arXiv:2405.01830v1 [quant-ph] 3 May 2024

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, XXXX 2024

Computational Electromagnetics Meets Spin Qubits:
Controlling Noise Effects in Quantum Sensing and
Computing

Wenbo Sun, Graduate Student Member, IEEE, Sathwik Bharadwaj, Member, IEEE, Runwei Zhou, Graduate
Student Member, IEEE, Dan Jiao, Fellow, IEEE, and Zubin Jacob, Fellow, Optica

Abstract—Solid-state spin qubits have emerged as promising
quantum information platforms but are susceptible to magnetic
noise. Despite extensive efforts in controlling noise in spin qubit
quantum applications, one important but less controlled noise
source is near-field electromagnetic fluctuations. Low-frequency
(MHz and GHz) electromagnetic fluctuations are significantly
enhanced near nanostructured lossy material components essen-
tial in quantum applications, including metallic/superconducting
gates necessary for controlling spin qubits in quantum computing
devices and materials/nanostructures to be probed in quantum
sensing. Although controlling this low-frequency electromagnetic
fluctuation noise is crucial for improving the performance of
quantum sensing and computing, current efforts are hindered by
computational challenges. In this paper, we leverage advanced
computational electromagnetics techniques, especially fast and
accurate volume integral equation based solvers, to overcome
the computational obstacle. We introduce a theoretical and
computational framework to control low-frequency magnetic
fluctuation noise for enhancing spin qubit quantum sensing and
computing performance. Our framework extends the application
of computational electromagnetics to spin qubit quantum devices.
We further apply our theoretical framework to control noise
effects in realistic quantum computing devices and quantum sens-
ing applications. Our work paves the way for device engineering
to control magnetic fluctuations and improve the performance of
spin qubit quantum sensing and computing.

Index Terms—Spin Qubit, Quantum Computational Electro-
magnetics, Volume Integral Equations, Quantum Computing,
Quantum Sensing.

I. INTRODUCTION

Solid-state spin qubits have emerged as promising quan-
tum information platforms due to their small sizes, high
controllability, and long preservation of encoded quantum
information [1]. In quantum applications based on spin qubits,
quantum information is encoded in the spin degree of freedom
of electrons or nuclei. Despite their advantages in sensing
and information processing applications, quantum systems are
generally susceptible to environmental noise [2].

Extensive efforts have been devoted to device engineering
and controlling noise in spin qubit systems to improve the
performance of quantum devices. For example, nuclear spins
in the substrate can interact with spin qubits through hyperfine
interactions and limit the performance of quantum computing
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and sensing [3]. To reduce nuclear spin bath noise, recent de-
vices employ advanced material fabrication technologies, such
as isotopic engineering, to control the concentration of non-
zero nuclear spins [4]. Fluctuating charges in semiconductor
spin qubit quantum computing devices create random electric
fields at qubit positions and perturb energy levels of spin
qubits [5], [6]. Recent devices employ undoped semicon-
ductors and thin quantum wells to reduce charge noise and
improve the quality of semiconductor spin qubits [7], [8].

Meanwhile, another important yet less controlled noise in
spin qubit applications originates from the near-field vacuum
and thermal fluctuations of electromagnetic fields [9], [10],
[11], [12], [13], [14]. Spin qubits are less susceptible to noise
electric fields, but are sensitive to magnetic field fluctuations
in the environment. One common feature in spin qubit quan-
tum applications is the extreme proximity of spin qubits to
nanostructured lossy materials. In quantum computing devices,
nanofabricated metallic or superconducting gates and antennas
are necessary for controlling semiconductor spin qubits [15],
[16], [17], [18], [19], [20], [21]. In hybrid quantum systems,
nanomagnets are employed to realize long-range control of
spin qubits [22], [23], [24]. In the near-field of these nanos-
tructured lossy materials, evanescent waves associated with
intrinsic material loss can universally enhance the fluctuations
of low-frequency (<GHz) magnetic fields [25], [26], [13]. At
GHz frequencies, the enhancement can exceed 15 orders of
magnitude compared to free space [25]. These significantly
enhanced low-frequency magnetic fluctuations can interact
with spin qubits, leading to noise effects that are important
in spin qubit quantum applications. In quantum computing
devices, these low-frequency magnetic fluctuations accelerate
the loss of quantum information and limit the devices’ perfor-
mance [14], [27]. This motivates the necessity to model and
suppress the low-frequency magnetic fluctuations near nanos-
tructured lossy components in spin qubit quantum computing
devices to improve their performance.

Meanwhile, in quantum sensing, shallow spin qubits are
usually in the near-field of materials for probing material
properties and imaging nanostructures [28], [29], [10], [11],
[30], [31], [32]. Here, the near-field magnetic noise carries
important information about the properties of the material
system to be probed by spin qubits [28]. Therefore, amplifying
the low-frequency magnetic fluctuations can benefit the accu-
racy of quantum sensing of material properties. Furthermore,
condensed matter systems of interest can be inhomogeneous
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(e.g., superconductors [33] and two-dimensional magnets [34])
or nanosized. Hence, accurate modeling of low-frequency
magnetic fluctuations near arbitrarily structured lossy materials
is crucial for quantum sensing based on noise effects (e.g.,
quantum-impurity relaxometry [35] of dephasometry).

Despite its importance, controlling the electromagnetic fluc-
tuation noise remains much less explored. Controlling the
electromagnetic fluctuation noise can provide a new avenue
in improving the performance of spin qubit quantum devices.
However, current explorations are largely limited by compu-
tational challenges.

Previous efforts in controlling electromagnetic fluctua-
tions mainly focused on photonic environments, where high-
frequency fluctuations are dominant in light-matter interac-
tions. Computational methods based on differential equations,
including finite-element methods (FEM) and finite-difference
time-domain methods (FDTD), are used to model the photonic
environments for engineering molecular spontaneous emis-
sion [36], atom-atom interactions [37], near-field radiative heat
transfer [38], [39], and Casimir effects [40], which are usually
related to high-frequency electromagnetic fluctuations. Recent
work discussed full-wave FEM simulations of GHz electric
noise for macroscopic superconducting transmon qubits [41],
[42], which are typically larger than 100 ym [43].

