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Abstract. This paper presents a systematic literature review and bibliomet-
ric analysis focusing on Biased Random-Key Genetic Algorithms (BRKGA).
BRKGA is a metaheuristic framework that uses random-key-based chromo-
somes with biased, uniform, and elitist mating strategies alongside a genetic
algorithm. This review encompasses around 250 papers, covering a diverse ar-
ray of applications ranging from classical combinatorial optimization problems
to real-world industrial scenarios, and even non-traditional applications like
hyperparameter tuning in machine learning and scenario generation for two-
stage problems. In summary, this study offers a comprehensive examination
of the BRKGA metaheuristic and its various applications, shedding light on
key areas for future research.

1. Introduction

Pioneered by Holland (1975), genetic algorithms have demonstrated remark-
able efficacy in tackling complex optimization problems. These algorithms are
population-based metaheuristics inspired by the principles of natural selection and
survival of the fittest, which turns them into powerful tools for exploring expan-
sive solution spaces. Their versatility and efficiency have led to their widespread
application across various domains, addressing problems ranging from discrete and
combinatorial to nonlinear and derivative-free optimization problems.

A popular variant of genetic algorithms, Biased Random-Key Genetic Algorithms
(BRKGA), have been applied to several optimization problems, such as schedul-
ing (Araújo et al., 2015; Yu et al., 2023; Andrade et al., 2019a; Maecker et al.,
2023), complex network design (Reis et al., 2011; Ruiz et al., 2015; Raposo et al.,
2020; Andrade et al., 2022), facility location (Johnson et al., 2020; Mauri et al.,
2021; Villicaña-Cervantes and Ibarra-Rojas, 2022), cutting and packing (Gonçalves
and Resende, 2011b; Gonçalves and Wäscher, 2020), clustering (Andrade et al.,
2014; Fadel et al., 2021), vehicle routing (Andrade et al., 2013; Lopes et al., 2016),
graph-based problems (Londe et al., 2022; Lima et al., 2022), and machine learning
(Caserta and Reiners, 2016; Paliwal et al., 2020), among others. This metaheuristic
was formally defined in Gonçalves and Resende (2011a), although early elements
were first introduced in (Beirão, 1997; Buriol et al., 2005; Ericsson et al., 2002;
Gonçalves and Beirão, 1999; Gonçalves and Almeida, 2002).

The primary distinguishing characteristic of BRKGA is its problem-agnostic ap-
proach. Unlike many metaheuristic algorithms where the optimization mechanism
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is closely tied to the problem’s structure, BRKGA operates within a general frame-
work and standard representation of solutions, which minimizes the need for con-
tinual redevelopment or coding of framework details. In this solution approach,
the population resides within a half-open unit hypercube of dimension n, and each
solution or individual is denoted by a point in (0, 1]n, termed as a chromosome.
This representation, introduced in Bean (1994), frees the method from dependence
on the specific problem it addresses, allowing for code reuse. Such a strategy re-
sembles modern machine learning algorithms: the knowledge representation is built
over a normalized matrix, and the so-called kernel functions are applied to measure
distances between points in that normalized space (Hofmann et al., 2008). In a
BRKGA, instead of having a kernel, we have a decoder function f : (0, 1]n → S
that maps individuals from the BRKGA space to the problem solution space S.
Indeed, the decoder not only builds an actual solution from a chromosome but also
computes the solution value(s) used by the BRKGA as a measure of the quality or
fitness of the individual. We may see the decoder as the function that computes
the “norm” of a solution in the (0, 1]n space. Such representation allows a BRKGA
to keep all evolutionary operators within the (0, 1]n space, and therefore, custom
operators based on the problem structure are unnecessary. This allows for fast
prototyping and testing, thus reducing development costs.

Another notable characteristic of a BRKGA is its rapid convergence to high-
quality solutions. This achievement stems from the inclusion of the double elitism
mechanism within the evolutionary process of BRKGA. First, BRKGA hands over
a subset of elite individuals from one generation to the next, according to some per-
formance metric (in general, the value(s) of the objective function of the problem).
The elite individuals are the best solutions for the current generation. Excluding the
very first iterations, a BRKGA will always have a set of high-quality solutions in its
population. This behavior contrasts with traditional genetic algorithms, which gen-
erally rebuild the whole population every generation. Second, in the basic BRKGA,
the mating process occurs between a uniformly chosen individual from the elite set
and a uniformly chosen individual from the remaining population. The combination
of such individuals is biased towards the elite individual, using uniform crossover
with probability ρ > 0.5. Thus, there is a greater chance of retaining substructures
of a good solution while still allowing the insertion of substructures of a not-so-good
solution.

