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Coherent coupling between distant qubits is needed for any scalable quantum computing scheme.
In quantum dot systems, one proposal for long-distance coupling is to coherently transfer electron
spins across a chip in a moving dot potential. Here, we use simulations to study challenges for
spin shuttling in Si/SiGe heterostructures caused by the valley degree of freedom. We show that for
devices with valley splitting dominated by alloy disorder, one can expect to encounter pockets of low
valley splitting, given a long-enough shuttling path. At such locations, inter-valley tunneling leads
to dephasing of the spin wavefunction, substantially reducing the shuttling fidelity. We show how
to mitigate this problem by modifying the heterostructure composition, or by varying the vertical
electric field, the shuttling velocity, the shape and size of the dot, or the shuttling path. We further
show that combinations of these strategies can reduce the shuttling infidelity by several orders of
magnitude, putting shuttling fidelities sufficient for error correction within reach.

I. INTRODUCTION

Quantum dots formed in Si/SiGe heterostructures are
a promising technology for scalable quantum comput-
ing. Their strengths include the fact that silicon and
germanium both have abundant zero-spin isotopes and
are compatible with existing semiconductor fabrication
technologies. Moreover, one- and two-qubit gate fideli-
ties in Si/SiGe have now exceeded 99% [1–3]. However,
scalable quantum computing also requires the coupling of
distant qubits, which is not possible via short-ranged ex-
change interactions. Coupling qubits beyond the nearest
neighbor is therefore a topic of great current interest [4–
12]. Among other approaches [8, 13, 14], one promising
strategy consists of physically shuttling the qubits over
distances of one or more microns [15–26].

Two main shuttling schemes have been proposed for
quantum dot qubits: the bucket-brigade mode and the
conveyor mode. In the bucket-brigade mode, the electron
is moved serially along a line of quantum dots, by modu-
lating the detuning potential between nearest neighbors
[16, 24]. In the conveyor mode, which is the topic of this
work, phase-shifted sinusoidal potentials are applied to
interleaved clavier gates along a channel defined by two
screening gates, yielding a moving potential well that car-
ries the electron across a device [24]. A schematic illus-
tration of a conveyor-mode device is shown in Figs. 1(a)
and 1(b).

Experimentally, high-fidelity charge shuttling of elec-
trons has now been demonstrated in silicon over distances
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of ∼ 20 µm [16, 19, 26], while phase-coherent shuttling
has been demonstrated over distances of ∼ 400 nm [25].
Other experiments have demonstrated transfer across a
double dot [20], and repeated transport of spins, with-
out spin flips, through a short dot array [23]. However,
an important question remains: what are the dominant
limitations to coherent spin transfer over extended dis-
tances?

One of the main challenges for Si/SiGe qubits, which
also affects spin shuttling, is the near-degeneracy of the
two low-lying valley states [27, 28]. The energy spacing
between these states, known as the valley splitting, can
be as large as 300 µeV in some cases, but can also be lower
than 30 µeV [29–39]. Recent theoretical advancements
have shown that, for current state-of-the-art heterostruc-
tures, random-alloy disorder in the quantum well barriers
is the source of the wide valley-splitting variability [40–
43]. Crucially, large valley-splitting fluctuations are even
observed in neighboring dots formed on the same chip
[41, 44, 45]. These fluctuations inevitably lead to local
regions with relatively low valley splittings [46]. While
a stationary spin qubit can potentially be shifted away
from such a region [30, 33, 47], such fluctuations pose a
greater challenge for spin shuttling experiments, where a
quantum dot is rapidly shuttled across an extended and
highly variable valley-splitting landscape.

Previous theoretical work has considered both the
bucket-brigade and conveyor modes of shuttling [24, 48–
51]. Detailed models have been employed to study spin
transfer; however at present, an extensive analysis of
valley-splitting variations is still lacking for realistic het-
erostructures. In the current work, we incorporate a
realistic statistical description of valley-splitting varia-
tions caused by alloy disorder, and we apply this to a
conveyor-mode shuttling process. In particular, we ap-
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FIG. 1. Schematic illustration of a conveyor-mode spin-shuttling device: (a) side view; (b) top view. A quantum dot in a Si
quantum well is confined vertically by the SiGe barriers, and laterally by the electrostatic potential from screening gates (S) and
stacked clavier (C) gates. Phase-shifted sinusoidal ac fields are applied to the C gates, yielding a moving potential minimum
that carries the electron across the device [24]. (c) Simulated valley-splitting landscapes (top view), as described in Sec. III B,
for quantum wells of width 10 nm (top) or 3 nm (middle), and a 10 nm quantum well with a uniform 5% concentration of Ge
(bottom). Results are shown for a 500×50 nm2 shuttling channel, where “dangerous” regions with Ev ≤ 20µeV are highlighted
in red. We also indicate the average valley splittings for these three quantum wells on the colorbar.

ply the valley-splitting theory derived in Refs. [40, 41] to
an effective dynamical model that captures the relevant
effects in the parameter regime of interest. Our results
show that large valley-splitting variations can cause leak-
age to the excited valley state, posing a significant chal-
lenge for conveyor-mode shuttling architectures where
the valley splitting is dominated by alloy disorder. To
address this problem, we consider variations of the con-
ventional quantum-well heterostructure that reduce the
size of regions with low valley splitting. We also pro-
pose and investigate several control strategies to suppress
valley-state excitations. By combining these strategies,
we show that shuttling fidelities can be improved by sev-
eral orders of magnitude, enabling high-fidelity shuttling
over distances of 10 µm.

The paper is organized as follows. In Sec. II, we pro-
vide an intuitive explanation for the dangers of low valley
splitting in shuttling experiments. In Sec. III, we review
the theory of valley splitting in the presence of alloy dis-
order. Section IV describes the numerical model we use
to simulate spin shuttling, and outlines possible tuning
strategies that mitigate the effects of valley excitations.
In Sec. V, we describe the results of shuttling simulations
across a 10 µm device, while employing different mitiga-
tion strategies. In Sec. VI, we comment on the poten-
tial scalability of these schemes. Finally in Sec. VII, we
summarize our findings and discuss future paths for spin
shuttling. Additional details are provided in the Appen-
dices.

II. EFFECTS OF VALLEY LEAKAGE ON SPIN
SHUTTLING

In this section, we outline the problems caused by small
valley splittings in spin shuttling experiments, leaving
mathematical and computational details for later sec-
tions. The main problem is leakage outside the com-
putational subspace caused by Landau-Zener transitions

from the valley ground state to the valley excited state.
Since the Landé g factor differs by a small amount δg
for these two states, valley excitations cause undesired
spin rotations and dephasing. For example, for an exter-
nal magnetic field of 0.5-1T [35, 52], the inter-valley Zee-
man energy difference can be of order ∆EB/h = 10MHz,
yielding spin rotation errors in about 100 ns. In princi-
ple, fast valley relaxation processes could mitigate this
problem, as we discuss briefly in a later section. How-
ever, without applying special procedures to leverage this
effect, it should not significantly improve the shuttling fi-
delity. In this work, we therefore treat valley excitations
as errors.

Recent theoretical work has identified two valley-
splitting regimes: disordered vs deterministic [41]. Since
deterministically enhanced valley splittings are extremely
difficult to achieve in the laboratory, we focus mainly on
the disordered case here.

In the disordered regime, valley splitting variability is
attributed mainly to alloy disorder, due to the electron
overlap with the SiGe alloy. As the Ge exposure increases
(for example, by adding Ge to the quantum well), the
variability and average value of the valley splitting Ev

also increase. This trend is evident in Fig. 1(c), where we
show results of valley-splitting simulations for three dif-
ferent quantum-well profiles, all in the disordered regime.
Here in red, we highlight regions where Ev < 20 µeV,
which pose a significant risk for shuttling at speeds of a
few meters per second, due to enhanced Landau-Zener
tunneling into the excited valley state. (See Appendix C
for details.) In the top panel, we consider a conventional
quantum well of width 10 nm, and top and bottom inter-
face widths of 1 nm. Here, large portions of the device
exhibit dangerously low valley splittings. In the lower two
panels, the Ge exposure is further enhanced: the middle
panel shows a narrow 3 nm quantum well with 1 nm inter-
faces, while the lower panel shows a 10 nm quantum well,
with a uniform 5% Ge concentration inside the quantum
well. As consistent with our expectations, the size of
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the dangerous regions decreases in these examples. How-
ever, regions of low Ev still persist. Indeed, as shown in
Sec. III B, such regions are guaranteed to exist in the dis-
ordered regime. For a long-enough shuttling trajectory, a
dot is very likely to encounter at least one such region, re-
sulting in valley excitations and subsequent phase errors.
In the disordered regime, additional tuning strategies are
therefore needed to achieve high shuttling fidelities, as
described in Sec. V.

In Sec. V G, we also briefly consider the possibility of
valley excitations in the deterministic regime. In this
case, the valley splitting can be made uniformly large,
with no randomly small values. Inter-valley leakage is
then strongly reduced, even in the presence of interfacial
disorder, so that high-fidelity spin shuttling is relatively
easy to achieve. (See Fig. 6, below, and Appendix A for
further details.) However, as noted above, this regime is
very difficult to reach experimentally, since it requires
the presence of very abrupt features in the quantum-
well profile (e.g., super-sharp interfaces, narrower than
three atomic monolayers, or 0.4 nm [41]). State-of-the-
art growth processes have been shown to produce quan-
tum well interfaces with characteristic widths of 0.8 nm,
which do not fall into the deterministic regime [40].

Recent work has therefore suggested alternative strate-
gies for achieving consistently large valley splittings in
Si/SiGe systems. For example, shear-strain is known to
affect valley splitting in Si systems [53–55], and recent
theories have proposed to use shear strain to boost val-
ley splittings in Si/SiGe quantum dots [56]. However,
some of these techniques may likewise be challenging to
implement in the laboratory. Consequently, we expect
the great majority of Si/SiGe devices should fall into the
disordered regime, which is more consistent with current
fabrication techniques. We therefore focus mainly on the
disordered regime in this work.

III. VALLEY-SPLITTING MODEL

A. Effective-mass theory

In this work, we adopt an effective-mass envelope-
function formalism to study the valley states, as outlined
in Refs. [40, 41]. In this model, the ±z valley wavefunc-
tions are approximated by

ψ±(r) = e±ik0zψenv(r), (1)

where k0 = 0.82(2π/a0) is the position of the valley min-
imum in the first Brillouin zone and a0 = 0.543 nm is the
size of the conventional Si unit cell. For our purposes,
the envelope function ψenv is approximately identical for
both valleys. The inter-valley coupling matrix element is
defined as

∆ = ⟨ψ−|H|ψ+⟩ =
∫
d3r e−2ik0zUqw(r)ψ

2
env(r), (2)

where the quantum-well confinement potential Uqw is the
only term in the Hamiltonian H that significantly cou-
ples the two valley states. Since the Ge concentration
of the atomic layers along ẑ plays an important role in
determining the valley splitting, we may discretize the
integral in Eq. (2) as follows:

∆ =
a0
4

∑
l

e−2ik0zlUqw(zl)|ψenv(zl)|2, (3)

where l is the atomic layer index. The resulting valley
splitting is given by Ev = 2|∆|.