In contrast, controlling electromagnetic environments for
spin qubits opens a new frontier in engineering electromag-
netic fluctuation effects, where low-frequency (MHz and GHz)
magnetic fluctuations in the near-field of ultra-subwavelength
nanostructures become important [25]. Here, the electromag-
netic fluctuations of interest are of MHz and GHz frequencies
corresponding to wavelengths larger than 1cm, while nanos-
tructured lossy materials in spin qubit quantum devices can
have a characteristic size of about 10nm. Furthermore, due to
evanescent wave contributions, this low-frequency magnetic
fluctuation noise can have strong spatial variations in the
nanometer range depending on its positions from nanostruc-
tures. Therefore, controlling magnetic fluctuation noise for
spin qubits quantum applications requires accurately modeling
the low-frequency (<GHz) electromagnetic environment near
ultra-subwavelength nanoscale objects. This can lead to large
memory and computation time consumption and highly ill-
conditioned numerical system for FEM or FDTD methods.

In this paper, we introduce a numerical framework to engi-
neer low-frequency magnetic noise for improving spin qubit
quantum sensing and computing performance. Our frame-
work leverages advanced computational electromagnetics tech-
niques, such as fast and accurate volume integral equation
based solvers [44], [45], [46]. Previous developments in mod-
eling quantum devices with computational electromagnetics
focused on superconducting qubits [41], [47], [42], [48], [49],
cavity quantum electrodynamics (QED) systems [50], and two-
photon interference [51]. Here, we extend the application of
computational electromagnetics to model noise effects in spin
qubit quantum applications. With foundations established in
our previous works [14], [25], our framework here is generally
applicable to reciprocal/non-reciprocal electromagnetic envi-
ronments. Our framework takes advantage of volume integral
equation methods to calculate noise effects on spin qubits,
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Fig. 1. (a) A schematic of the simplified device structure for a quantum
computing device [15] containing three semiconductor spin qubits. The spin
qubits have interqubit distance d and are at a distance z from the top aluminum
gates (grey structures) necessary for controlling spin qubits. (b) Tetrahedral
mesh used in computational electromagnetic simulations to discretize the
metal gates and solve volume integral equations. We increase the mech density
in the region close to spin qubits to improve the accuracy of computational
electromagnetics simulations.

including relaxation, dephasing, and open quantum system
dynamics. We further apply our framework to control low-
frequency magnetic fluctuations in the nano-electromagnetic
environment in realistic devices and applications, including
a three-semiconductor-spin-qubit quantum computing device
(see Fig. 1) and nanoscale imaging based on quantum-impurity
relaxometry (see Fig. 5). Additionally, through comparison
with noise modeled by volume integral equations, we demon-
strate the limitation of current approximate methods widely
used in modeling magnetic noise in spin qubit systems, which
can fail to predict qualitatively correct noise behaviors in
realistic devices. Our work paves the way for controlling
low-frequency near-field magnetic fluctuations in spin qubit
sensing and computing devices.

The paper is organized as follows. In Section II, we
review the basic details of solid-state spin qubits and im-
portant metrics to quantify noise effects on spin qubits. In
Section III, we discuss the origin of low-frequency electro-
magnetic fluctuations in solid-state spin qubit applications.
We highlight that the main obstacle to controlling magnetic
fluctuation noise is accurately modeling the low-frequency
magnetic fluctuations in the near field of nanostructured lossy
materials. In Section IV, to overcome this obstacle, we intro-
duce a quantum computational electromagnetics framework to
leverage advanced computational electromagnetics techniques
for modeling noise effects in spin qubit quantum applica-
tions. We highlight our framework is generally applicable to
reciprocal/non-reciprocal nano-electromagnetic environments.
In Section V, we demonstrate the application of fast and
accurate volume integral equation based solvers in modeling
low-frequency magnetic noise. In Section VI, we apply our
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theoretical framework to control low-frequency magnetic noise
in a semiconductor spin qubit quantum computing device. In
Section VII, we apply our theoretical framework for nanoscale
imaging based on quantum-impurity relaxometry. Finally, in
Section. VIII, we summarize the paper and indicate further
applications of our theoretical framework in optimizing the
device design to benefit quantum sensing and computing.

II. SOLID STATE SPIN QUBIT PRELIMINARIES

Before we demonstrate how to control electromagnetic
fluctuation noise effects in spin qubit quantum applications,
we first review some basic details of solid-state-spin qubit
systems. In the near term, the progress of quantum computing
and sensing platforms can provide a major edge in solving
problems that are currently intractable with classical systems
in material science [52], [53], high-energy physics [54], and
quantum chemistry [55], [56]. The basic building block in
quantum sensing and computing applications is a two-level
system, which is used as a quantum bit (qubit). The accurate
initialization, manipulation, and readout of the qubit states
through optical, electronic, or microwave methods is at the
core of quantum sensing and computing applications. Quantum
systems are generally susceptible to environmental noise [2].
Therefore, the device design and packaging strategies [57]
based on computational electromagnetics are crucial as they
enable a systematic assessment of the interaction with the
device’s electromagnetic environment.

A. Introduction to Solid State Spin Qubits

Solid-state spin qubits have emerged as leading platforms
for implementing quantum information technologies [1], [58].
Compared to other quantum information platforms, solid-
state spin qubits have the advantage of small sizes, high
controllability, and long preservation of encoded quantum
information [1]. In solid-state spin qubit systems, the two-level
system is defined by the spin states of nuclear or electron
spins. Various types of solid-state qubits, such as the Loss-
DiVincenzo qubits [59], donor spin qubits [60], single-triplet
qubits [61], exchange-only qubits [62], and vacancy/defect
center qubits [63], have been experimentally demonstrated.

1) Semiconductor Spin Qubits: Semiconductor spin qubits
are widely used in quantum computing applications. Spin
qubits in semiconductors (e.g., silicon and germanium) are
realized by four primary approaches [1]. Loss-DiVincenzo
qubits encode and decode information by altering the intrinsic
spin of single electron trapped inside quantum dots [59].
Donor spin qubits employ the electron and nuclear spins
of implanted donors (e.g., phosphorous or erbium) in the
substrate for qubits [18]. Unlike Loss-DiVincenzo and donor
spin qubits, the singlet and triplet states of two electrons
trapped in double quantum dots are used in singlet-triplet
spin qubits to encode quantum information [61]. Exchange-
only spin qubits employ the total spin angular momentum
subspace of three or more electron spins to encode quantum
information and do not rely on external magnetic fields to
perform gate operations [62]. In most spin qubit quantum
computing architectures, metallic/superconducting gates and
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Fig. 2. (a) A two-level system forms a quantum bit (qubit), which is the
basic building block in quantum applications. The splitting frequency between
the states is wp. (b, ¢) Bloch sphere representation of (b) relaxation and (c)
dephasing processes of the quantum two-level system.

antennas (Fig. 1(a)) are required for qubit operation, initial-
ization, and readout, necessitating device design insights from
computational electromagnetics.