The downside of double elitism is a swift convergence to local optima. BRKGA
addresses these under-performing issues by incorporating strategies to increase pop-
ulation diversity, such as the introduction of mutants (random solutions), shaking
(Andrade et al., 2019b), population reset (Toso and Resende, 2015), and others.
For a detailed explanation of the evolutionary mechanism and variants of BRKGA,
see Londe et al. (2024). Notwithstanding, BRKGA can provide high-quality solu-
tions within short computational times, rendering it suitable for various industrial
applications.

Due to these attributes, the use of BRKGA has grown significantly in recent
years. In this survey, we present a systematic literature review (SLR) and biblio-
metric analysis of the existing literature regarding BRKGA to discern the most
studied problems, principal modifications to the framework, and most influential
authors and works since its conception. An SLR aims to synthesize the accumulated
body of knowledge about the relations of interest and to determine where gaps exist
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(Gligor and Holcomb, 2012). Meanwhile, a bibliometric analysis is the quantitative
study of bibliographic material offering an overview of a research field classified by
papers, authors, and journals (Merigó and Yang, 2017). Approximately 250 aca-
demic articles were reviewed for this survey. We expect that readers will gain a
comprehensive and expansive understanding of BRKGA applications, aiding them
in their future pursuits.

The remainder of this article is structured as follows. Section 2 describes the
methods used in the literature review and bibliometric analysis. Section 3 presents
the results from citation analysis. Section 4 presents the backdrop of BRKGA
research obtained by the co-citation analysis. In Section 5, we comment on the
thematic evolution of the corpus of literature with a co-word analysis. Finally, in
Section 6, we make concluding remarks.

2. Methodology

2.1. Systematic review and basic statistics. Thomé et al. (2016b) details eight
steps to make a systematic literature review in the area of operations management:
(i) Planning and formulating the problem; (ii) Searching the literature; (iii) Data
gathering; (iv) Quality evaluation; (v) Data analysis and synthesis; (vi) Interpreta-
tion; (vii) Presenting the results; and (viii) Updating the review.

The first step, planning and formulating the problem, is composed of the defi-
nition of the review’s scope, the detailing and definition of the research topic, and
the outlining of the subsequent research questions (RQ):

RQ1:: Who are the most influential researchers for this algorithm?
RQ2:: Which are the most influential papers for the BRKGA framework?
RQ3:: Which are the main themes present in BRKGA studies and how did

they evolve?
We adhere to the seven-step method detailed in Thomé et al. (2016b) to search

the literature for the second step. Those steps are (i) the selection of the database,
(ii) the definition of keywords, (iii) the review of abstracts, (iv) the definition of
criteria for inclusion and exclusion of works, (v) full-text review, and (vi) backward
and (vii) forward search in the selected works.

We chose the Scopus database (Baas et al., 2020; Elsevier, 2024) for this review,
which is one of the largest curated abstract and citation databases, with over 45,000
journal titles from 7,000 publishers worldwide. Singh et al. (2021) observes that it
is less restrictive in the selection of titles than its competitor Web of Science and
has a bias toward the fields of technology and engineering.

When defining the keywords, one must ensure their broadness and specification
not to restrict the number of studies and to bring only works related to the topic
(Cooper, 2015). The keywords used were “BRKGA” or “Biased random key genetic
algorithm,” resulting in 267 works. The limitation to peer-reviewed articles and
conference papers in the English language resulted in 231 works. We considered as
inclusion criteria that the work must detail and use a Biased Random-Key Genetic
Algorithm to solve a practical or theoretical problem, not only cite or compare
another approach’s results with those from a BRKGA. We also decided to include
articles with a genetic algorithm with random keys and biased mating to not exclude
older titles from before the formal definition of BRKGA in 2011. The full-text
review of the initial works excluded two studies. Then, we employed backward and
forward snowball searches. The former is a review of the literature cited in the
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Figure 1. Number of BRKGA articles published per year.

articles yielded from the initial search. At the same time, the latter is a review of
additional articles that cite those retrieved (Webster and Watson, 2002). Due to
the difficulty in obtaining older BRKGA works from before the introduction of the
term with the previous keywords, we added the keywords “hybrid genetic algorithm”
and “random-key genetic algorithm” to the backward search, which are terms used
to refer to the algorithm before 2011. After applying the keywords to the new
registers alongside the exclusion criteria and eliminating all works with non-related
abstracts, we end up with 253 articles published before December 31st, 2023.

Figure 1 shows the number of published articles per year for those 253 papers.
One can note a severe increase of published works after 2011, i.e. after Gonçalves
and Resende (2011a) formally defined the metaheuristic. In fact, 89% of the 253
articles were published in the 2012–2023 period, with an average of 19 papers per
year. Those papers include over 100 sources and 450 authors, with an average of
three authors per article and 23 citations per document.

Table 1 presents the twenty sources with the highest amount of papers. One may
note that those contribute with 83% of all citations inside the database – and that
a high amount of articles does not necessarily correspond to a high contribution of
citations. This may be seen with the source Lecture Notes in Computer Science,
with the highest amount of articles and yet only 2% of citations. Generally, those
sources with low citations-per-paper tend to be congress proceedings, such as the
aforementioned Lecture Notes and the three Proceedings of IEEE CEC.

