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2 Yong Kong

Abstract The distributions of the m-th longest runs of multivariate random

sequences are considered. For random sequences made up of k kinds of letters,

the lengths of the runs are sorted in two ways to give two definitions of run

length ordering. In one definition, the lengths of the runs are sorted separately

for each letter type. In the second definition, the lengths of all the runs are

sorted together. Exact formulas are developed for the distributions of the m-

th longest runs for both definitions. The derivations are based on a two-step

method that is applicable to various other runs-related distributions, such as

joint distributions of several letter types and multiple run lengths of a single

letter type.

Keywords generating function · combinatorial identities · randomness test ·

distribution-free statistical test · runs length test · biological sequence analysis
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1 Introduction

Run statistics have been used in various disciplines to test the nonrandomness

in sequences (Balakrishnan and Koutras 2002; Godbole and Papastavridis 1994;

Knuth 1997). For the related topic of scan statistics see for example (Glaz et al

2001). The research in this area has been revived recently because of the ap-

plications in biological related problems, such as sequence analysis and genetic

analysis.

One of the commonly used runs tests is the longest run test. An unusual

long consecutive appearance of one type of letter usually indicates the nonran-

dom nature of the process that generates the sequence. These long consecutive

appearances (runs), however, are usually obscured by noises or other processes

so that they don’t reveal themselves to the observers, making the application

of the longest run test difficult or impossible. For example, when we consider

biological sequences such as DNA sequences, the longest run of one particular

letter type might have been broken into several shorter ones due to either bi-

ological mutations or errors that occurred in the process of reading out these

sequences. For such sequences, it would be difficult to have a single run of

statistically significant length. For example, for a binary system of 17 total

elements, with 10 elements of the first letter type and 7 elements of the sec-

ond letter type, the longest run of the first letter type needs a length of 7 to

achieve statistically significance with a cutoff of α = 0.05: P (l0 ≥ 7) = 0.049

(see Eq. (18)). On the other hand, if we use the second longest run, it re-

quires only l1 ≥ 4 to achieve statistically significance for the same significance
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level: P (l1 ≥ 4) = 0.041 (see again Eq. (18)). One of the goals of this paper

is to develop explicit, easily calculated formulas for the m-th longest runs of

multivariate random sequences, where m is an arbitrary nonnegative integer.

As shown in Figure 1 and Table 1, as m becomes bigger, the distributions be-

come narrower, so it might become easier to tell whether the observed statistic

comes from one distribution or the other.

The distributions of the longest runs and other runs-related distributions

have been studied by previous researchers for independent trials and Markov

dependent trials (Burr and Cane 1961; Philippou and Makri 1985, 1986; Schilling

1990; Koutras and Papastavridis 1993; Koutras and Alexandrou 1995; Lou 1996;

Muselli 1996; Fu et al 2003; Eryilmaz 2006; Makri et al 2007). Based on the

results of Mood (1940), a distribution is derived which gives probability of at

least one run of a given length or greater for the special case of binary sys-

tems where each kind of object has the same number of elements (n1 = n2)

(Mosteller 1941). The formulas involve double summations. These results are

simplified later (Olmstead 1958; Bradley 1968, pp. 255-259), again for binary

systems. A recursion based algorithm is given for the distribution of the longest

run of any letter type of multiple object systems (Schuster 1996). Morris et al

(1993) had similar objectives to ours: they obtained exact, explicit formulas

for multiple objects containing any minimum collection of specified lengths.

Their formulas were obtained by using convoluted combinatorial arguments.

Different from their approach, we will use a simple method that can derive

various distribution in a unified, almost mechanical way. This is the second
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major goal of this paper: to introduce a systematic method that can treat

various distributions in a unified approach.

Earlier studies of run statistics usually used ingenious ad hoc combinato-

rial methods, which sometimes became very tedious. In (Kong 2006) a sys-

tematic method to study various run statistics in multiple letter systems was

developed. Two of the commonly-used run tests, the total number of runs

test and the longest run test, were investigated in detail by using the general

method. The method was later applied to other commonly used runs tests

(Kong 2015a,b,c). In this paper, we extend the method to investigate the

distributions of the m-th longest runs for multi-letter systems. Two different

definitions of the run length order will be studied. For the first definition, the

lengths of the runs are sorted separately for each letter type. The formula

developed in (Kong 2006, Theorem 10) is a special case for this definition,

with mi = 0 for each letter type. For the second definition, the lengths of all

the runs from all letter types are sorted together. The distributions of both

definitions can be considered as special cases of the general two-step method

discussed in Section 2.

