models [9]–[15]. Niu et al. [10] pro-
pose surface defect-generation adversarial network (SDGAN)
including two generators and four discriminators, to generate
defect samples from defect-free images. Zhang et al. [13]
design Defect-GAN with the compositional layer-based ar-
chitecture, to achieve the generation and removal of defects
on surface images. Inspired by the principle of image-to-
image translation, Zhao et al. [11] design transP2P including
transformer and U-Net, the former focuses on the global
features perception, while the latter can better extract local
detailed features, so as to transform defect-free images into
defect images. However, training these generative models from
scratch is challenging when the image samples are insufficient,
which often leads to undesired patterns in the generated
samples.

Recently, text-to-image generative models [16]–[21] have
demonstrated impressive capabilities. They are embedded with
vast image distribution, and can generate samples with high
levels of fidelity and diversity. One such open-source model,
Stable Diffusion [22], enables many powerful downstream ap-
plications through its efficient latent diffusion approach [23]–
[25]. To further improve the generation fidelity to the content
provided in a few reference images, existing methods have
explored how to inject the shared concept in the reference
images to the diffusion model for such customized genera-
tion [26]–[30]. Chen et al. [30] first propose full-parameter
adaptation to fit the diffusion model to the provided images. In
order to alleviate the catastrophic forgetting when the number
of references is limited, Han et al. [28] propose to introduce
limited trainable parameters to the diffusion model through
SVG decomposition, such as to align with the provided images
while avoiding over-fitting. Chen et al. [29] introduce an
image-conditioned adapter to preserve the concept feature in
the provided images without network parameter optimization.
Despite that these methods can also generate high-fidelity
samples with limited data resource, their generated content has
a high intersection with the original generation distribution,
which has a distinctive gap with the defect image distribution.
As a result, using Stable Diffusion to directly generate steel
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surface defects is ineffective and could negatively impact clas-
sifier training by introducing low-quality data. In this paper,
we propose StableSDG, which leverages the strong generative
capabilities of Stable Diffusion model to generate defective
image samples. To adapt the power of Stable Diffusion for
generating high-quality steel surface defect data effectively,
we propose the following pipeline that includes generator
adaptation and data generation processes:

In the process of generator adaptation, rather than full-
parameter adaptation, we use a combination of Textual Inver-
sion [26] and low-rank adaptation [31] to align the diffusion
model with the distribution of defective images with limited
parameter change. In the process of data generation, rather
than generating from pure Gaussian noise, we propose to
start the process from partially perturbed dataset samples.
Our proposed pipeline is shown to be effective in generating
defective image samples with limited data, achieving state-of-
the-art performance in producing high-quality samples, and
improving the performance of the defect recognition model.

In conclusion, our contributions are described as follows:
• To tackle the scarcity of defect image samples, we

propose to employ the powerful Stable Diffusion model
for steel surface defect generation. To our knowledge,
this is the first time that text-to-image diffusion prior is
employed for industrial image generation.

• An effective pipeline StableSDG is proposed to adapt the
text-to-image generative network for generating defect
images with a large distribution gap. It composes of
efficient adapting of network in both token embedding
and network parameter space during training, and also a
generation scheme from image-oriented initialization.

• We conduct extensive experiments to demonstrate that
StableSDG can generate defect images with higher fi-
delity than existing methods. Besides, it can effectively
expand the defect dataset and substantially improve the
accuracy by around 10% on the task of continuous casting
billet surface defect recognition.

The rest of this paper is organized as follows. In Section II,
we review the related work in defect image generation and
recognition, and the existing effort that implementing Stable
Diffusion prior to customized generation. In Section III, we
present the strategies composed in StableSDG to generate de-
fect images using the Stable Diffusion prior. In Section IV, we
conduct experiments to evaluate the quality of the generated
defect images, and validate the effectiveness for improving the
performance of the recognition model. Section V summarizes
our work.

II. RELATED WORK

In this section, we discuss the existing work related to defect
image generation and recognition. We also cover the advance-
ments in using the text-to-image diffusion prior for specified
generation task provided with limited reference images.

A. Defect Image Generation and Recognition

The unpredictable occurrence of defects results in insuffi-
cient training data, making it very challenging to train a robust

defect recognition model. To address this, existing methods
can be categorized into two approaches: 1) developing al-
gorithms to effectively train recognition models with limited
data [32]–[34] and 2) generating additional samples to expand
the dataset for training the recognition model [10]–[15].

To improve the performance through the training algorithm,
Song et al. [32] design a dynamic weighting module for dis-
criminate features extraction, and a covariance metric module
for similarity measurement. Wang et al. [34] propose to pre-
train the model with unlabeled data to learn effective image
representation, then fine-tune with labeled data. In addition to
recognizing the defect in the images, there are also methods
designed to locate the defect in the images [35]–[37].

