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Abstract

We consider the problem of efficiently solving a system of n non-linear equations in Rd.
Addressing Smale’s 17th problem stated in 1998, we consider a setting whereby the n equations
are random homogeneous polynomials of arbitrary degrees. In the complex case and for n = d−1,
Beltrán and Pardo proved the existence of an efficient randomized algorithm and Lairez recently
showed it can be de-randomized to produce a deterministic efficient algorithm. Here we consider
the real setting, to which previously developed methods do not apply. We describe an algorithm
that efficiently finds solutions (with high probability) for n = d − O(

√
d log d). If the maximal

degree is very large, we also give an algorithm that works up to n = d− 1.
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1 Introduction and main result

In 1998 Steve Smale published a list of ‘Mathematical problems for the next century’ [Sma98].
Quoting from the original, his 17th problem asked:

“Can a zero of n complex polynomial equations in n unknowns be found approximately,
on the average, in polynomial time with a uniform algorithm?”

The precise setting of the problem, originally introduced in the so-called Bézout series [SS93a, SS93b,
SS93c, SS96, SS94] of Shub and Smale, is as follows. First, the assumption that the polynomials are
homogeneous is made. In this case, for the set of solutions to be discrete, if the number of equations
is n, the number of variables needs to be d = n + 1, and one either has to restrict to solutions in
the projective space as in the Bézout series, or equivalently to solutions on the unit sphere as we
shall in the current work. Second, the question is a probabilistic one. Namely, it concerns a random
polynomial system F (x) := (F1(x), . . . , Fn(x)) consisting of independent polynomials

Fi(x) :=
∑

k1+···+kd=pi

( pi!

k1! · · · kd!
) 1

2
a
(i)
k1,...,kd

xk11 · · · xkdd , (1)

where x = (x1, . . . , xd) ∈ Cd, a(i)k1,...,kd
are i.i.d. complex standard Gaussian variables and p1, . . . , pn

is some sequence of degrees. By classical results of Abel and Galois, polynomials generically do
not have closed-form solutions. The 17th problem therefore asks for an algorithm that finds an
‘approximate solution’. The latter is defined as a point on the unit sphere such that (projected)
Newton’s method started from it converges immediately and quadratically fast to a solution, see
Section 1.1. The model of computation allows storing real numbers and complexity is measured by
the number of read/writes and elementary operations with real numbers (formally, a Blum-Shub-
Smale machine [BSS89]). To avoid technicalities we will also assume that the square root of a
positive real number can be computed in a single time unit. The algorithm receives as input the
coefficients of the system F and is required to have a polynomial time complexity on average in
N :=

∑n
i=1

(d+pi−1
pi

)
, the total number of coefficients. Roughly speaking, a uniform algorithm is an

algorithm that can be implemented as a single program, whereas for non-uniform algorithms the
implementation may depend on the input (in our setting, on d, n and p1, . . . , pn). For the precise
definition, see [BCSS98] and [BP09, Section 1.3].

In its original form, Smale’s 17th problem was recently solved after several major breakthroughs
[BP09, BP08, BS09, BC11, Lai17] (see more below in Section 1.5). We, however, will be interested
in the real version of it. Indeed, after stating the problem in [Sma98], Smale also mentioned
that the same problem is very interesting, and even more difficult, in the real case. Namely,
when the coefficients a

(i)
k1,...,kd

are assumed to be real Gaussian variables instead of complex and
one searches for solutions on the unit sphere in Rd instead of Cd. We note that in the real case
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the specific choice of the combinatorial factor above makes Fi(x) rotationally invariant in law.

Namely, Fi(x)
L
= Fi(Ox) as processes for any orthogonal matrix O, where L

= denotes equality in
law. Henceforth, we shall assume this setting. Moreover, we will consider an under-determined
variant of Smale’s 17th problem in the real case, by allowing the number of equations n to be
strictly smaller than d− 1. We still keep the notation n for the number of equations and d for the
number of variables. Our main results are polynomial time algorithms to find approximate solutions,
which we now state in two separate regimes. We denote by pmax = maxi≤n pi the maximal degree,

by a :=
(( pi!

k1!···kd!
) 1

2a
(i)
k1,...,kd

)
i≤n, k1+···+kd=pi

the set of real Gaussian coefficients, and by Sd−1 ⊂ Rd

the unit sphere. From now on, we shall always assume that pi ≥ 2 for all i, since for pi = 1 the
zero set of Fi(x) is the orthogonal space to (a

(i)
1 , . . . , a

(i)
d ) and, thanks to rotational invariance, via

a pre-processing stage by a change of basis we may remove Fi(x) from the system and reduce the
dimension by one.