2) Vacancy centers: Shallow vacancy center spin qubits are
widely used in quantum sensing applications. Here, spin qubits
are constructed based on vacancy centers in the substrate
material. One well-known example is the negatively charged
nitrogen-vacancy (NV) center spin qubit, which is constituted
of a nitrogen atom near a vacancy site in the diamond. The
energy band diagram of the negatively charged NV center
involves a triplet ground state, triplet excited states, and two
intermediate singlet states [64]. The ground state triplet con-
sists of three spin sublevels my = 0 and my = +1 separated
by zero-field splitting around 2.87GHz. These ground state
sublevels are usually selected as the two-level system needed
to form the spin qubit [65] since they have a long coherence
time even at room temperatures. Several other vacancy centers
have been demonstrated recently, including tin-vacancy centers
in diamond [66], defect centers in silicon carbide [67], and spin
defects in hexagonal boron nitride monolayers [68]. In many
spin qubit quantum sensing applications, spin qubits need to
be in the near-field of materials, which can be inhomogeneous
or nanostructured. This indicates the necessity to accurately
model the electromagnetic environment near inhomogeneous
or nanostructured materials through computational electro-
magnetics.

B. Noise Effects

We now discuss noise effects that lead to loss of quantum in-
formation and the metrics to quantify them. Here, we consider
the spin qubit as a two-level system with splitting frequency
wop, as shown in Fig. 2(a).

1) Relaxation: In relaxation processes, quantum informa-
tion encoded in qubits is lost due to energy exchange between
qubits and the environment. In Fig. 2(b), we illustrate the
relaxation processes in the Bloch sphere representation. Re-
laxation processes are usually induced by environmental noise
at the qubit energy splitting frequency wg (wo ~ GHz for spin
qubits). The speed of relaxation processes can be characterized
by the relaxation time 77 or relaxation rates I',..
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2) Pure dephasing: A more prominent contribution to the
quantum information loss is the pure dephasing process. In
pure dephasing, qubits lose their phase coherence without en-
ergy dissipation. In Fig. 2(c), we illustrate the pure dephasing
processes in the Bloch sphere representation. Pure dephasing is
usually induced by low-frequency noise (<MHz) not resonant
with spin qubits and is usually faster than relaxation. The
speed of pure dephasing processes can be characterized by
the dephasing time T or dephasing rates 7.

3) Collective relaxation/dephasing: In a multi-spin-qubit
system, qubits can undergo collective relaxation and pure
dephasing processes when the noise is correlated. The noise
correlations are generally determined by the microscopic dy-
namics of the noise sources. In spin qubit quantum sensing and
computing, noise induced by electromagnetic fluctuations can
have strong correlations due to the prominent spatial correla-
tions in near-field electromagnetic fluctuations [25]. In quan-
tum computing, collective relaxation/dephasing is detrimental
to quantum error correction [69]. Meanwhile, in quantum
sensing, collective relaxation/dephasing can provide additional
degrees of freedom to detect material properties [25]. The
speed of collective dephasing/relaxation processes can be
characterized by the collective relaxation/dephasing rates.

4) Gate fidelity: In quantum computing, another important
metric used to evaluate device performance is gate fidelity
F. Noise in quantum computing systems can induce errors
in quantum gate operations. Gate fidelity F' describes the
closeness between physically implemented quantum gate oper-
ations and their theoretically ideal counterparts. Gate fidelity is
usually closely related to 77 and T}, and is also determined by
the gate operation time and gate operation protocol. Realizing
higher gate fidelity can reduce the number of physical qubits
needed to build a fault-tolerant quantum computer.

III. NEAR-FIELD ELECTROMAGNETIC FLUCTUATIONS IN
SPIN QUBIT QUANTUM APPLICATIONS

In this section, we first discuss the origin of electromagnetic
fluctuation noise in solid-state spin qubit systems. We highlight
that in many quantum information applications, spin qubits
are in a unique nano-electromagnetic environment, where low-
frequency magnetic fluctuations are dominant and have strong
spatial variations and correlations in the nanoscale range.
Following this, we discuss the difficulties in controlling noise
effects in the nano-electromagnetic environment.

Vacuum and thermal fluctuations of electromagnetic fields,
which originate from the non-vanishing zero-point energy and
the thermal photon bath fluctuations, are universal phenomena
occurring at all frequencies in all electromagnetic environ-
ments. Although their effects on macroscopic objects, such as
Casimir forces and friction [70], can be very small, they can
have a much more prominent influence on quantum objects.
These universal electromagnetic fluctuations can cause noise
effects in spin qubit systems, leading to the dissipation of
quantum information.

Electromagnetic fluctuations can be significantly enhanced
in the near-field of materials. In many quantum informa-
tion applications, spin qubits are in the vicinity of other

components necessary for the control and reading out of
quantum information. For example, in quantum computing
devices based on semiconductor quantum-dot spin qubits,
nanofabricated metallic/superconducting gates are widely used
to control the interqubit interactions between spin qubits [15],
[16]. Metallic/superconducting antennas are employed to gen-
erate microwave pulse sequences to manipulate the spin qubit
states. Nanomagnets are used to create magnetic field gradients
to selectively control individual spin qubits [24]. Similarly,
quantum computing devices based on semiconductor donor
spin qubits also employ metallic/superconducting gates and
antennas to perform quantum gate operations [17], [18], [19].
Additionally, in hybrid quantum systems, spintronic materials
or superconducting resonators are coupled to spin qubits to
realize long-range control [22] and quantum transduction [23].
Meanwhile, in quantum sensing applications, spin qubits
are usually in the near-field of the material system to be
probed [28], [29], [10], [30].

One ubiquitous feature of the nano-electromagnetic envi-
ronment near those nanostructured magnetic, metallic, and
superconducting materials is the significant enhancement of
low-frequency (< GHz) magnetic field fluctuations [25], [26].
At MHz and GHz frequencies, evanescent waves associated
with intrinsic material loss can enhance the magnetic fluctu-
ations (B(r,w)B(r’,w)) over 15 orders of magnitude com-
pared to free space [25]. These enhanced low-frequency near-
field magnetic fluctuations can interact with spin qubits and
induce relaxation (due to GHz magnetic field fluctuations) and
dephasing (due to MHz magnetic field fluctuations) processes.