The principle observation of Refs. [40, 41] is that al-
loy disorder partially randomizes ∆. We therefore write
∆ = ∆0 + δ∆, where ∆0 is the deterministic contribu-
tion to ∆, and δ∆ arises from random variations of the
Ge concentration. To compute these quantities, we define
the Si concentration in layer l as Xl, where Xl is averaged
over the area of a quantum dot, while the mean concen-
tration X̄l is averaged over the whole atomic layer. In
Appendix D, we provide more precise definitions of these
quantities, and we describe the relation between Xl and
Uqw(zl), where the latter also depends on the dot size
and location.

Following Refs. [40, 41], we characterize the statistical
properties of ∆ in terms of the variance of δ∆, given by

σ2
∆ = Var[δ∆]

=
1

πaxay

[
a20∆Ec

8(Xw −Xs)

]2∑
l

|ψenv(zl)|4X̄l(1− X̄l).

(4)

Here, we assume the dot is in the ground state of a lat-
eral harmonic confinement potential with characteristic
level spacings ℏωx(y) along the principle x(y) axes, and
characteristic length scales ax(y) =

√
ℏ/mtωx(y), where

mt = 0.19me is the transverse effective mass in Si. The
quantity ∆Ec defines the conduction-band energy offset
between the strained quantum well and the strain-relaxed
SiGe barriers. While the quantum well is conventionally
formed of pure Si, we also consider more general situ-
ations where the well is formed of SiGe alloy, with a
different composition than the barriers. The variables
Xw and Xs then indicate the Si concentrations of the
quantum well and the SiGe substrate (i.e., the barriers),
respectively. Generally, X̄l transitions smoothly between
Xs and Xw, while Xl deviates slightly from X̄l due to
local fluctuations within a quantum dot.

From Eq. (3), we note that ∆ is a complex quantity,
which can be decomposed into its real and imaginary
components: ∆ = ∆R + i∆I . Under realistic assump-
tions about quantum-well interface, ∆R and ∆I are well
described here as Gaussian random variables, each hav-
ing a variance of σ2

∆/2. As we show in the following
section, this property leads to the existence of regions of
arbitrarily small Ev.

Finally we note that Eq. (4) allows us to directly char-
acterize the valley splitting of a given heterostructure as
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FIG. 2. Points of vanishing valley splitting are topologically guaranteed to occur in the disordered regime. (a),(b) Real and
imaginary components of the inter-valley coupling ∆, computed across a typical 100 × 100 nm2 region of heterostructure, as
described in the main text. Solid and dashed lines highlight contours where Re[∆] = 0 and Im[∆] = 0, respectively. (c) The
valley splitting Ev = 2|∆|, obtained from (a) and (b), with the same contours superimposed. Correlations are observed between
these contours and regions with low Ev. Intersections between the contours correspond to points of vanishing Ev. A sample
path across the heterostructure (purple line) passes nearby one such intersection. (d) The inter-valley coupling ∆, and (e) the
valley splitting Ev, along the same path shown in (c). (f) Leakage to the excited valley state caused by Landau-Zener tunneling,
simulated for a dot traveling at a velocity of 1 m/s along the same path.

deterministically enhanced vs disordered, based on the
crossover between these two regimes, which occurs at√
πσ∆ = 2|∆0| [41]. In the deterministic regime, we ob-

serve |∆0| > |δ∆| with high probability, and an average
valley splitting of Ēv ≈ 2|∆0|. (For example, quantum
wells with ultra-sharp interfaces exhibit such behavior.)
In contrast, in the disordered regime, we find |∆0| < |δ∆|
with high probability, and [41]

Ēv ≈
√
πσ∆. (5)

For conventional heterostructures, like those considered
in this work, typical interfaces are not ultra-sharp, and
the valley splitting falls into the disordered regime.

B. Valley-coupling landscape and excitations

As described above, in the disordered regime, the real
and imaginary components of ∆ are independent Gaus-
sian random fields. We now show that this guarantees the
existence of regions with arbitrarily small Ev, scattered
across a heterostructure. Figures 2(a) and 2(b) illustrate
typical instances of Re[∆] and Im[∆] for a 100×100 nm2

lateral region of a device. To compute these landscapes,
the heterostructure is modeled atomistically by assigning
each atom in the crystal lattice as either Si or Ge. The
probability of choosing Si at a given lattice site in layer
l is given by X̄l. We then perform the one-dimensional
(1D) summation in Eq. (3) via the following procedure.
First we compute the local Si concentration Xl by per-
forming the weighted average described in Eq. (D9), for
a dot with orbital energies ℏωx = ℏωy = 2meV, cen-
tered at (x0, y0). Next, we use Eq. (D2) to convert the
Si concentration profile Xl to a quantum-well confine-
ment potential Uqw(zl). ψenv(zl) is then computed from

Uqw(zl) by solving a discretized Schrödinger equation,
as described in Appendix D. Equation (3) then gives ∆
as a function of dot position (x0, y0), yielding the real
and imaginary components shown in Figs. 2(a) and 2(b).
The corresponding valley splitting Ev = 2|∆| is plotted
in Fig. 2(c).

In Figs. 2(a) and 2(b), we highlight contours where
Re[∆] = 0 and Im[∆] = 0. The same contours are also
plotted in Fig. 2(c), where they are seen to correlate with
regions of low valley splitting. Points where the con-
tours intersect correspond to zero valley splitting. Impor-
tantly, such points are randomly distributed across the
heterostructure and are guaranteed to exist in the disor-
dered regime. Their spatial distribution is determined by
the dot size, and in the disordered regime, we note that
this distribution does not depend on the average valley
splitting. Thus, distributions with similar topologies are
observed in systems with large average Ev.

The regions of low valley splitting near ∆ ≈ 0 are dan-
gerous for spin shuttling, because the electron can poten-
tially tunnel into the excited valley state via a Landau-
Zener process, leading to shuttling errors. This process
is illustrated in Figs. 2(c)-2(f). First in Fig. 2(c), we
highlight a shuttling path in purple that passes through
a region of low Ev. In Fig. 2(d), the inter-valley coupling
∆ is plotted along the same path, where it passes very
near the origin of the complex plane, ∆ = 0. The val-
ley splitting, Ev = 2|∆|, is also shown along this path in
Fig. 2(e). In Fig. 2(f), we solve the dynamical evolution
of the shuttling electron with regards to the two valley
states, assuming the valley splitting shown in Fig. 2(e),
using the methods described in Sec. IV, below. Specif-
ically, we plot the leakage into the excited valley state,
observing a sudden jump near the ∆ minimum, caused
by Landau-Zener tunneling. We expect a similar jump in
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FIG. 3. Overview of the heterostructure tuning strategies considered in this work. (a) Three different quantum wells, including
a conventional 10 nm Si quantum well, a narrow 3 nm Si quantum well, and a 10 nm quantum well with a uniform 5% Ge
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the vertical field Ez, e.g., by introducing a back gate (Vback).

the shuttling infidelity whenever a shuttling path passes
through a region of low valley splitting.

In the above discussion, we have ignored effects like
strain fluctuations and valley-orbit interactions that lift
the valley-state degeneracy near points of low Ev. How-
ever, these effects are weak, and we expect leakage in-
duced by Landau-Zener processes to remain prevalent in
real devices.

Finally, we note that the atomistic method for gener-
ating valley-splitting landscapes, described above, is in-
efficient for determining large-scale statistical properties.
To make this process more efficient, we turn instead to a
statistical assignment of valley splittings, using the meth-
ods described in Appendix E. This assignment makes use
of the fact that the real and imaginary components of ∆
are Gaussian random variables. We note that, to a very
good approximation, in the disordered regime, the center
of these Gaussian distributions is given by |∆0| ≈ 0 [41].
The full statistical description of ∆ then requires one ad-
ditional piece of information: the two-point covariance
functions for Re[∆] and Im[∆], which were obtained in
Ref. [41] as

Cov(Re[∆],Re[∆′]) = Cov(Im[∆], Im[∆′])

=
1

2
e−δ2x/2a

2
x−δ2y/2a

2
yσ2

∆. (6)

Here, ∆ and ∆′ are separated by the spatial vector
(δx, δy) in the xy-plane. Obtaining valley-coupling land-
scapes with this method yields results like those shown in
Fig. 1(c), which exhibit the correct statistical properties.

IV. SIMULATING QUANTUM DYNAMICS

A. Physical device

Figures 1(a) and 1(b) schematically illustrate the de-
vices we consider in this work. During conveyor-mode
operation, oscillating voltages are applied to the clavier
gates, to produce a moving potential pocket capable of
carrying an electron across the device [19]. Unless oth-
erwise specified, we model this potential pocket as an
isotropic harmonic confinement potential with orbital
splittings ℏωx = ℏωy = 2meV, and we assume the pocket
moves with constant speed along the shuttling trajectory.
The clavier gates generate a vertical electric field that
squeezes the electron against the top quantum-well inter-
face. In some cases, we assume this field can be tuned, for
example, by including a back-gate. However, unless oth-
erwise specified, we consider a fixed vertical field of Ez =
5mV/nm. In Sec. IV C, we consider several additional
tuning capabilities that allow us to mitigate the effects
of low valley splitting. These include the ability to vary
the shuttling velocity, the position of the electron trans-
verse to the shuttling trajectory, and the dot shape (e.g.,
with ωx ̸= ωy). In all cases, we consider a total shuttle
length of 10 µm, as consistent with a recent architecture
proposal involving a medium-range coupler [22].

We also consider three types of quantum wells, as il-
lustrated in Fig. 3. These include a conventional 10 nm
quantum well, and two other wells proposed to give
larger average valley splittings: a narrow 3 nm quantum
well and a structure containing a uniform 5% Ge con-
centration inside the quantum well. These are meant
to illustrate a range of realistic heterostructures. We
model the quantum-well interfaces using sigmoid func-
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tions, as described in Appendix D, and assume interface
widths of λ = 1nm, unless otherwise specified. (Note
that our current goal is not to optimize heterostruc-
ture parameters, but to characterize schemes for miti-
gating the effects of small valley splittings.) As previ-
ously noted, the deterministic contribution to the inter-
valley coupling can be safely ignored in these heterostruc-
tures, with ∆0 ≈ 0, since they fall into the disordered
regime. The key difference between the heterostructures
is therefore their σ∆ values, which are related to the
average valley splittings through Eq. (5). For the het-
erostructures described above, we obtain the average val-
ues ⟨Ev(10 nm)⟩ ≈ 50 µeV, ⟨Ev(3 nm)⟩ ≈ 220 µeV, and
⟨Ev(5%)⟩ ≈ 360 µeV, respectively. For our dynamical
shuttling simulations, we generate many random valley-
splitting landscapes, as described in Sec. III B, obtaining
results like those shown in Fig. 1 for the three different
heterostructures.