The third step of the review can be fulfilled by using a computer template and
programs to calculate amounts and frequencies in the database of papers. Mean-
while, for step four, quality evaluation, the restriction of only considering peer-
reviewed articles and complete papers presented at international conferences is a
criterion that helps ensure the quality of the resulting studies.
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Table 1. 20 sources with the highest number of published articles.
The % of citations is observed inside the database.

Source No. p. % cit.
Lecture Notes in Computer Science 23 2
European Journal of Operational Research 17 23
Computers and Operations Research 15 12
International Transactions in Operational Research 15 5
Applied Soft Computing 9 9
Computers and Industrial Engineering 9 3
Journal of Heuristics 8 13
Optimization Letters 6 2
Expert Systems with Applications 5 2
Journal of Combinatorial Optimization 5 5
Proceedings of 2018 IEEE CEC 4 2
Proceedings of 2021 IEEE CEC 4 3
Journal of Global Optimization 4 1
Networks 4 >1
Proceedings of 2022 IEEE CEC 3 1
Proceedings of GECCO 2019 3 >1
International Journal of Production Research 3 >1
Mathematics 3 >1
Pesquisa Operacional 3 >1
RAIRO - Operations Research 3 >1

For the fifth step, data analysis and synthesis, we perform a qualitative content
analysis with an inductive approach (Seuring and Gold, 2012) and quantitative
co-citation and co-word analysis described in Subsection 2.2. The sixth step, inter-
pretation, comprises qualitative research synthesis coupled with indicators from the
bibliometric analysis. The seventh step is the presentation of the results obtained
in the previous steps. Finally, the eighth step, updating the review, does not apply
to this study.

2.2. Bibliometric analysis. Several indicators can be used for bibliometric anal-
ysis. In this review, we use co-citation and co-word analyses. Co-citation analysis
groups different papers that are cited by the same source. For example, if papers A
and B cite paper C, then paper C is co-cited by both papers A and B (Boyack and
Klavans, 2010). A co-citation network indicates subject relatedness, as it is likely
that papers citing the same papers focus on similar subjects (Thomé et al., 2016a).
Similarly, a co-word analysis uses keywords to study the conceptual structure of a
research field (Callon et al., 1991; Cobo et al., 2011).

For those analyses, we used the R bibliometrix package (Aria and Cuccurullo,
2017) that is available as free-ware for non-profit academic use. It was used to
prepare the matrix of co-citations, clusters, and network analysis, along with the
dynamic maps of co-word analysis of themes using Callon’s thematic bipartite di-
agrams (Callon et al., 1991).

Callon’s diagram can be seen in Figure 2. In it, the top right quadrant represents
the core themes of the research area, with high density and high centrality (which
are defined in what follows). The central themes are also crucial for the area but are
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Figure 2. Callon’s diagram. Adapted from Callon et al. (1991)

not yet well researched, with opportunities for new studies. Emerging or declining
themes have low centrality and density, i.e., they are not strongly related to other
themes and are not well represented in the research area. Finally, isolated themes
are well-researched areas with high centrality and, thus, of marginal value for the
field. Usually, they represent classical themes in the field.

The co-occurrence of keywords is measured by the similarity index eij = c2ij/cicj ,
in which cij is the number of works in which both keywords i and j are featured,
and ci and cj are, respectively, the numbers of works in which each keyword i
and j occurs (Cobo et al., 2011). The clusters are formed with the “simple center
algorithm” (Cobo et al., 2011; Thomé et al., 2016a), with centrality and density
calculated as linear functions of the similarity index. Centrality is calculated as
C = 10 ·

∑
ekh, where k is a keyword belonging to the theme and h a keyword

belonging to the other themes, as a measure of the interaction among the network
of keywords. Meanwhile, density is calculated as D = 100 ·

∑
eij/w, where i and j

are keywords belonging to the theme and w is the total number of keywords in the
theme. It measures the internal strength of the network or theme.

3. Citation analysis

To answer RQ1, we present Table 2, with the 10 most prolific authors. In this
table, the results are indicated inside of the database of 253 articles. One may
note that the author with the most papers (Resende, M.G.C.) has the highest total
citations among the works in the database. We calculated a Pearson correlation
coefficient of 0.87 between the number of papers and the total number of citations
inside the database, showing a strong correlation between those two indicators.

One may also note that a significant amount of papers is co-authored by the first
most prolific author and the others, especially the second most prolific (Gonçalves,
J.F.). Moreover, Resende’s most cited paper in the database is also Gonçalves’
(Gonçalves and Resende, 2011a) and is also the most cited paper in the data-
base. There are only four single-authored papers, and international co-authorship
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happens in around 40% of the works in the database. The most significant co-
authorship relations may be visualized in Figure 3.