Another important feature of the low-frequency magnetic
field fluctuations in the nano-electromagnetic environment is
the strong spatial dependence and spatial correlations [14]. In
microwave cavities and free space, low-frequency electromag-
netic fluctuations at two points separated by tens of nanometers
do not change significantly. In contrast, low-frequency elec-
tromagnetic fluctuations can have stronger spatial dependence
at different positions in the nano-electromagnetic environ-
ment due to evanescent wave contributions. In addition, low-
frequency magnetic field fluctuations are usually spatially
correlated in the nano-electromagnetic environment, leading
to collective relaxation/dephasing processes [25]. These jointly
indicate the importance of accurately modeling low-frequency
magnetic fluctuations in the nano-electromagnetic environment
for controlling noise effects in spin qubit quantum sensing and
computing.

A. Difficulties in Modeling Low-frequency Electromagnetic
Fluctuations in the Nano-electromagnetic Environment

Despite its importance, controlling noise effects in the
nano-electromagnetic environment is computationally chal-
lenging. Nanostructures/material inhomogeneity can have a
typical length scale ~ 10nm. Meanwhile, the wavelength of
electromagnetic modes of interest can be larger than 1cm.
Hence, modeling the nano-EM environment for spin qubits
requires solving electrically small problems involving ultra-
subwavelength objects. Solving these problems with differen-
tial equation based methods, such as FEM and FDTD methods,
can lead to highly ill-conditioned numerical systems.
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Furthermore, since low-frequency electromagnetic fluctua-
tions in the nano-electromagnetic environment are dominated
by evanescent wave contributions associated with intrinsic
material loss, lossy materials can not be simply modeled by
perfect electric/magnetic conductors. Instead, it is necessary to
consider realistic material models that capture low-frequency
microscopic dynamics in materials. Realistic materials can
have large relative permittivity at low frequencies (e.g., met-
als). Therefore, the contrast ratio between the electromagnetic
response of lossy materials and the environments can be very
large. This increases the difficulty of modeling the nano-EM
environment with perturbative methods, such as the Born-
series-based iterations [71], which can be difficult to converge
for a high contrast ratio [72].

To overcome the above limitations, in this paper, we pro-
pose a quantum computational electromagnetics framework to
control noise effects in spin qubit quantum computing and
sensing. Our theoretical framework leverages advanced com-
putational electromagnetics techniques to model fluctuations
in the nano-electromagnetic environment. In the following,
we first introduce the general formalism of our theoretical
framework and then demonstrate its applications in spin qubit
quantum computing and quantum sensing problems.

IV. QUANTUM COMPUTATIONAL ELECTROMAGNETICS
FRAMEWORK FOR CONTROLLING NOISE EFFECTS IN SPIN
QUBIT SYSTEMS

In this section, we present our numerical framework to
model noise effects in spin qubit quantum applications. Based
on foundations established in our previous works [14], [25],
[73], we first provide expressions for the electromagnetic
fluctuation induced relaxation and dephasing processes in
terms of the magnetic dyadic Green’s function of the nano-
electromagnetic environment. We emphasize that the generic
expressions for spin relaxation and dephasing dynamics pre-
sented in this paper are broadly applicable to reciprocal
and nonreciprocal nano-electromagnetic environments. After
this, we discuss how computational electromagnetics tech-
niques, especially volume integral equation based methods,
can efficiently calculate the dyadic Green’s function, which
is necessary to model low-frequency magnetic fluctuations in
quantum sensing and computing devices.

Here, we consider an N-spin-qubit system coupled to
electromagnetic fluctuations in the nano-electromagnetic en-
vironment. To facilitate the application of computational
electromagnetics, we employ the quantization framework in
macroscopic QED [74], [75]. We first focus on the total
Hamiltonian describing the N spin qubits interacting with the
electromagnetic bath,

]:]tot = ﬁq + I:]f + IA{inty (1)

N
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where I:Iq and H ¢ are the Hamiltonians of the /N-spin-
qubit system and the electromagnetic bath, respectively. Hint
describes the interactions between spin qubits and fluctuating
magnetic fields. B(r;) is the magnetic field operator. £T(r,w)
and f (r,w) are the field creation and annihilation operators.
In Eq. (4), we employ the point dipole approximation since
the sizes of spin qubits are usually much smaller than the
low-frequency electromagnetic field wavelength under consid-
eration. w; and r; are the splitting frequency and position
of the ith spin qubit. ;7 = [1)(0], 6; = |0)(1], and
67 = |1)(1] — 10)(0| represent the raising operator, lowering
operator, and Pauli-z operator for the ith spin qubit. m;¥,
m?® = m%', and m; represent the spin magnetic moment
of the irh spin qubit perpendicular (m;? and m/®) or parallel
(m;) to the quantization axis. Here, noise effects arise due to
the magnetic field fluctuations (B(r;)B1(rj)) # 0. Relaxation
and pure dephasing processes are related to different terms in
Eq. (4). Relaxation processes are induced by interactions with
transverse noise associated with (m®67+ + m?°5") - B(r;),
while pure dephasing processes are induced by interactions

with longitudinal noise associated with m;57 - B(r;).
In macroscopic QED [74], B(r;) is related to the dyadic
Green’s function G (r,r’,w) of the nano-electromagnetic en-

vironment,

B(r) = /0 " dw[B(r,w) + B (r,w)], (5)

B(r,w) = (iw)™* /d3r' Ve X ﬁ(r,r’,w) (', w), (6)

and the field creation f1(r,w) and annihilation f(r,w) opera-
tors satisfy [76],

[fa(r,w), £} (v, w)] = Gapd(r —r)o(w — '), (D)

where f,, (r,w) is the component of f'(r, w) with o, 8 = x, y, 2.
d(r —r') and 6(w — w') are the Dirac delta functions. 6.3
represents the Kronecker delta function.

From Eqs. (4-6), we can see that interactions between
spin qubits and the fluctuating electromagnetic fields are
determined by the dyadic Green’s function G (r,r’,w) of the
nano-electromagnetic environment, which is defined through,

V x V x ﬁ(nr’,w) — kgﬁ(r, rw) = 75(1‘ -r'), 8

where ko = w/c and 7 is the 3 x 3 identity matrix.