In the general setting the method involves two steps. In the first step, we

only need to consider the arrangements of a single letter type that meet the

restrictions we impose on that letter type, such as the lengths of the runs or the

number of runs, without worrying about the complicated combinations with

other letter types. It simplifies the enumeration tasks considerably when only

one letter type is considered. The number of such arrangements of a single let-
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ter type, say the i-th type, with ni elements and ri number of runs, is specified

in Eq. (4) by U(ni, ri;Xi), where Xi is a place-holder for other restrictions in

addition of ni and ri. In the second step, the quantities U(ni, ri;Xi), which are

for individual letter types, are then combined together by the function F (r)

(as shown in Eq. (1)) to get the distribution of the whole system. The function

F (r) gives the number of configurations to arrange in a line r1 blocks of the

first letter type, r2 blocks of the second letter type, etc., without the blocks

of the same letter type touching each other. The explicit expression of F (r)

(Eq. (1)) makes it possible to obtain explicit expressions for various kind of

run-related distributions. These expressions can often be simplified by manip-

ulating binomial and multinomial coefficients, which can be done mechanically

using the Wilf-Zeilberger method (Petkovsěk et al 1996).

The major results of this article are Theorem 2 and Theorem 3. These

theorems are for the m-th longest runs in systems with arbitrary number of

letter types under the two different definitions of the run length ordering.

Both results are obtained by using the simple yet quite general consideration

discussed in Theorem 1. It’s interesting to note that, when compared to the

formulas for the special case of the longest runs (m = 0), the only difference is

that the general formulas for the arbitrary m-th longest runs contain an extra

binomial factor (−1)m
(

j−1
m

)

where j is a summation variable (see Eqs. (13),

(17), (18), and (23)).

There are many definitions of runs in the literature. In this article we use

the classical definition of Mood (1940), which asserts that consecutive runs



The m-th longest runs 7

of one letter type must be separated by other letter types. This is also the

definition we used in the previous work (Kong 2006).

Two kinds of models are usually used when the distributions of runs are

studied. If the numbers of elements for each letter type are fixed, the models

are known as conditional models. If the elements are not fixed but chosen

from a multinomial population, the models are called unconditional. For both

of these models, exact finite distributions and asymptotic distributions have

been investigated in the past. The results presented in this article are exact

distributions conditioned on the compositions of systems under study, i.e., the

numbers of each letter type are fixed. These exact distributions are particular

useful for relatively short sequences and other situations where asymptotic

results cannot be applied. Once the conditional distribution is obtained, it is

usually easy to get unconditional distribution by the multinomial theorem.

Throughout the article we reserve the letter k for the number of letter

types in the system, and use ni as the number of elements of the i-th letter

type. The total number of elements of the system is n =
∑k

i=1 ni. The letter

m (with index if necessary) is used to indicate the run order. For the first

definition of the run ordering, mi = 0 is used to index the longest run of the

i-th letter type, and mi = 1 is the index of the second longest run, etc. For the

second definition, since the letters are pooled together when the run lengths

are ordered, the subscript on m is no longer needed. In this case, m = 0

indicates the longest run of the whole system, and m = 1 is the second longest

run, etc.
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We denote by the bold letters the tuples with k elements, such as n =

(n1, n2, . . . , nk), r = (r1, r2, . . . , rk), p = (p1, p2, . . . , pk), and similarly for

other symbols. We use
(

n
m

)

for the binomial coefficient (n choose m), and

[

p1+···+pk

p1,...,pk

]

=
[

p
p1,...,pk

]

=
[

p
p

]

= p!/(p1! · · · pk!) as the multinomial coefficient,

with p =
∑k

i=1 pi. When there is no ambiguity, the k nesting summations will

be abbreviated as a single sum for clarity, for example
∑r1

p1=1 · · ·
∑rk

pk=1 f(p)

will be written as
∑ri

pi=1 f(p). The coefficient of xm of a polynomial f(x) is

denoted as [xm]f(x).

