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Full-dimensional KAM torus with frequency-preserving in

infinite-dimensional Hamiltonian systems

Zhicheng Tong ‡, Yong Li §

Abstract

In this paper, we present two infinite-dimensional KAM theorems with frequency-preserving
for a nonresonant frequency of Diophantine type or even weaker. To be more precise, under a
nondegenerate condition for an infinite-dimensional Hamiltonian system, we prove the persis-
tence of a full-dimensional KAM torus with the specified frequency independent of any spectral
asymptotics, by advantage of the generating function method. This appears to be the first
Kolmogorov type result in the infinite-dimensional context. As a direct application, we pro-
vide a positive answer to Bourgain’s conjecture: full-dimensional invariant tori for 1D nonlinear
Schrödinger equations do exist.
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1 Introduction

As Kuksin and Pöschel pointed out in [20], there was no genuine infinite-dimensional KAM theory
yet to establish the persistence of infinite-dimensional rotational tori for Hamiltonians in PDEs.
Regrettably, this continues to be the situation up to the present day. As a consequence, for various
PDEs, one has to construct compatible KAM theorems to obtain full-dimensional (almost periodic)
invariant tori, or finite-dimensional (quasi-periodic) invariant tori such as lower-dimensional ones in
Melnikov’s persistence. Furthermore, in the context of infinite-dimensional Hamiltonian systems,
the requirement of the bidirectional Lipschitz property of the frequency mapping with respect
to parameters, along with the consideration of spectral asymptotics, may introduce additional
difficulties and potentially limit the scope of applicability.

The motivation of this paper is to develop abstract KAM theorems that eliminate the require-
ment for spectral asymptotics (thus allowing for direct application to infinite-dimensional Hamilto-
nian lattice systems), and are applicable to certain PDEs with nondegeneracy, such as the nonlinear
Schrödinger equation subject to periodic boundary conditions. Specifically, our invariant KAM
torus is full-dimensional, and fills the gap in the Kolmogorov-type result (frequency-preserving
KAM) in the infinite-dimensional setting, a perspective that, to the best of our knowledge, has not
been explored in the literature.

It is worth noting that preserving the specified nonresonant frequency associated with the full-
dimensional torus is a challenging task that necessitates certain nondegeneracy. In contrast to the
truncation method commonly used in KAM theory, we employ the generating function approach
based on the nondegenerate Hessian of the Hamiltonian system, ensuring that the frequency re-
mains unchanged throughout the KAM iteration process, in the spirit of Kolmogorov and Salamon.
Furthermore, tackling the equilibrium among small divisors, regularity (analyticity in our context)
and the spatial structure also presents additional challenges.

Before presenting our KAM results, let us first recall the definition for the infinite-dimensional
Diophantine frequency initialed by Bourgain [9]. For more details on this aspect, see also Biasco
el al [6] and Montalto and Procesi [21] for instance.

Definition 1.1 (Infinite-dimensional Diophantine frequency). For 0 < γ < 1 and µ > 1, the
infinite-dimensional Diophantine nonresonance for ω ∈ R

Z is defined as

|ω · ℓ| > γ
∏

j∈Z

1

(1 + |ℓj |µ〈j〉µ)
, ∀ℓ ∈ Z

Z with 0 <
∑

j∈Z

|ℓj | < +∞,

where 〈j〉 := max {1, |j|} for j ∈ Z.

To show the universality of the infinite-dimensional Diophantine nonresonance, let us consider
the Diophantine set Dγ,µ defined by

Dγ,µ :=
{

ω ∈ [1, 2]Z : ω is an infinite-dimensional Diophantine frequency as in Definition 1.1
}

.

Fortunately, following Bourgain [9] and also Biasco et al [6], one has the estimate of probability
measure: there exists a positive constant C(µ) only depending on µ such that

P

(

[1, 2]Z\Dγ,µ

)

6 C (µ) γ = O (γ) , as γ → 0+.

2



Therefore, the Diophantine nonresonance is indeed universal (or typical) in a probability measure

theoretical sense, i.e., P
(

[1, 2]Z\⋃0<γ<1 Dγ,µ

)

= 0. Nevertheless, throughout the present paper,

we do not require the range restriction [1, 2]Z of ω, and hence we might assume 0 6= ω ∈ R
Z (also

in Dγ,µ).
Next, let us first provide some basic notations on spaces endowed with specific norms. For

σ > 0 and η > 2, define the infinite-dimensional thickened torus as

T
∞
σ :=

{

x = (xj)j∈Z : xj ∈ C, Re xj ∈ T, |Imxj | 6 σ〈j〉η
}

. (1.1)

Based on the thickened torus T∞
σ , we define the space of analytic functions u : T∞

σ → C as

G (T∞
σ ) :=






u (x) =

∑

ℓ∈Z∞
∗

û (ℓ) ei〈ℓ,x〉 : ‖u‖σ :=
∑

ℓ∈Z∞
∗

|û (ℓ)| eσ|ℓ|η < +∞






, (1.2)

provided with the set of infinite integer vectors with finite support:

Z
∞
∗ :=






ℓ ∈ Z

Z : |ℓ|η :=
∑

j∈Z

〈j〉η |ℓj | < +∞






.

One observes that for u ∈ G (T∞
σ ), the radius of analyticity of each angle xj increases as |j| → +∞.

Such spatial structures, such as the partition of the set Z
Z, effectively ensure the feasibility of

Fourier analysis in the infinite-dimensional context. We also denote by G0 (T
∞
σ ) the space for

analytic functions with vanishing Fourier constants:

G0 (T
∞
σ ) := {u : u ∈ G (T∞

σ ) , û0 = 0} .

Moreover, for ς > 0, denote by

Dr :=






(yj)j∈Z : yj ∈ C, ‖y‖∗ς :=

∑

j∈Z

|yj| 〈j〉ς < r







the complex neighborhood of 0 ∈ C
Z, and denote by

Dσ,r := T
∞
σ × Dr ⊆

(

C
Z/(2πZZ)

)

× C
Z

the complex neighborhood of T∞ × {0}. Hereafter, we always regard T
∞ as T

Z throughout this
paper. For an analytic function u = u (x, y) on Dσ,r, we define its weighted norm as

‖u (x, y)‖σ,r :=
∑

ℓ∈Z∞
∗

sup
y∈Dr

|uℓ| eσ|ℓ|η , uℓ := ûℓ (y) .

Similarly, for a matrix valued function A (x, y) =
(
A (i,j) (x, y)

)

i,j∈Z
with A (i,j) (x, y) ∈ C on Dσ,r,

we define its weighted norms as

‖A (x, y)‖σ := sup
i,j∈Z

∥
∥
∥A

(i,j) (x, y)
∥
∥
∥
σ
, ‖A (x, y)‖σ,r := sup

i,j∈Z

∥
∥
∥
∥
∥
sup
y∈Dr

∣
∣
∣A

(i,j) (x, y)
∣
∣
∣

∥
∥
∥
∥
∥
σ

.
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1.1 KAM with infinite-dimensional Diophantine frequency-preserving

With the previous preparation, we are now able to present for infinite-dimensional Hamiltonian
systems the following KAM persistence theorem regarding full-dimensional invariant tori with
frequency-preserving.

Theorem 1.1 (KAM via infinite-dimensional Diophantine nonresonance). Set 0 < σ < 1, η > 2
and assume that the frequency ω ∈ R

Z satisfies the infinite-dimensional Diophantine condition in
Definition 1.1. Suppose that H (x, y) is a real analytic Hamiltonian function defined on Dσ,σ, with
period 1 in the variables (xj)j∈Z, and satisfies

∥
∥
∥
∥
H (x, 0)−

∫

T∞

H (ξ, 0) dξ

∥
∥
∥
∥
σ

6 e−K , (1.3)

‖Hy (x, 0)− ω‖σ 6 e−Kσ−2/η
, (1.4)

‖Hyy (x, y)− Q (x, y)‖σ,σ 6 σ−1e−K , (1.5)

where K > 0 is a sufficiently large constant independent of σ, and Q (x, y) ∈ C
Z×Z is a Hermite

and analytic matrix valued function on Dσ,σ satisfying

‖Q (x, y)‖σ,σ 6M,

∥
∥
∥
∥
∥

(∫

T∞

Q (x, 0) dx

)−1
∥
∥
∥
∥
∥
CZ→T∞

σ

6M (1.6)

with M > 0 independent of σ. Then there exists a real analytic symplectic transformation z = φ (ζ)
of the form

z = (x, y) , ζ = (ξ, κ) , x = u (ξ) , y = v (ξ) + u⊤ξ (ξ)
−1κ,

mapping Dσ/4,σ/4 into Dσ,σ, such that u (ξ) − ξ and v (ξ) are of period 1 in all variables, and the
Hamiltonian function W = H ◦ φ satisfies

Wξ (ξ, 0) = 0, Wκ (ξ, 0) = ω.

Moreover, φ and W satisfy the estimates:

‖φ (ζ)− ζ‖σ/4,σ/4 6
2σ2/κ

K
, ‖φζ (ζ)− I‖σ/4,σ/4 6

8σ2/κ−1

K
,

and

‖Wκκ (ζ)− Q (ζ)‖σ/4,σ/4 6
2σ2/κ−1

K
.