B. Spin-shuttling model

1. Hamiltonian

We employ a minimal model to investigate decoherence
during shuttling. The model is comprised of two spin and
two valley states. In particular, we ignore the presence
of orbitally excited states, which relax quickly and are
sufficiently separated in energy (1-2 meV) that they play
a much smaller role than the valley excited state [24].
Here, we first present the model, then provide discussion
of some assumptions built into it. The model is given by

H =
EB

2
σz +∆(x) · τ +

∆EB

4
[n̂∆(x) · τ ]⊗ σz, (7)

where EB = gµBB is the Zeeman energy, g ≈ 2 is the
Landé g factor, µB is the Bohr magneton, B is the mag-
netic field along the spin quantization axis, which does
not necessarily coincide with the crystallographic z axis,
∆EB = (δg)µBB is the difference in Zeeman splittings
for the two valley states, ∆ = (∆R,∆I)

T is the inter-
valley coupling (which varies from location to location),
n̂∆ = ∆/|∆| denotes the valley quantization axis, and
σz and τ = (τx, τy)

T are Pauli matrices acting on the
spin- and valley-spaces, respectively.

Several comments are in order for Eq. (7). First, we
note that the ∆EB term ignores any dependence on the
magnitude or angular orientation of the magnetic field,
as well as local variations of the applied electric field,
all of which can affect δg. Moreover, we note that δg
also varies slightly by location, due to interface steps and
random-alloy disorder [35, 52, 57]. However, we observe
almost no dependence of our results on ∆EB (see Ap-
pendix F), and we therefore set it here to a fixed value of
10MHz, reflecting a typical difference in spin-resonance
frequencies between the two valley states, as consistent
with experimental observations [35, 52].

Second, we note that the model, above, does not in-
clude dephasing or relaxation effects, which we now dis-
cuss briefly. One relaxation process that could affect
shuttling in silicon is the spin-valley hot spot, at which
the Zeeman and valley energy splittings are nearly equal,
giving rise to fast spin relaxation [33]. An electron could
potentially encounter many such hot spots when travers-
ing a wildly varying landscape of valley splittings. We
could suppress the effects of these hot spots by shuttling
past them as quickly as possible; however, this has other
potential pitfalls. A simpler approach is to reduce the
number of hot spots by operating at low magnetic fields
where the Zeeman splitting is much smaller than the av-
erage valley splitting [24]. In this work, we consider low
external fields of B = 50mT [58], which moves the hot
spots to below 10 µeV. Although occasional hot spots are
still encountered in this regime, Landau-Zener processes
are also present, and since they are also detrimental to
the shuttling fidelity, it reasonable to ignore the hot spots
in favor of Landau-Zener processes.

Spin dephasing of the shuttling electron occurs over a
time scale of T ∗

2 , due to the presence of charge or mag-
netic noise [24]. In Sec. V F, we treat these effects phe-
nomenologically, finding that the presence of both de-
phasing and leakage suggests that there will be an opti-
mal shuttling speed.

Fast valley relaxation processes present interesting op-
portunities for solving the valley-state leakage problem,
which we will investigate in a future publication. In the
present work, we note that experimental measurements
of valley relaxation are scarce, but likely of order 10ms
for valley splittings of order 50 µeV [59], which is several
orders of magnitude slower than dephasing, and therefore
irrelevant. On the other hand, valley lifetimes scale as the
inverse-fifth power of the valley splitting [24, 60], so val-
ley and dephasing timescales could become comparable
for very large valley splittings of order 500 µeV (assum-
ing ∆EB/h = 10MHz). Such large valley splittings may
exist in certain heterostructures, but are unlikely to be
widespread across a device. In this work we simply take
the conservative approach of assuming no inter-valley re-
laxation; any nonzero valley relaxation would improve
shuttling fidelities beyond what is described here.

2. Fidelity metrics

To quantify the fidelity of our shuttling simulations,
we compute the process fidelity, defined as [61]

Fprocess(U) =
1

d21

∣∣tr{V †Utrunc

}∣∣2 , (8)

where V is the target unitary in the spin subspace,
U = UB→B′Ut is the full evolution operator, including the
effects of non-adiabatic evolution, UB→B′ is the transfor-
mation matrix from the initial to the instantaneous eigen-
basis, Ut is the evolution operator in the initial eigenba-
sis of our model, and the subscript ‘trunc’ denotes trun-
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cation to the two-dimensional (d1 = 2) spin subspace
of the instantaneous valley ground state. Equation (8)
compares the evolution of a real shuttling process to an
ideal, adiabatic process, while accounting for leakage er-
rors, which can be independently quantified as [61]

L = 1− tr
{
U†
truncUtrunc

}
/d1 . (9)

When applying Eq. (8), we note that g-factor fluctu-
ations cause random phases to accumulate during shut-
tling, even when the system remains in the ground state.
Since such fluctuations are static, they can be compen-
sated in experiments. It is therefore reasonable to re-
move these phase shifts from our fidelity estimates. We
do this here by setting V = 1 and optimizing the phase of
Utrunc to maximize the fidelity. On the other hand, phase
differences between the ground and excited valley states
represent true dephasing errors, and cannot be removed.
However, as no valley relaxation is assumed, these er-
rors only directly affect Utrunc through a (weak) second-
order Landau-Zener process, involving valley excitation
followed by de-excitation. Thus, although leakage for-
mally sets a lower bound on the infidelity (defined as
I = 1−F ), to a good approximation, we find that I ≈ L.
Our four-level shuttling fidelity calculations could there-
fore be replaced by a two-level problem involving just
the valley levels. For better accuracy, we still perform
four-level calculations using Eq. (8); however, we expect
leakage to be the dominant source of infidelity.

3. Computational framework

The following computational procedure is used in our
simulations. First, we calculate the time evolution of
Eq. (7) using the software package qopt, described in
[62]. The total propagator of the time evolution is cal-
culated by splitting up the matrix exponential into a
product of piecewise-constant Hamiltonians with appro-
priately small time steps. These time steps are chosen
in the range of 2-4 ps, depending on the quantum well
and the shuttling velocity, to achieve sufficient conver-
gence of the final results. After obtaining the propa-
gator, the fidelity is computed from Eq. (8) and post-
optimized as described above, using the python routine
jax.scipy.optimize.minimize to perform phase cali-
bration.

C. Tuning strategies

In Figs. 3(b)-3(e), we illustrate the four tuning strate-
gies used in this work to suppress valley excitations when
shuttling near points of low valley splitting: (1) elongat-
ing the quantum dot along the shuttling trajectory while
squeezing it in the transverse direction (this keeps the to-
tal dot area fixed, to allow a fair comparison with other

strategies, and ensures that the elongated electron wave-
function sees the same amount of Ge, on average), (2)
shifting the lateral position of the dot within the shut-
tling channel, (3) modifying the shuttling velocity, and
(4) varying the vertical electric field of the dot. The ef-
fects of these strategies can be understood intuitively as
follows. Methods (2) and (4) simply avoid the points
of low Ev. Method (3) directly suppresses the Landau-
Zener tunneling process. Method (1) causes the dot to see
less change in its average alloy environment for a given ve-
locity, resulting in a lower effective velocity. Appendix I
elaborates further on the physics of the elongation strat-
egy. The final results obviously depend quantitatively on
the imposed parameter constraints. Here we have chosen
experimentally reasonable constraints; an exploration of
different parameter ranges is given in Appendix C.

V. RESULTS

A. Evolution without applying tuning strategies

As a baseline, we first characterize spin shuttling across
a spatially varying valley-splitting landscape, at a veloc-
ity of 5 m/s, without applying any fine-tuning strate-
gies. Figure 4(a) shows the medians (markers) and 25-75
percentile ranges (bars) of the infidelity, computed ac-
cording to Eq. (8), for 300 shuttling simulations, each
with a different, random valley-splitting landscape. The
results are reported as a function of position along the
shuttling trajectory. (Here, we only show results for the
initial 1 µm portion of the trajectory.) We include re-
sults for the 10 nm, 3 nm, and 5% Ge quantum wells
illustrated in Fig. 3(a). Despite experiencing different
average valley splittings, these three heterostructures ex-
hibit similar behaviors, characterized by a rapid increase
of the infidelity over short distances, to levels that are
incompatible with quantum computing on a sparse-grid
architecture [22]. The main contribution to the infideli-
ties observed in these simulations is the Landau-Zener
excitation of the upper valley state, caused by momen-
tary dips in Ev, as illustrated in Figs. 2(e) and 2(f). The
simplest approach for suppressing such excitations is to
uniformly reduce the shuttling velocity, which unfortu-
nately leads to a competition between the shuttling and
decoherence timescales. Other suppression strategies are
therefore required, which we now include in our simula-
tions.

B. Electric-field modulation

Local modulation of the vertical electric field Ez causes
the electron wavefunction to shift vertically, as illustrated
in Fig. 3(e), exposing it to a slightly different Ge distribu-
tion, and modifying its valley splitting [41]. It may there-
fore be beneficial to modify Ez when a low valley-splitting
region is encountered. While any Ez value can be used in
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FIG. 4. A comparison of shuttling infidelities: (a) with-
out, vs (b) with several of the tuning strategies depicted in
Figs. 3(b)-3(e), for an average shuttling velocity of 5 m/s.
(a) Infidelity as a function of shuttling distance, for the three
quantum wells shown in Fig. 3(a). (b) Infidelity computed
using the following tuning strategies, for the 5% Ge quantum
well: (i) Ez modulation only (gray triangles); (ii) Ez modula-
tion plus bipartite velocity modulation (dark-gray circles); or
(iii) Ez modulation, bipartite velocity modulation, and elon-
gated dots (black diamonds). For (a) and (b), the markers
represent the median values obtained from 300 different dis-
order realizations, while the vertical bars show the 25-75 per-
centiles. (Note the different horizontal scales.) (c) Histograms
of results like those shown in (a) and (b), for the full shuttling
distance of 10 µm, in all three quantum wells (color coded).
Within each color grouping, the tuning methods are coded
with the same marker styles as in (a) and (b). Only the 5%
Ge well, with either two or three tuning strategies (last two
histogram columns), provides significant improvements of the
shuttling fidelity.

the simulations, we adopt some procedural constraints,
to make our theoretical methods more compatible with
experiments, and to reduce computing times. First, we
restrict the Ez range to lie between 0 and 10 mV/nm.
(Ez < 0 can also be considered, but does not change our
results significantly.) We note that even larger changes in
Ez may be possible when using a back gate. However, the
range chosen here includes relatively high fields [33], and
should therefore be sufficient for evaluating the feasibility
of Ez modulations. Second, we do not allow the field to
be adjusted continuously; rather, we assume piece-wise
constant Ez values over 1 µm segments. To optimize the
Ez values used in each shuttling segment, for a given
valley landscape, we apply a graph traversal algorithm,

as described in Appendix G. This path seeks to avoid re-
gions of low valley splittings, while making as few changes
to the tuning parameters as possible. In real devices with
no a-priori knowledge of the valley splitting, such opti-
mization would require either obtaining a high-resolution
map of Ev(r) [46] or applying trial-and-error methods.