Table 2. 10 authors with most published papers. Note that the
total citations are calculated among the works in the database.

Author No. p. Tot. Cit. Affiliation(s) Country
Resende M. G. C. 51 3223 AT&T Labs Research / University of Washington USA
Gonçalves J. F. 30 2733 Universidade do Porto Portugal
Fontes D. B. M. M. 16 146 Universidade do Porto Portugal
Andrade C. E. 14 241 Universidade de Campinas / AT&T Labs Research Brazil / USA
Chaves A. A. 13 190 Universidade Federal de São Paulo Brazil
Ribeiro C. C. 11 245 Universidade Federal Fluminense Brazil
Pardalos P. M. 10 379 University of Florida USA
Silva R. M. A. 10 105 Universidade Federal de Pernambuco Brazil
Fontes F. A. C. C. 10 64 Universidade do Porto Portugal
Buriol L. S. 8 232 Universidade Federal do Rio Grande do Sul / Amazon.com Brazil / USA

Figure 3. Collaboration network of the articles. The size of the
nodes indicates a higher amount of articles, while the thickness of
the edges indicates a higher amount of collaborations. Edges are
only shown if the authors collaborated on more than two papers.

Table 3 presents the more significant affiliations of the authors. One may note
that the authors are mainly from the USA, Brazil, and Portugal. More than that,
one must comment that the affiliations of authors with the most published titles
are also the ones with more published works.

Table 4 presents the ten countries with the most published papers. One may
note that this confirms the trend shown in Tables 2 and 3 regarding Brazil, the
USA, and Portugal.

4. Co-citation analysis

Co-citation analysis examines the relation between works cited together to present
the most influential works in the researched area (Persson et al., 2009). Thus, it
was used to answer the RQ2. The co-citation network of the studied articles may
be seen in Figure 4 for the 30 works with the most citations. The size of the circles
indicates the number of citations, while the lines’ thickness indicates the amount
of co-occurrences.
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Table 3. 15 institutes with most published papers.

Affiliation No. papers Country
Universidade do Porto 61 Portugal
AT&T Labs Research 38 USA
Universidade Federal Fluminense 17 Brazil
Universidade Federal do Rio Grande do Sul 16 Brazil
Universidade de São Paulo 13 Brazil
Universidade Federal de São Paulo 10 Brazil
Instituto Superior de Engenharia do Porto 10 Portugal
Universidade Federal de Pernambuco 10 Brazil
Universidade Federal do Rio de Janeiro 10 Brazil
University of Florida 10 USA
Universitat Politècnica de Catalunya 9 Spain
Universidade de Campinas 9 Brazil
Universidade Federal de Minas Gerais 8 Brazil
University of Washington 8 USA
Universidade Federal do Ceará 6 Brazil

Table 4. 10 countries with most published papers.

Country No. papers
Brazil 215
USA 111
Portugal 94
China 29
Spain 28
France 21
Italy 15
Germany 14
Mexico 13
Indonesia 10

The earliest study in this co-citation network is the book authored by Holland
(1975). In it, the author introduces the concept of genetic algorithms by presenting
not only the theoretical foundations based on the Darwinian theory of evolution
but also illustrating applications in different areas of knowledge.

Following it is the book of Garey and Johnson (1979). The authors study and
define the theory of “NP–completeness,” emphasizing the concepts and techniques
most useful for practical purposes. This book also presents an extensive list of
at–the–time known NP–complete and NP–hard problems and their variants.

Following this, the book of Goldberg (1989) was published. This book explores
the theory given in Holland (1975), being an introduction to all essential topics
needed to use a genetic algorithm, including crossover, mutation, classifier sys-
tems, and fitness scaling. It also has a complete Pascal listing of a simple genetic
algorithm.

The study of Spears and De Jong (1991) makes a theoretical analysis of different
multi-point crossovers, focusing on n-point and uniform crossovers. This work



BRKGA – SYSTEMATIC REVIEW 9

Figure 4. Co-citation network of the articles. The thickness of
the edges indicates a stronger co-citation relationship.

shows that the uniform crossover converges on average more slowly but to better
solutions than other alternatives.

In the work of Bean (1994), the concept of chromosomes composed of random
keys was introduced. The author presents the advantages of such representation,
such as the generalized mapping of solutions to search space, and explores sev-
eral optimization problems with differing chromosome-to-solution mappings. The
author also demonstrates that an algorithm composed of the operators of repro-
duction, uniform crossover with a probability of 0.7 between two randomly chosen
chromosomes in the population, and random generation of new solutions in each
iteration is very robust, with excellent results in certain classes of problems.