For defect dataset expansion, traditional approaches typi-
cally involve simulating defects through digital image process-
ing or artificially introducing defects into defect-free work-
pieces [38]–[40]. However, these methods can only create rel-
atively straightforward defects with minimal diversity require-
ments, often resulting in significant wastage and increased
costs. Thanks to the excellent image generation performance
of deep learning, data expansion becomes easily achievable
by utilizing random variables sampled from known distribu-
tions. The basic generative models involve Variational au-
toencoders (VAEs) [41] and Generative Adversarial Networks
(GANs) [42]. Then the models [43]–[45] derived from it, show
satisfactory generative ability and have been widely used in
general image generation tasks. Based on these variations,
several methods have been proposed for defect generation
tasks. For example, Yun et al. [9] propose a conditional CVAE,
its input to the decoder is the encoding of the defect label
concatenated with latent variable, so as to generate images
for each type of defect, while GAN-based defect generation
methods usually generate defect samples from defect-free
images. SDGAN [10] contains two generators and four dis-
criminators to expand the commutator cylinder surface defect
image dataset by using a large number of defect-free images
from industrial sites. Zhang et al. [13] design Defect-GAN
with the compositional layer-based architecture, to achieve the
generation and removal of defects on surface images. Inspired
by the principle of image-to-image translation, Zhao et al. [11]
introduce transP2P combining transformer and U-Net, the for-
mer focuses on the global features perception, while the latter
can better extract local detailed features, so as to transform
defect-free images into defect images. Duan et al. [14] transfer
the model pre-trained on defect-free images to the defect
images to produce reasonable defect masks and accordingly
manipulate the features within the masked regions. Yang et
al. [46] train a denoising diffusion probabilistic model [47]
from scratch to generate data for fault diagnosis. Furthermore,
some methods [12], [15] are proposed to control regions and
strength of generated defects.

These methods all require training models from scratch
with a vast collection of images. However, due to constraints
in industrial settings, like intricate lighting conditions and
noise interference, collecting a comprehensive set of defect-
free or defect samples is difficult. Motivated by the text-to-
image diffusion model being embedded with a wide image
distribution, we explore the use of text-to-image priors as a
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Real Image Fake Image generated by Stable Diffusion

Fig. 1. The images generated by Stable Diffusion model [22] with the prompt
”steel surface defect”.

solution to defect image generation with limited available data.

B. Customized Generation with Text-to-image Prior

Text-to-image generators [18]–[21] based on diffusion mod-
els [47], [48] show the high capacity in high-fidelity generation
given diverse and abstract textual descriptions. One of the most
notable examples is Stable Diffusion model [22], which excels
in generating images with low computation cost. However,
these generators cannot be tailored to individual preferences.
Users are confined to the concepts the network has been
trained on. Considering the generation of defect images, when
the term ”steel surface defect” is inputted as a prompt, the
images generated by the Stable Diffusion model miss the
intricate textures and significantly differ from the steel surface
defect images obtained from actual environments, as illustrated
in Fig. 1. To facilitate customized image generation, one
could modify the Stable Diffusion model by incorporating
new images into it. Yet, adapting the entire model with just
a handful of images can significantly disrupt the learning
process. The network may rapidly overfit to these new images,
losing the broad array of concepts it was initially trained on.
As a result, there is a need for a regulated adaptation method
that enables the introduction of new concepts into the pre-
trained model without compromising its original knowledge
base.

A technique known as Textual Inversion [26] has been
introduced, which focuses on learning a new token embedding
using a small number of training examples and a prompt
describing an unfamiliar concept. Zhang et al. [49] introduce
a spatial regularization approach aimed at balancing attention
among composed concepts. Cai et al. [50] address the inter-
ference of unrelated information by utilizing multiple tokens
for image representation, mitigating its impact on the target
concept. Additionally, Kumari et al. [51] achieve joint training
for multiple concepts. However, the effectiveness of these
methods is constrained by the limited number of parameters
that can be trained within the token embedding. Consequently,
the generative capabilities of the model are not fully enhanced.
Another method for customizing Stable Diffusion, named
DreamBooth [27], aims to maintain the integrity of the original
knowledge by retraining the model with a combination of
original generated images and the new target images. The
process of learning the entire generative model for each new
concept introduced is not only expensive but also carries the
risk of the model becoming too finely tuned to the new images.
This overfitting can lead to negative consequences, such as
catastrophic forgetting. In order to address these concerns,

Training
Dataset

Defect
Generation

Quality
Evaluation

Training Dataset
after Expansion

Generated
Dataset

Defect
Recognition

Test
Dataset

Real Image Fake Image Real and Fake Image

Fig. 2. The overall pipeline, including defect generation, quality evaluation,
and defect recognition. The dotted arrow indicates the quality evaluation is
iteratively conducted until achieves the optimal hyperparameters, which are
then used to construct generated dataset.

Chen et al. [52] introduce apprenticeship learning to Text-
to-Image generation, while the single apprentice model needs
to be trained on a large amount of data. It should be noted
that this method may not be suitable in situations where
there is limited availability of data. In terms of adapting large
pre-trained models, low-rank adaptation [31] is proposed to
update a small set of parameters that can significantly influence
the behavior of the model, avoiding the overfitting when
adding new capabilities. This approach allows for a targeted
modification of the function of model while leveraging the
rich representations learned during its initial extensive training
phase. Nevertheless, the content produced by these adaptive
methods frequently shows substantial overlap with the original
generative distribution, and high-quality generative results may
not be achievable when the target image significantly deviates
from the original generative distribution.