Simulation results for infidelity vs shuttling distance
are presented in Fig. 4(b) (light-gray triangles) where we
show results only for the 5% Ge quantum well. We as-
sume a single, fixed velocity of 5m/s, corresponding to
a total shuttling time of 2µs, which is slightly shorter
than commonly observed T ∗

2 times of a few microsec-
onds [1, 3, 63, 64]. As indicated here, the Ez modulation
procedure provides some improvement over the baseline
results shown in Fig. 4(a) (note the different horizontal
scales in these two panels); however, the shuttling infi-
delities remain quite poor over the full shuttling range of
10 µm.

C. Bipartite velocity modulation

To further improve the shuttling fidelity, we next con-
sider velocity modulation as a tuning strategy for sup-
pressing Landau-Zener excitations in regions of low val-
ley splitting. In this case, we adopt the constraint that
only two shuttling velocities are allowed (rather than a
continuous range): vfast and vslow = vfast/5. As de-
scribed in Appendix C, the slower velocity is applied
whenever Ev falls below a threshold value, defined as 10%
of the mean value of Ev, or 20 µeV, whichever is greater.
These choices strike a balance between sufficiently re-
ducing vslow while retaining a reasonable total shuttling
velocity. As a safety margin, we also apply vslow within
a ±10 nm window around these valley-splitting minima,
while setting the velocity to vfast elsewhere. On average,
since fewer than ten slow-downs occur per trace under
these constraints, we still maintain an average velocity of
approximately 5m/s, which is nearly equal to vfast. Re-
sults for such bipartite velocity modulations, combined
with Ez modulations, are shown in Fig. 4(b) (dark-gray
circles). By combining tuning strategies in this way, we
obtain an approximate order of magnitude improvement
in the fidelity for the 5% Ge quantum well, as compared
to the case where only Ez is modulated. However, the
error bars of the infidelity are seen to be quite large.

D. Elongated dots

Finally, we consider the shuttling of an elongated quan-
tum dot, in which the orbital confinement energy in the
shuttling direction ℏωx is reduced from 2 to 1meV (elon-
gating the dot along x̂), while increasing the confinement
energy in the transverse direction ℏωy from 2 to 4meV
(squeezing the dot along ŷ). In the current work, we do
not explore potential pitfalls of this elongation strategy,
although they may occur in some settings [24]. Results
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of such elongated-dot simulations, combined with Ez and
velocity modulations, are shown in Fig. 4(b) (black dia-
monds). In this case, we obtain significant improvement
over previous results, by over an order of magnitude for
longer shuttling distances. Figure 4(c) summarizes the
results of these simulations, including the base case, for
all three types of quantum wells. It is interesting to note
that, while simultaneously applying multiple strategies
is found to improve the shuttling fidelity for the 5% Ge
quantum well, much weaker improvements are found for
the 10 nm and 3 nm quantum wells. In Appendix H, we
show that this tepid response is a consequence of using
the Ez-modulation strategy, because Ez does not provide
effective tuning of Ev for the other two heterostructures.

E. Channel shifting

Since the Ez modulation scheme is not found to be
effective universally, we also explore the channel-shifting
strategy, depicted in Fig. 3(c), where the position of the
electron is shifted along ŷ to avoid regions of low valley
splitting. We expect this method to be more effective
than Ez modulation because Ev typically varies much
more as a function of y than as a function of Ez within
the parameter constraints we consider. Moreover, since
lateral shifting is not sensitive to the vertical Ge confine-
ment profile, we expect the effectiveness to depend only
on the variability of the valley splitting σ∆, rather than
other features of the quantum well.

Similar to Ez modulation, we determine the optimal
shuttling trajectory by applying a graph-traversal al-
gorithm. In this case, we again consider a full 10 µm
shuttling channel formed of piecewise-constant 1 µm seg-
ments. We also constrain the trajectory to lie within the
channel width given by y = ±50 nm. Figure 5(a) illus-
trates one such optimized shuttling trajectory for the case
of a 5% Ge quantum well, where the valley-splitting land-
scape is shown as grayscale, with regions of Ev < 35 µeV
highlighted in red. Here, the compromises caused by lim-
iting the shifts to 1 µm segments are easy to visualize, be-
cause not all red regions can be avoided. Figure 5(b) illus-
trates the complicated evolution of the inter-valley cou-
pling ∆, following along this same trajectory. While most
of this evolution exhibits a sufficiently large |∆|, a small
portion still approaches |∆| ≈ 0, causing leakage. Av-
eraging such results over 300 valley-splitting landscapes
yields the infidelity results shown as green diamonds in
Fig. 5(c). Here we observe immediate improvement over
the Ez modulation; we even observe improvement over
the best-case results in Fig. 4(b), obtained for the 5% Ge
quantum well.

Taking the same approach as Fig. 4, we now include ad-
ditional tuning methods in Fig. 5(c): the rust-colored cir-
cles show the combined results of channel-shifting and bi-
partite velocity modulation (using the same two velocities
as Fig. 4), while the purple diamonds show the combined
results of channel-shifting, velocity modulation, and dot

elongation. In each case, we observe some fidelity im-
provement. Results of these different tuning schemes are
shown as histograms in Fig. 5(d) for all three types of
quantum wells. Here the best results are obtained for the
3 nm and 5% Ge quantum wells, which have much higher
average valley splittings to begin with. These two quan-
tum wells show similar results when applying multiple
tuning strategies, obtaining infidelities consistently below
10−3, except for a small minority of outlier cases. Impor-
tantly, the 5% Ge quantum well shows a low average infi-
delity when applying only the channel-shifting strategy,
although a significant fraction of results still give poor
fidelities. Finally we note that the 10 nm quantum well
– with a small average valley splitting of 50 µeV – experi-
ences particularly small Ev minima too frequently to be
compensated by any tuning method, for any reasonable
velocity.

F. Transport velocity

As previously noted, transport velocity plays an im-
portant role in determining the leakage during shuttling,
since the probability of Landau-Zener excitations de-
pends exponentially on velocity. This strong dependence
is evident in Fig. 5(e), where we plot simulation results
like those in Fig. 5(d) for the 5% Ge quantum well, but
we now consider a range of velocities. As in Fig. 5(d), we
adopt three tuning strategies, using the same color cod-
ing as before. Here, when bipartite velocity modulations
are employed, we note that it is the average velocity that
is reported on the horizontal axis. [The results shown in
Fig. 5(d) correspond to the velocity of 5 m/s in Fig. 5(e).]
As expected, we find that lower velocities cause less leak-
age, and the shuttling fidelity depends sensitively on the
choice of velocity.

On the other hand, slower shuttling speeds also in-
crease the risk of decoherence, so the velocity should be
carefully chosen. Although we do not include decoher-
ence directly in our shutting model, we now provide an-
alytical estimates, to illustrate the emergence of an opti-
mal shuttling velocity. In Ref. [24], it was argued that the
main sources of decoherence during shuttling are time-
varying Overhauser magnetic fields and low-frequency
charge noise, which both cause dephasing of the spin
over the time scale T ∗

2 . The same reference obtains an
approximate expression for the noise-induced shuttling
infidelity, which we have adapted to the present context
(note the slight difference from [24]), as discussed in Ap-
pendix B:

I ≈ lcLs

(vT ∗
2 )

2
, (10)

where lc denotes the correlation length of the quasistatic
noise source, Ls=10 µm is the shuttling distance, v is the
average velocity, and we note that motional narrowing
has been taken into account [25].
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FIG. 5. Shuttling results involving lateral channel shifting. (a) Typical valley-splitting landscape for a 5% Ge quantum well,
with regions of relatively low valley splitting highlighted in red (10% or less of the average value of Ev, or about 35µeV).
An optimized, segmented shuttling trajectory is shown in purple (see main text). In the few remaining regions of low valley
splitting, the shuttling velocity may be reduced to vslow (indicated in pink), to suppress Landau-Zener excitations. (b) Inter-
valley coupling ∆ along the same path shown in (a). (c) Shuttling infidelities computed using the following tuning strategies for
the 5% Ge quantum well and average shuttling velocity 5 m/s: (i) lateral channel shifting only (green diamonds); (ii) channel
shifting plus bipartite velocity modulation (rust-colored circles); or (iii) channel shifting, bipartite velocity modulation, and
elongated dots (narrow violet diamonds). Here, the markers represent the median values obtained from 300 different disorder
realizations, while the vertical bars show the 25-75 percentiles. (d) Histograms of results like those shown in (c), for the full
shuttling distance of 10µm, in all three quantum wells. Here, the tuning methods are coded by both color and marker styles,
as in (c). (e) Shuttling infidelities like those shown in (c), for the full shuttling distance of 10 µm, as a function of average
shuttling velocity. Downward-sloping lines show infidelity estimates for magnetic noise (solid red line) or charge noise (dashed
red line), based on Eq. (10), with the indicated correlation lengths lc.

In Fig. 5(e), we include two representative infidelity
estimates from Eq. (10), obtained using lc=20 nm (solid
red line), for the case where nuclear spin noise dom-
inates, and lc=100 nm (dashed red line), for the case
where charge noise dominates [24]. In both cases, we
take a cautiously optimistic value of T ∗

2≈20 µs, as consis-
tent with Refs. [17, 63, 64]. This analysis confirms the
presence of an optimal velocity value, which depends on
the tuning strategies used and the dominant noise source,
but generally corresponds to a few m/s. The analysis also
shows that an appropriate choice of tuning strategies and
velocities should yield, in principle, shuttling infidelities
below 10−3.