Feo and Resende (1995) introduce the greedy randomized adaptive search proce-
dure (GRASP), a heuristic based on the interactive construction of solutions. This
construction is made by randomly choosing the next move among the best can-
didates. Similarly, Mladenović and Hansen (1997) introduces the variable neigh-
borhood search (VNS) algorithm, a local search method that sequentially explores
several neighborhoods. In the literature, both GRASP and VNS approaches are
frequently compared with BRKGA.

The article of Matsumoto and Nishimura (1998) presents the Mersenne Twister,
a pseudo-random number generator used to obtain numbers between zero and one
with uniform probability. This generator is as fast as the existing alternatives at
the time, with a longer period and far larger distributions.

The work of Gonçalves and Almeida (2002) uses a hybrid genetic algorithm with
random-key gene representation alongside a local search for the simple assembly
line problem. The genetic algorithm uses an evolutionary strategy identical to the
one used in Bean (1994), with a higher percentage of mutated chromosomes and
a biased uniform crossover strategy similar to the one in (Spears and De Jong,
1991). In the study by Ericsson et al. (2002), a genetic algorithm for the weight
setting problem in OSPF routing is detailed. This genetic algorithm does not use
random keys in gene representation but in the crossover procedure to select which
genes shall be inherited. In this case, a biased coin toss is performed, favoring the
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elite parent. Together, both works are some of the first methods with BRKGA
characteristics.

Deb et al. (2002) introduces the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), a multi-objective evolutionary algorithm with a fast non-dominated
sorting approach and diversity-maintaining strategies. This method is one of the
most effective for multi-objective problems and is frequently the benchmark in this
category.

Gonçalves and Resende (2004) use a hybrid genetic algorithm with local search
to solve the manufacturing cell formation problem. This algorithm uses random-
key gene representation, with an extra gene to indicate the number of cells to be
formed, and an evolutionary strategy identical to the one used in Gonçalves and
Almeida (2002).

Buriol et al. (2005) extends the work of Ericsson et al. (2002), with similar chro-
mosome representation and crossover scheme, and a local improvement procedure
incorporated after the crossover step.

Snyder and Daskin (2006) study a generalized traveling salesman problem with a
random-key genetic algorithm. This approach uses a novel combination of random-
keys representation, genetic algorithms, and improvement methods such as local
search heuristics. They also use an elitist reproduction operator and a parame-
terized uniform crossover (Spears and De Jong, 1991) but with randomly chosen
parents among the whole population. The method is competitive compared to oth-
ers from the literature, is simple to implement, and can be easily adapted to other
problem characteristics.

The work of Gonçalves (2007) hybridizes a placement procedure with a random-
key genetic algorithm for a two-dimensional orthogonal packing problem. The
author uses an evolutionary strategy similar to the one in Gonçalves and Almeida
(2002).

In the article of Birattari et al. (2010), the authors propose a new method for
selecting parameter configurations for algorithms. This method, called iterated
F-race, is based on discarding non-promising parameter configurations as soon as
there is statistical proof that they are sub-optimal. This way, the algorithm focuses
on the best configurations instead of spending time and computational effort on
uninteresting ones. As it examines all parameters together, it is also an interesting
option when one has a high number of parameters to select.

Noronha et al. (2011) uses a random-key-based genetic algorithm to solve the
routing and wavelength assignment problem. This heuristic approach extends one
of the best strategies present in the literature for this problem by adapting it to
a multi-start and evolutionary framework. The evolutionary strategy is similar to
the one used in Gonçalves and Almeida (2002).

The article of Gonçalves and Resende (2011a) formally presents the biased
random-key genetic algorithm as a class of heuristics that considers random-key-
based chromosome representation alongside elitist and biased uniform crossover. It
also presents possible decoders for several optimization problems and comparisons
with other heuristics to show the competitiveness of BRKGA.

In the study of Gonçalves and Resende (2011b), the authors use a multi-population
random-key based genetic algorithm to solve a two-dimension orthogonal packing
problem. This algorithm uses a similar evolutionary strategy as in Gonçalves and
Resende (2004). In this case, more than one population runs independently, and
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those populations exchange two of their best chromosomes after a set amount of
generations. Also, alongside randomly generated chromosomes, the populations are
initiated with four known solutions, something proved by the results to increase the
quality of the obtained solutions.

Resende (2012) details several applications of BRKGA in five telecommunica-
tion problems: weight-setting problem in OSPF routing, design of OP networks
when routing is done with OSPF, location of redundant servers, location of signal
regenerators in optical networks, and routing and wavelength assignment in optical
networks. For each problem, the decoding strategies are presented, and the results
are compared favorably with other algorithms.

The article of Gonçalves and Resende (2012) presents a parallel multi–population
BRKGA for the single container loading problem. The chromosome considers the
packing sequence and the layer types, i.e., in which layers to pack each package.
Two variants of the BRKGA are compared with others from the literature and
show that the algorithm performs very well in all types of instances and has the
best overall results from all approaches in the literature.