The paper is organized as follows. In Section 2 we describe the two-step

method outlined above in a general setting. Then in Section 3 and Section 4

the method is applied to obtain the distributions of the m-th longest runs,

under two different definitions of the run length ordering.

2 A general two-step method for run-related distributions

As discussed in Section 1, in the first step we only consider the enumeration of

one letter type when its elements are considered alone. The enumeration of one

letter type is considerably easier than when all the letter types are considered

together. Let assume that for the i-th letter type with ni elements arranged

into ri runs, we impose one or more additional conditions, collectively denoted

asXi. Denote U(ni, ri;Xi) as the number of arrangements of ni elements of the

i-th letter type in exactly ri runs with the additional restriction Xi imposed.

Various methods can be used to obtain U(ni, ri;Xi), with generating function
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as one of the most powerful and versatile methods (see Eq. (11) for one of such

applications).

After obtaining U(ni, ri;Xi), we need to put them together to form a k-

letter type system. To do this we will use the function F (r), which is the

number of ways to arrange in a line r1 runs of the first letter type, r2 runs of

the second letter type, etc., without two adjacent runs being of the same kind.

The explicit expression of function F (r) is given by (Kong 2006):

Lemma 1 The function F (r) is given by

F (r) =
∑

1≤pi≤ri
1≤i≤k

(−1)
∑

i
(ri−pi)

(

r1 − 1

p1 − 1

)

. . .

(

rk − 1

pk − 1

)[

p1 + · · ·+ pk
p1, . . . , pk

]

. (1)

When k = 2, F (r1, r2) can be simplified from Eq. (1) to the following trivial

expression,

F (r1, r2) =

(

2

r1 − r2 + 1

)

=







































2 if r1 = r2,

1 if |r1 − r2| = 1,

0 otherwise,

which is obvious from the meaning of function F (r).

Proposition 1 For a system with k letter types, the total number of configu-

rations is given by

R(n) =

ni
∑

ri=1

F (r)

k
∏

i=1

U(ni, ri;Xi), (2)

where U(ni, ri;Xi) is the number of arrangements of ni elements of the i-th

letter type in exactly ri runs with restrictions Xi imposed.
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Often the time we don’t want to impose the restrictions on all of the k

letter types. For example we might only be interested in the length of runs of

the first letter type, and put no restrictions on the other k − 1 letter types.

Or we are only interested in the length of runs of the first and the second

letter types to obtain their joint distributions. In general, suppose we only

impose certain restrictions on some of the k letter types, which are indexed by

S = {i1, i2, . . . , }. Then the number of configurations of the system R(n;S)

can be written as

R(n;S) =
∑

ri

F (r)
∏

i∈S

U(ni, ri;Xi)
∏

i/∈S

V (ni, ri), (3)

where V (ni, ri) is the number of arrangements of the ni elements of the i-th

letter type in exactly ri runs without any restrictions.

Theorem 1 The number of configurations R(n;S) for a system with k letter

types is given by

R(n;S) =
∑

ri,pi,i∈S

[∑

i∈S pi +
∑

i/∈S ni

pi, ni

]

∏

i∈S

(−1)ri−pi

(

ri − 1

pi − 1

)

U(ni, ri;Xi),

(4)

where the set S specifies the subset of letter types on which additional restric-

tions are imposed.

Proof. The expression of V (ni, ri) in Eq. (3) for the unrestricted arrangements

of exactly ri runs using ni elements is given by the well-known formula

V (ni, ri) =

(

ni − 1

ri − 1

)

. (5)
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A direct interpretation of above expression is to put ri − 1 bars between the

ni − 1 spaces formed by the ni elements to form ri runs. By using Eqs. (1)

and (5) and utilizing the identity

n
∑

r=0

(−1)r
(

n

r

)(

r

m

)

= (−1)nδn,m,

the sums of ri in Eq. (3) for i /∈ S can be evaluated to (−1)niδni,pi
. These

δni,pi
in turn filter out the sums of pi in the explicit expression of F (r) for

i /∈ S to a single term with pi = ni, leading to the simplification of R(n;S) to

sums that only involve letter types in S.

With different assignments of the set S, Theorem 1 can be used to obtain

different kinds of distributions, such as joint distributions of two or three letter

types, with S = {1, 2} and S = {1, 2, 3} respectively. Several special cases for

this theorem are mentioned here for: (1) |S| = 0, (2) |S| = k, and (3) |S| = 1.