It should be noted that, to the best of our knowledge, this
is the first instance where we have successfully preserved pre-
existing knowledge while injecting new defect concepts into
the Stable Diffusion model, even in the face of a distinctive
distribution disparity between steel surface images and gener-
ated images of the diffusion model. When faced with a scarcity
of available images, our approach is capable of generating
defect images with high fidelity. By using our model to expand
the defect dataset, the performance of recognition models has
seen a substantial enhancement.

III. PROPOSED METHOD

In this section, we introduce our method to implement
the Stable Diffusion prior for expanding the dataset, under
limited data resource. Specifically, we implement the Stable
Diffusion model [22] as the diffusion prior, which performs
the diffusion in the latent space instead of image space,
and is wildly used for image generation tasks [26]–[30]. We
conduct our proposed StableSDG, which is composed of two
processes, for generating the images of each defect category.
Through iterative quality evaluation, we tune hyperparameters
to achieve optimal image generation. With the best hyper-
parameters, we generate high-quality images to expand the
dataset. The generated images of each defect category along
with the ground truth images are collected to train the defect
recognition model. The overall pipeline is shown in Fig. 2.
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Fig. 3. Overview of StableSDG. In the process of generator adaptation (Section III-B1), given the prompt y (i.e., “A photo of <unknown>”) and the defect
images x as input, we first optimize only the token embedding vd corresponding to the defect concept. Following this, we adapt the trainable matrices within
the attention layers of both the text encoder and the U-net, using the previously optimized v∗d . Next, we introduce image-oriented generation (Section III-B2)
to produce defect samples, which are then utilized to train a defect recognition classifier (Section III-D).

A. Preliminary

The diffusion model [47] is a class of generative models
that learn the data distribution through a process of stepwise
noise addition and subsequent recovery of the initial data. For
the task of text-to-image generation, Stable Diffusion [22] is
wildly adopted, for its effective training and generation via
conducting the diffusion and denoising process in the low-
dimensional latent space. At its core, Stable Diffusion com-
bines an autoencoder with a text-conditioned latent diffusion
model. In this section, we will explore the key components
of Stable Diffusion, from its basic autoencoder and latent
diffusion techniques to the more advanced text-conditioned
latent diffusion.

1) Auto-encoder: Stable Diffusion consists of an encoder
and decoder to transform images to latent codes and vice versa.
The encoder E(·) maps images x ∈ RD into latent codes
z = E(x), where z ∈ RK and K ≪ D. The decoder maps
such latent codes back to images. With sufficient training, it
holds that D(E(x)) ≈ x.

2) Latent Diffusion Model: The latent code z = E(x)
is diffused into a series of increasingly noisy states
z0 = z, z1, ..., zT . Each noisy state zt follows the marginal
distribution that q(zt|z) = N

(
αtz, σ

2
t I

)
, where zt can be

sampled by zt = αtz+σtϵ, ϵ ∼ N (0, I). Here αt and σt are
scalars that σ2

t + α2
t = 1. For the timesteps t = 0, · · · , T ,

their αt and σt are configured such that as t → T , the
posterior distribution q(zt|z) approaches a normal distribution.
For the generation procedure, the model applies a reverse
process to recover the clean latent z0 from the noisy end state
zT ∼ N (0, I). This reverse process can be represented by a
Markov chain pθ (z0) = p (zT )

∏T
t=1 pθ (zt−1 | zt), which is

a product of transition kernel that parameterized by θ. Each
transition kernel pθ (zt−1|zt) is a normal distribution with
mean µθ (zt, t) and variance σ2

t I . Estimating µθ is equivalent
to predicting the noise in zt, and such noise prediction is done
with a neural network ϵθ(·) [47], [48]. In Stable Diffusion,
ϵθ(·) is U-Net [53] that is composed of convolution and
attention operations. Besides, its noise prediction is under the
text guidance, we next explain this in detail.

3) Text-conditioned Latent Diffusion Model: The noise pre-
diction ϵθ(·) in Stable Diffusion is conditioned on the textual
description, a.k.a. text prompt y. To utilize this condition,
the text prompt is encoded using CLIP text encoder [54],
which maps strings to low-dimensional token embeddings.
We denote this encoder as τθ(·) = τ rθ (τ

n
θ (·)), it composes

of a tokenizer τnθ (·) followed by a Transformer network [55]
τ rθ (·), where we denote their pre-trained parameter sets as θ.
In detail, the words in the string y are tokenized into the
token embeddings v ∈ RL×C , via v = τnθ (y), where L is the
token embedding length and C is the feature dimension. These
token embeddings are then converted into a text embedding
via τ rθ (v) ∈ RC . The noise prediction is thus formulated as
ϵ̂ = ϵθ(zt; τθ(y), t) = ϵθ(zt; τ

r
θ (τ

n
θ (y)), t), which takes the

timestep t and the encoded text prompt τθ(y) = τ rθ (τ
n
θ (y))

as conditions. With a dataset of text-image pairs (x, y) ∼ S
and the pre-trained auto-encoder, the training objective for the
network ϵθ is the following loss function:

Ldiff = Et,ϵ,x,z=E(x)