In the work of Gonçalves and Resende (2013), a BRKGA for 2D and 3D bin
packing problems is presented. The BRKGA was implemented with parallelization
of the decoding process and a chromosome representation that considers each item’s
packing order and orientation. The results indicate that the BRKGA consistently
outperforms other existing algorithms.

Andrade et al. (2013) detail a BRKGA with local search inside the decoder for
the k-interconnected multi-depot multi-traveling salesman problem. The authors
compare the BRKGA with a simple multi-start heuristic (MSH) with the same
local search for different categories of instances. Overall, the BRKGA appears to
perform significantly better than the MSH.

In the article by Andrade et al. (2014), the authors explore four variants of
BRKGA for overlapping correlation clustering. The four variants consider two
possible chromosome representations, namely compact and extended, and two local
searches, one for error reduction and the other based on the literature. The results
show that the extended representation with literature-based local search performs
better than its competitors but also indicate high convergence times for all BRKGA
variants.

Toso and Resende (2015) presents BRKGA API, in which all problem-independent
components of the BRKGA framework are implemented. It also gives users all the
tools needed to develop a decoder procedure correctly, which may be used in single-
and parallel-threads.

In the work by Gonçalves and Resende (2015), an unequal area facility layout
problem, a version of the quadratic assignment problem, is studied. The authors
hybridized a BRKGA with linear programming constraints, being one of the first
hybridizations of this method and exact methodologies. The hybrid algorithm
outperformed several others from the literature in the experiments.

The article of Brandão et al. (2015) studies the single-round divisible load sched-
uling problem and proposes a BRKGA that outperformed some strategies for the
literature.

The work of López-Ibáñez et al. (2016) introduces the “irace” package, in which
the iterated F-race of (Birattari et al., 2010) is implemented. The authors detail
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several of the package options and offer examples of its usage in diverse areas of
knowledge.

Andrade et al. (2019b) study a flow shop scheduling problem and propose a new
feature for BRKGA called the “shaking” operator. This is a partial restart of the
population by modifying the elite solutions and randomly re-initializing the non-
elite set. This way, some of the benefits of evolution are retained while diversity
is increased. The authors show the effectiveness of this operator in solving the
problem.

Finally, Andrade et al. (2021) introduces the BRKGA with multi–parent crossover
and path-relinking intensification strategy, called BRKGA-MP-IPR. The authors
present an API for the method and detail its several parameters, functions, and
variants.

One can note some similarities among the works present in the co-citation anal-
ysis. First, we have the studies that introduce the theoretical background of
BRKGA, with genetic algorithms (Holland, 1975; Goldberg, 1989), random-keys
(Bean, 1994), parallelized crossover (Spears and De Jong, 1991), random number
generator (Matsumoto and Nishimura, 1998), and the theory of NP-completeness
(Garey and Johnson, 1979). Second, the methods that are often used in exper-
iments as benchmarks, such as GRASP (Feo and Resende, 1995), VNS (Mlade-
nović and Hansen, 1997), and NSGA-II (Deb et al., 2002). Third, the works
with initial characteristics of BRKGA (Gonçalves and Almeida, 2002; Ericsson
et al., 2002; Gonçalves and Resende, 2004; Buriol et al., 2005; Snyder and Daskin,
2006) and their variants (Gonçalves, 2007; Noronha et al., 2011; Gonçalves and
Resende, 2011b). Fourth, the novel applications and improvements of the frame-
work (Gonçalves and Resende, 2011a; Resende, 2012; Gonçalves and Resende, 2012;
2013; Andrade et al., 2014; Toso and Resende, 2015; Gonçalves and Resende, 2015;
Brandão et al., 2015; Andrade et al., 2019b; 2021). Fifth and last, the works with
methods for parameter selection (Birattari et al., 2010; López-Ibáñez et al., 2016).

5. Co-word analysis

Co-word analysis intends to answer RQ3, “Which are the main themes present in
BRKGA studies and how did they evolve?”. In Figure 5, one may observe the co-
occurrence network of the keywords observed in all articles. In it, we have a cluster
centered on both genetic algorithms and random keys, another in combinatorial
optimization and scheduling, a third in vehicle routing, and a fourth in container
loading. Those are also some of the most frequent keywords seen in the database.

To better understand and have a more in-depth analysis, we divided the docu-
ments into three successive periods: 2002-2011, 2012-2017, and 2018-2023, with 28, 73,
and 152 papers, respectively. The thematic evolution map of the periods can be
seen in Figure 6. The association strength between words can be seen by the thick-
ness of the lines, calculated by the inclusion index. Meanwhile, the size of the
cluster rectangle indicates the amount of occurrences of the keywords associated
with that cluster. For example, the genetic algorithm cluster in the first period
has 111 frequency, as measured by 1000 documents, while fiber optic networks only
has 28.6.