Remark 1.1. The full-dimensional (almost periodic in time) KAM torus obtained in (Kolmogorov
type) Theorem 1.1 keeps the specified frequency ω ∈ R

Z in the unperturbed Hamiltonian system
unchanged, due to the nondegeneracy in (1.6), thereby filling the gap in the literature regarding
frequency-preserving results in the infinite-dimensional context. This differs significantly from [27],
in which the authors investigated linearization with frequency-drifting of C∞ perturbed vector fields
over T

∞, following the same spatial structure.
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Remark 1.2. The frequency ω ∈ R
Z does not require any spectral asymptotics (e.g., Bourgain [9],

and Kuksin and Pöschel [20]), and the components can also tend to infinity, as long as they do not
exceed polynomials of finite order. That is, there exists some fixed ς > 0 such that ωj = O(|j|ς) (to
ensure that 〈ω, y〉 is well defined, see Section 2 for instance).

Remark 1.3. The analytic unperturbed system might be non-integrable, a distinction from the
majority of known results. To be more precise, the coefficient of the 2-order term in H (x, y) with
respect to y could depend on x, e.g.,

H (x, y) = 〈ω, y〉+ 〈A (x) y, y〉
︸ ︷︷ ︸

the non-integrable unperturbed system

+ · · ·
︸︷︷︸

the perturbation

.

The same is true of Theorem 1.2.

1.2 KAM with infinite-dimensional weak Diophantine frequency-preserving

Since the generating function method is essentially Newtonian, the resulting convergence rate is
often super-exponential. Building on this key observation, we are able to establish in this section
a weaker form of KAM persistence for infinite-dimensional Hamiltonian systems: full-dimensional
KAM tori with weak Diophantine nonresonance-preserving.

As usual, in infinite-dimensional settings, the small divisors–the hardest part to deal with in
KAM theory, arise from the following analytic homological equation

ω · ∂xf = g, x ∈ T
∞
σ , (1.7)

where f ∈ G0 (T
∞
σ ), g ∈ G0

(
T
∞
σ+ρ

)
with σ, ρ > 0, and ω ∈ R

Z is a fixed nonresonant frequency. To
characterize the effect of nonresonance, we introduce the following control function.

Definition 1.2 (Control function). A monotonically decreasing continuous function E : R+ → R
+

is called a control function, if there exists a positive sequence {δm}m∈N such that

∞∑

m=0

δm < +∞,

∞∑

m=0

E
−1
(
e2

mδm
)
< +∞. (1.8)

We will explain the two boundedness conditions for the control function in the subsequent
comment (1). As can be seen later, using the control function to directly deal with the homological
equation via general nonresonance beyond Diophantine can simplify the analysis of the KAM
iteration.

Definition 1.3 (Infinite-dimensional weak Diophantine frequency). A frequency ω ∈ R
Z is called to

satisfy the weak Diophantine condition, if the unique solution f ∈ G0 (T
∞
σ ) in (1.7) can be estimated

as
‖f‖σ 6 E (ρ) ‖g‖σ+ρ,

where E is a control function in Definition 1.2 independent of f and g.

With the above notions, our second main result reads:
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Theorem 1.2 (KAM via infinite-dimensional weak Diophantine nonresonance). Let σ > 0 be
sufficiently large, and assume that the frequency ω ∈ R

Z satisfies the infinite-dimensional weak
Diophantine condition in Definition 1.3. Then there exists ǫ∗ > 0 such that the followings hold for
every 0 < ǫ < ǫ∗. Suppose that H (x, y) is a real analytic Hamiltonian function defined on Dσ,σ,
with period 1 in the variables (xj)j∈Z, and satisfies

∥
∥
∥
∥
H (x, 0)−

∫

T∞

H (ξ, 0) dξ

∥
∥
∥
∥
σ

, ‖Hy (x, 0)− ω‖σ , ‖Hyy (x, y)− Q (x, y)‖σ,σ 6 ǫ, (1.9)

where Q (x, y) ∈ C
Z×Z is a Hermite and analytic matrix valued function on Dσ,σ satisfying

‖Q (x, y)‖σ,σ 6M,

∥
∥
∥
∥
∥

(∫

T∞

Q (x, 0) dx

)−1
∥
∥
∥
∥
∥
CZ→T∞

σ

6M

with some M > 0. Then there exists a real analytic symplectic transformation z = φ (ζ) of the form

z = (x, y) , ζ = (ξ, κ) , x = u (ξ) , y = v (ξ) + u⊤ξ (ξ)
−1κ,

mapping Dσ/4,σ/4 into Dσ,σ, such that u (ξ) − ξ and v (ξ) are of period 1 in all variables, and the
Hamiltonian function W = H ◦ φ satisfies

Wξ (ξ, 0) = 0, Wκ (ξ, 0) = ω.

Moreover, φ and W satisfy the estimates

‖φ (ζ)− ζ‖σ/4,σ/4 , ‖φζ (ζ)− I‖σ/4,σ/4 , ‖Wκκ (ζ)− Q (ζ)‖σ/4,σ/4 6 ǫ. (1.10)

Let us make some further comments.

(1) The two boundedness conditions in (1.8) ensure the existence of the contraction sequence
{σ̃ν}ν∈N and the convergence of the KAM error {ε̃ν}ν∈N (refer to Section 4 for the definition)
through the KAM iteration, respectively. However, in non-analytic cases (such as Gevrey
regularity or lower C∞ regularity–note that at least C∞ regularity is required for the infinite-
dimensional case, due to historical counterexamples), these boundedness conditions need to
change accordingly. We also refer to a completely different technique in [27], where the
authors obtained equilibrium conditions regarding regularity and nonresonance without the
action variable y, in the sense of preserving full-dimensional invariant tori.

(2) By utilizing the weak Diophantine condition, we are able to achieve the frequency-preserving
KAM persistence in Theorem 1.2. However, it would be difficult to explicitly characterize the
smallness (1.9) and (1.10) (e.g., in terms of σ), which differs somewhat from the quantitative
estimates provided in Theorem 1.1.

(3) We show that our infinite-dimensional weak Diophantine condition in Definition 1.3 is indeed
a ‘weaker’ one. Consider the Diophantine case in Dγ,µ for the homological equation (1.7),
and note (1.15) in Lemma 1.4. It is evident to derive

exp

(
τ

ρ1/η
log

(
τ

ρ

))

= exp

(

τ

ρ1/η
· 1

1− 1/η
log

(
τ

ρ

)1−1/η
)

6



6 exp

(

τ

ρ1/η
· 1

1− 1/η

(
τ

ρ

)1−1/η
)

6 exp

(
τ̃

ρ

)

− 1 := E (ρ)

with some τ̃ > 0 independent of ρ. Then E −1 (ρ) = τ̃
log(1+ρ) . By choosing δm := 2−mm2 with

m ∈ N, one verifies that
∑∞

m=0 δm < +∞, and

∞∑

m=0

E
−1
(
e2

mδm
)
=

∞∑

m=0

E
−1
(
em

2)
=

∞∑

m=0

τ̃

log
(
1 + em2

) 6 τ̃

(

1

log 2
+

∞∑

m=1

1

m2

)

< +∞,

i.e., both conditions in (1.8) are satisfied. It turns out that our weak Diophantine nonreso-
nance covers the classical Diophantine case.

(4) We further investigate the relationship between arithmetical properties of frequencies and
homological equations. Assume that the nonresonant frequency ω ∈ R

N satisfies

|〈k, ω〉| > γ

R
(
|k|η
) , 0 6= k ∈ Z

∞
∗ , (1.11)

where R : [1,+∞) → R
+ is an approximation function, i.e., it is continuous, strictly mono-

tonically increasing, and tends to positive infinity. We further assume that

sup
x>1

{
R (x) e−ρx

}
6 E (ρ) (1.12)

with properties of the control function E (ρ) given in (1.8). Then the frequency ω ∈ R
N

above satisfies the weak Diophantine condition, due to the estimate for the unique solution
f ∈ G0 (T

∞
σ ) of the homological equation (1.7) (which is somewhat looser than the style

demonstrated in [26] in the finite-dimensional context):

‖f‖σ =
∑

06=k∈Z∞
∗

∣
∣
∣f̂k

∣
∣
∣ eσ|k|η =

∑

06=k∈Z∞
∗

|ĝk|
|〈k, ω〉|e

σ|k|η 6 γ−1
∑

06=k∈Z∞
∗

|ĝk|R
(
|k|η
)
eσ|k|η

6 γ−1
E (ρ)

∑

06=k∈Z∞
∗

|ĝk| e(σ+ρ)|k|η = γ−1
E (ρ) ‖g‖σ+ρ.