Theorem 1 (Moderate pmax). Assume that pmax ≤ d2. For some absolute constants A,C,C0, if
n = ⌊d−A(d log d)1/2⌋ then there exists an algorithm which takes as inputs the random coefficients
a and returns as output xalg ∈ Sd−1 such that the following holds:

(i) The real complexity χ of the algorithm is bounded by

χ ≤ C0Nd9/2p4max(1 + pmax/d) log(pmax)
2 . (2)

(ii) The output xalg is an approximate solution with probability at least 1− Ce−d/C .

Theorem 2 (Large pmax). Assume that pmax > d2. For some absolute constants C,C0, if n = d−1
then there exists an algorithm which takes as inputs the random coefficients a and returns as output
xalg ∈ Sd−1 such that the following holds:

(i) The real complexity χ of the algorithm is bounded by

χ ≤ Ndpmax ·
(
C0d

5p2max log(pmax)
)d ≤ N3p3max(d!)

2
(
C0d

5 log(pmax)
)d

. (3)

(ii) The output xalg is an approximate solution with probability at least 1− Cd−
1
2 .

The two algorithms will be described in Sections 1.3 and 1.4 below. They output an approximate
solution on an event of high probability which we describe in Section 5. While in the complex case
Smale’s problem seem to ask for an algorithm whose complexity is bounded on average but always
finds an approximate solution, in the real case this is not possible. Indeed, if pi is even, with positive
probability F i(x) > 0 for all x 6= 0. In fact, only very recently it was shown [Sub23] that a solution
exists with high probability as d → ∞ (previously, this was known only in the i.i.d. case pi ≡ p
[Wsc05]). We emphasize that our algorithms are not randomized, in the sense that they do not use
a source of randomness (other than the coefficients as input).

The main discrepancy between our results and Smale’s problem over the reals is, of course, that
Theorem 1 about the moderate case does not work up to n = d−1, but only for n = d−O(

√
d log d).

To the best of our knowledge, however, the real case of Smale’s problem is completely open and this
is a significant progress. It also seems to be more difficult than the complex case which was solved
only recently after intensive research going back at least to the works of Shub and Smale from the
early 90s (see Section 1.5).
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1.1 Approximate solutions

Since we work on the unit sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}, we define Newton’s method by taking
a step in an orthogonal direction and projecting back to the sphere. This definition is basically a
variant of Newton’s Method in the projective space, defined by Shub [Shu93] for polynomial systems
of n = d− 1 equations in d complex variables. Here we also allow for n < d− 1.

Given a matrix A ∈ Rn2×n1 or a linear operator A : V1 → V2, with dim(Vi) = ni (we will
often identify the two objects), for n1 ≤ n2 we denote by σmin(A) := min{‖Ax‖ : ‖x‖ = 1} the
minimum singular value of A. For n1 > n2, σmin(A) := σmin(A

T).
We denote by DF (x) := (∂jFi(x))ij ∈ Rn×d the differential or Jacobian matrix and by Tx ⊂ Rd

the orthogonal space to x. Given a point x ∈ Sd−1 we define Newton’s operator as follows. The
matrix DF (x) defines a linear operator and its restriction to a subspace is defined as an operator
in the obvious way. If σmin(DF (x)

∣∣
Tx

) > 0, let v ∈ Rd be the unique solution to

F (x) +DF (x)v = 0 subject to v ⊥ x, v ⊥ ker(DF (x)) , (4)

where ker(A) := {y : Ay = 0}, and define

ΦNM(x) :=
x+ v

‖x+ v‖2
. (5)

Otherwise, if σmin(DF (x)
∣∣
Tx

) = 0, arbitrarily define

ΦNM(x) := x .