[
∥ϵθ (zt; τ rθ (τnθ (y)), t)− ϵ∥22

]
, (1)

which takes the expectation of Mean Squared Error over the
text-image pairs (x, y) ∼ S, noise ϵ ∼ N (0, I), and timestep
t ∼ {1, · · · , T}. In terms of the conditional generation, on
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Algorithm 1 StableSDG
Input: prompt y, defect images of the single category p(x),
Stable Diffusion ϵθ(zt; τ

r
θ (τ

n
θ (y)), t), guidance scale ωcfg ,

strength s
GENERATOR ADAPTATION
Initialize v = τnθ (y) = [v′, vd]
// Token Embedding Adaptation

While not converge, do:
Sample x ∼ p(x), ϵ ∼ N (0, I), t ∈ {1, . . . , T}
z0 = E(x)
zt = αtz0 + σtϵ
Update vd with ∇vdL = ∥ϵθ(zt; τ rθ (v), t)− ϵ∥22

Denote v∗d as the optimized token embedding
v∗ = [v′, v∗d]
// Network Parameter Adaptation

While not converge, do:
Sample x ∼ p(x), ϵ ∼ N (0, I), t ∈ {1, . . . , T}
z0 = E(x)
zt = αtz0 + σtϵ
Update θ with ∇θL = ∥ϵθ(zt; τ rθ (v∗), t)− ϵ∥22

Denote θ∗ as the optimized network parameter
DATA GENERATION
// Image-oriented Generation

Sample x ∼ p(x), ϵ ∼ N (0, I)
T

′
= sT

zT ′ = αT ′E(x) + σT ′ ϵ
for i = T

′
to 1 do

ϵ̂ = ϵθ∗(zt; t) + ωcfg [ϵθ∗(zt; τ
r
θ∗ (v∗) , t)− ϵθ∗(zt; t)]

ϵ ∼ N (0, I)
zi−1 = αi−1

zi−σiϵ̂
αi

+ σiϵ
end for
Output x = D(z0)

top of the transition kernel mentioned in the previous section,
diffusion models balance the fidelity and diversity of this
conditional generation using classifier-free guidance [56]:

ϵ̂ = ϵθ(zt; t) + ωcfg [ϵθ (zt; τ
r
θ (τ

n
θ (y)), t)− ϵθ (zt; t)] , (2)

where ϵθ (zt; t) is the prediction of noise without text guid-
ance, and ωcfg is a scalar that adjusts the influence of the
condition on the generative process. Generating images in Sta-
ble Diffusion is concluded as iterating zt−1 = αt−1

zt−σtϵ̂
αt

+
σtϵ [47], which starts from pure Gaussian zT and ends in z0
that can be decoded to image via x = D(z0).

B. StableSDG

To adapt the power full Stable Diffusion for generating
high-quality steel surface defect data, we propose StableSDG,
which includes two processes, i.e. generator adaptation and
data generation. Fig. 3 represents the overview of our method,
and the details are shown in Algorithm 1. Next we present the
two processes in detail.

1) Generator Adaptation: This process adapts Stable Diffu-
sion to generate images of steel surface defects, which deviates
significantly from the model’s original image distribution. We
propose the following two strategies in this process.

Token Embedding Adaptation. The discrepancy between
the defect images from production collection and the images
generated by the Stable Diffusion model, as indicated in Fig. 1,
partially stems from an inaccurate text prompt. This can be
enhanced by having the text prompt y better represent steel
surface defect images. We adopt the strategy proposed by [26],
which optimizes the token embeddings v = τnθ (y) as they are
differentiable. Specifically, consider y is written as A photo
of <unknown>, its v is a sequence of token embeddings, i.e.
v = [v1, · · · , vL] , v1, · · · , vL ∈ RC , we use the notation vd to
index the part of embeddings in this sequence that correspond
to the sub-string of <unknown>, which refers to the specific
defect concept. In this case, we can denote v′ as the sequence
of other token embeddings and v as [v′, vd]. We optimize vd
via:

v∗d=argmin
vd

Et,ϵ,x,z=E(x),v=[v′,vd]

[
∥ϵθ(zt;τ rθ (v),t)−ϵ∥22

]
, (3)

which minimizes the training loss as in Equation 1 and takes
the expectation over a specific category of defect images x
(e.g. crazing, inclusion), diffusion timesteps t and noise ϵ. We
denote the full token embeddings after the optimization as
v∗ = [v′, v∗d], which is used for the following adaptation.

Network Parameter Adaptation. Given that optimization
within the token embedding space alone may bring with
limited improvement on the fidelity of the generated content,
further enhancement can be achieved through adaptation on
the network parameters. However, since the Stable Diffusion
model comprises billions of parameters, compared with the
limited amount of defect images, attempting to fine-tune the
entire network parameters, as done in [27], would lead to
over-fitting. We fine-tune the model through low-rank adap-
tation [31], which allows for constrained parameter change.
For the weight of each dense layer W0 ∈ Rd×k, it conducts
parameter adaptation by imposing a low-rank decomposition:

W0 +∆W = W0 +BA, (4)

where ∆W is the change in weights, and is represented by
the product of two matrices, B ∈ Rd×r and A ∈ Rr×k. Here,
the rank r is significantly smaller than the minimum of d and
k. As a result, the number of parameters for adaptation is
significantly reduced from d × k to (d + k) × r. In practice,
we set r = 1. Matrix A is initialized following a Gaussian
distribution, and matrix B is initialized to zero, which ensures
that ∆W = BA = 0 at the start of training. Throughout
the training process, A and B are adjusted while W0 remains
static. As shown in Fig. 3, such low-rank adaptation is con-
ducted for all the attention layers [55] in the CLIP text encoder
τ rθ (·) and the U-net ϵθ(·), by adapting their original parameter
sets from θ to θ∗. Both ϵθ(·) and τ rθ (·) are fine-tuned using
the following objective function:

θ∗ = argmin
θ

Et,ϵ,x,z=E(x)

[
∥ϵθ (zt; τ rθ (v∗), t)− ϵ∥22

]
. (5)

This approach facilitates adaptation of the model with a much
lower risk of over-fitting, because of the drastically reduced
parameter space.
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TABLE I
THE HYPERPARAMETERS OF IMAGE-ORIENTED GENERATION. ωcfg AND s
ARE SCALING FACTOR AND DENOISING STRENGTH, RESPECTIVELY. THE

DEFECT CATEGORIES ARE DETAILED IN IV-A.

NEU CCBSD
Cr In Pa PS RS Sc Inc Ind Ox SG

s 0.2 0.9 0.4 0.5 0.1 0.5 0.5 0.2 0.6 0.5
ωcfg 2 9 6 3 8 7 5 7 3 4

2) Data Generation: To enhance the quality of defect im-
age generation with the adapted Stable Diffusion, we introduce
the following strategy.

Image-oriented Generation. Based on the token embed-
dings v∗ and the network parameter θ∗, we generate the latent
code z0 from half-perturbed code zT ′ = αT ′E(x) + σT ′ ϵ,
where T

′
= sT denotes the decreased maximum degree of

noise diffusion, and s ∈ (0, 1) is the denoising strength. The
scalar s controls the similarity between the generated image
D(z0) and the original image x. The smaller the value, the
higher the similarity. The image-oriented generation can be
represented as pθ∗ (z0) = p (zT ′ )

∏T
′

t=1 pθ∗ (zt−1 | zt). With
z0 ∼ pθ∗(z0), the generated image is D(z0).

C. Quality Evaluation
To improve the quality of generated defect images, we

iteratively adjust the model hyperparameters based on the
Fréchet Inception Distance (FID) evaluation metric [57]. FID
measures the similarity between real and generated image
distributions through

FID = ∥µr − µg∥2 +Tr (Cr + Cg − 2 (CrCg))
1/2

, (6)

where µr and µg are the mean feature vectors for the real and
generated images, respectively. Cr and Cg are the covariance
matrices for the feature vectors of the real and generated
images. We adjust the guidance scale ωcfg and strength s
of each defect category for lower FID scores. The final
hyperparameters of image-oriented generation are detailed in
Table I.

D. Defect Recognition
After the quality evaluation, we can obtain the optimal

distribution of the generated defect dataset pθ∗(x). And then,
recognition models [58]–[62] are trained on the expanded
defect dataset. The size of the input defect image is 200 ×
200 × 3. The training objective for the recognition network
R(·) is to minimize the cross-entropy loss function:

Lcls = Ep(c|x)[− log p̂(c | x)], (7)

where p (c | x) is the empirical distribution of the training sets,
and p̂ (c | x) is the predicted distribution from the R(·). The
image x is sampled from the combination of the original defect
dataset and generated defect images.

IV. EXPERIMENT

In this section, we first introduce the experimental settings
(IV-A), and then validate the effectiveness of StableSDG with

Fig. 4. The illustration of defect categories in CCBSD.

TABLE II
FID SCORES OF GENERATED IMAGES WITH DIFFERENT STAGES OF

PROPOSED METHOD SHOWN IN ALGORITHM 1.

Generator Adaptation Data Generation
FID Scores ↓

Token Emb. Network Para. Image-oriented
✓ 245.35
✓ ✓ 138.19

✓ 110.38
✓ ✓ 70.56

✓ ✓ 106.52
✓ ✓ ✓ 64.49

Full-parameter adaptation
111.61

✓ 70.96

the ablation study (IV-B). To verify the superiority of the
proposed method, we evaluate the generated image quality and
the performance of the recognition models on the Northeastern
University surface defect database [63] (IV-C), and the contin-
uous casting billet surface defect dataset (IV-D) respectively.

A. Experimental Settings

Datasets. We conduct experiments on the Northeastern
University surface defect database (NEU) [63], an open-source
steel surface defect dataset. It consists of six typical surface
defects of hot-rolled steel strip, including Crazing (Cr), Inclu-
sion (In), Patches (Pa), Pitted Surface (PS), Rolled-in Scale
(RS) and Scratches (Sc). Each category has 300 grayscale
defect samples with 200 × 200 resolution. To verify the
performance of the proposed method in practical application,
we build the continuous casting billet surface defect dataset
(CCBSD). Following the prior art on the process the steel
images from industrial production [63], we convert them to
grayscale followed by binarization, so as to get the region of
interest, i.e., the region where the continuous casting billet is
located. Subsequently, the image is segmented into multiple
sub-images with a 1:1 aspect ratio, each being resized to a
resolution of 200 × 200 pixels. In order to minimize the
possibility of misrecognition, we adopt human annotators to
generate the ground truth labels. Due to the insufficiency of
defect images, the constructed initial dataset only contains 200
samples per class. The dataset will be made publicly available.
Fig. 4 shows common surface defects of continuous casting
billet such as inclusion (Inc), indentation (Ind), oxidation (Ox)
and slag groove (SG).