Equations (1-4) govern the dynamics of the closed quantum
system constituted of spin qubits and electromagnetic fields
through the Liouville—~von Neumann equation,

@%ﬁ = %[Htotaptot(t)]a )
where the total density matrix psot = pgq ® py is the Kronecker
product of N-spin-qubit density matrix p, and electromag-
netic field density matrix py. Directly solving Eq. (9) can
be complicated since py is an infinite-dimensional matrix.
Considering that we are interested in the noise effects on
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spin qubit systems, it is not necessary to simulate the closed
quantum systems dynamics of the entire system. Instead, we
can trace off the electromagnetic field part Tryp;o] = pq
on both sides of Eq. (9) and only focus on the dynamics of
the subsystem constituted of spin qubits. This subsystem is
an open quantum system, which can have non-unitary time
evolution in stark contrast to the closed quantum system. In
this paper, we focus on the non-unitary component of the spin
qubit subsystem dynamics, which represents the noise effects
of electromagnetic fluctuations.

For simplicity, we skip the algebraic steps involving tracing
off the electromagnetic field components in Eq. (9), which
are similar to the algebraic steps taken in Refs. [14], [25],
[73]. In the following, we provide our result for the open
quantum systems dynamics of spin qubits. Here, we assume
the weak-coupling condition, i.e., the electromagnetic bath
is not significantly affected by spin qubit dynamics. This
approximation is valid for the nano-electromagnetic environ-
ment, where photons from spin qubits can leave the local
electromagnetic environment very fast. The N spin qubits
dynamics due to electromagnetic noise are given by,

dpqy(t) T :

05 — il Huni(®), pa(8) + Lelpy(t)) + Lolpa(8)), (10)

where ﬁum is the unitary evolution Hamiltonian, which
includes the dipole-dipole interaction Hamiltonian mediated
by the electromagnetic bath. We note that when control pulse
sequences are applied and other types of interqubit interactions
exist, corresponding Hamiltonians should also be included

in Hypi. L, and L¢ represent superoperators describing the
relaxation and pure dephasing processes of the spin qubit
system, respectively. The first term on the right-hand side of
Eq. (10) represents the unitary evolution of the N-spin-qubit
system. The last two terms represent the non-unitary evolution
induced by the near-field electromagnetic fluctuations.

In the following, we focus on the AL,, [pq(t)] and L¢[pq( )]

terms. We provide the expressions of L, and ﬁ¢ in terms of the
magnetic dyadic Green’s function G ,,,(r,r’,w), which can be
efficiently modeled by volume integral equation methods, as
discussed in section V. The magnetic dyadic Green’s function

m(r, ¥’ w) is defined as,
<am(r, r w) = !

L / /
el Tr,w)xv, 11

where the components of ﬁm(r, r’,w) can be expressed with
the Levi-Civita symbols €1, and €gym, as [14]:

[ﬁm(r, r’,w)} e
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éeakle,@nmaka " |:<a(r7rl,W):| .
’ (12)

A. Modeling Spin Qubit Relaxation

The relaxation processes in spin qubit systems are induced
by transverse noise associated with m{?4;" +m?“6; terms in
Eq. (4). Near-field magnetic fluctuations at GHz frequencies

vi

resonant with qubit frequencies w; contribute to this noise
effect. L,[py] in Eq. (10) is [14]

Ly[pg] =
N 1 1
W+ 1) XY (67 p05] = 5pa0i o7 = 50765 0]
]
ol 1 1
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i

13)

where A is the mean photon number determined by the
temperature 7., of the electromagnetic bath,

- 1
N = e At (14)
and Ff,j represent the relaxation rates, which determine the
energy dissipation speed of the quantum system.

The single-qubit relaxation rate T'% (i = j) induced by
near-field magnetic fluctuations is proportional to the one-point
dyadic Green’s function at GHz frequencies [14],

15)

L 2ok
e = %mfg . Imﬁm(ri,r“wi) -mJ°.
Meanwhile, the collective relaxation rate T'% (i # j)
induced by near-field magnetic fluctuation correlations is pro-
portional to the two-point dyadic Green’s function at GHz
frequencies,

_ 2M0k8 eg .Im ﬁ
where ko = wy /c and wy = (w; + w;)/2. We have assumed
|0Ji — wj| L wj + wj [14].

It is worth noting that Eq. (16) becomes invalid in non-
reciprocal electromagnetic environments (e.g., near magnetic
materials). In the presence of non-reciprocity, we have:

i mJ°, (16)

(ri,rj,wy) m;

i — 2#0’%
Yeeny Ot e v
€g m(r“rjvw-‘r) ﬁm(rj,rz,w+) ge
Re{mi . % -m; },
(17)
and F“ = Fi3|rJHrl Here, ﬁT denotes the Hermitian

T
conjugate of ﬁ Furthermore, we find that non-reciprocal
effects can contribute to an additional collective dissipation
term in Eq. (13),

FNR

L, ZFTNRU U]’pQ]
i#]

+oo
ﬂ/ dwpP (1 Vip (L )«
whe? Jo Wy —w wy tw
2 eg . m(rivrjaw-l-) — ﬁin(rjvri?w-‘r) g€
w Im{mi 5 m; },
19)

where P represents the Cauchy principal value. In a reciprocal
electromagnetic environment, we have m(ri, rj, w+) =

(18)

) _
FT,NR -
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ﬁ;@(ri, rj,w4 ). In this case, it is easy to verify that Eq. (17)
reduces to Eq. (16) and Eqgs. (18, 19) become zero as expected.

For spin qubits, the energy splitting frequency w; ; is usually
around the GHz range. Therefore, Eqgs. (15) and (16) connect
the relaxation rates of the spin qubit systems to the GHz
magnetic dyadic Green’s functions, which can be accurately
calculated by the volume integral equation methods discussed
in the next section.

B. Modeling Spin Qubit Dephasing

The pure dephasing processes in spin qubit systems are
induced by longitudinal electromagnetic noise associated with
the m;67 term in Eq. (4) and are related to low-frequency
(<MHz) noise not resonant with spin qubits. Our results for

Lg[pg) in Eq. (10) are [25]

N
N _ 1 i . . 1A ) 1 .
Lolpa) = W+35) Y75 (1) 6704 6555707 =504 5757
%,

(20)

where 'y;j represent the pure dephasing rates.
The single-qubit dephasing rate ;' (¢ = j) induced by near-
field magnetic fluctuations is proportional to the frequency in-
tegral of the low-frequency one-point dyadic Green’s function,

/dw
0

where w,. is the cutoff frequency necessary for the conver-
gence of Eq. (21) [25]. Different from relaxation processes,
microwave pulse sequences can influence the pure dephasing
rate yéj (t) by averaging out noise at certain frequencies [77].
Equation (21) corresponds to the dephasing rate in a free in-
duction decay experiment (i.e., the spin qubit freely dephases).