Here we give a critical case. For λ > 0, consider the approximation function

R (x) ∼ exp

(

x

(log (1 + x))1+λ

)

, x→ +∞. (1.13)

Then we can take the control function as

E (ρ) = exp
(

exp
(

ρ−λ̃
))

for some λ̃ ∈ (0, 1), see details from Lemma 5.2. Let δm = (m+ 1)−2 for m ∈ N, then it
follows that

∑∞
m=0 δm < +∞, and

∞∑

m=0

E
−1
(
e2

mδm
)
6 C

∑

m

1

(log log (e2mδm))
1/λ̃

6 C
∑

m

1

m1/λ̃
< +∞

7



due to 1/λ̃ ∈ (1,+∞). This implies that all frequencies ω satisfying (1.11) along with (1.13)
are of the weak Diophantine type. As we will see later, (1.11) and (1.13) with λ = 1 will play
a crucial role in proving the existence of the nonresonant frequency in Bourgain’s conjecture
(it might be difficult to determine if the classical infinite-dimensional Diophantine condition
in Definition 1.1 can achieve the goal in our approach).

(5) In fact, one can further weaken the approximation function (1.13) in comment (4) to

R (x) ∼ exp








x

(log x) · · · (log · · · log
︸ ︷︷ ︸

ℓ

x)1+λ







, x→ +∞ (1.14)

with arbitrary 2 6 ℓ ∈ N
+ and λ > 0, hence the control function E (ρ) in (1.12) can be taken

as

E (ρ) = exp









exp









1

ρ (log ρ−1) · · · (log · · · log
︸ ︷︷ ︸

ℓ−1

ρ−1)1+λ̄

















, ρ→ 0+

for some λ̄ ∈ (0, 1) in a similar way. Under this setting, one also verifies that the frequencies
satisfying (1.11) along with (1.14) still exhibit weak Diophantine characteristics. It is worth
mentioning that this is almost optimal in the finite-dimensional case, as the parameter λ > 0
in (1.14) cannot degenerate to 0, otherwise the optimal (at least for the 2-dimensional case)
Bruno condition for the KAM persistence will no longer be satisfied, i.e.,

∫ +∞

1

logR (x)

x2
dx > C

∫ +∞

M

1

x(log x) · · · (log · · · log x)dx = +∞.

(6) As previously memtioned, our weak Diophantine frequency-preserving eliminates the need for
enforcing bidirectional Lipschitz properties of the frequency mapping with respect to param-
eters, as well as the consideration of spectral asymptotics, when applying our KAM Theorem
1.2 to PDEs (such as Lattice systems, NLS, etc.), which is significant. However, to ensure
the invertibility of the matrix in our KAM normal form (also understood as an infinite-
dimensional Kolmogorov’s normal form), an explicit nondegenerate Birkhoff normal form for
the specific PDE must be provided, as shown in Section 2, for instance.

(7) Furthermore, in addition to PDEs, our results are still of real physical interest. For example,
Arnaiz [1] directly applied KAM theorems to study semiclassical KAM as well as renormaliza-
tion theorems based on counterterms (or modifying terms), enabling the characterization of
certain semiclassical measures and quantum limits. As a consequence, our infinite-dimensional
KAM Theorems 1.1 and 1.2 would play an important role in further addressing such phys-
ically related problems in the almost periodic sense, as well as in the frequency-preserving
sense.
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1.3 Some preliminary lemmas

Here we provide some basic lemmas without proofs as a foundation. Detailed proofs can be found
in Montalto and Procesi [21] (Lemmas 2.5, 2.6, 2.7, 2.11, respectively), for instance. The first
three aspects, namely the Banach algebra property for the space G (T∞

σ ), the definition of the
Fourier constant, and the Cauchy’s estimate associated with the higher order derivatives, exhibit
similarities to the finite-dimensional case. The final aspect, namely the homological equation via
a Diophantine frequency belonging to Dγ,µ, differs significantly from the finite-dimensional case.
This is due to the finite-dimensional Diophantine nonresonance being characterized by some finite-
order polynomial, and consequently, the coefficient of control in the homological equation there
also exhibits polynomial characteristics (not the exponential type in Lemma 1.4 for the infinite-
dimensional case), as illustrated by Salamon in [25] (refer to Lemma 2).

Lemma 1.1 (The Banach algebra property). Let u, v ∈ G (T∞
σ ), then uv ∈ G (T∞

σ ) and ‖uv‖σ 6

‖u‖σ ‖v‖σ.

Lemma 1.2 (The Fourier constant). Let u ∈ G (T∞
σ ), then there holds

û0 =

∫

T∞

u (x) dx := lim
N→+∞

1

(2π)N

∫

TN

u (x) dx1 · · · dxN .

Lemma 1.3 (The Cauchy’s estimate). Let σ, ρ > 0 and u ∈ G
(
T
∞
σ+ρ

)
. Then for any k ∈ N, the

k-th differential Dk
xu satisfies the following estimate with c (k) > 0 depending only on the order k:

∥
∥
∥Dk

xu
∥
∥
∥
σ
6 c (k) ρ−k ‖u‖σ+ρ .

Lemma 1.4 (The Diophantine homological equation). Let µ, η, σ, ρ > 0 and a Diophantine fre-
quency ω ∈ Dγ,µ be given. Then there exists a constant τ = τ (η, µ) > 0 such that for every
g ∈ G0

(
T
∞
σ+ρ

)
, the homological equation (1.7) admits a unique solution f ∈ G0 (T

∞
σ ), and

‖f‖σ 6 exp

(
τ

ρ1/η
log

(
τ

ρ

))

‖g‖σ+ρ . (1.15)

1.4 Further discussion on the spatial structure

As previously mentioned, certain spatial structures are essential in the infinite-dimensional Hamil-
tonian context. This has given rise to numerous challenges and many open questions. For example,
in the study of the reducibility of a linear Schrödinger equation subject to a small unbounded almost
periodic perturbation on the thickened torus T∞

σ (see (1.1)) with analyticity, as discussed in [21], it is
unknown that whether the analyticity radius there can be weakened, e.g., | Im xj| 6 σ log(1+ 〈j〉)p
with some p ≫ 1 instead of | Imxj | 6 σ〈j〉η , for all j ∈ Z. Furthermore, following the spirit
of Moser, the profound interplay among nonresonance, regularity, and the spatial structure in
infinite-dimensional Hamiltonian systems remains largely unexplored. A recent advancement in
this direction can be attributed to [27], where the authors gave the sharp regularity for Gevrey
and even C∞ infinite-dimensional vector fields, ensuring the preservation of full-dimensional tori.
Notably, the authors observed at times, the spatial structure is not limited to the usual thickened
torus T∞

σ , provided a specific equilibrium condition is satisfied. Here, we briefly demonstrate that a
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similar phenomenon holds true for our KAM theorems, thereby addressing the unresolved problem
in [21] within the abstract infinite-dimensional Hamiltonian framework.

Recall the previous notations for the spatial structure. Let us first modify the thickened torus
T
∞
σ in (1.1) to

T
∞
σ :=

{

x = (xj)j∈Z : xj ∈ C, Rexj ∈ T, |Imxj| 6 σϕ (〈j〉η)
}

,

provided a monotonically increasing function ϕ defined on R
+. Then, we similarly define the

analytic space G (T∞
σ ) on the torus as in (1.2) with the norm of ℓ given by |ℓ|ϕ :=

∑

j∈Z ϕ (〈j〉) |ℓj |. It
is evident to verify that |ℓ|ϕ > |ℓ| :=∑j∈Z |ℓj|, and except for Lemma 1.4 (just for the Diophantine
case), lemmas in Section 1.3 still hold. The only point that needs to be stressed is the definition
of the weighted norm of the action variable y, as this is relatively special in the KAM iteration
process, see Section 3 for details. To be more precise, let ‖y‖∗ι :=

∑

j∈Z |yj|ϕι (〈j〉) for some
ι > 0 if ϕ tends to +∞, and let ‖y‖∗ := supj∈Z |yj| if ϕ is constant (recall that ϕ is monotonically
increasing). The weighted norms for (matrix valued) analytic functions and the infinite-dimensional
weak Diophantine nonresonance can also be defined in a similar way. With the above replacement,
we present the following KAM Theorem 1.3 without proof:

Theorem 1.3. Suppose that the infinite-dimensional setting is replaced by the above, and that the
assumptions in Theorem 1.2 hold. Then the full-dimensional KAM torus with frequency-preserving
survives small perturbations.

The remainder of this paper is organized as follows: in Section 2, we utilize Theorem 1.2 to prove
Bourgain’s conjecture regarding the persistence of full-dimensional invariant tori in 1-dimensional
nonlinear Schrödinger equations subject to periodic boundary conditions, without the presence of
additional frequency parameters arsing from the random Fourier multipliers. We then prove our
main KAM Theorems 1.1 and 1.2 in Sections 3 and 4 by advantage of the generating function
approach instead of the traditional truncation method.