G. Sharp interfaces with steps

Up to this point, we have only considered quantum
wells with valley splittings that are determined mainly by
alloy disorder, since most current devices are expected to

fall into this regime [41]. For completeness, we also briefly
consider the opposite regime, where alloy disorder plays
a minor role. The most common quantum-well geometry
for this purpose has a super-sharp interface, with an in-
terface width of less than three atomic monolayers. For
such geometries, the valley splitting should be enhanced,
and the dominant form of disorder and Ev variability
should arise from atomic steps at the quantum-well in-
terface [41]. To study this situation, we perform simula-
tions of shuttling with super-sharp interfaces and sparse
step disorder, as described in Appendix A. Our results
indicate that high-fidelity shuttling can be achieved in
the presence of sparse step disorder, even without apply-
ing additional tuning methods. The fact that step dis-
order and alloy disorder can obtain such different results
highlights the importance of including realistic disorder
models that accurately account for random alloys.
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VI. IMPLEMENTING THE TUNING SCHEMES

We close by commenting on the added complexity that
comes with the tuning methods proposed here, and their
consequences for scalability. First, we note that dot size
and shape in the elongation scheme are closely tied to
the predetermined gate-electrode spacing. Some addi-
tional fine-tuning is possible; however, a truly scalable
pulsing scheme favors applying the same ac signals to all
the clavier gates across a quantum processor [19], sug-
gesting that the dots (and the gate pitch) should all have
a uniform size.

For the vertical or lateral channel-shifting schemes, we
have proposed to divide the channel into smaller seg-
ments, which may then be manipulated in two ways, as
we now explain. The most versatile approach involves
manipulating each segment independently. For vertical
shifting, this requires independent control of the clavier
gates within each segment, while for lateral shifting it
requires independent control of the screening gates in
each segment. While such an approach is highly versa-
tile, it also adds significant overhead to the wiring costs,
effectively negating many of the global benefits of our
shuttling scheme. The second approach involves apply-
ing tailored shift pulses to all the clavier gates or all the
screening gates. This has the advantage of not requiring
new control lines but has the disadvantage of affecting
all the electrons within the conveyor. Thus, if multiple
electrons are shuttled simultaneously, it would require a
more-sophisticated path-traversal algorithm.

Similar considerations apply to bipartite velocity mod-
ulations, although we note that slow shuttling in a region
with high valley splitting is harmless, so multi-electron
shuttling is less fraught in this case. On the other hand,
true global control could become a challenge, if a large
number of slow-downs are needed.

Finally, we note that all proposed tuning strategies re-
quire the valley-splitting landscape to be carefully char-
acterized. This characterization only needs to be per-
formed once however. A recent experiment demon-
strates that such mappings can be implemented effec-
tively, within the same shuttling framework [46].

VII. SUMMARY

In this work, we have shown that leakage from the
ground valley to the excited valley state is a major
source of decoherence for conveyor-mode spin shuttling
in Si/SiGe quantum wells. This leakage is caused by
Landau-Zener excitations across a narrow energy gap, as
electrons traverse the wildly varying valley-splitting en-
ergy landscape caused by alloy disorder. In turn, leakage
causes dephasing of the spin, due to the presence of dif-
ferent g-factors in the ground and excited valley states.

Using the most current understanding of random-
alloy disorder, we perform simulations of the shuttling
evolution within an effective 4D Hamiltonian spanning

the spin and valley degrees of freedom. For quantum
wells falling into the “deterministically enhanced” valley-
splitting regime (e.g., with interfaces narrower than three
atomic monolayers), we find that Landau-Zener excita-
tions do not pose a significant challenge for shuttling. It
is hoped that such structures will become available for
qubit implementations in the future.

Existing devices are not expected to fall into the de-
terministically enhanced regime, and our simulations in-
dicate that coherent transport may be unfeasible in com-
mon 10 nm quantum wells in this “disorder-dominated”
regime. In this case, we have also performed simulations
of alternative quantum wells with much higher average
valley splittings, including narrow 3 nm quantum wells
and quantum wells with a significant concentration of
Ge in the middle of the well. We have also explored a
number of tuning strategies, including shifting the loca-
tion of the electron inside the shuttling channel (either
vertically or laterally), to avoid passing through a valley-
splitting minimum, slowing down the shuttling velocity
when it passes too close to a mininum, and elongating
the quantum dot to change its effective velocity. In our
simulations, we have optimized these tuning strategies,
and we have also simultaneously applied multiple strate-
gies, obtaining several orders of magnitude improvement
in the shuttling fidelity. Since slower shuttling velocities
suppress Landau-Zener excitations but lead to dephasing,
we have also optimized the velocity, finding that veloc-
ities on the order of several m/s can provide shuttling
infidelities below 10−3.

Finally, we note that the tuning strategies proposed
here come with a nontrivial experimental overhead,
which must be accounted for in scalable implementations.
The valley-splitting landscape only needs to be mapped
out once, however. In the future, we argue that fidelity-
improving strategies like those considered here must be
employed in any high-performance shuttling implemen-
tation in Si/SiGe quantum wells.
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Appendix A: Super-sharp interfaces with atomic
step disorder

In the main text, we considered the limit of disorder-
dominated quantum wells, for which random-alloy disor-
der is the main source of variability in the valley split-
ting. In this Appendix, we consider the opposite, deter-
ministically enhanced valley-splitting limit, which can be
achieved, for example, in quantum wells with super-sharp
interfaces. In this case, the dominant source of disorder
is from single-atom steps at the quantum well interface.
We now briefly show that such disorder from sparse steps
has a very different effect on shuttling than random-alloy
disorder, and that the resulting infidelities are greatly
reduced in accordance with much larger minimal Ev.

When the QW interfaces are very sharp, monoatomic
steps in the QW interfaces are the dominant source of
Ev fluctuations. To study shuttling in this regime, we
examine the case of a single atomic step, traversed at
different shuttling velocities. We assume an orbital split-
ting of 2meV and a vertical electric field of 5mV/nm
inside a well of width 10 nm, with perfectly sharp inter-
faces and a single atomic step in the interface. We use
2D effective mass theory to simulate the inter-valley cou-
pling as the dot moves across the step (see Appendix D).
The evolution of ∆ as the dot traverses the step is shown
in Fig. 6(b), where at the step position, the dot has a
minimum Ev of about 200 µeV. We plot the resulting
infidelity as function of shuttling distance in Fig. 6(a).
We see spikes in the infidelity near the step position in
Fig. 6(a). These correspond to the position with max-
imized |∂x∆|, the rate of change in ∆ as a function of
distance, shown in Fig. 6(b). However, as the minimal
Ev at the step position is much larger than typical min-
ima present in the disordered regime, even velocities an
order of magnitude higher than those considered in the
main text converge to low infidelity values beyond the
step. An ideal sharp interface with only occasional single
monolayer steps can therefore enable high-fidelity trans-
port even without applying tuning methods. It should be
noted that multiple steps in close vicinity, i.e. on the or-
der of the dot size, may decrease Emin

v again and induce
larger infidelity, as considered in Ref. [24].
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FIG. 6. Traversal of a single monoatomic step. (a) Infidelities
as a function of shuttling distance, for a quantum well with a
perfectly sharp interface containing a single atomic step cen-
tered in the middle of the shuttling path, for several different
shuttling velocities (color coded). Working in the basis of in-
stantaneous eigenstates, we observe an infidelity peak at the
center of the Landau-Zener transition, as expected from the-
ory [65, 66]. The infidelity then remains low after crossing
the step, even for velocities up to 100m/s. Compared to the
disorder-dominated regime, this represents several orders of
magnitude of improvement in the infidelity. (b) The inter-
valley coupling ∆ plotted in the complex plane for the same
shuttling path. Here, the lowest valley splitting occurs at the
step location, with a value of 200 µeV. The color code repre-
sents |∂x∆|.

Appendix B: Prefactor of the noise-induced
shuttling infidelity

Here, we briefly clarify the different prefactor appear-
ing in Eq. (10), as compared to Ref. [24], which we
have adapted to match the infidelity metric described
in Sec. IVB 2. For a noise Hamiltonian given by

Hnoise =
ℏ
2
Φ(t)σz , (B1)
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our metric can be rewritten as

F =
1

d2

∣∣∣∣∣∣Tr{ V †︸︷︷︸
1

Unoise(t)}

∣∣∣∣∣∣
2

(B2)

=
1

d2

∣∣∣eiΦ(t)/2 + e−iΦ(t)/2
∣∣∣2 , (B3)

where Unoise(t) is the time evolution operator for Hnoise.
Assuming a Gaussian ensemble average of qubit phases
Φ of zero mean and rms δΦ, and with a dimension d = 2,
this evaluates to

⟨F ⟩ = 1

d2

(
2 + 2e−δΦ2/2

)
(B4)

d=2−−→ ⟨I⟩ = 1− ⟨F ⟩ = 1

2

(
1− e−δΦ2/2

)
≈ δΦ2

4
, (B5)

which implies an additional factor of 1/2 compared to
Ref. [24].

Appendix C: Parameter choices for two tuning
methods

In this Appendix, we examine how parameter choices
for two of the tuning strategies in the main text affect
the shuttling infidelities. This discussion is not meant to
provide a comprehensive analysis; rather, it is to illus-
trate some of the compromises that must be considered
when making these choices.

We first examine how the segment length and channel
width affect shuttling infidelities for the channel-shifting
strategy. In Fig. 7(a), we modify both the length of each
segment and the width of the shuttling channel (the “lat-
eral range”). We calculate the shuttling infidelities for the
3 nm QW at 10 µm distance for each parameter choice,
while simultaneously applying bipartite velocity modu-
lation, with an average shuttling velocity of 5m/s. As
expected, both parameters have a significant effect on
shuttling infidelities of at least several orders of magni-
tude. Increasing the lateral range makes it easier to avoid
regions with low valley splittings, while smaller segment
lengths allow for more frequent adjustments to the op-
timal path. For both parameters, the range of parame-
ters considered in Fig. 7(a) does not result in asymptotic
behavior of the infidelity; however, the range is imagin-
able for experimental realizations. On the other hand,
the results suggest the existence of thresholds, beyond
which the infidelities deteriorate significantly: for chan-
nel widths, this occurs below about 60 nm, and for seg-
ment lengths, it occurs above 1 µm. The threshold for
both parameters depends on the dot size, since valley
splitting values are essentially uncorrelated when the dot
is moved by the distance of a dot diameter. We therefore
expect that smaller dots do not require a wide channel
to achieve high shuttling fidelities; however they do re-
quire shorter segment lengths. At the threshold values
for these tuning parameters, in addition to increasing
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FIG. 7. Comparison of different simulation constraint param-
eters, for two tuning methods. (a) Exploration of shuttling
infidelities as we vary parameters used in the channel-shifting
simulations. Rust-colored histograms show results for several
different lateral shift ranges. Green histograms show results
for several different segment lengths. Larger lateral ranges
and smaller segment lengths are seen to give higher fidelities.
Here, results are obtained for a 10µm shuttling trajectory, for
an average velocity of 5m/s, in the 3 nm quantum well, and
we simultaneously apply bipartite velocity modulation but
no dot elongation. (b) Exploration of shuttling infidelities
as we vary parameters related to bipartite velocity modula-
tions. Rust-colored histograms show results for several values
of the ratio vslow/vfast. Green histograms show results for
several values of the threshold valley splitting Ethresh

v , be-
low which the slower velocity is applied. While increasing
the ratio vslow/vfast has a weak effect on the median infidelity
values, it has a stronger effect on the number of very poor infi-
delity results. On the other hand, setting a low valley splitting
threshold value causes the infidelity to increase significantly.
Black numbers indicate the average number of valley splitting
dips below Emin

v that occur over the full shuttle length. Other
parameters are the same as in (a).

median infidelity, we note that the infidelity distribution
also becomes problematic, with a much higher portion of
infidelities occurring at higher values.