Implementations. For data generation, we set up bench-
marks on NEU and CCBSD datasets, and compare with
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Fig. 5. Intermediate results of StableSDG for various defect categories.

TABLE III
FID SCORES OF GENERATED IMAGES WITH DIFFERENT PROMPT y. TAKE

THE DEFECT CATEGORY ”PA” IN NEU AS AN EXAMPLE.

Prompt y FID Scores ↓
”A photo of defect” 65.56

”A photo of patches” 68.17
”A photo of <unknown>” 64.60

existing state-of-the-art methods, i.e. DCGAN [43], Style-
GAN3 [44], DDIM [48], Textual Inversion [26], Dream-
Booth [27], and Yang et al. [46]. Our StableSDG is based on
Stable Diffusion v1.5 [64]. We conduct training with Adam
optimizer [65] and the batch size of 4. Both the generator
adaptation and the data generation processes run for 1,000
iterations. The learning rates for both stages are 5e-4 and
1e-4, respectively. For the baseline methods, we adhere to
their official implementations and tune the hyperparameters to
ensure the best possible performance. Each model is utilized to
generate 1,000 images per defect category. For classifier train-
ing, we use data augmentation, i.e. including rotating within
[−10◦,+10◦] and random flipping along the horizontal and
vertical axes. We conduct a thorough experiment with various
classifiers, i.e. VGG [59], ResNet [60], SqueezeNet [61] and
DenseNet [62]. We train these networks with Adam optimizer,
the learning rate of 1e-4, batch size of 32, select the best-
performing networks based on their validation performance
and evaluate on the test sets. All experiments are conducted
with 1 NVIDIA V100 GPU.

B. Ablation Study

We conduct ablation studies on NEU to observe the impact
of different components and identify the best configuration and
hyperparameters for our proposed method.

FI
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Fig. 6. FID scores and trainable parameters across various LoRA ranks r.

TABLE IV
FID SCORES OF GENERATED IMAGES WITH DIFFERENT GUIDANCE SCALE
ωcfg AND STRENGTH s. TAKE THE DEFECT CATEGORY ”PA” IN NEU AS

AN EXAMPLE.

Guidance Scale ωcfg

3 4 5 6 7

Strength s

0.3 112.02 103.54 97.42 94.09 94.56
0.4 97.95 93.12 90.73 89.69 90.51
0.5 99.93 94.31 93.34 94.92 97.68
0.6 99.60 96.88 94.83 97.71 97.20
0.7 99.56 95.02 93.28 90.04 95.87

Impact of Multiple Stages. To assess the efficacy of our
proposed method with the three stages, i.e. token embedding
adaption, network parameter adaptation and image-oriented
generation, we conduct an evaluation of the quality of images
generated with these stages. From Table II, we can find
that, 1) omitting any stage of our proposed StableSDG leads
to a deterioration in image quality, thereby confirming the
importance of each stage in the process; 2) compared with
full-parameter adaptation, i.e., re-training the Stable Diffusion
model on the limited defect image collection [27], our method
yields improved generation quality. This improvement stems
from our effective adaptation to the data distribution of steel
surface defects, reducing the deterioration usually caused
by full-parameter fine-tuning and catastrophic forgetting. We
also present intermediate results of StableSDG through its
three stages and across various defect categories in CCBSD,
as illustrated in Fig. 5. The model incrementally generates
samples that closely resemble real defect images.

Impact of the Prompt. Different text prompts y within the
text-to-image diffusion prior might influence generation qual-
ity. We explore several text prompts and quantitatively evaluate
their effects in Table III. For each prompt, we optimize
the token embedding related to the defect category, such as
defect, patches, and <unknown>, during the token embedding
adaptation stage. The results show that using <unknown> for
new defect categories results in lower FID scores, suggesting
that <unknown> as an initialization helps avoid local optima
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Fig. 7. Qualitative comparison of StableSDG with other models on NEU. Artifacts are highlighted in red boxes, with details in Section IV-C.

and performs better than more specific prompts like defect,
which yield poorer outcomes.

Impact of the LoRA Rank. Figure 6 shows how the
LoRA rank r influences both the generation quality and the
count of trainable parameters. While increasing r leads to a
higher number of trainable parameters, it does not significantly
improve performance. Consequently, we have chosen to set r

to 1 in our study.

Impact of Guidance Scale and Strength. Additionally,
we underscore the importance of the guidance scale ωcfg

and strength s as the hyper-parameters for image-oriented
generation. As detailed in Table IV, we can see about 20%
performance enhancement between the highest and lowest
metrics, indicating that good hyperparameters bring significant
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TABLE V
QUANTITATIVE COMPARISON AMONG VARIOUS IMAGE GENERATIVE

MODELS TRAINED ON NEU.