Meanwhile, the collective dephasing rate v; (i # j)
induced by near-field magnetic fluctuation correlations is pro-
portional to the frequency integral of two-point dyadic Green’s

function [25],
/ dw
0

sin wt w?
07 mi'lmﬁm(ria ri, U.})'mh

ey

_ Ao
hm

Yi(t)

sin wt w? ﬁ
" C—2mi~1m m (T3, Ty, w) m;.

_dm

hr

74 (t)

the open quantum systems dynamics Eq. (10) affected by
fluctuating electromagnetic bath. For completeness, we now
briefly describe how to model the infidelity of quantum gate
operations induced by electromagnetic fluctuation noise. For
the given initial density matrix p,(0), the final density matrix
Pq(pq(0),t7) when the quantum gate operation is completed
can be calculated from Eqgs. (15)-(22). The fidelity F' of a
given quantum gate operation can be defined as [78],

. qu(o) T [pg(pq(0),tr) Pa(pq(0),tr)] + D?
B DD +1) ’

where pg(pq(0),t7) is the ideal final density matrix when
a perfect non-noisy quantum gate is applied. Equation (23)
involves an average over different initial states pq(0), which
are usually selected as the orthogonal basis of D x D unitary
operators [78], where D is the dimension of the quantum
system (e.g., D = 2"V for a N-qubit system). The quantum
gate infidelity AF' can be calculated from the difference in F’
when the electromagnetic fluctuation noise (i.e., Egs. (13), (18)
and (20)) is included or neglected in simulating the quantum
dynamics.

To this end, we briefly discuss how to apply computational
electromagnetics in modeling noise effects for quantum sens-
ing and computing. In quantum sensing, material properties are
probed by the change of the relaxation I',. and dephasing rates
¢ when the spin qubits are in the vicinity of or away from the
materials. In quantum computing, the relaxation I',., dephasing
rates vy, and quantum gate fidelity characterize the device
performance. From the above discussions, we can find that
these quantities can be simulated from the magnetic dyadic
Green’s function of the nano-electromagnetic environment,
which can be efficiently modeled by volume integral equation
based methods discussed in the next section.

(23)

V. VOLUME INTEGRAL EQUATION METHODS

In this section, we first briefly discuss the current ap-
proximate method used for modeling m and near-field
magnetic fluctuations in spin qubit quantum sensing and
computing applications [13], [10], [28]. We demonstrate that
this method is not valid in the near-field of nanostructured or

(22) inhomogeneous materials. Then, we show how volume integral

Similarly, Eq. (16) becomes invalid in non-reciprocal
electromagnetic ~ environments. To  incorporate  non-
reciprocal effects, we can substitute Imﬁm(ri,rj,w) with
[Im?m(ri, ri,w) +Im G o (1, ri7w)] /2 in Eq. (22) [25].

For spin qubits in the nano-EM environment, the integral
in Egs. (21) and (22) is usually dominated by contributions
from w < MHz frequencies. Therefore, Eqs. (15) and (16)
connect the dephasing rates of the spin qubit systems to the
low-frequency < MHz magnetic dyadic Green’s functions,
which can also be modeled by the volume integral equation
methods discussed in the next section.

C. Modeling Quantum Gate Infidelity

From the above equations, with the Im ﬁm modeled by
computational electromagnetics techniques, we can simulate

equation methods can be used to accurately calculate the
magnetic dyadic Green’s function of the nano-electromagnetic
environment.

In the near-field of material interfaces, the low-frequency
magnetic dyadic Green’s function is dominated by contribu-
tions from the reflected component,

Imﬁm(ri, rj,w) :Imﬁ?n(ri, rj,w)+ Imﬁfn(ri, rj,w)

%Imﬁfn (r;,rj,w),
24)

since the free space component is negligible at low frequencies
Im G, (ri,rj,w) ~ 6mw/c.

One commonly used approximation to model low-frequency
magnetic fluctuations in spin qubit quantum sensing and
computing applications is to assume that the materials have a
planar geometry [14], [79], [28]. In this case, G |, (r;,rj,w)
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can be calculated from the four Fresnel reflection coefficients
Tss> Tsp» Tps, and rp, through [80],

1

ﬁfn(ri,rj,w) = —

djeiq(ri —rj)eikz (zitz5)

82 ) k,
2
q —qzqy O
r Yy
(pf —qzqy @& 0
q 0 0 0
Tss i _qngQ _ngylgg _kazqz
+ 2 —Quqyk:  —aqykr —aykuq 25)
0 | k. Payk. ¢
Gyk. Gk @q°
T'ps 2 2
k 2 _quz _Qy%ckz —qzq
0q i 0 0 0
Tsp __q:vgykz qgkz O
koq2 _qylgz QyQLkzz O >7
| @4 —qzq- 0

where q = ¢;X + ¢, ¥ is the in-plane momentum, g = |q]| is
the magnitude of q, k, = \/kZ — ¢? is the z-component of
the momentum, z; and z; are the 2 components of r; and rj.

However, in the near-field nanostructures or inhomoge-
neous materials, the reflection coefficients become ill-defined,
and Eq. (25) is not valid for calculating %;(ri, rj,w).
Meanwhile, nanostructures and inhomogeneous materials are
commonly encountered in quantum sensing, e.g., in nanoscale
imaging of material properties. Additionally, in quantum com-
puting devices, metallic/superconducting gates are usually
nanostructured to control the properties of spin qubits. There-
fore, in the next subsection, we discuss the volume integral
equations based method to model noise effects near arbitrarily
nanostructured metallic materials.

A. Volume Integral Equations

We first notice that the magnetic dyadic Green’s function
connects a magnetic dipole m(r’,w) to the magnetic field
H(r,w) through,

H(r,.w) =k G p(rrw) mr'w)  (26)

Therefore, ?fn can be obtained from the scattered fields of
a magnetic dipole in the vicinity of nanostructured materials.