Second, we examine parameters related to bipartite
velocity tuning. In Fig. 7(b), we analyze the choice of
the “slow” velocity used near locations of low valley split-
ting, vslow, and we study the choice of threshold valley
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splitting, Ethresh
v , below which the velocity is reduced.

Again, we consider simulations of the 3 nm QW evalu-
ated at 10 µm, with a fixed average velocity of 5m/s, and
we apply both bipartite velocity modulation and chan-
nel shifting techniques. We see that increasing the ratio
vslow/vfast only slightly increases the median infidelity,
but it significantly widens the tails of the distribution at
large infidelities. Setting a higher threshold Ethresh

v for
velocity switching causes the median infidelity to move to
lower infidelities; however, this occurs at the cost of sig-
nificantly more velocity switches per trace, as indicated
by the black numbers accompanying the data points.

Appendix D: Effective-mass theory of valley splitting

In this section, we elaborate on the effective-mass
envelope-function model for the valley states outlined
in Refs. [40, 41] and referenced in Sec. III. We start
with Eq. (2) in the main text, describing the inter-valley
coupling ∆. For a fully separable system, we can re-
duce Eq. (2) to a 1D integral over z. Moreover, fol-
lowing Refs. [40, 41], we transform the integral to a
sum over atomic monolayers (MLs) to account for the
discrete layers of the Si diamond cubic crystal struc-
ture, yielding Eq. (3) for ∆1D in the main text. When
monoatomic steps are present at the interface, our sys-
tem is no longer fully separable, and the reduction to 1D
is no longer sufficient. In this case, we can easily general-
ize to 2D or 3D. For example, to simulate a system with
a monoatomic step in the y direction, we can still sep-
arate the wavefunction as ψenv(r) = ψenv(x, z)ψenv(y).
By integrating over the y direction, we are then left with
a 2D problem. Discretizing our system into cells of size
(∆x,∆z) = (a0, a0/4) yields the 2D effective mass equa-
tion

∆2D =
a20
4

∑
j,l

e−2ik0zlUqw(xj , zl)|ψenv(xj , zl)|2. (D1)

Here, the sum is over indices j and l, which label the x
and z coordinates of each cell, respectively.

To a very good approximation, the quantum well po-
tential Uqw is a linear function of the Ge concentration:

Uqw(r) =
Xr −Xs

Xw −Xs
∆Ec (D2)

where Xr is the Si concentration at position r in the
heterostructure, Xw is the average Si concentration in
the quantum well, Xs is the average Si concentration
in the SiGe barrier/substrate region, and ∆Ec is the
conduction-band offset of the quantum well. For 1D sys-
tems, we can use Xr = Xl, where l is the layer index. In
this work, unless otherwise stated, we model our inter-
faces as sigmoid functions, where the average Si concen-

tration at layer l is defined by

X̄l = Xw

+
Xs −Xw

1 + exp[(zl − zt)/τ ]
+

Xs −Xw

1 + exp[(zb − zl)/τ ]
, (D3)

where zt and zb label the positions of the top and bot-
tom interfaces, and λ = 4τ is the characteristic interface
width. Unless otherwise specified, we use λ = 4τ = 1nm.

In the case of monoatomic steps, the Si concentration
Xr adopts some lateral dependence. In this case, we can
define the expected Si concentrations for a system with
a step at lateral position x = 0:

X̄j,l = X̄lΘ(xj ≤ 0) + X̄l+1Θ(xj > 0) (D4)

where X̄l is given by Eq. (D3) and Θ(·) is the Heaviside
step function.

Both Eqs. (3) and (D1) depend on the envelope func-
tion ψenv. To compute ψenv, we discretize and solve a
Schrodinger equation without valley physics. In the 1D
case, we discretize and solve the effective 1D Hamiltonian

H1D = − ℏ2

2ml
∂2z + Ūqw(z) + Uϕ(z) (D5)

where ml = 0.916me is the longitudinal effective mass of
the electron, me is the bare electron mass, Uϕ(z) = eEzz
is the potential due to a vertical electric field Ez, and
Ūqw is the quantum well potential without alloy-disorder-
induced fluctuations. In the 2D case, we discretize and
solve the effective 2D Hamiltonian

H2D = − ℏ2

2ml
∂2z − ℏ2

2mt
∂2x + Ūqw(x, z) + Uϕ(z)

+
1

2
mtω

2
x(x− x0)

2 (D6)

where ωx is the orbital confinement energy in the x-
direction, and x0 is the center location of the dot. In Ap-
pendix A, we considered shuttling across a mono-atomic
step, where it was necessary to apply Eq. (D6). How-
ever, in the rest of this work, it is sufficient to use the 1D
approximation of Eq. (D5).

To model the conduction-band offset, we follow
Ref. [40]:

∆Ec = (Xw −Xs)

[
Xw

1−Xs
∆ESi

∆2
(Xs)

−1−Xw

Xs
∆EGe

∆2
(Xs)

]
, (D7)

where ∆E
Si(Ge)
∆2

(X) are the ∆2 conduction-band offsets
for strained Si (Ge) grown on unstrained SiXGe1−X sub-
strate, and we approximate these functions as [67]

∆ESi
∆2

(X) ≈ −0.502(1−X) (eV)

∆EGe
∆2

(X) ≈ 0.743− 0.625(1−X) (eV).
(D8)
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Since the crystal lattice itself is composed of discrete
atomic sites, the averaged concentration inside a finite-
sized dot has an intrinsic uncertainty, given by Xl =
X̄l+ δl, where X̄l is the mean Si concentration at layer l,
and δl is the fluctuation for a particular dot. The Si con-
centration Xl in layer l can be computed as a weighted
average, where the contribution of each atom is weighted
by the dot probability density at that atom:

Xl =
1

Nl

∑
a∈Al

1[a = Si]|ψenv(a)|2 = X̄l + δl (D9)

where the sum is taken over Al, the set of atoms in layer
l, 1[a = Si] is the indicator function that returns 1 if
a is Si and 0 otherwise, and ψenv(a) is the value of the
envelope function at the position of atom a. The normal-
ization constant Nl =

∑
a∈Al

|ψenv(a)|2. The inter-valley
coupling of Eq. (3) can likewise be broken into fixed and
random components ∆0 and δ∆:

∆0 =
a0∆Ec

4(Xw −Xs)

∑
l

e−2ik0zl(x̄l − xs)|ψenv(zl)|2,

δ∆ =
a0∆Ec

4(Xw −Xs)

∑
l

e−2ik0zlδl|ψenv(zl)|2.

(D10)

In Eq. (D10), ∆0 is the inter-valley coupling due to
larger-scale features of the heterostructure, like the in-
terface width or interface steps. On the other hand, δ∆
is a local fluctuation about ∆0, caused by alloy disor-
der. We can then compute the variance σ2

∆ = Var[δ∆],
as given in Eq. (4) in the main text.

Appendix E: Generating valley-splitting landscapes

To obtain accurate statistics of shuttling fidelities, we
need to generate many realistic examples of inter-valley
couplings, ∆, which vary spatially across the device.
That is, we need many examples of ∆(x, y). To do so, we
use the GSTools python library, which generates spatially
random fields [68]. The real and imaginary components
of ∆ are generated independently, with variances given
by σ2

∆/2 and spatial covariances defined in Eq. (6).
The above approach works for spatially varying inter-

valley couplings, ∆(x, y). However, to test the efficacy
of modulating the electric field, we also need to generate
many sample fields of the form ∆(x,Ez). Unlike the re-
lationship between ∆ and x, the statistical relationship
between ∆ and Ez is not given by a simple covariance
equation that can be randomized. Instead, the effect of
Ez depends on the shape of the quantum well interfaces,
the quantum well width, and the Ge content in the quan-
tum well. So, rather than randomly generating the field
∆, we instead generate the local Si concentrations across
the device, for each atomic layer of the quantum well.
Since the dot is finite in extent, as it shuttles across the
device, the effective Si concentrations experienced by the
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FIG. 8. Infidelity histograms for the channel-shifted 5% Ge
quantum well, including all tuning methods applied, as in
Fig. 5(d), as a function of the Zeeman splitting difference
∆EB between the ground and excited valley states. Here,
∆E0

B is the characteristic value of 10MHz used in the main
text.

dot at each layer in the heterostructure fluctuate slightly.
Thus, the effective Si concentrations in the quantum well
become position-dependent. We then indicate the Si con-
centration at layer l and lateral position x by Xl(x). Us-
ing GSTools, we create many examples of Xl(x). Then,
for a given position and vertical field value, we use these
local Si concentrations in our effective mass model, out-
lined above, to compute ∆(x,Ez). Below, we outline how
we obtain these spatially fluctuating Si concentrations.

Previous work has shown that Xl can be approx-
imately sampled from a binomial distribution, Xl ∼
1

Neff
Binom(Neff, X̄l), where Neff = 4πa2dot/a

2
0 [41]. In

turn, this is approximately equal to a normal distribu-
tion with mean X̄l and variance σ2

X = NeffX̄l(1 − X̄l).
Therefore, Xl can be approximately sampled as

Xl ∼
1

Neff
N(X̄l, NeffX̄l(1− X̄l)), (E1)

where N(µ, σ2) is the normal distribution with mean µ
and variance σ2. The spatial covariance is then given by

Cov[Xl, X
′
l ] = exp

(
−δ2x/2a2x

)
σ2
X , (E2)

where δx indicates the distance between two points along
the shuttling trajectory. Equations (E1) and (E2) de-
scribe the complete spatial statistics of Xl(x), which we
can input into GSTools, to generate fluctuating Si con-
centrations. Now, for each position x, we have a complete
Si concentration profile Xl(x), which we simulate using
effective mass theory Eq. (3) to compute ∆. Thus, we
can build up sample fields of the form ∆(x,Ez).