FID Scores ↓
Cr In Pa PS RS Sc

DCGAN (CCC 18 [43]) 169.83 230.78 153.15 300.34 182.07 291.41
StyleGAN3 (NIPS 21 [44]) 97.12 209.54 189.30 148.97 111.57 221.25

DDIM (ICLR 21 [48]) 151.51 83.26 108.71 139.12 216.07 105.43
Textual Inversion (ICLR 23 [26]) 246.53 166.09 173.13 139.13 278.76 151.64

DreamBooth (CVPR 23 [27]) 79.64 173.97 133.84 116.04 136.93 119.49
Yang et al. (TII 24 [46]) 68.54 78.07 91.86 75.22 82.41 96.99

StableSDG (Ours) 46.90 72.26 64.60 59.33 58.01 85.84
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Fig. 8. Comparison of generative capacity and training efficiency of Sta-
bleSDG with other image generative models on NEU.

improvement in the quality of generated images.

C. Performance on NEU

Generation quality. We evaluate StableSDG for defect
image generation on NEU dataset. Table V shows the image
generation performance, as measured by FID, in six categories
of the dataset. The qualitative comparisons are also shown in
Fig. 7. Regions with abnormal textures or anomalous patterns
in the generated images are marked in red boxes. It is observed
that images generated by DCGAN contain some abnormal
textures within the backgrounds, notably within the ”In”,
”PS” and ”Sc” defect categories. The outputs from Style-
GAN3 closely resemble the original images overall. However,
there are noticeable anomalous patterns in specific regions
across most of the defect categories. The results of Textual
Inversion exhibit distinct bright and dark stripes, whereas the
backgrounds of images generated by DreamBooth are more
uniform, though they still have areas that are not entirely
satisfactory. Regarding DDIM, the images it generates are
somewhat lacking in detail, and there is a noticeable inconsis-
tency in brightness, particularly in the images from the defect
category ”Pa”, as is the case with Yang et al. In contrast, our
StableSDG achieves the lowest FID in each defect category
compared with other methods. Additionally, our method incurs
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Fig. 9. Recognition performance before and after data substitution. The
symbol α denotes the proportion of real defect images utilized for training.
The blue bar shows performance with all real images used, the orange bar
indicates performance with only a subset of real images, and the green bar
reflects performance improvements when (1− α) percent of the real images
are substituted with generated ones.

the lowest training cost, as illustrated in Fig. 8, showing it
requires the least amount of training time (21.60 minutes).

Data substitution. To further prove that our generated
data and collected samples have high distribution overlap, we
compare the recognition performance of the models trained
on the datasets before and after the data substitution. The
NEU dataset is divided into three portions: the training subset,
the validation subset, and the testing sets, with the division
being in the ratio of 8:1:1. Subsequently, we proceed to train
the recognition model using only a fraction of the training
subset. Let α represent the fraction of the original real images
that are used for training, with values set to 0.8, 0.6, and
0.4, respectively. We use SqueezeNet [61] as the recognition
model, and the evaluation results are shown in Fig. 9. It is
not difficult to find that, a reduction in α corresponds to fewer
training samples, which causes a corresponding decrease in the
accuracy of the recognition model. This trend highlights the
importance of the amount of training data for the performance
of the recognition model. Then we supplement the training
data with generated samples to match the original quantity of
training subset, the performance of the recognition model can
achieve the comparable accuracy to that obtained when using
the complete original training subset, proving the effectiveness
of the defect samples generated by the proposed method.

Dataset expansion. Considering that replacing the real
samples in the training subset with generated ones brings
the result nearly equal to the original accuracy, we introduce
an additional 1,000 generated samples to the training subset
within the α = 0.4 configuration (where each class has 96
real images) to determine if there can be further enhancements
to the recognition performance of model. This experiment is
conducted with multiple off-the-shelf network architectures,
i.e., AlexNet [58], VGG [59], ResNet [60], SqueezeNet [61]
and DenseNet [62]. According to Table VI, there are con-
sistent performance improvement when the generated images
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TABLE VI
QUANTITATIVE EXPERIMENTAL RESULTS FOR

DEFECT RECOGNITION ON NEU.

Networks Expansion Methods Accuracy(%)

AlexNet

None 81.67
DCGAN 92.22

StyleGAN3 94.44
DDIM 96.67

Textual Inversion 91.67
DreamBooth 92.22
Yang et al. 96.11
StableSDG 98.33

VGG

None 86.67
DCGAN 89.44

StyleGAN3 93.89
DDIM 96.67

Textual Inversion 90.00
DreamBooth 95.56
Yang et al. 97.78
StableSDG 98.33

ResNet

None 77.78
DCGAN 87.22

StyleGAN3 91.67
DDIM 95.00

Textual Inversion 92.78
DreamBooth 93.89
Yang et al. 95.56
StableSDG 97.78

SqueezeNet

None 62.78
DCGAN 79.44

StyleGAN3 93.89
DDIM 96.11

Textual Inversion 90.56
DreamBooth 91.11
Yang et al. 96.11
StableSDG 97.78

DenseNet

None 73.33
DCGAN 80.00

StyleGAN3 91.67
DDIM 92.78

Textual Inversion 85.56
DreamBooth 92.78
Yang et al. 92.78
StableSDG 94.44

are introduced by all methods, showing that expanding the
defect dataset with generative model is significantly helpful
for higher defect recognition accuracy. When compared with
other data expansion methods, StableSDG exhibits a superior
ability to enhance the performance of steel surface defect
recognition. The accuracy of the five recognition models is,
on average, improved by approximately 20%, demonstrating
that our method can expand the dataset more effectively.