In the following, we solve the scattered fields of a magnetic
dipole by using volume integral equations. We first consider
an arbitrarily structured medium with complex permittivity
€m occupying a region V in the space. Inside the medium,
we have D(r) = &,,(E‘(r) + E*(r)), where E(r) is the
incident electric field from the magnetic dipole and E*(r) is
the scattered electric field from the nanostructures. Under the
Lorentz gauge and assuming the e/“! time dependence, we
have,

E*(r) = — jwA(r) — Vo(r)

— — o / 3, )g (v )’
1%

1
- */ py(r')Vg(r,x')dr’
€0 Jv

27

viii

where J;, and p; are the bound currents and charge densities.

g(r,r’) = e Rolr="ll /gx|r — v/ is the scalar Green’s
function. From the volume equivalent principle and consti-
tutive relations, we have py(r) = —V - (k(r)D(r)) and

Jy(r) = jw(k(r)D(r)). k(r) = (€m — €0)/Em is the contrast
ratio between the permittivity of the media and the surrounding
space. Substituting these two equations into Eq. (27), we
obtain the following volume integral equation in terms of the
electric flux density D(r),

B(r) = B) - B°0) = 2~ [ {uwtete)

D(r') + %V’ . (K;(r’)D(r’))V} g(r,x') dr’. (28)

To solve the volume integral equation (28), we first dis-
cretize the volume V into a tetrahedral mesh to model ar-
bitrarily shaped geometry. Then, we expand the electric flux
density D(r) using the Schaubert-Wilton-Glisson (SWG) basis
functions in each tetrahedral element and apply a standard
Galerkin testing. This converts Eq. (28) into a matrix equation.
For a small number of unknowns, the matrix equation can be
solved directly. Meanwhile, for a large number of unknowns,
we can employ fast solvers to represent the dense matrix by
a reduced set of parameters and solve it efficiently [44], [45],
[46].

After solving Eq. (28), we can obtain the scattered electric
fields E*(r) and bound currents J,(r). We can then find the
scattered magnetic fields H*(r) through,

1
JWio
With H?(r) and Eq. (26), we can obtain the 3 x 3 magnetic
dyadic Green’s function G |, necessary to model noise effects
in the nano-electromagnetic environment in quantum sensing
and computing applications.

To this end, we have established a numerical frame-
work to model low-frequency magnetic noise in the nano-
electromagnetic environment. In the following two sections,
we demonstrate how to apply our theoretical framework in
controlling noise effects in realistic quantum computing and
sensing applications.

H’(r) = —

V xE*(r) :/ Vg(r,r')xJp(r)dr’. (29)
v

VI. CONTROLLING NOISE EFFECTS IN SPIN QUBIT
QUANTUM COMPUTING

In this section, we apply our theoretical framework to
model noise effects in spin qubit quantum computing devices.
We employ volume integral equation methods (section V) to
calculate single-qubit errors and correlated errors induced by
near-field magnetic fluctuations (related to Im G ,,,(r;, r;,w))
and fluctuation correlations (related to Im G ,,(r;,1;,w)). We
demonstrate that in realistic devices, electromagnetic fluctua-
tion noise and correlations can exhibit behaviors qualitatively
different from the approximate results predicted by Eq. (25).

Here, we study the low-frequency magnetic field fluctu-
ations in a recent quantum computing device reported in
Ref. [15], which contains three semiconductor spin qubits
based on silicon/silicon—germanium heterostructure. In this
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Fig. 3. Modeling single-qubit error with volume integral equation based
methods. We demonstrate the single-qubit relaxation rate T'? of a spin qubit
at a distance z from aluminum thin films (dashed curves) and aluminum gates
with device gate geometry (solid curves) shown in Fig. 1. We compare I',-
for spin qubits with quantization axis along the x direction (orange curve),
y direction (purple curves), and z direction (blue curves). The thin film
approximation is not valid for modeling electromagnetic noise at large z.

device, top aluminum gates are employed for the initialization,
control, and readout of the three spin qubits. In Fig. 1(a),
we demonstrate a schematic of the simplified device structure
considered in our volume integral equation simulations. In
our calculations, we consider the spin qubit frequency to be
18GHz [15] and the aluminum conductivity o4; = 1.6 X
108S/m [81] at low temperatures (< 1K) corresponding to
the operation temperature of the quantum computing device.
We consider the thickness of the metallic gates to be 100 nm
for the thinner regions and 150 nm for the thicker regions, as
shown in Fig. 1(a).

To exemplify the application of volume integral equation
methods in controlling noise and noise correlation effects, we
study the single-qubit I'” (Eq. (15)) and correlated relaxation
rates I (i # j) (Eq. (16)) of spin qubits near the aluminum
gates. Relaxation processes involve quantum state transitions
and are the dominant source of leakage error [82]. We would
like to emphasize that other noise effects, including pure
dephasing and quantum gate infidelity, can be obtained sim-
ilarly by Im G ,, modeled through volume integral equation
methods. In addition, we compare the relaxation rates modeled
by volume integral equation methods and their counterparts
calculated from the approximate thin film solutions Eq. (25) to
demonstrate the limitation of approximate solutions for noise
mitigation in real devices.

In Fig. 1(b), we demonstrate the tetrahedral mesh used
to discretize the metal gates and solve the volume integral
equations. We use refined mesh in the region close to the spin
qubit positions to improve the accuracy of volume integral
equation simulations.

A. Single-qubit Error

In Fig. 3, we present the single-qubit relaxation rates I'*’
for spin qubits at distance z ranging from 10 to 100nm

i
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Fig. 4. Modeling correlated error with volume integral equation based
methods. We demonstrate the ratio of correlated and single-qubit relaxation
rates I} /T'% for two spin qubits separated by interqubit distance d at
z = 40nm from aluminum thin films (dashed curves) and aluminum gates
with device gate geometry shown in Fig. 1 (solid curves). We compare
T}? JT% for spin qubits with quantization axes along the x direction (orange
curve), y direction (purple curves), and z direction (blue curves). The thin film
approximation is not valid for modeling electromagnetic noise correlations at
large d.

away from metallic gates. We note that I'“’ only contains
vacuum fluctuation contributions to relaxation according to
its definition, while thermal fluctuation contributions can be
simply incorporated by including a factor proportional to
N and will further accelerate relaxation. We compare I'“
modeled by volume integral equation methods near metal
gates with realistic device gate geometry (solid curves) and
I'¥" calculated from approximate thin film solutions near an
aluminum thin film of 125 nm thickness (dashed curves). We
consider the spin qubit to be positioned at the center qubit
position (see Fig. 1). We study three cases when the spin qubit
quantization axis is along the x direction (orange curve), y
direction (purple curves), and z direction (blue curves). We
can find that the thin film approximation results T'%’ deviate
significantly from realistic noise effects at large z and start to
approach T'% modeled by volume integral equation methods
only at small z < 10 nm. Meanwhile, significant quantitative
differences still exist even at small z. Additionally, we can
find that I'% modeled by volume integral equation methods
exhibits a scaling law concerning z qualitatively different from
the approximate results ' ~ z~!. Furthermore, we can
also find that the ratio between relaxation rates '’ of spin
qubits with different quantization axes is different near device
gate geometry and thin films. The above results indicate that
the approximate results based on Eq. (25) may not predict
qualitatively correct noise behaviors in realistic devices, and
it is important to employ the volume integral equation based
methods for noise analysis and device engineering to improve
the performance of spin qubit quantum computing devices.
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B. Correlated Error