Note that, in the first period, the cluster of keywords labeled linear programming
is the most frequently seen, followed by genetic algorithm and computational ex-
periment. For the second period, metaheuristic becomes the most frequent cluster
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Figure 5. Co-occurrence network for the keywords observed in
the works.

Figure 6. Thematic evolution map of the three periods.

of keywords, closely followed by genetic algorithm and computational experiment.
Finally, in the most recent period, genetic algorithms becomes the biggest cluster,
followed by heuristics and computational experiment. The keywords pertaining to
themes genetic algorithm are among the most frequent in all clusters, with it be-
ing the most frequent theme overall. As all papers are expected to deal with the
BRKGA algorithm, which is a genetic algorithm, the frequency of this theme in
the periods is expected. Another often-seen theme is computational experiment,
something also expected due to the restriction of only papers that use BRKGA to
solve an optimization problem.

Figures 7, 8 and 9 present the strategic diagram for the three periods. In them,
the thickness of the circles indicates the number of papers with the keywords that
belong to that cluster. Note that the labels indicate the most frequent keyword of
that cluster.

In the 2002-2011 period, genetic algorithm and fiber optic networks were core
or motor themes, meaning that they were highly related and quoted themes in the
database. Genetic algorithm also has the highest concentration of papers among
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the themes of this period. The theme metaheuristic was also highly relevant, but
not as well developed.

Among the most significant papers with genetic algorithms are Gonçalves and
Almeida (2002) and Gonçalves and Resende (2011a). The former introduces the
framework that later would become BRKGA, with biased uniform crossover, mu-
tation operator, and random-key chromosome representation, while the latter for-
mally presents the BRKGA framework. Meanwhile, fiber optic networks and related
keywords may be seen in Ruiz et al. (2011), which studies the survivable IP/MPLS–
over–WSON multilayer network optimization problem. Festa et al. (2010) uses a
BRKGA to tune the parameters of a GRASP with path-relinking, being one of the
papers in theme metaheuristic.

Optimization, meanwhile, is a niche or isolated theme. That means it has a high
density or development but is not strongly correlated with the other themes. One
study with this theme is Gonçalves and Sousa (2011), where a BRKGA is cus-
tomized for the economic lot scheduling problem. This approach is hybridized with
an LP model and had good performance in experiments with randomly generated
instances.

The cluster labeled with computational experiment denotes a highly promising
theme of this period, as it has a high correlation with other themes with low devel-
opment. One such work with this theme is Mendes et al. (2009). In it, the authors
present the results of a BRKGA used in a resource-constrained scheduling problem.

Dynamic Shortest Path and linear programming are the emerging or declining
themes of this period. In Buriol et al. (2010), the dynamic shortest path is used to
update a solution when there is a modification on the road network. Similarly, in
Reis et al. (2011), the dynamic shortest path was adapted from the one in Buriol
et al. (2005), in which it is used to recompute shortest paths after modifications
of link weights. A linear programming model is compared with the results of a
proto-BRKGA in Ericsson et al. (2002).

Figure 7. Strategic Diagram for 2002-2011 articles.

For the second period, computational experiment and heuristics are motor themes.
It is expected, as all papers in the database used a metaheuristic method, BRKGA,
in computational experiments. Among the works that use these themes, we have
Duarte et al. (2014), which uses hybrid heuristics and metaheuristics to solve the
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regenerator location problem. A hybrid GRASP with path-relinking is proven to be
the best approach among the ones used by the authors. For computational experi-
ment, we have Heilig et al. (2016). This paper studies a cloud resource management
problem using a hybrid BRKGA with a local search.

There are three niche themes in this period: multiobjective optimization, con-
tainer loading, and assembly. One work with a multiobjective optimization problem
is Tangpattanakul et al. (2015b), which proposes a bi-objective BRKGA approach
with modifications on the chromosome ordering phase. A 3D container loading
problem is studied by Gonçalves and Resende (2012), with a multi-population
BRKGA that had better performance than several other approaches. The study
from Moreira et al. (2012) introduces an assembly line worker assignment and bal-
ancing problem. Their hybrid BRKGA with local search showed better performance
than several other approaches from the literature.

Clustering is the emerging theme of this period. It may be seen in Festa (2013),
which uses a BRKGA for clustering biological data.

Finally, the promising themes for this second period are genetic algorithm, meta-
heuristic, and chromosome. Among those that count the words among their key-
words, we have the aforementioned Gonçalves and Resende (2012), where variants
of the BRKGA are compared favorably with others from literature with regards to
solution quality. The paper of Silva et al. (2015) is also present on these themes
and introduces a Python/C++ library for BRKGA. In Andrade et al. (2015b), the
authors introduce six versions of BRKGA for the winner determination problem in
combinatorial auctions. Three of the BRKGA variants use solutions of intermedi-
ate linear programming relaxations of an exact mixed integer-linear programming
model as initial chromosomes of the populations.

Figure 8. Strategic Diagram for 2012-2017 articles.