2 Application to Bourgain’s conjecture

Consider the 1-dimensional nonlinear Schrödinger equation (1D NLS for short)

iut − uxx +m0u+ f
(
|u|2
)
u = 0, m0 ∈ R (2.1)

subject to periodic boundary conditions

u (t, x+ 2π) = u (t, x) , (2.2)

where f is a real analytic function in some neighborhood of the origin with f (0) = 0 and f ′ (0) 6= 0.
In what follows, we assume that f ′ (0) = 1 for simplicity without loss of generality. Under these
grounds, we will touch the open problem in [9]: Whether the above 1D NLS exists a full-dimensional
tours (almost periodic solution)? Bourgain [9] obtained full-dimensional tori for the 1D NLS with
random Fourier multipliers which are considered to be as external parameters. Precisely speaking,
consider

iut − uxx + V ∗ u+ εu|u|4 = 0 (2.3)

10



subject to periodic boundary conditions (2.2) in 1D, where the random Fourier multipliers (Vn)n∈Z
are independently chosen in [−1, 1]. The role of (Vn)n∈Z is essential to ensure appropriate non-
resonance properties of the modulated frequencies along the iteration. Related works such as
higher-dimensional NLS have also been well studied, see Berti et al [4], Bourgain [7,8,10], Cong et
al [11], Eliasson and Kuksin [13, 14], Geng et al [17, 18], Procesi et al [24], Zhang and Si [28, 29],
Biasco el al [5] for analytic nonlinearities, and see Berti and Bolle [3], Feola and Procesi [15] and
references therein for finitely differentiable nonlinearities. Similarly, the full-dimensional invariant
tori for wave equations are also well studied, and the substantial work on this aspect can be seen
from Cong and Yuan [12].

However, Bourgain’s conjecture becomes much more difficult in the absence of external param-
eters (random Fourier multipliers). Surprisingly, the difficulties could be overcome by employing
the Birkhoff normal form of order 4 and our infinite-dimensional KAM theorem with frequency-
preserving established before (namely Theorem 1.2).

First, let us revisit Bourgain’s result in [9]. It is worth mentioning that, our KAM theorems avoid
iterative processing of external parameters, so one just needs to find a suitable weak Diophantine
frequency which will remain unchanged, which is the key point. In view of this, Bourgain’s result can
be directly obtained when introducing the random Fourier multipliers (Vn)n∈Z, i.e., (2.3) (subject
to (2.2)) admits a full-dimensional torus by employing our KAM Theorem 1.1. Next, we solve the
harder problem with (2.1) and (2.2) in the absence of random multipliers, and provide a positive
answer to Bourgain’s conjecture: the full-dimensional invariant tori for the 1D NLS do exist.

Theorem 2.1 (Bourgain’s conjecture). The 1D NLS (2.1) subject to periodic boundary conditions
(2.2) admits full-dimensional invariant tori with small amplitude.

Proof. The proof involves two key points: one is the utilization of the Birkhoff normal form of order
4, and the other is the construction of a fixed universal frequency with certain properties related to
homological equations. The latter is to avoid the potential difficulties arising from frequency drift
in the absence of random Fourier multipliers.

Let us first revisit the Birkhoff normal form of the 1D NLS (2.1) subject to (2.2), which were
investigated by Kuksin and Pöschel [20], and also Geng [16]. Consider the Fourier expansion of
u(x, t):

u (x, t) =
1√
2π

∑

n∈Z

qn (t) e
inx.

Then (2.1) subject to (2.2) can be written as

ut = i
∂H

∂ū

with the Hamiltonian function given by

H =

∫ 2π

0

(

|ux|2 +m0|u|2
)

dx+

∫ 2π

0
g
(
|u|2
)
dx. (2.4)

Geng [16] observed that there exists a real analytic, symplectic change of coordinates Γ̄ in a neigh-
borhood of the origin which transforms the Hamiltonian (2.4) into its Birkhoff normal form of order
4, i.e.,

H ◦ Γ̄ =
∑

n∈Z

(
n2 +m0

)
|qn|2 −

1

4π

∑

n∈Z

|qn|4 + · · · . (2.5)
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This becomes more explicit in the Birkhoff normal form presented by Kuksin and Pöschel in [20],
where the second term 1

2

∑

i,j Ḡij |qi|2|qj|2 with some Ḡij uniquely determined, is derived. It is

important to note that the 2-order term − 1
4π

∑

n∈Z |qn|
4 in (2.5) is crucial for the application of

our Theorem 1.2.
For ς > 2, introduce an appropriate (which will be specified later) external parameter ϑ =

(ϑn)n∈Z ∈ Dσ/8 with some σ > 0, as well as the symplectic polar and real coordinates by setting

qn =
√

In + ϑne
iθn , q̄n =

√

In + ϑne
iθn , n ∈ Z.

Then the Hamiltonian (2.5) formally becomes

H̃ =
∑

n∈Z

(
n2 +m0

)
(In + ϑn)−

1

4π

∑

n∈Z

(In + ϑn)
2 + · · ·

= ẽ+
∑

n∈Z

(

n2 +m0 −
1

2π
ϑn

)

In − 1

4π

∑

n∈Z

I2n + · · ·

= ẽ+ 〈ω̃, I〉 − 1

4π
|I|2 + · · · , (2.6)

where H̃ is analytic on Dσ,σ , ẽ is a constant, and

ω̃ = (ω̃n)n∈Z :=

(

n2 +m0 −
1

2π
ϑn

)

n∈Z

.

It is evident that both ẽ and 〈ω̃, I〉 are well defined due to our choice of ϑ ∈ Dσ/8 with ς > 2. For
example,

〈ω̃, I〉 =
∑

n∈Z
ω̃nIn = O

(∑

n∈Z
Inn

2
)

= O
(∑

n∈Z
Inn

ς
)

= O
(
‖I‖∗ς

)
= O (1) .

Next, the most important step is to choose an appropriate ϑ ∈ Dσ/8 such that ω̃ is a weak
Diophantine frequency satisfying (1.11) and (1.13) with λ = 1, i.e., the approximation function is

R (x) = exp
(

x
log2(1+x)

)

. Then E (ρ) = exp
(

exp
(

ρ−λ̃
))

with some λ̃ ∈ (0, 1) can be chosen as the

corresponding control function since {δm}m∈N := {(m+ 1)−2}m∈N ensures (1.8), see comment (4)
for details. In this context,

|〈k, ϑ〉| > γ exp



−
|k|η

log2
(

1 + |k|η
)



 , γ > 0, 0 6= k ∈ Z
∞
∗ ,

and we observe that

γ
∑

06=k∈Z∞
∗

1

|k| exp



−
|k|η

log2
(

1 + |k|η
)



 (2.7)

= γ

∞∑

ν=1

∑

|k|η=ν

1

|k| exp



−
|k|η

log2
(

1 + |k|η
)




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6 γ

∞∑

ν=1

1

ν
exp

(

− ν

log2 (1 + ν)

)

·
∑

|k|η=ν

1

= γ

∞∑

ν=1

1

ν
exp

(

− ν

log2 (1 + ν)

)

·#
{

k : 0 6= k ∈ Z
∞
∗ , |k|η = ν ∈ N

+
}

6 γ

∞∑

ν=1

1

ν
exp

(

− ν

log2 (1 + ν)

)

· Cην
ν1/η (2.8)

= γCη

∞∑

ν=1

exp

(

− ν

log2 (1 + ν)
+ ν1/η log ν − log ν

)

6 γCη

∞∑

ν=1

exp
(

−ν3/4
)

(since η > 2)

= O (γ) , as γ → 0+,

where Lemma 5.3 is used in (2.8). This implies that such parameters with weak nonresonance form
a set of full probability measure in Dσ/8, thereby enabling us to choose ω̃ as a weak Diophantine
type frequency whenever ϑ is selected appropriately. Recalling the Birkhoff normal form (2.6),
one verifies that all conditions in Theorem 1.2 are satisfied in this case. Therefore, we obtain the
full-dimensional torus with frequency-preserving for Bourgain’s conjecture.

Remark 2.1. The approach to dealing with the 1D NLS subject to Dirichlet boundary conditions
remains the same, as the Birkhoff normal form is similar. It is important to note that when the
nonlinearity explicitly depends on the space variable x, there will be non-integrable terms in the
Birkhoff normal form. These non-integrable terms may pose a challenge in proving the existence
of full-dimensional invariant tori, as mentioned in Remark 1 in Geng’s work [16]. However, this
obstacle can be overcome by utilizing our KAM theorems, as the unperturbed systems could be
non-integrable, as shown in Remark 1.3.

Remark 2.2. In contrast to the 1D NLS, Pöschel [23] pointed out that when considering the wave
equation

utt − uxx +mu± u3 = 0

subject to Dirichlet boundary conditions, no complete normal form of order 4 is available due to
asymptotic resonances among the frequencies. Berti et al [2] also observed this fact. Consequently,
we are unable to directly obtain full-dimensional tori for the wave equation by utilizing our KAM
theorems.

3 KAM via infinite-dimensional Diophantine nonresonance: Proof

of Theorem 1.1

Now let us prove Theorem 1.1, and the proof is divided into six steps. Without loss of generality,
we will introduce some universal constants that are independent of the iterative process and may
vary in the context. In particular, if necessary, we will indicate which variables they depend on.
We also emphasize that after balancing spatial structure, regularity, and frequency non-resonance,
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KAM analysis in the infinite-dimensional context (not necessarily dependent on specific PDEs) is
indeed similar to that in the finite-dimensional context. Refer to Pöschel [22], Tong and Li [27] and
references therein for further insights on this aspect.

Step1: For any fixed 2−η < q < 2−1 (2−η + 1), let us define the contraction sequence as

σν :=
1

2
σ (1 + qν) , ν ∈ N.

It is evident to verify σ0 = σ, σ∞ = σ/2 and that

σν − σν+1 =
1

2
σ (1− q) qν , ν ∈ N.

As we will see later, the appropriately selected contraction sequence ensures that our KAM iteration
is super-exponentially convergent.