If S is empty, then R(n;S) is simplified to the trivial result
[

n
ni

]

, as it should

be:

R(n;S = ∅) =

[

n

ni

]

.

If S = {1, 2, . . . , k}, i.e., all letter types are subject to restrictions, then

R(n;S = {1, . . . , k}) =
∑

pi

(−1)pi

[

p

pi

]

∑

ri

∏

i

(−1)ri
(

ri − 1

pi − 1

)

U(ni, ri;Xi).

(6)

If only one letter type has restrictions, say S = {1}, then

R(n;S = {1}) =

n1
∑

r1=1

r1
∑

p1=1

(−1)r1−p1

[

n− n1 + p1
p1, n2, · · · , nk

](

r1 − 1

p1 − 1

)

U(n1, r1;X1)

=

[

n− n1

n2, · · · , nk

] n1
∑

r1=1

r1
∑

p1=1

(−1)r1−p1

(

n− n1 + p1
p1

)(

r1 − 1

p1 − 1

)

U(n1, r1;X1).
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By using the identity

r
∑

p=1

(−1)p
(

n+ p

p

)(

r − 1

p− 1

)

= (−1)r
(

n+ 1

r

)

,

we get

Corollary 1 For a system with the first letter type restricted while the other

letter types are unrestricted, the number of configurations is given by

R(n;S = {1}) =

[

n− n1

n2, · · · , nk

] n1
∑

r1=1

(

n− n1 + 1

r1

)

U(n1, r1;X1). (7)

The direct interpretation of Eq. (7) is that the n−n1 elements of the other

letter types form n−n1 +1 intervals in a line (including the two ends). There

are
(

n−n1+1
r1

)

ways for the elements of the first letter type to choose r1 out of

these n−n1 +1 intervals to form r1 runs. The multinomial factor in the front

takes care of the number of configurations the elements of the other letter

types can form among themselves.

In the following we will use this two-step method to derive distributions of

the m-th longest runs under two different definitions.

3 The first definition of the m-th longest run: run lengths sorted

within each letter type

In this definition, the run lengths are sorted for each letter type separately.

For the i-th letter, we denote l
(i)
0 as the length of the longest run of the i-th

letter type, l
(i)
1 as the length of the second longest run of the i-th letter type,

etc. In general, l
(i)
m is the length of the (m+1)-th longest run of the i-th letter
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type. The lengths of all the runs formed by the i-th letter type are ordered as

l
(i)
0 ≥ l

(i)
1 ≥ l

(i)
2 ≥ · · · ≥ l

(i)
ri−1.

In other word, there are at least m+1 runs of the i-th letter type whose length

is longer or equal to l
(i)
m .

For example, in a k = 4 system made up of letter types {1, 2, 3, 4}, if we

have the following particular arrangement of the four letter types

111 | 2 | 111 | 333 | 444444 | 33 | 11111, (8)

then we have l
(1)
0 = 5, l

(1)
1 = 3, l

(1)
2 = 3 for the first letter type 1’s, l

(2)
0 = 1 for

the second letter type 2’s, l
(3)
0 = 3, l

(3)
1 = 2 for the third letter type 3’s, and

l
(4)
0 = 6 for the fourth letter type 4’s. All other l

(i)
m = 0.

As described in Section 2, to use the two-step method to obtain the dis-

tribution of the whole system we first focus on a single particular letter type.

In the following if we only deal with one letter type, the index i in l
(i)
m will be

omitted and we will use lm for simplicity. Define function hm(n, q, r) as the

number of ways to arrange the elements of a given letter type with n elements

in r runs, with the length of (m + 1)-th longest run less than or equal to q,

q ≥ 0, i.e., lm ≤ q. In other word, at most m runs can have lengths greater

than q. This is a specialization of the generic function U(n, r;X) of Eq. (3),

with the parameters m and q jointly act as the restriction parameter X . In

the following we will find an explicit expression for hm(n, q, r).

By definition it is obvious that

hm(n, q, r) =
m
∑

i=0

h̄i(n, q, r), (9)
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where h̄i(n, q, r) counts for the arrangements which have exactly i runs whose

lengths are greater than q. We’ll first find an explicit expression for h̄i(n, q, r),

then use the above relation to obtain hm(n, q, r).