Appendix F: Dependence on ∆EB

We briefly comment on the dependence of the simu-
lations on the difference in Zeeman splittings ∆EB be-
tween the ground and excited valley states. In Fig. 8, we
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FIG. 9. Schematic illustration of the possible paths a dot
can take across a device, implemented in our path traversal
algorithm. Straight segments of fixed length are connected
by transition zones of length 40 nm along the shuttling direc-
tion (x̂). The possible transitions from one such straight seg-
ment are illustrated, including the option to continue straight
(∆p = ∆y = 0), shown in black, and the option to modify
the parameter (|∆p| = |∆y| > 0), shown in red.

illustrate the dependence of the shuttling infidelity distri-
bution on ∆EB for the highest-fidelity simulations used
in this work: shuttling in a 5% Ge quantum well with
all tuning methods applied. We see that the distribu-
tion of infidelities changes only slightly when increasing
the value of ∆EB by an order of magnitude. We can
understand this result as follows. The metric used to
evaluate the fidelity in this work considers, as a conser-
vative assumption, only the population ending up in the
ground state [61]. In the absence of fast relaxation dy-
namics, as discussed in the main text, we do not expect
dots in the excited valley state to return to the ground
state with significant probability. Since the energy scale
of the ∆EB term has little effect on the Landau-Zener
transition mechanism, ∆EB is not a determining factor
for the infidelity results, as confirmed in Fig. 8.

Appendix G: Path selection algorithm

To implement segmented channel-shifting strategies,
we need to carefully choose our path across the valley
splitting landscape, either by modifying the y coordinate
of the dot or by modifying the vertical electric field Ez.
In this work, we adopt a heuristic graph traversal algo-
rithm to make this path selection. The valley splitting
landscape is discretized into pixels of size 1 nm × 1 nm
for y tuning, or 0.1mV/m × 1 nm for Ez-tuning. To
make use of common graph traversal algorithms, we de-
fine a graph representing the possible paths across this
discretized landscape. The edges of the graph represent
possible paths the dot could take across the device. These
paths include straight segments of a fixed length with
40 nm transition zones between the segments. (We set
all segment lengths to 1 µm in this work, except briefly

in Appendix C.) [See Fig. 5(a) for an example trajec-
tory, and Fig. 9 for an illustration of the method.] The
parameter being optimized (either y or Ez) remains con-
stant along a straight segment (black lines in Fig. 9),
but is modified smoothly and continuously in the tran-
sition zones (red lines in Fig. 9). Transitions between
the optimized segments are heuristically defined as cubic
polynomial functions whose derivatives go to zero at the
endpoints of the transition.

An ideal path should have the following properties: (1)
the minimum valley splitting along each segment should
be large enough to avoid Landau-Zener transitions be-
tween the valley states, and (2) the transitions between
segments should be as short as possible, to avoid increas-
ing the effective shuttling velocity along long, steep tran-
sitions. To achieve paths that globally optimize these two
properties, we assign weights w(e) to each edge e accord-
ing to the following rules, which penalize both low min-
imum valley splittings (mineEv) along a given segment,
and transitions with large changes ∆p in the optimization
parameter, where p = y or Ez :

w(e) =

{
100 · |∆p|

∆pmax mineEv ≥ Tv,

N + 100 · |∆p|
∆pmax + (Tv−mine Ev)

2

1µeV2 mineEv < Tv,

(G1)
where Tv is a threshold value for the valley splitting
(measured in µeV), ∆pmax is the maximum variation
of p allowed between the segments, and N > 100 is a
large number chosen such that a transition edge with
mineEv ≥ Tv has a smaller weight than a straight edge
with mineEv < Tv. We note that the exact values of the
weights assumed in Eq. (G1) are relatively unimportant
for our purposes, as long as both low-Ev minima and
transitions with large changes |∆p| are penalized, rela-
tive to paths with large minimum Ev and no transitions.
In this work, we choose Tv = 50 µeV and N = 1000,
with ∆pmax = 100 nm for the channel-shifting protocol
and ∆pmax = 10mV/nm for E-field modulation. After
assigning weights to each edge in the graph, the graph
traversal algorithm minimizes w to generates an opti-
mized path across a given Ev landscape.

Appendix H: Further characterization of the Ez

modulation strategy

In this Appendix, we further examine the performance
of the electric-field (Ez) modulation strategy. In Sec-
tion V B, we highlighted that Ez modulation offers im-
provements in shuttling fidelity for 5% Ge quantum wells,
but not for the other quantum wells analyzed in this
work. We now explain these differences. First, for de-
vices with sharp interfaces, it is well known that the val-
ley splitting scales linearly with Ez, as stronger Ez in-
creases the wavefunction penetration into the top barrier
[69]. For more realistic quantum wells with diffuse inter-
faces, we expect the average valley splitting to also scale
linearly with Ez, as increasing Ez forces the wavefunc-
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FIG. 10. Dependence of valley splitting on the vertical electric
field, for the 10 nm quantum well (left), the 3 nm quantum
well (middle), and the 5% Ge quantum well (right). Each
plot shows the variation of Ev as a function of Ez for 100
instantiations of alloy disorder.

tion to overlap with more high-Ge layers [41]. However,
for recently demonstrated heterostructures, like narrow
quantum wells or quantum wells with a high Ge concen-
tration, Ev has a nontrivial dependence on Ez, which we
characterize below.

In Fig. 10, we show the variation of Ev as a function of
Ez for 100 instantiations of each quantum well. For the
10 nm quantum well (left), we notice that Ev is largely
monotonically increasing with Ez, since larger Ez pulls
the dot strongly into the top barrier, increasing its over-
lap with high-Ge layers.

For the 3 nm quantum well (middle), Ev is no longer
a monotonic function of Ez. Moreover, since the dot is
tightly confined inside the narrow well, the dot position
(and thus Ev) is not very tunable as a function of Ez. In
contrast, for the 5% Ge quantum well (right), the quan-
tum well is much wider and has strong local fluctuations
of the Ge concentration, so small shifts in the wavefunc-
tion position can significantly alter Ev as a function of
Ez. In this case, if we want to use Ez as a tuning knob to
avoid low-Ev regions, this scheme can be very effective.

Figures 11(a)-11(c) show sample valley splitting land-
scapes as a function of position, x, and vertical field, Ez,
for the case of (a) a 10 nm quantum well, (b) a 3 nm
quantum well, and (c) a 5% Ge quantum well. In all
plots, regions with Ev < 20 µeV are highlighted in red.
As consistent with data in Fig. 10, we see in Fig. 11(a)
that Ev tends to increase monotonically with Ez, for any
location in a 10 nm quantum well. However, since this
quantum well has a relatively low average Ev, despite the
large vertical field, significant regions of low Ev cannot
be avoided. Indeed, we see in Fig. 11(a) two x locations
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FIG. 11. Sample valley splitting landscapes as a function of
position, x, and vertical field Ez, for (a) a 10 nm QW, (b) a
3 nm QW, and (c) a 5% Ge QW. In all panels, we highlight
regions where Ev < 20µeV in red.

where Ev < 20 µeV regardless of Ez. For the 3 nm well,
we have a larger average Ev, and therefore fewer zones
where Ev is dangerously small. However, since Ev is not
highly tunable as a function of Ez in these quantum wells,
regions of low Ev tend to persist over a wide range of Ez.
When Ez is held constant over a distance of 1 µm, these
regions are difficult to avoid.

The situation is somewhat improved for the 5% Ge
well in Fig. 11(c). First, the large amount of alloy dis-
order creates much larger average valley splittings. Ad-
ditionally, Ev has a non-monotonic dependence on Ez,
which makes it more likely that we can find an Ez value
that avoids all low Ev for a given shuttling trajectory.
We find, however, that taking advantage of such non-
monotonicity requires imposing fairly short segments of
constant Ez. If segments are too large, one is always
likely to encounter low Ev values. Still, for the 1 µm seg-
ments used in the simulations reported in the main text,
we find Ez modulation does offer improved fidelities for
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the 5% Ge quantum well.

Appendix I: Further characterization of the
dot-elongation strategy

In this Appendix, we provide further details on the
performance of the dot-elongation tuning strategy. As a
reminder, we have considered isotropic dots with orbital
splittings ℏωx = ℏωy = 2meV, and “elongated” dots with
orbital splittings ℏωx = 1meV and ℏωy = 4meV. While
these choices yield dots with the same area, we find that
they yield very different shuttling infidelities.

Elongating the dot in the shuttling direction has three
main effects on the shuttling procedure. First, it in-
creases the size of the dot along the shuttling direction,
thereby reducing the effective length scale of the shuttling
process. Since the characteristic length of valley splitting
correlations depends entirely on the dot size, this means
the moving dot will encounter proportionately fewer re-
gions of low Ev on average. In Fig. 12(a), we plot the
valley splitting for an isotropic (orange) vs an elongated
(blue) dot, for the same landscape; here we can clearly see
the longer correlation length scale in the blue data, and
the larger number of regions with low Ev in the orange
data. To create these plots, we generate an atomistic
model of a heterostructure and raster the lateral confine-
ment potential across this heterostructure, computing ∆
for each potential center x, using the method outlined in
the main text. In Fig. 12(b), we histogram the number
of local Ev minima observed along 300 straight shuttling
trajectories, for both isotropic (yellow) and elongated
(blue) dots. To avoid the massive computational over-
head of populating 10 µm-wide heterostructures atom-by-
atom, we generate these Ev landscapes randomly, using
the methods outlined in Appendix E. Results are shown
for a trajectory length of 10 µm in a 3 nm quantum well.
Clearly, there are fewer local minima for elongated dots,
leading to fewer opportunities for Landau-Zener excita-
tions. Here, we also indicate the expected number of
local minima in each case [vertical lines in Fig. 12(b)], as
derived later in this Appendix.

The second effect of dot elongation is to increase the
tunability of the valley splitting via the channel-shifting
technique. Just as elongating the dot in the shuttling
direction increases the characteristic length scale of val-
ley splitting fluctuations along x̂, narrowing the dot
transverse to the shuttling trajectory reduces the char-
acteristic fluctuation length scale along ŷ. Thus, for a
fixed channel width, when we employ the channel-shifting
strategy, the path-selection algorithm is effectively able
to search over more variations in the Ev landscape, al-
lowing it to identify better shuttling trajectories.