In Fig. 4, we demonstrate the collective relaxation rates I'/
for two spin qubits at distance z = 40 nm from an aluminum
thin film (dashed curves) and aluminum gates with device
gate geometry (solid curves). We present the ratio between
collective and single-qubit relaxation rates I'%7 /T'%, which
is determined by the correlations in low-frequency magnetic
fluctuations in the device. We consider one spin qubit to be
fixed at the center spin qubit position (see Fig. 1), and the
other is separated by interqubit distance d ranging from 10
to 100nm along the x direction. We compare the results
when the quantization axes of both spin qubits are along
the x direction (orange curves), y direction (purple curves),
and z direction (blue curves). We can find that the thin film
approximation is only valid when the two qubits are very
close to each other with small d and deviates significantly
from the volume integral equation based results at large d.
Furthermore, we can find that near realistic metal gates, the
noise correlation range is generally suppressed compared to
the thin film results. Meanwhile, the suppression of noise
correlations is sensitive to the directions of spin qubits. We
can see that the correlated relaxation is of a longer range
for spin qubits with quantization axes along the x direction
for the device gate geometry, which is different from the
thin film results. The above results indicate the importance
of volume integral equation based methods to characterize
correlations in low-frequency electromagnetic fluctuations in
the nano-electromagnetic environment, and their importance in
device engineering to suppress noise correlations detrimental
to quantum error correction.

VII. CONTROLLING NOISE EFFECTS IN SPIN QUBIT
QUANTUM SENSING

In this section, we demonstrate the application of our
theoretical framework in controlling noise effects for quan-
tum sensing applications. Different from quantum computing
devices where noise needs to be suppressed, it is important
to enhance the low-frequency magnetic noise for probing
microscopic material properties in quantum sensing.

In quantum relaxometry and dephasometry, material proper-
ties are probed by the differences in spin qubit relaxation and
dephasing time in the near-field and far-field of the material.
As a result, it is important to enhance the near-field low-
frequency magnetic noise to ensure that the noise effects
are large enough to exceed the sensitivity of spin qubits.
Engineering material geometries in the nanoscale provides a
possibility to enhance the noise effects associated with material
properties of interest. Another important aspect of quantum
sensing is its advantage in probing material properties at the
nanoscale level. For example, nitrogen-vacancy (NV) center
spin qubits can be used for nanoscale imaging and probing
materials with strong inhomogeneity, such as superconductors
with disconnected superconducting regions [33]. However, for
the above applications, the results predicted by Eq. (25) under
the thin film approximation are generally not valid in the
presence of nanostructures or material inhomogeneity. Mean-
while, the volume integral equation based methods provide an
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Fig. 5. Modeling nanoscale conductivity imaging of nanopatterned metallic
patches using NV centers. (a) A schematic of a single NV electron spin
qubit at distance z from nanopatterned metallic patches of size a X a with
nearest neighbor distance b. (b) NV electron spin relaxation time 7% simulated
with volume integral equation based methods when the diamond NV center
is scanned along the x-axis from point A to point B. Through volume
integral equation based simulations, the conductivity of nanostructures can
be quantitatively probed by quantum sensors.

approach to model and control low-frequency magnetic noise
in nanoscale quantum sensing.

To exemplify the application of our theoretical framework
in quantitatively sensing material properties, we consider
nanoscale conductivity imaging of nanopatterned metallic
patches using NV centers, which is important for measuring
the local conductivity of nanostructured materials without in-
troducing any contact [11]. As shown in Fig. 5(a), we consider
NV spin qubits of frequencies around 2.87GHz at distance z
from nanopatterned silver patches (grey) on top of bottom sub-
strates. We consider metal patches of side length a patterned
with nearest neighbor distance b. We assume the metallic
nanopatches to be polycrystalline and neglect nonlocality
in their electromagnetic response. Meanwhile, in the case
of single-crystal metal structures, nonlocal volume integral
equation based solvers can be employed to capture nonlocal
effects [83]. The conductivity of these metallic nanopatches
can be imaged by measuring the relaxation time of NV spin
qubits when they are scanned above the surface [11].

In Fig. 5(b), we demonstrate that NV spin qubit relax-
ation time 73 can be accurately modeled by volume integral
equations methods in this quantum sensing application. The
NV electron spin relaxation time 7} is related to relaxation
rates by Ty = [3(2NV + 1)I'¥]~! [10]. Here, we consider
a =90nm, b = 60nm, and z = 30 nm, and plot T} between
points A and B separated by 300nm at room temperature.
As expected, we find large variations of 77 when NV spin
qubits are scanned along the X axis. Meanwhile, it is easy to
see that this 77 behavior can not be predicted by the thin
film approximation results. In this simulation, we consider
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silver conductivity o044 = 5 X 107 S/m [81]. This indicates
that, with volume integral equation based simulations, the
conductivity of nanostructures can be quantitatively probed by
quantum sensors. The above results indicate the importance
of employing volume integral equation based methods for
quantitatively probing material properties.

VIII. CONCLUSION

In conclusion, we introduced a numerical framework to
engineer low-frequency magnetic noise for enhancing spin
qubit quantum sensing and computing performance by lever-
aging advanced computational electromagnetics techniques,
especially fast and accurate volume integral equation based
solvers. Our work extends the application of computational
electromagnetics, especially volume integral equation based
methods, to model noise effects in spin qubit quantum sensing
and computing. We apply our numerical framework to control
low-frequency magnetic noise in the nano-electromagnetic en-
vironment in realistic applications, including a semiconductor
spin qubit quantum computing device and nanoscale imaging
based on quantum-impurity relaxometry. We demonstrate the
limitation of current approximate methods widely used in
modeling magnetic fluctuation noise in spin qubit systems,
which can fail to predict qualitatively correct noise behaviors
in realistic devices. Our work paves the way for device
engineering to control magnetic fluctuation noise in spin qubit
quantum applications. Beyond this, our numerical framework
can also be integrated with topology optimization [84] to
optimize the device design to benefit quantum sensing and
computing.
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