Lemma 2 The number of ways to arrange n elements in r runs with exactly

m longest runs of length greater than q ≥ 0 is given by

h̄m(n, q, r) =







































0 q = 0 and r 6= m,

(

n−1
r−1

)

q = 0 and r = m,

min(r,⌊(n−r)/q⌋)
∑

j=m

(−1)m+j
(

j
m

)(

r
j

)(

n−qj−1
r−1

)

otherwise.

(10)

Proof. To calculate h̄m(n, q, r), we define generating function g(x, y, q) as

g(x, y, q) = (x+ · · ·+ xq) + y(xq+1 + · · · ) =
x(1 − xq)

1− x
+ y

xq+1

1− x
. (11)

If we expand g(x, y, q)r, then h̄m(n, q, r) will be the coefficient of xnym, since

this term counts the number of configurations with exactly m runs whose

lengths are greater than q for a total of n elements. We obtain:

h̄m(n, q, r) = [xnym]g(x, y, q)r

= [xnym](1 − x)−r
[

x(1 − xq) + yxq+1
]r

= [xn](1− x)−r

(

r

m

)

[x(1 − xq)]r−m xm(q+1)

= [xn]

(

r

m

)

∑

l

(

r + l − 1

r − 1

)

∑

j

(−1)j
(

r −m

j

)

xl+r−m+qj+m(q+1)

=

(

r

m

)

∑

j

(−1)j
(

r −m

j

)(

n− (m+ j)q − 1

r − 1

)

=
∑

j

(−1)j−m

(

j

m

)(

r

j

)(

n− qj − 1

r − 1

)

. (12)
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Eq. (12) includes the special case of q = 0, which can be checked explicitly.

For q = 0, we need to put n elements into r runs with exactly m runs whose

lengths are greater than zero. Each run, by definition, has a length greater

than zero. Hence for q = 0, h̄m(n, q, r) vanishes for all values of m except for

m = r. This is also reflected in Eq. (11): when q = 0, the only term of y

in g(x, y, q)r is yr. In this case there are
(

n−1
r−1

)

number of ways to arrange n

elements into r runs. This can be checked in Eq. (12): the sum has only one

nonvanishing term, which is when j = r = m, leading to
(

n−1
r−1

)

.

Lemma 3 The number of ways to arrange n elements in r runs, with the

length of (m+ 1)-th longest run less than or equal to q ≥ 0, is given by

hm(n, q, r) =







































0 q = 0 and r > m,

(

n−1
r−1

)

q = 0 and r ≤ m,

min(r,⌊(n−r)/q⌋)
∑

j=0

(−1)m+j
(

j−1
m

)(

r
j

)(

n−qj−1
r−1

)

otherwise.

(13)

Proof. From the relation Eq. (9) and expression of h̄m(n, q, r) in Eq. (10), we

have

hm(n, q, r) =

m
∑

l=0

h̄l(n, q, r) =
∑

j

(−1)j
(

r

j

)(

n− qj − 1

r − 1

) m
∑

l=0

(−1)l
(

j

l

)

= (−1)m
∑

j

(−1)j
(

r

j

)(

n− qj − 1

r − 1

)(

j − 1

m

)

. (14)

By definition, hm(n, q, r) =
(

n−1
r−1

)

when m ≥ r, the number of configurations

with n elements in r runs. This is reflected in the above expression as j = 0 is

the only nonvanishing term in the sum when m ≥ r. As before, some special
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cases when q = 0 should be considered. Apparently when q = 0, hm(n, q, r) = 0

if r > m. When q = 0 and r ≤ m, Eq. (14) is simplified to
(

n−1
r−1

)

.

With the expression of hm(n, q, r) in Lemma 3, we can use Eq. (4) in

Theorem 1 to get the distribution for the whole system. First, we define two

sets of numbers m = (m1, . . . ,mk) and q = (q1, . . . , qk). Then we denote

N(n;q;m) as the number of ways to have the (mi + 1)-th longest run of the

i-th letter type equal to or less than qi ≥ 0 for all letters: i = 1, . . . , k. In

other word, N(n;q;m) is the number of ways to arrange the letters so that

∀i ∈ {1, 2, . . . , k}, l
(i)
mi

≤ qi. The Theorem 10 of (Kong 2006) is a special case

of N(n;q;m) with m = (0, . . . , 0), i.e., only the longest run for each letter

type is considered there. From Eq. (3) we have

N(n;q;m) =

ni
∑

ri=1

F (r)
∏

i

hmi
(ni, qi, ri). (15)

Eq. (15) can be simplified if we use the explicit expression of F (r), as in Eq. (6).