In order to obtain the desired symplectic and analytic transformations in the KAM iteration,
we construct the following partial differential equations for x ∈ T

∞
σν

in the νth step according to
the generating function method used by Kolmogorov [19] (see also Salamon [25]):

ω · ∂xa (x) =
∫

T∞

H
ν (ξ, 0) dξ − H

ν (x, 0) , (3.1)

ω =

∫

T∞

(
H

ν
y (ξ, 0) + H

ν
yy (ξ, 0) (α+ ax (ξ))

)
dξ, (3.2)

ω · ∂xb (x) = ω − H
ν
y (x, 0)− H

ν
yy (x, 0) (α+ ax (x)) ,

where a(x) = aν(x) and b(x) = bν(x) are 1-periodic in all variables, and α = αν is an infinite-
dimensional constant vector. To shorten notations, we omit the lower corner label ν. It should
be emphasized that, with the nondegeneracy in (1.6), the second one (3.2) (and also the equiv-
alent third one) plays an essential role in preserving the specified frequency of the unperturbed
Hamiltonian system. Without this, the frequency may drift in each step of the KAM iteration.

Let us define the error εν > 0 in the νth step of the KAM iteration to be the smallest number
such that

∥
∥
∥
∥
H

ν (x, 0)−
∫

T∞

H
ν (ξ, 0) dξ

∥
∥
∥
∥
σν

6 εν , (3.3)

∥
∥H

ν
y (x, 0)− ω

∥
∥
σν

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν , (3.4)

and assume that

∥
∥H

ν
yy (x, y)

∥
∥
σν ,σν

6Mν 6M,

∥
∥
∥
∥
∥

(∫

T∞

Hyy (x, 0) dx

)−1
∥
∥
∥
∥
∥
CZ→T∞

σν

6Mν 6M

for a universal constantM > 0. It will be demonstrated that, by advantage of the typical Neumann
series argument, the aforementioned reversibility could be preserved throughout the KAM process
due to the smallness of the perturbation of each step.
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Step2: Define ρj := ((8− j)σν + jσν+1) /8 for 0 6 j 6 4. Then it follows that ρ0 = σν and
ρ4 = (σν + σν+1) /2. We aim to establish the following estimates for a(x) and b(x) derived from
the generating function method:

‖a (x)‖(σν+σν+1)/2
6 exp

(

τ

((σν + σν+1) /2 − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν ,

‖ax‖(σν+σν+1)/2
6 c exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν ,

‖α+ ax (x)‖(σν+σν+1)/2
6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν ,

‖bx (x)‖(σν+σν+1)/2
6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν ,

where c = c (1) > 0 is the constant given in Lemma 1.3, and we could regard it as a universal
constant.

By (3.1) and Lemma 1.4, we have

‖a (x)‖ρ1 6 exp

(

τ

(ρ0 − ρ1)
1/η

log

(
τ

ρ0 − ρ1

))∥
∥
∥
∥
H

ν (x, 0)−
∫

T∞

H
ν (ξ, 0) dξ

∥
∥
∥
∥
ρ0

6 exp

(

81/ητ

(σν − σν+1)
1/η

log

(
8τ

σν − σν+1

))

εν

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν , (3.5)

provided τ = τ (η, µ) > 0 being a universal constant. Therefore, by Lemma 1.3 and (3.5), we obtain

‖ax‖ρ2 6 c(ρ1 − ρ2)
−1 ‖a‖ρ1

6
8c

σν − σν+1
exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

= c exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

)

+ log

(
8

σν − σν+1

))

εν

6 c exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν . (3.6)

Note that by (3.2) we have the following relation
∫

T∞

H
ν
yy (ξ, 0)αdξ =

∫

T∞

(
ω − H

ν
y (ξ, 0)

)
dξ +

∫

T∞

H
ν
yy (ξ, 0) ax (ξ) dξ.

Then we arrive at

‖α‖ρ2 6M
(∥
∥ω − H

ν
y (x, 0)

∥
∥
ρ2

+M ‖ax (x)‖ρ2
)
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6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν , (3.7)

and therefore

‖α+ ax (x)‖ρ2 6 ‖α‖ρ2 + ‖ax (x)‖ρ2 6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν . (3.8)

Further, combining (3.7), (3.8) and Lemma 1.4, we have

‖b (x)‖ρ3 6 exp

(

τ

(ρ2 − ρ3)
1/η

log

(
τ

ρ2 − ρ3

))

∥
∥ω − H

ν
y (x, 0)− H

ν
yy (x, 0) (α+ ax (x))

∥
∥
ρ2

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))(∥
∥ω − H

ν
y (x, 0)

∥
∥
ρ2

+
∥
∥H

ν
yy (x, 0) (α+ ax (x))

∥
∥
ρ2

)

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

· cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν . (3.9)

Finally, by (3.9) and Lemma 1.3, there holds

‖bx (x)‖ρ4 6 c(ρ3 − ρ4)
−1 ‖b (x)‖ρ3

6
8c

σν − σν+1
· cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν . (3.10)

Step3: We have constructed functions by advantage of generating functions

U
ν (x) = 〈α, x〉+ a (x) , V

ν (x) = x+ b (x) .

Next we define the symplectic and analytic transformation as follows:

z = ψν (ζ) , z = (x, y) , ζ = (ξ, κ) ⇔ ξ = x+ b (x) , y = α+ ax (x) + κ+ b⊤x (x)κ.

We will prove that z = ψν (ζ) is well defined, maps (ξ, κ) ∈ Dσν+1,σν+1
into (x, y) ∈ D(σν+1+σν)/2,(σν+1+σν)/2,

and satisfies the following estimates for (ξ, κ) ∈ Dσν+1,σν+1
:

‖ψν (ζ)− ζ‖σν+1,σν+1
6 e−2νKσ−2/η

,
∥
∥ψν

ζ (ζ)− I
∥
∥
σν+1,σν+1

6 e−2νKσ−2/η
,

where K > 0 is a universal constant independent of σ > 0.
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With the estimates of εν in Step5 for convenience, we obtain that

‖x− ξ‖σν
= ‖b (x)‖σν

6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

6 cM exp

(

21/ητ

(σ(1− q) qν)1/η
log

(
2τ

σ (1− q) qν

))

· e−2νKσ−2/η

6 e−2νKσ−2/η+̺νKσ−2/η
6 e−2νKσ−2/η

6
σν − σν+1

8
, (3.11)

here ̺ < 2 is an appropriate constant due to our choice of q, i.e., q > 2−1/η, and

‖bx (x)‖σν
6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

6 e−2νKσ−2/η
6
σν − σν+1

8
.

Therefore, we get

‖x− ξ‖(σν+1+σν)/2
, ‖bx (x)‖(σν+1+σν)/2

6 e−2νKσ−2/η
6
σν − σν+1

8
.

Now let (ξ, κ) ∈ D(3σν+1+σν)/4,(3σν+1+σν)/4 and let x ∈ T
∞
(σν+1+σν)/2

be the unique vector such that

x+ b (x) = ξ, and define
y := α+ ax (x) + κ+ b⊤x (x)κ. (3.12)

With infinite-dimensional Fourier analysis, we could prove that ‖y‖∗ς =
∑

j∈Z |yj| 〈j〉
ς is small with

respect to ν. Recalling (3.12), it suffices to show the smallness of a (namely the smallness of aj
with respect to j and ν). Note that

a (x) = aν (x) = (ω · ∂x)−1

(∫

T∞

H
ν (ξ, 0) dξ − H

ν (x, 0)

)

.

Here (ω · ∂x)−1 is the familiar linear differential operator giving rise to small divisors, see also
comment (4) below Theorem 1.2. Then

‖a‖σν
=

∑

06=k∈Z∞
∗

∣
∣
∣Ĥ

ν
k (0)

∣
∣
∣

|〈k, ω〉| eσν |k|η

admits the estimate in (3.5). Similarly, ax admits a Fourier expansion form with the estimate in
(3.6). Below let us assume η > ς + 2 without loss of generality. Now, with |k|η =

∑

ℓ∈Z 〈ℓ〉η |kℓ| >
〈j〉η |kj | for all j ∈ Z, we obtain for x ∈ T

∞
σν

that

∣
∣
∣(ax)j

∣
∣
∣ 6

∑

06=k∈Z∞
∗

∣
∣
∣Ĥ

ν
k (0)

∣
∣
∣

|〈k, ω〉| |kj |
∣
∣
∣ei〈k,x〉

∣
∣
∣

6
1

〈j〉η
∑

06=k∈Z∞
∗

∣
∣
∣Ĥ

ν
k (0)

∣
∣
∣

|〈k, ω〉| 〈j〉η |kj |
∣
∣
∣
∣
∣
exp

(
∑

s∈Z

ks |Imxs|
)∣
∣
∣
∣
∣
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6
1

〈j〉η
∑

06=k∈Z∞
∗

∣
∣
∣Ĥ

ν
k (0)

∣
∣
∣

|〈k, ω〉| |k|η

∣
∣
∣
∣
∣
exp

(

σ
∑

s∈Z

〈s〉ηks
)∣
∣
∣
∣
∣

=
1

〈j〉η
∑

06=k∈Z∞
∗

∣
∣
∣Ĥ

ν
k (0)

∣
∣
∣

|〈k, ω〉| |k|ηeσ|k|η

6
1

〈j〉η exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν , (3.13)

and this leads to

∑

j∈Z

∣
∣
∣(ax)j

∣
∣
∣ 〈j〉ς 6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν
∑

j∈Z

1

〈j〉η−ς

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

·



εν
∑

j∈Z

1

〈j〉2





6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

, (3.14)

as promised. As to the general case ς > 0, let us choose w ∈ N
+ sufficiently large such that

wη > ς + 2. With the Cauchy’s estimate in the KAM process, we could prove that Dma also
admits the same estimate in (3.6), or a slightly stronger version

∑

06=k∈Z∞
∗

∣
∣
∣Ĥ

ν
k (0)

∣
∣
∣

|〈k, ω〉| |k|mη eσ|k|η 6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν .

This allows us to adjust the leading coefficient in (3.13) to be 〈j〉−wη, in a similar way. Then the

smallness in (3.14) is ensured by
∑

j∈Z 〈j〉
−(wη−ς)

6
∑

j∈Z 〈j〉
−2 < +∞. It should be pointed out

that the analysis of aj (or further yj) in this context is independent of the algebraic property of the
specified frequency ω, therefore it remains valid in Theorem 1.2. We also note that the smallness
of aj could potentially be improved, as whenever kj appears, we have |k|η =

∑

ℓ∈Z 〈ℓ〉η |kℓ| >

〈j〉η |kj | > 〈j〉η, indicating that we only require the estimate for the tail of the Fourier expansion
(namely

∑

|k|η>〈j〉η · · · ). However, we do not further investigate this possibility.

Moreover, by (3.8) and (3.10), we have

‖y − κ‖σν
6 ‖α+ ax (x)‖σν

+
∥
∥
∥b⊤x (x)κ

∥
∥
∥
σν

6 ‖α+ ax (x)‖σν
+ ‖bx (x)‖σν

· |κ|

6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

+ cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν ·
σν + 3σν+1

4
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6 cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

6 e−2νKσ−2/η
. (3.15)

Then, from (3.15), (3.11) and (3.15), we prove that

‖ψν (ζ)− ζ‖σν+1,σν+1
6 ‖ψν (ζ)− ζ‖(3σν+1+σν)/4,(3σν+1+σν)/4

6 ‖x− ξ‖σν
+ ‖y − κ‖σν

6 e−2νKσ−2/η
.

Finally, using similar analysis of (3.11) and applying Lemma 1.3, we have

∥
∥ψν

ζ (ζ)− I
∥
∥
σν+1,σν+1

6
8c

σν − σν+1
‖ψν (ζ)− ζ‖(3σν+1+σν)/4,(3σν+1+σν)/4

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν · e−2νKσ−2/η

6 e−2νKσ−2/η
.

Step4: In view of Step3, let us define the transformed Hamiltonian function H ν+1 := H ν ◦ ψν in
the (ν + 1)th step. Then we aim to establish the induction for εν , i.e., the following inequalities
are satisfied with ν replaced by ν + 1:

∥
∥
∥
∥
H

ν (x, 0)−
∫

T∞

H
ν (ξ, 0) dξ

∥
∥
∥
∥
σν

6 εν ,

∥
∥H

ν
y (x, 0)− ω

∥
∥
σν

6 exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν ,

and
∥
∥H

ν
yy (z)− H

ν
yy (ζ)

∥
∥
σν ,σν

6 σ−1e−2νKσ−2/η
,

provided with a universal constant K > 0 independent of σ > 0, where Q0 := Q and Qν = H ν−1
yy .

Denote z := (x, α+ ax) := ψν (ξ, 0) with ξ ∈ T
∞
σν+1

. Then it follows that (x, y) ∈ D(σν+1+σν)/2,(σν+1+σν)/2.
Firstly, by (3.4), (3.8) and Lemma 5.1, we have

∥
∥
∥
∥
H

ν+1 (ξ, 0)−
∫

T∞

H
ν+1 (χ, 0) dχ

∥
∥
∥
∥
σν+1

6

∥
∥
∥
∥
H

ν+1 (ξ, 0)−
(∫

T∞

H
ν (χ, 0) dχ+ ω · α

)∥
∥
∥
∥
σν

+

∥
∥
∥
∥

∫

T∞

(

H
ν+1 (ζ, 0)−

(∫

T∞

H
ν (χ, 0) dχ+ ω · α

))

dζ

∥
∥
∥
∥
σν

62

∥
∥
∥
∥
H

ν+1 (ξ, 0)−
(∫

T∞

H
ν (χ, 0) dχ+ ω · α

)∥
∥
∥
∥
σν
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=2
∥
∥H

ν+1 (x, α+ ax)− H
ν (x, 0)− ω · ∂xa (x)− ω · α

∥
∥
σν

=2
∥
∥H

ν+1 (x, α+ ax)− H
ν (x, 0)−

〈
H

ν
y (x, 0) , α+ ax

〉
+
〈
H

ν
y (x, 0)− ω,α+ ax

〉∥
∥
σν

62
(∥
∥H

ν+1 (x, α+ ax)− H
ν (x, 0)−

〈
H

ν
y (x, 0) , α+ ax

〉∥
∥
σν

+
∥
∥
〈
H

ν
y (x, 0)− ω,α+ ax

〉∥
∥
σν

)

62
(

M ‖α+ ax‖2σν
+
∥
∥H

ν
y (x, 0)− ω

∥
∥
σν

· ‖α+ ax‖σν

)

62









c2M2 exp

(

2τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

ε2ν

+exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν · cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν









6 exp

(

τ∗

(σν − σν+1)
1/η

log

(
τ∗

σν − σν+1

))

ε2ν ,

where τ∗ = τ∗ (τ, c,M, η, µ) > 0 is a universal constant independent of σ > 0. Recalling (3.3), the
above estimate implies that

εν+1 6 exp

(

τ∗

(σν − σν+1)
1/η

log

(
τ∗

σν − σν+1

))

ε2ν . (3.16)

Secondly, with (3.4), (3.8), (3.10) and Lemma 5.1, we obtain that

∥
∥H

ν+1
y (ξ, 0)− ω

∥
∥
σν+1

=
∥
∥(I+ bx)H

ν
y (x, α+ ax)− ω

∥
∥
σν+1

=

∥
∥
∥
∥
∥
∥
∥






H
ν
y (x, α+ ax)− H

ν
y (x, 0)− H

ν
yy (x, 0) (α+ ax)

+bx
(
H

ν
y (x, α+ ax)− H

ν
y (x, 0)

)

+bx
(
H

ν
y (x, 0)

)
− ω






∥
∥
∥
∥
∥
∥
∥
σν+1

6
∥
∥H

ν
y (x, α + ax)− H

ν
y (x, 0)− H

ν
yy (x, 0) (α+ ax)

∥
∥
σν

+
∥
∥bx

(
H

ν
y (x, α+ ax)− H

ν
y (x, 0)

)∥
∥
σν

+
∥
∥bx

(
H

ν
y (x, 0)

)
− ω

∥
∥
σν

6
M ‖α+ ax‖2σν

σν − ‖α+ ax‖σν

+ ‖bx‖σν
·M ‖α+ ax‖σν

+ ‖bx‖σν
·
∥
∥H

ν
y (x, 0)− ω

∥
∥
σν

6
8c2M3

σν − σν+1
exp

(

2τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

ε2ν

+ cM exp

(

2τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν · cM exp

(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν

+ cM exp

(

2τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν · exp
(

τ

(σν − σν+1)
1/η

log

(
τ

σν − σν+1

))

εν
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6 exp

(

τ∗

(σν − σν+1)
1/η

log

(
τ∗

σν − σν+1

))

ε2ν .

Recalling (3.4), we have

exp

(

τ∗

(σν+1 − σν+2)
1/η

log

(
τ∗

σν+1 − σν+2

))

εν+1 6 exp

(

τ∗

(σν − σν+1)
1/η

log

(
τ∗

σν − σν+1

))

ε2ν ,

which yields that

εν+1 6 exp

(

τ∗

(σν − σν+1)
1/η

log

(
τ∗

σν − σν+1

))

ε2ν , ν ∈ N, (3.17)

i.e., the same as (3.16). We assert that the convergence rate of εν is super-exponential, and the
detailed proof will be given in Step5.

Finally, we have

∥
∥H

ν
yy (z)− H

ν
yy (ζ)

∥
∥
σν ,σν

=

∥
∥
∥
∥

1

2πi

∫

Γ̃

1

λ (λ− 1)
H

ν
yy (ζ + λ (z − ζ)) dλ

∥
∥
∥
∥
σν ,σν

6
M

2π
max

{ ‖x− ξ‖σν

σν − ‖ξ‖σν
− ‖x− ξ‖σν

,
‖y − κ‖σν

σν − ‖κ‖σν
− ‖y − κ‖σν

}

6
εν

σν − σν+1
6

2e−2νKσ−2/η

σ(1− q) qν
6 σ−1e−2νKσ−2/η

, (3.18)

where we use the estimates for εν given in Step5, and the curve Γ̃ is defined as

Γ̃ :=

{

λ ∈ C : |λ| = min

{
σν − ‖ξ‖σν

‖x− ξ‖σν

,
σν − ‖κ‖σν

‖y − κ‖σν

}

> 1

}

.