For the 2018-2023 period, the theme of heuristics became the core theme, with
an increase in both development and relevance. Mauri et al. (2021) studies a two-
stage multi-product capacitated facility location problem with hybrid BRKGA+LS
that outperforms search-based heuristic algorithms.

Simulated annealing, variable neighborhood search, and iterated local search are
niche themes of this period, with low centrality but high development. These are
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algorithms that are frequently compared or hybridized with BRKGA in the exper-
iments. Andrade et al. (2019a) compares their approach with several, including
simulated annealing an iterated local search. ILS variants were also noted in Huang
et al. (2018); Rocholl and Mönch (2021). Silva et al. (2019) uses a hybrid BRKGA
with ILS, which is then hybridized with VNS. Mönch and Roob (2018) shows that
BRKGA is a better method than VNS for a parallel batch processing machine
problem.

As an emerging theme, we have container loading. A new methodology for the
container loading problem is studied in Ramos et al. (2018). The authors treat load
balance as an important constraint for the problem, something normally simplified
in literature. The load balance is considered a vehicle-specific constraint in this
new formulation. The new approach was tested on 1,500 instances and showed an
improvement in solution quality and algorithm performance.

At last, vehicle routing, computational experiment, and genetic algorithm are
the basic themes for this period. This means a decrease in development for the
second theme and a slight increase in relevance for the third. One can observe the
first theme in Schenekemberg et al. (2022), which explores the dial-a-ride problem
with private fleet and common carrier. The proposed hybrid BRKGA with local
search successfully outperformed other methods in a case study. We can cite An-
drade et al. (2019b) for computational experiment, in which several heuristics for a
flowshop scheduling problem are presented. The authors detail the results for sev-
eral methods on experiments made with 120 test instances, including an algorithm
based on iterated local search, iterated greedy search, and BRKGA. This paper also
introduces the shaking mechanism, in which the population is partially restarted,
and proves its effectiveness inside the BRKGA framework. Among the studies that
cite genetic algorithm, Fadel et al. (2021) use genetic algorithms such as BRKGA
for statistical disclosure control. The context of this method is the sharing of data
between public and private organizations, that must be done without compromising
confidentiality or losing important data characteristics. The algorithms, thus, must
both cluster and aggregate the data so that the statistical measures, i.e. mean or
standard deviation, are not modified. The experiments point out that the genetic
algorithms are adequate to produce good results, however with high run times.

Figure 9. Strategic Diagram for 2018-2023 articles.
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6. Conclusion

This paper conducted a reproducible systematic literature review encompass-
ing 253 articles of applications of the Biased Random-Key Genetic Algorithm
(BRKGA). Although the initial applications of this methodology emerged in the
early 2000s (Gonçalves and Almeida, 2002; Ericsson et al., 2002) , the formal frame-
work was not established until 2011 (Gonçalves and Resende, 2011a). Since its
inception, this metaheuristic has found extensive application across various opti-
mization problems, demonstrating its reliability, efficiency, and versatility.

This paper was guided by three research questions (RQ). Citation analysis was
used to answer the first RQ: Who are the most influential researchers for this algo-
rithm? The citation analysis shows that the most influential authors are Resende,
M.G.C., and Gonçalves, J.F., both relative to the number of papers and total of
citations inside the database. The most cited paper among the 253 selected is co-
authored by both (Gonçalves and Resende, 2011a), and there is a strong correlation
between the number of papers and the total of citations in the database. The analy-
sis also points out that Brazil, the USA, and Portugal are, by far, the countries with
the most authors publishing BRKGA. This can be explained by the relationship
between the two most influential authors and researchers based in these countries.

The second research question, What are the most influential papers for the
BRKGA framework?, was answered with a co-citation analysis. The papers are
presented in chronological order and point out that papers focused on the theoret-
ical parts of the BRKGA framework, such as multi-point crossover, random-keys,
and elitist strategy, are some of the most frequently co-cited works. There is also a
strong presence of application articles and methods for parameter selection. This
analysis presents the backbone of seminal works on BRKGA and is a chronological
guide for any researcher who desires to study this metaheuristic.

The last RQ, Which are the areas of application of BRKGA and how did they
evolve?, was answered with a co-word analysis, which presents the contemporary
research themes and their evolution, and is divided into three time periods. In the
first period (2002-2011), the main themes were genetic algorithms and fiber optic
networks. These point to the majority of the applications in the time–period, and
the fact that the metaheuristic was only a variation of GA at the time, without
a specific name. In the second period (2012-2017), heuristics and computational
experiments were the motor themes of the studies, while heuristics remained the
most relevant and developed area in the most recent period (2018-2023).

Potential approaches to expand the scope of this review include incorporating
additional databases like Web of Science and arXiv, as well as encompassing the-
ses, dissertations, and non-peer-reviewed materials such as technical reports and
preprints.
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