If we put U(n, r,X) = hm(n, q, r) in Eq. (6) and define the last sum in Eq. (6)

as

Hm(n, q, p) =
∑

r

(−1)r
(

r − 1

p− 1

)

hm(n, q, r),

then the summation of the running variable r can be carried out and we have

Theorem 2 The number of ways to arrange the k letter types so that for

∀i ∈ {1, 2, . . . , k}, l
(i)
mi

≤ qi is given by

N(n;q;m) =

ni
∑

pi=1

(−1)pi

[∑

pi
pi

]

∏

i

Hmi
(ni, qi, pi), (16)
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where

Hm(n, q, p) =











































(−1)m
(

n−1
p−1

)(

n−p−1
m−p

)

q = 0 and n ≤ m,

(

n−1
p−1

)

[

(−1)m
(

n−p−1
m−p

)

−
(

n−p−1
n−1

)

]

q = 0 and n > m,

⌊(n−p)/q⌋
∑

j=⌈(n−p)/(q+1)⌉

(−1)n+m+qj+j
(

j−1
m

)(

n−qj−1
p−1

)(

p
n−qj−j

)

otherwise.

(17)

The special case of m = (0, . . . , 0) has been reported previously (Kong

2006, Theorem 10). Comparing the two expressions we see that the only dif-

ference is the extra binomial term (−1)m
(

j−1
m

)

for the general case of the m-th

longest runs in Eq. (17).

If we define L(n;q;m) as the number of arrangements to have at least one

of the k letter types, for example, the i-th letter type, to have the length of

the (mi + 1)-th longest run equal to qi, i.e., ∃i ∈ {1, 2, . . . , k}, l
(i)
mi

= qi, then

by definition, L(n;q;m) = N(n;q;m)−N(n;q− 1;m).

Corollary 2 The number of arrangements to have at least one of the k letter

types to have the length of the (mi + 1)-th longest run equal to qi is given by

L(n;q;m) = N(n;q;m)−N(n;q− 1;m).

If we define W (n;q;m) as the number of arrangements for all letter types

to have the length of the (mi + 1)-th longest run equal to qi, then we have

Corollary 3 The number of arrangements for all letter types to have the

length of the (mi + 1)-th longest run equal to qi is given by

W (n;m;q) =

ni
∑

pi=1

(−1)p
[

p

pi

] k
∏

i=1

[Hmi
(ni, qi, pi)−Hmi

(ni, qi − 1, pi)] ,
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where p =
∑k

i=1 pi.

Applying Eq. (13) in Lemma 3 to Eq. (7) of Corollary 1, we can get the

number of configurations of at least m+1 runs of the first letter type of length

q or greater, regardless of the other letter types:

Z(n; q;m) =

[

n

ni

]

−

[

n− n1

n2, · · · , nk

] n1
∑

r1=1

(

n− n1 + 1

r1

)

hm(n1, q − 1, r1).

The summation of r1 in the above equation can be carried out, leading to

Corollary 4 The number of configurations of at least m+ 1 runs of the first

letter type with length q or greater is given by

Z(n; q;m) =

[

n− n1

n2, · · · , nk

]min(n−n1+1,⌊n/q⌋)
∑

j=1

(−1)m+j+1

(

j − 1

m

)(

n− n1 + 1

j

)(

n− qj

n− n1

)

.

(18)

Eq. (18) is a generalization of previous results, such as those of (Bradley

1968, p.257). For the m-th longest run, again the only difference is the extra

binomial term (−1)m
(

j−1
m

)

.

By using Theorem 1 and Lemma 3, the method can easily lead to joint

distributions of various kinds. For example, instead of using S = {1} to focus

only on the lengths of runs of the first letter type, we can use S = {1, 2} to

obtain joint distributions of both the first and the second letter types. Other

possibilities are to introduce more tracking variables in generating function

Eq. (11) to track more run lengths within one letter type, instead of only one

number q. The details are omitted here.