On the other hand, note that

H
ν+1
yy (ξ, κ) = (I+ bx(x))H

ν
yy (x, y)

(

I+ b⊤x (x)
)

.

Then by (3.10) and the estimates in Step5, we have

∥
∥H

ν+1
yy (ζ)− H

ν
yy (z)

∥
∥
σν+1,σν+1

62 ‖bx (x)‖σν
·
∥
∥H

ν
yy (z)

∥
∥
σν ,σν

+ ‖bx (x)‖2σν
·
∥
∥H

ν
yy (z)

∥
∥
σν ,σν

6e−2νKσ−2/η
. (3.19)

By summing up (3.18) and (3.19) and comparing the order, we arrive at

∥
∥H

ν
yy (x, y)− Q

ν (x, y)
∥
∥
σν+1,σν+1

6 σ−1e−2νKσ−2/η
.

Recalling the estimates for ψν and H ν+1 = H ν ◦ ψν in Step3, one can easily verify that there
exists a universal constant M∗ such that Mν 6 M∗, which completes the proof of the induction.
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Further, in view of the definition of the KAM error εν , we only have to require the initial conditions
in (1.3), (1.4) and (1.5) to be satisfied:

∥
∥
∥
∥
H (x, 0)−

∫

T∞

H (ξ, 0) dξ

∥
∥
∥
∥
σ

6 ε0 6 e−Kσ−2/η
,

and

‖Hy (x, 0)− ω‖σ 6 exp

(

τ∗

(σ0 − σ1)
1/η

log

(
τ∗

σ0 − σ1

))

ε0

= exp

(

τ∗

(2−1σ (1− q))1/η
log

(
2τ∗

σ (1− q)

))

· e−Kσ−2/η

6 e−Kσ−2/η
,

and
‖Hyy (x, y)− Q (x, y)‖σ,σ 6 σ−1e−Kσ−2/η

.

Step5: Now we prove that the KAM error εν is super-exponentially convergent, i.e.,

εν 6 e−2νKσ−2/η
, ν ∈ N,

where K > 0 is a universal constant independent of σ > 0.
Note that 1/2 < q1/η < 1 since we have required that 2−η < q < 2−1 (2−η + 1). Hence there

exists some δ = δ (η) > 0 such that 1 < d :=
(
q1/η − δ

)−1
< 2. Recalling (3.16) and (3.17), we

arrive at

εν+1 6 exp

(

τ∗

(σν − σν+1)
1/η

log

(
τ∗

σν − σν+1

))

ε2ν

6 exp

(

τ∗

(2−1σ (1− q) qν)1/η
log

(
τ∗

2−1σ (1− q) qν

))

ε2ν

6 exp

(

τ∗

(σ (1− q) qν)1/η

(

log

(
τ∗

qν

)

+ log

(
1

σ (1− q)

)))

ε2ν

= exp

(

τ∗
(
q1/η

)ν
(σ (1− q))1/η

(

log

(
τ∗

qν

)

+ η log

(

1

(σ (1− q))1/η

)))

ε2ν

6 exp

(

τ∗
(
q1/η − δ

)ν
(σ (1− q))1/η

· η

(σ (1− q))1/η

)

ε2ν

6 exp

(

τ∗
(
q1/η − δ

)ν
σ2/η

)

ε2ν

= exp
(

τ∗σ−2/ηdν
)

ε2ν . (3.20)
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Therefore, with (3.20) we have

log εν+1 6 τ∗σ−2/ηdν + 2 log εν ,

which is equivalent to (note that 1 < d < 2)

log εν+1 +
τ∗σ−2/η

2− d
dν+1

6 2

(

log εν +
τ∗σ−2/η

2− d
dν

)

. (3.21)

It is important to emphasize that we carefully select the value of q in Step 1 to ensure the super-
exponential property in this context. If 0 < q 6 2−η, then the previously used technique fails.
Now, we derive from (3.21) that

εν 6 exp

(

2ν

(

log ε0 +
τ∗σ−2/η

2− d

)

− τ∗σ−2/η

2− d
dν

)

,

and this implies the super-exponential property of εν as

εν 6 e−2νKσ−2/η
, ν ∈ N,

where K = K (τ∗) = K (τ, c,M, η, µ) > 0 is a sufficiently large constant independent of σ > 0,
whenever we require the initial error ε0 to be sufficiently small (see Step 4) so that

log ε0 +
τ∗σ−2/η

2− d
≪ −1.

This shows that the convergence rate of our KAM iteration is super-exponential.

Step6: It remains to establish the uniform convergence of the sequence

φν := ψ0 ◦ ψ1 ◦ · · · ◦ ψν

for (ξ, κ) ∈ Dσ/4,σ/4, and also the estimates of the transformed Hamiltonian function in Theorem
1.1.

It can be obtained from Step3 that if (ξ, κ) ∈ Dσν ,σν and z := ψℓ+1 ◦ ψℓ ◦ · · · ◦ ψν−1 (ζ), then
(x, y) ∈ Dσℓ+1,σℓ+1

, and therefore

∥
∥
∥ψℓ

ζ

(

ψℓ+1 ◦ ψℓ ◦ · · · ◦ ψν−1 (ζ)
)∥
∥
∥
σ/2,σ/2

6 1 + e−2ℓKσ−2/η
,

which implies that (recall that 0 < σ < 1)

∥
∥
∥ψν−1

ζ (ζ)
∥
∥
∥
σ/2,σ/2

6

ν−1∏

j=0

(

1 + e−2jKσ−2/η
)

= exp





ν−1∑

j=0

log
(

1 + e−2jKσ−2/η
)





6 exp





∞∑

j=0

1

e2jKσ−2/η



 6 exp





∞∑

j=0

1

2jKσ−2/η



 = exp

(

2σ2/η

K

)

6 2.
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Then it follows that

∥
∥φν (ζ)− φν−1 (ζ)

∥
∥
σ/2,σ/2

=
∥
∥
(
ψ0 ◦ · · · ◦ ψν−1

)
◦ ψν (ζ)− φν−1 (ζ)

∥
∥
σ/2,σ/2

=
∥
∥φν−1 (ψν (ζ))− φν−1 (ζ)

∥
∥
σ/2,σ/2

6 2 ‖ψν (ζ)− ζ‖σ/2,σ/2
6 e−2νKσ−2/η

.

This also holds for ν = 0 if we define φ−1 := id.
Now the limit function φ := lim

ν→∞
φν satisfies

‖φ (ζ)− ζ‖σ/2,σ/2 6

∞∑

ν=0

∥
∥φν (ζ)− φν−1 (ζ)

∥
∥
σ/2,σ/2

6

∞∑

ν=0

e−2νKσ−2/η
6

∞∑

ν=0

1

2νKσ−2/η
6

2σ2/η

K
.

Then by Lemma 1.3, we obtain that

‖φζ (ζ)− I‖σ/4,σ/4 6
4

σ
‖φ (ζ)− ζ‖σ/2,σ/2 6

8σ2/η−1

K
.

This implies that φ is indeed an analytic diffeomorphism, and also a symplectic one.
Thus, the transformed Hamiltonian function can be written as

W (ζ) := H ◦ φ (ζ) = lim
ν→∞

H ◦ φ0 ◦ · · · ◦ φν = lim
ν→∞

H
ν

for (ξ, κ) ∈ Dσ/4,σ/4, which satisfies

Wξ (ξ, 0) = 0, Wκ (ξ, 0) = ω,

and

‖Wκκ (ζ)− Q (ζ)‖σ/4,σ/4 = lim
ν→∞

∥
∥W

ν
yy (ζ)− Q

0 (ζ)
∥
∥
σ/4,σ/4

6 lim
ν→∞

ν∑

ℓ=0

∥
∥
∥W

ℓ
yy (ζ)− Q

ℓ (ζ)
∥
∥
∥
σ/4,σ/4

6 lim
ν→∞

ν∑

ℓ=0

σ−1e−2ℓKσ−2/η

6

∞∑

ℓ=0

1

σ2ℓKσ−2/η

6
2σ2/η−1

K
.

This completes the proof of Theorem 1.1.
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4 KAM via infinite-dimensional weak Diophantine nonresonance:

Proof of Theorem 1.2

As we previously mentioned, the convergence of the Newton iteration is always to be super-
exponential, and that’s the essential reason we could generalize the classical infinite-dimensional
Diophantine condition in Definition 1.1 to a weaker one, as seen in Definition 1.3. The basic frame-
work is similar to the proof of Theorem 1.1, so we omit the details here. We also mention the
rigorous analysis of the finite-dimensional version in [26]. The key point here is to construct an
appropriate contraction sequence and prove the uniform convergence through the KAM process,
by employing the boundedness in (1.8), i.e.,

∞∑

m=0

δm < +∞,

∞∑

m=0

E
−1
(
e2

mδm
)
< +∞.