Finally, the third impact of elongating the dot is to
reduce the effective shuttling velocity. This is important
when passing through a narrow energy gap, because it
reduces the probability of Landau-Zener excitations. To
clarify this point, we examine the rate of change of the

inter-valley coupling of the moving dot, ∂t∆. Using the
chain rule, we have

∂t∆ = v∂x∆ = v (∂x∆R + i∂x∆I) (I1)

where v is the shuttling velocity (assumed to be in the
x-direction) and ∆R/I refer to the real and imaginary
components of ∆. The rate of change of ∆ is there-
fore directly related to the spatial derivative ∂x∆. In
Fig. 12(c), we plot histograms of |∂x∆| along 300 shut-
tling trajectories for the 3 nm quantum well, for both
isotropic (yellow) and elongated (blue) dots, using the
same set of landscapes as in (b). While both of these dis-
tributions exhibit some spread, the average gradient is
clearly smaller for the elongated dots. Here, we also in-
dicate the theoretically calculated mean gradients (verti-
cal dashed lines) and probability density functions (solid
lines) for |∂x∆|, as derived below.

Calculation of the ∂x∆ distributions. Since the inter-
valley coupling ∆ fluctuates throughout the device, the
derivatives on the right-hand-side of Eq. (I1) are random
variables, and we may evaluate their statistics. To do so,
we compute the variance of ∂x∆:

Var [∂x∆] = 2Var [∂x∆R]

= 2Var
[
lim
δx→0

1

δx
(∆R(x+ δx)−∆R(x))

]
= 2 lim

δx→0

1

δ2x
(Var[∆R(x+ δx)] + Var[∆R(x)]

−2Cov[∆R(x+ δx),∆R(x)])

= 2 lim
δx→0

1

δ2x

(
σ2
∆ − e−δ2x/2a

2
xσ2

∆

)
=
σ2
∆

a2x
(I2)

In the first line of Eq. (I2), we use the identity Var[A +
iB] = Var[A] + Var[B] and the symmetry between ∆R

and ∆I . In the second line, we use the definition of a
derivative. In the third line, we interchange the order
of the variance and the limit, and we use the identity
Var[A−B] = Var[A]+Var[B]−2Cov[A,B]. In the fourth
line, we use Var[∆R(x+ δx)] = Var[∆R(x)] = σ2

∆/2, and
we use Eq. (6) to evaluate Cov[∆R(x + δx),∆R(x)]. Fi-
nally, in the fifth line, we evaluate the limit. As consistent
with the central-limit theorem, the quantity ∂x∆ is thus
seen to be a circular complex Gaussian random variable,
centered at the origin, with variance given by Eq. (I2).

Since ∂x∆ is complex, it is also interesting to evalu-
ate the distribution of |∂x∆|. This quantity will have a
Rayleigh distribution, whose probability density function
is given by

pRayleigh(z) =
z2

σ2
exp

(
−z2/2σ2

)
, (I3)

where we define the spread parameter as

σ =
1

2
Var [∂x∆] =

σ2
∆

2a2x
. (I4)
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FIG. 12. Elongating the dot in the shuttling direction, and squeezing the dot in the transverse direction, reduces the magnitude
of Ev fluctuations, significantly boosting shuttling fidelities. (a) Example Ev traces as a function of position for the 3 nm QW,
for isotropic (top, orange) and elongated (bottom, blue) quantum dots. (b) Histograms of the number of local Ev minima along
a 10 µm shuttling path, for 300 iterations with the 3 nm QW, using isotropic (top, yellow) and elongated (bottom, blue) dots.
Dashed lines indicate the expected number of local minima in each case (E[N ] ≈ 282 for isotropic dots and ≈ 200 for elongated
dots), computed with Eq. (I21). (c) Histograms of |∂x∆| across the same 300 shuttling trajectories. Solid lines indicate the
theoretical probability density functions, computed with Eq. (I3). Dashed lines indicate the expected mean gradient, E[|∂x∆|],
computed with Eq. (I5), which are 7.7 for isotropic dots and 5.5 for elongated dots.

The probability density functions for |∂x∆| from Eq. (I3)
are shown as solid lines in Fig. 12(c). The expected value
of |∂x∆| is likewise given by

E[|∂x∆|] =
√
π

2
σ. (I5)

Evaluating E[|∂x∆|] for the elongated and isotropic dots
gives the results plotted as vertical dashed lines in
Fig. 12(c).

Estimating the number of valley-splitting minima. We
now compute the expected number of valley splitting
minima along a straight shuttling trajectory. Typical re-
sults are shown with vertical dashed lines in Fig. 12(b).
We follow the approach of Ref. [70], which we reproduce
below for completeness. Note that we restrict the analy-
sis to just one spatial dimension.

Using the Kac-Rice formula, the number of local min-
ima is given by [71]

N =
1

2

∫
x

dx δ(∂xE
2
v)|∂2xE2

v |, (I6)

where the factor of 1/2 accounts for the fact that half of
the extrema points (where ∂xE2

v = 0) are minima, and
δ(∂xE

2
v) is a delta-function that activates when E2

v is at
an extremum. Using the identity

δ(f(x)) =
∑
i

δ(x− xi)

|f ′(xi)|
, where f(xi) = 0, (I7)

we see that the remaining factor |∂2xE2
v | allows the inte-

gral to count the number of extrema in E2
v . Here, we

use E2
v instead of Ev to simplify the calculation, without

changing the results. Mathematically, the quantity E2
v is

a χ2 random field with two contributing Gaussian ran-
dom fields, E2

v = 4∆2
R + 4∆2

I . The derivatives of E2
v are

given by

∂xE
2
v = 8∆R∂x∆R + 8∆I∂x∆I ,

∂2xE
2
v = 8(∂x∆R)

2 + 8∆R∂
2
x∆R + 8(∂x∆I)

2 + 8∆I∂
2
x∆I .

(I8)

We compute the expectation value, E[N ], by averaging
over all possible configurations of the inter-valley cou-
pling:

E[N ] =
1

2

∫
dΦ P (Φ)

∫
x

dx

× δ(8∆R∂x∆R + 8∆I∂x∆I)|∂2xE2
v |, (I9)

where we use Φ as shorthand notation for the random
field configurations of ∆R(x), ∆I(x), and their deriva-
tives. More explicitly, the integral element is given by

dΦ = d∆Rd∆Id(∂x∆R)d(∂x∆I)d(∂
2
x∆R)d(∂

2
x∆I),

(I10)
and the total probability density function is given by

P (Φ) = P∆,∂2
x∆

(∆R, ∂
2
x∆R)P∆,∂2

x∆
(∆I , ∂

2
x∆I)

× P∂x∆(∂x∆R)P∂x∆(∂x∆I). (I11)

Note that we do not include higher order derivatives here,
since they do not appear in the integrand. Also note that
the random fields ∆R and ∆I are independent by defini-
tion, and any covariance of the form ⟨∆i(x)∂x∆i(x)⟩ or
⟨∂2x∆i(x)∂x∆i(x)⟩ must vanish due to the x → −x sym-
metry of the integral, where we use angle brackets ⟨·⟩ to
denote the expectation value of a quantity over its field
configurations. Thus, we are left with two probability
density functions to compute: one for the first derivatives
of the field, P∂x∆(∂x∆j), as well as the joint probability
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density function for the fields and their second deriva-
tives, P∆,∂2

x∆
(∆j , ∂

2
x∆j). We showed above that ∂x∆R

and ∂x∆I are Gaussian random variables with zero mean
and variance σ2

∆/2a
2
x. We therefore have

P∂x∆(∂x∆j) =
ax√
πσ∆

exp
(
−(∂x∆j)

2a2x/σ
2
∆

)
. (I12)

Finally, we compute P∆,∂2
x∆

(∆j , ∂
2
x∆j). To do this,

we need covariances of the form ⟨∆j(x)∂
2
x∆j(x)⟩. By

expressing the random fields in the reciprocal basis,

∆j =

∫
dk

2π
eikx∆̃j(k), (I13)

we can evaluate

⟨∆j(x)∂
2
x∆j(x)⟩ = − 1

2π

∫
dk k2P (k), (I14)

where the power spectrum P (k) is the Fourier transform
of the covariance function ⟨∆j(x)∆j(x

′)⟩, which is pro-
vided in Eq. (6). Hence, we find

P (k) = axσ
2
∆

√
π/2 exp

(
−a2xk2/2

)
. (I15)

We then evaluate Eq. (I14), obtaining

⟨∆j(x)∂
2
x∆j(x)⟩ = − σ2

∆

2a2x
. (I16)

Using the same technique, we can evaluate the variance
as

⟨(∂2x∆j(x))
2⟩ = 1

2π

∫
dkk4P (k) =

3σ2
∆

2a4x
. (I17)

Since the fields ∆j and their derivatives are Gaussian
random variables with zero mean, we can define the joint
probability density function as

P∆,∂2
x∆

(∆j , ∂
2
x∆j)

=
1√

(2π)2|Σ|
exp

(
−1

2
vTΣ−1v

)

=
a2x√
2πσ2

∆

exp

(
−
3∆2

j + 2a2x∆j∂
2
x∆j + a4x(∂

2
x∆j)

2

2σ2
∆

)
,

(I18)

where vT = (∆j , ∂
2
x∆j) and the covariance matrix is

given by

Σ =
σ2
∆

2

(
1 −a−2

x

−a−2
x 3a−4

x

)
. (I19)

Here, we used Eq. (I16) to populate the off-diagonal el-
ements of Σ, and Eq. (I17) to populate the remaining
diagonal element.

We are then in a position to evaluate Eq. (I9). First,
we eliminate the δ-function and the integral over ∂x(∆I)
by setting ∂x∆I = −∆R∂x∆R/∆I , which yields

E[N ] =
1

2

∫
x

dx

∫
d∆R d∆I d(∂x∆R) d(∂

2
x∆R) d(∂

2
x∆I)

× P∆,∂2
x∆

(∆R, ∂
2
x∆R)P∆,∂2

x∆
(∆I , ∂

2
x∆I)P∂x∆(∂x∆R)P∂x∆

(
−∆R∂x∆R

∆I

)
|∂2xE2

v | (|8∆I |)−1
. (I20)

Here, the probability density functions are given in
Eq. (I12) and Eq. (I18), and the term |∂2xE2

v | is given in
Eq. (I8). The final term (|8∆I |)−1 comes from the eval-
uation of the δ-function, where we have used Eq. (I7).

Finally, we evaluate Eq. (I20) numerically, obtaining

E[N ] ≈ 0.4× xtot

ax
, (I21)

where xtot is the total shuttling distance. The dashed
lines indicating E[N ] in Fig. 12(b) were computed using
Eq. (I21). Since E[N ] scales as 1/ax, we see that reducing
the orbital energy from 2 to 1meV, should cause E[N ]

to drop by a factor of 1/
√
2.
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