As for computational complexity, Eq. (15) has 3 nested summations over

ni, i = 1, . . . , k: the inner k summations for hm(n, q, r) in Eq. (13), the middle
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k summations for the calculation of F (r), and the outer k summations for

variables ri. Hence the computational complexity for Eq. (15) is O(
∏k

i=1 n
3
i ).

Eq. (16) of Theorem 2 simplifies the computation to two nested summations

over ni, and the computational complexity is reduced to O(
∏k

i=1 n
2
i ).

4 The second definition the m-th longest run: run lengths sorted

for all letter types

In Section 3, the m-th longest runs are ordered within runs formed by indi-

vidual letter types. In this section, distributions of m-th longest runs of the

whole system will be developed.

For this definition the lengths of runs are sorted regardless which letter type

the run is made up of. The lengths of runs of the whole system are ordered

as l0 ≥ l1 ≥ · · · ≥ lr−1, where r is the total number of runs of the system.

The length of the longest run of the whole system is l0, with the length of the

shortest run labeled as lr−1. In general lm denotes the length of the (m+1)-th

longest run of the whole system. We define li = 0 if i ≥ r. If we use the same

example shown previously in (8), then l0 = 6, l1 = 5, l2 = l3 = l4 = 3, l5 = 2,

l6 = 1, and lm = 0 for m > 6.

We define Q(n; q;m) as the number of ways to arrange the whole system

to have the length of the (m+1)-th longest run less or equal to q, i.e., lm ≤ q.

The definition of Q(n; q;m) implies that for all the arrangements counted by

Q(n; q;m), there are at most m runs with lengths greater than q.
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As before, Q(n; q;m) can be expressed by

Q(n; q;m) =
m
∑

s=0

Q̄(n; q; s),

where Q̄(n; q;m) is the number of arrangements of the whole system where

there are exactly m runs with lengths greater than q, regardless of the letter

types. The numbers given by Q(n; q;m) and Q̄(n; q;m) are the corresponding

quantities on the whole system level of the numbers given by hm(n, q, r) and

h̄m(n, q, r) discussed in Section 3 for a particular given letter type.

To calculate Q̄(n; q;m), we use the same expression of h̄m(n, q, r) in Eq. (12),

which is the number of ways to arrange n elements of one particular letter type

in r runs, with exact m runs longer than q. Again the function F (r) is used

to put the whole system together:

Q̄(n; q; s) =

s
∑

mi=0∑
mi=s

ni
∑

ri=1

F (r)
∏

i

h̄mi
(ni, q, ri).

Hence for Q(n; q;m) we have

Q(n; q;m) =

m
∑

s=0

s
∑

mi=0∑
mi=s

ni
∑

ri=1

F (r)
∏

i

h̄mi
(ni, q, ri). (19)

Eq. (19) can be simplified. First, by using the explicit expression of F (r)

of Eq. (1), Eq. (19) can be simplified as

Q(n; q;m) =

m
∑

s=0

s
∑

mi=0∑
mi=s

ni
∑

pi=1

(−1)pi

[∑

pi
pi

]

∏

i

H̄mi
(ni, q, pi), (20)

where

H̄m(n, q, p) =























(−1)m
(

m−1
p−1

)(

n−1
m−1

)

q = 0,

⌊(n−p)/q⌋
∑

j=⌈(n−p)/(q+1)⌉

(−1)n+m+qj+j
(

j
m

)(

n−qj−1
p−1

)(

p
n−qj−j

)

otherwise .

(21)
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The expression of Eq. (20) can be further simplified by getting rid of the

selection summation on
∑

mi = s in the second sum. Let’s discuss the simpli-

fication for q = 0 and q > 0 separately.

When q = 0, if m ≥ n, we have Q(n; 0;m) =
[

n
ni

]

. For q = 0 and m < n, for

each summation of mi in Eq. (20), we can first ignore the selection restriction

∑

mi = s, and use a variable t to track mi later. First look at the sum over

one particular mi:

ni
∑

mi=pi

(−1)mi

(

mi − 1

pi − 1

)(

ni − 1

mi − 1

)

tmi

=

(

ni − 1

pi − 1

) ni
∑

mi=pi

(−1)mi

(

ni − pi
mi − pi

)

tmi

=(−1)pi

(

ni − 1

pi − 1

)

(1 − t)ni−pitpi .