Recall (1.8) and that σ > 0 is sufficiently large, let σ > 64
∑∞

m=0 E −1
(
e2

mδm
)
without loss of

generality. Then we construct the desired contraction sequence as

σ̃ν = σ − 8

ν∑

m=0

E
−1
(
e2

mδm
)
, ν ∈ N

+.

Denote Gν := CE 6
(
σ̃ν−σ̃ν+1

8

)

with C > 0 being some universal constant. In view of (1.8), one can

verify that

∞∑

ν=0

logGν

2ν
=

∞∑

ν=0

1

2ν

(

logC + 6 log

(

E

(
σ̃ν − σ̃ν+1

8

)))

=

∞∑

ν=0

1

2ν
(
logC + 6 · 2ν+1δν+1

)

= 2 logC + 12

∞∑

ν=0

δν+1 < +∞. (4.1)

Similar to (3.3) and (3.4), let ε̃ν be the smallest number such that

∥
∥
∥
∥
H

ν (x, 0)−
∫

T∞

H
ν (ξ, 0) dξ

∥
∥
∥
∥
σ̃ν

6 ε̃ν ,

∥
∥H

ν
y (x, 0)− ω

∥
∥
σ̃ν

6 E (σ̃ν − σ̃ν+1) ε̃ν .

Then via a modified KAM iteration, we obtain from (4.1) that

ε̃ν+1 6





ν∏

j=0

G
2j

ν−j



 ε̃2
ν+1

0

= exp





ν∑

j=0

2j logGν−j + (2 log ε̃0) 2
ν




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= exp









ν∑

j=0

log Gν−j

2ν−j
+ (2 log ε̃0)



 2ν





= exp









ν∑

j=0

log Gj

2j
+ (2 log ε̃0)



 2ν





6 exp







sup
ν>1

ν∑

j=0

log Gj

2j
+ (2 log ε̃0)



 2ν





6 e−2ν+1K ,

provided a constant K ≫ − supν>1

∑ν
j=0

log Gj

2j
− 2 log ε̃0 > 0 whenever ε̃0 > 0 is sufficiently small.

Finally, by advantage of the super-exponential property ε̃ν 6 e−2νK for ν ∈ N, it is evident to
verify the uniform convergence of the transformation.

This completes the proof of Theorem 1.2.

5 Appendix

Here we give a lemma for Taylor estimates, which will be used in the proof of Theorem 1.1.

Lemma 5.1. Give σ,M > 0. Then for a complex function H (x, y) on Dσ,σ with ‖Hyy (x, y)‖σ,σ 6

M , there hold (where y could be a function of x):

‖H (x, y)−H (x, 0)−Hy (x, 0) y‖σ 6M ‖y‖2σ , (5.1)

‖Hy (x, y)−Hy (x, 0)‖σ 6M ‖y‖σ , (5.2)

‖Hy (x, y)−Hy (x, 0)−Hyy (x, 0) y‖σ 6
M ‖y‖2σ
r − ‖y‖σ

. (5.3)

Proof. According to Taylor’s formula we have

‖H (x, y)−H (x, 0)−Hy (x, 0) y‖σ =

∥
∥
∥
∥

∫ 1

0

∫ t

0
y⊤Hyy (x, sy) ydsdt

∥
∥
∥
∥
σ

6

∫ 1

0

∫ t

0

∥
∥
∥y⊤Hyy (x, sy) y

∥
∥
∥
σ
dsdt

6

∫ 1

0

∫ t

0
sup
i∈Z

∥
∥
∥
∥
∥
∥

∑

j∈Z

H(i,j)
yy (x, sy) yiyj

∥
∥
∥
∥
∥
∥
σ

dsdt

6M sup
j∈Z

‖yj‖σ · sup
i∈Z

‖yi‖σ

6M ‖y‖2σ .

This proves (5.1). As to (5.2), we have

‖Hy (x, y)−Hy (x, 0)‖σ =

∥
∥
∥
∥

∫ 1

0
Hyy (x, ty) ydt

∥
∥
∥
∥
σ

6

∫ 1

0
‖Hyy (x, ty) y‖σ dt
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=

∫ 1

0
sup
i,j∈Z

∥
∥
∥H(i,j)

yy (x, ty) yj

∥
∥
∥
σ
dt 6M sup

j∈Z
‖yj‖σ 6 ‖y‖σ .

Finally, by considering the curve Γ := {λ ∈ C : |λ| = r/ ‖y‖σ > 1}, we obtain that

‖Hy (x, y)−Hy (x, 0)−Hyy (x, 0) y‖σ =

∥
∥
∥
∥

∫ 1

0
(Hyy (x, ty) y −Hyy (x, 0) y) dt

∥
∥
∥
∥
σ

=

∥
∥
∥
∥

∫ 1

0

1

2πi

∫

Γ

1

λ (λ− 1)
Hyy (x, λty) ydλdt

∥
∥
∥
∥
σ

6

∫ 1

0

1

2π
· |Γ| · 1

|λ| (|λ| − 1)
· sup
i,j∈Z

∥
∥
∥H(i,j)

yy (x, λty) yj

∥
∥
∥
σ
dt

6
1

2π
· 2π r

‖y‖σ
· 1

|λ| (|λ| − 1)
·M sup

j∈Z
‖yj‖σ

6
M ‖y‖2σ
r − ‖y‖σ

,

which proves (5.3).

Lemma 5.2. Give 0 < ρ≪ 1 and λ > 0. Then there exists some λ̃ ∈ (0, 1) such that

exp

(

x

(log (1 + x))1+λ

)

· e−ρx
6 exp

(

exp
(

ρ−λ̃
))

.

Proof. Note that

exp

(

x

(log (1 + x))1+λ

)

· e−ρx = exp

(

x

(log (1 + x))1+λ
− ρx

)

:= exp (̟ (x)) .

Then it is evident to verify that there exists a unique x∗ ∈ (1,+∞) such that̟ (x∗) = maxx>1̟ (x),

and log x∗ ∼ ρ−
1

1+λ , ρ→ 0+. We therefore have

max
x>1

exp (̟ (x)) = exp (̟ (x∗)) 6 exp (x∗) 6 exp
(

exp
(

ρ−λ̃
))

with some λ̃ ∈ (0, 1). This proves the lemma.

Lemma 5.3. Given η > 2, there exists some Cη > 0 such that

#
{

k : 0 6= k ∈ Z
∞
∗ , |k|η = ν ∈ N

+
}

6 Cην
ν1/η .

Proof. Note that

Cν
ν+[ν1/η] =

(
ν +

[
ν1/η

])
!

ν!
([
ν1/η

])
!

∼

√

2π
(
ν +

[
ν1/η

])
(

ν+[ν1/η]
e

)ν+[ν1/η]

√
2πν

(
ν
e

)ν ·
√

2π
[
ν1/η

]
(

[ν1/η]
e

)[ν1/η]
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∼ 1√
2πν1/η

·
(

1 +

[
ν1/η

]

ν

)ν

·
(

ν
[
ν1/η

]

)[ν1/η]

·
(

1 +

[
ν1/η

]

ν

)[ν1/η]

=
1√

2πν1/η
·
(

ν
[
ν1/η

]

)[ν1/η]

· exp
(

ν log

(

1 +

[
ν1/η

]

ν

))

· exp
(
[

ν1/η
]

log

(

1 +

[
ν1/η

]

ν

))

=
1√

2πν1/η
·
(

ν
[
ν1/η

]

)[ν1/η]

· exp
(

ν

([
ν1/η

]

ν
− 1

2

[
ν1/η

]2

ν2
+ · · ·

))

· exp
(
[

ν1/η
]
([

ν1/η
]

ν
+ · · ·

))

=
1√

2πν1/η
·
(

ν
[
ν1/η

]

)[ν1/η]

· exp
(
[

ν1/η
]

−
[
ν1/η

]2

2ν
+ · · ·

)

· exp
([

ν1/η
]2

ν
+ · · ·

)

=
1√

2πν1/η
·
(

ν
[
ν1/η

]

)[ν1/η]

· exp
([

ν1/η
]

+O (1)
)

· exp (O (1)) (since η > 2)

6 Cη
1√
ν1/η

· ν(1−1/η)(ν1/η+1) · e[ν1/η].

Then we obtain that

#
{

k : 0 6= k ∈ Z
∞
∗ , |k|η = ν ∈ N

+
}

6#
{

k : 0 6= k ∈ Z
∞
∗ , |k0|+ |k1|+ · · ·+ |k[ν1/η]| = ν ∈ N

+
}

62[ν
1/η]+1 ·#

{

k : 0 6= k ∈ Z
∞
∗ , kj ∈ N for all j ∈ N, k0 + k1 + · · ·+ k[ν1/η] = ν ∈ N

+
}

=2[ν
1/η]+1 · Cν

ν+[ν1/η]

62[ν
1/η]+1 · Cη

1√
ν1/η

· ν(1−1/η)(ν1/η+1) · e[ν1/η]

6Cην
ν1/η .

This proves the lemma.
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[20] S. Kuksin, J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear
Schrödinger equation. Ann. of Math. (2) 143 (1996), pp. 149–179. MR1370761

[21] R. Montalto, M. Procesi, Linear Schrödinger equation with an almost periodic potential. SIAM
J. Math. Anal. 53 (2021), pp. 386–434, MR4201442
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