D. Performance on CCBSD

Generation quality. To further evaluate StableSDG, we
also conduct experiments on CCBSD. The dataset contains
four categories of defects with 200 samples per category,
140 for training, 30 for validation, and 30 for testing. The

TABLE VII
QUANTITATIVE COMPARISON AMONG VARIOUS IMAGE GENERATIVE

MODELS TRAINED ON CCBSD.

FID Scores ↓
Inclusion Indentation Oxidation Slag Groove

DCGAN (CCC 18 [43]) 328.58 270.33 277.52 242.12
StyleGAN3 (NIPS 21 [44]) 167.06 157.19 99.08 175.54

DDIM (ICLR 21 [48]) 166.76 176.14 81.60 113.24
Textual Inversion (ICLR 23 [26]) 257.31 146.15 282.77 202.93

DreamBooth (CVPR 23 [27]) 206.12 137.22 130.85 235.51
Yang et al. (TII 24 [46]) 165.78 161.19 102.54 127.23

StableSDG (Ours) 112.68 72.18 71.79 97.13

Fig. 10. Qualitative comparison of StableSDG with other models on CCBSD.

quantitative comparison of defect image generation is shown
in Table VII. It shows that StableSDG can achieve lower
FID scores. For qualitative comparison, Fig. 10 represents the
images generated by StableSDG and comparisons with other
generative methods. We can see that the samples generated by
DCGAN show artificial textures in the background. Textual
Inversion and DreamBooth have enhanced the quality of
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TABLE VIII
QUANTITATIVE EXPERIMENTAL RESULTS FOR

DEFECT RECOGNITION ON CCBSD.

Networks Expansion Methods Accuracy(%)

AlexNet

None 82.50
DCGAN 92.50

StyleGAN3 95.00
DDIM 94.17

Textual Inversion 93.33
DreamBooth 93.33
Yang et al. 95.83
StableSDG 98.33

VGG

None 80.00
DCGAN 93.33

StyleGAN3 95.83
DDIM 96.67

Textual Inversion 94.17
DreamBooth 95.00
Yang et al. 95.83
StableSDG 98.33

ResNet

None 88.33
DCGAN 95.00

StyleGAN3 96.67
DDIM 95.83

Textual Inversion 95.83
DreamBooth 96.67
Yang et al. 96.67
StableSDG 99.17

SqueezeNet

None 85.00
DCGAN 88.33

StyleGAN3 89.17
DDIM 89.17

Textual Inversion 87.50
DreamBooth 90.00
Yang et al. 90.00
StableSDG 91.67

DenseNet

None 90.00
DCGAN 93.33

StyleGAN3 97.50
DDIM 98.33

Textual Inversion 93.33
DreamBooth 95.00
Yang et al. 96.67
StableSDG 99.17

their generated images, though some atypical patterns persist.
Meanwhile, the samples from StyleGAN3, DDIM, and Yang et
al. appear visually similar to real images but suffer from some
blurriness. In contrast, the samples generated by StableSDG
display well-defined defect characteristics. This indicates the
superiority of our method in data expansion of continuous
casting billet surface defect samples.

Dataset expansion. For each defect category, 1,000 samples
are generated by different methods respectively. Then we
adopt the aforementioned recognition models to perform the
continuous casting billet surface defect recognition on the
dataset before and after expansion. The experimental results
are shown in Table VIII. It can be found that, the accuracy of
recognition models is higher after adding generated samples
to the original training set. Compared to the other expansion

methods, StableSDG has greater advantages in improving the
performance of continuous casting billet surface defect recog-
nition. The five recognition models experience an average
accuracy improvement of approximately 12%, which confirms
the effectiveness of our method in expanding the dataset. This
enhancement also enables the recognition models to be further
utilized for recognizing surface defects in continuous casting
billets within industrial manufacturing settings.

V. CONCLUSION

The scarcity of data samples presents a significant challenge
for deploying deep learning techniques in the recognition
of steel surface defects. To address this problem, we intro-
duce StableSDG, which blends text-to-image prior for defect
image generation. During the process of generator adapta-
tion, StableSDG adapts and modifies within both the token
embedding space and the network parameters space. When
generating data, it generates samples from image-oriented
initialization, instead of starting from pure Gaussian noises.
The experimental results on NEU and CCBSD verify that the
proposed method can generate defect images with high fidelity,
which can greatly improve the performance of recognition
models. However, the proposed method is limited to text
prompts, resulting in image generation that is stochastic and
lacks direction. In the future, we plan to explore using other
modalities as conditions, e.g., spatial conditions, to generate
images adhering to the spatial conditioning input. In doing so,
we can generate defect sample images that include bounding
box information, which can be leveraged to improve the
performance of neural networks in defect detection tasks.
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