The nested k sums of mi will then give

(−1)p(1− t)n−ptp
k
∏

i=1

(

ni − 1

pi − 1

)

,

where n =
∑

k ni and p =
∑

k pi. The selection restriction
∑

mi = s just takes

the coefficient of ts from the above expression:

[ts](−1)p(1− t)n−ptp = (−1)s
(

n− p

s− p

)

.

The outmost sum of s can then be carried out:

m
∑

s=0

(−1)s
(

n− p

s− p

)

= (−1)m
(

n− p− 1

m− p

)

.

Putting all together, we have for q = 0 and m < n,

Q(n; 0;m) = (−1)m
∑

pi

(−1)p
(

n− p− 1

m− p

)[

p

pi

]

∏

i

(

ni − 1

pi − 1

)

. (22)
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Similarly, for q > 0 Eq. (20) can be simplified by first doing the sums on each

mi, and then filtering out the term with the selection restriction
∑k

i=1 mi = s

by taking the coefficient of the ts term. In the end, after putting everything

together, we obtain

Theorem 3 The number of configurations of a system with lm ≤ q when all

lengths of runs are sorted together regardless of letter types is given by, when

q > 0,

Q(n; q;m) = (−1)n+m
ni
∑

pi=1

(−1)p
[

p

pi

]

×

⌊(ni−pi)/q⌋
∑

ji=⌈(ni−pi)/(q+1)⌉

(−1)j(q+1)

(

j − 1

m

)

∏

i

(

ni − qji − 1

pi − 1

)(

pi
ni − qji − ji

)

(23)

with j =
∑

i ji, n =
∑

k ni, and p =
∑

k pi. When q = 0, if m ≥ n,

Q(n; 0;m) =

[

n

ni

]

,

when q = 0 and m < n,

Q(n; 0;m) = (−1)m
ni
∑

pi=1

(−1)p
(

n− p− 1

m− p

)[

p

pi

]

∏

i

(

ni − 1

pi − 1

)

.

If we compare Eq. (23) with Eq. (16), we see that the only difference is in

the term (−1)m+(q+1)j
(

j−1
m

)

: in Eq. (16) the term is calculated separately for

individual letter type as (−1)mi+(qi+1)ji
(

ji−1
mi

)

, while in Eq. (23) the term is

calculated for the whole system using the j =
∑

i ji. From the definitions we

see that when m = 0, if we set all qi in Eq. (16) to q, so that q = (q, q, . . . , q),

N(n;q;0) = Q(n; q; 0). This can be confirmed by comparing Eqs. (16) and

(17) with Eq. (23). For m > 0, this will no longer be true.
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Table 1 Average, the second moment, and variance of the distribution in Figure 1.

m E(X) E(X2) σ2

0 10.997 126.502 5.562

1 9.072 84.309 2.006

2 8.121 67.115 1.165

3 7.494 56.966 0.809

Corollary 5 The number of ways to have the length of the (m+1)-th longest

run as q for the whole system is given by

W (n; q;m) = Q(n; q;m)−Q(n; q − 1;m).

As we can see, Eq. (22) is very similar in form to Eq. (28) of (Kong 2006),

which calculates the number of configurations with the total number of runs

as r:

T (r;n) = (−1)r
∑

pi

(−1)p
(

n− p

r − p

)[

p

pi

]

∏

i

(

ni − 1

pi − 1

)

.

By the definition of Q(n; q;m), Q(n; 0;m) means the number of arrangements

to have at most m runs with lengths greater than 0, i.e., with at most m runs.

The relation between Q(n; 0;m) and T (r;n) is obvious:

Q(n; 0;m) =

m
∑

r=0

T (r;n),

which can be checked explicitly.

In Figure 1 the probability mass distribution ofW (n; q;m) for n = (n1, n2) =

(200, 300) (divided by
(

n1+n2

n1

)

) is plotted for m = 0 to 3. In Table 1, the aver-

age, the second moment, and the variance of the same system are listed. The

distributions become narrower when m increases.
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Fig. 1 Probability mass distribution of the m-th longest runs of the whole system, for

n = (n1, n2) = (200, 300), m = 0 to 3. The probability is calculated by W (n; q;m) in

Corollary 5, divided by
(

n1+n2

n1

)

.
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