Definition 1.1 (Approximate solution). Let x ∈ Sd−1 and define the sequence x0 = x, xi+1 =
ΦNM(xi) by Newton’s method. We say that x is an approximate solution of the system F if there
exists z ∈ Sd−1 such that F (z) = 0 and ‖xi − z‖2 ≤ 21−2i‖x0 − z‖2 for all i ≥ 0.

1.2 Optimization

We define the “energy function”

H(x) :=
1

2
‖F (x)‖2 . (6)

Of course, F (x) = 0 if and only if H(x) = 0. In other words, the solutions of the polynomial
system are exactly the minimizers of the energy function. This simple observation allows us to
change perspective and try to algorithmically minimize a real-valued function over the sphere Sd−1,
instead of working with a vector-valued function.

Problems not very different from this have been studied recently in the context of spin glass
models. In the terminology of spin glass theory, Fi(x) as in (1) is the energy function of the
spherical p-spin model (with pi = p), up to normalization. For the spin glass model, it is customary
to consider Fi(x) as a function on the sphere of radius

√
d and multiply it by d−(p−1)/2. More

generally, for mixed p-spin the energy is defined as a linear combinations of the pure p-spin energies
with deterministic coefficients. Given a model, those coefficients are fixed and one is interested in
the d → ∞ asymptotics.

In [Sub18] an algorithm for minimizing the energy of a spherical mixed p-spin model by Hessian
descent was proposed and analyzed. The algorithm constructs a discrete path x0, . . . ,xk from the
origin to the sphere with ‖xi‖ =

√
i · d/k, whose increments at each step xi+1−xi are orthogonal to

the position xi, and are approximately in the span of the eigenvectors corresponding to the minimal
eigenvalues of the Hessian of the energy. Related Approximate Message Passing algorithms for Ising
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models, which use the same energy functions but on the hyper-cube {+1,−1}d, were proposed and
studied in [Mon19, EAMS21]. Both types of algorithms [Sub18, Mon19, EAMS21] were proved to
be optimal within a certain large class of appropriately defined Lipschitz algorithms in [HS21].

In light of the close connections to the spherical spin glass models, it is natural to wonder
whether the Hessian descent algorithm of [Sub18] can be adapted to minimize H(x). In an earlier
work [MS23] we studied this question for Fi(x) that correspond to general mixed models. In other
words, the Fi(x) studied in [MS23] are given by linear combinations of the functions as in (1).
The functions Fi(x) were also allowed to have a zero order term. Namely, one of the terms in
the linear combination was given by γ0Wi where γ0 ≥ 0 and Wi ∼ N(0, 1). We assumed there
that the functions Fi(x) are i.i.d. and our goal was only to find points x∗ such that H(x∗) = o(n)
asymptotically, while the typical value is H(x) = Θ(n) for most points on the sphere. The objective
H(x∗) = o(n) is better suited for the methods developed for algorithmic optimization of spin glasses
[Sub18, Mon19, EAMS21].

In the present work, we adapt the Hessian descent algorithm to the problem of finding approx-
imate solutions.

1.3 Hessian descent: the case of moderate pmax ≤ d2

In the present paper, the functions Fi(x) are homogeneous, and therefore changing the norm ‖x‖
does not change the problem (apart from a scaling factor). As mentioned above, the earlier papers
[Sub18, MS23] construct a path in the interior of the unit ball, hence effectively changing the energy
landscape as ‖x‖ increases. This is irrelevant in the homogeneous case. Instead, we may take an
orthogonal step in Rd and project back to the unit sphere Sd−1.

Moreover, here we wish to achieve energy values much smaller than in the spin glass optimiza-
tion problems, and we therefore have to take steps which depend on the value of the energy at each
step and run the algorithm with a much larger number of steps. Below C1, c0 > 0 are absolute
constants which will be determined in Lemma 2.1 and the proof of Theorem 1. In pseudo-code, the
algorithm we use in the moderate pmax ≤ d2 setting of the Theorem 1 is given below.

Algorithm 1: Hessian descent

Input: The coefficients a :=
(( pi!

k1!···kd!
) 1

2a
(i)
k1,...,kd

)
i≤n, k1+···+kd=pi

, number of iterations k

Output: xHD ∈ Sd−1

Initialize x0 = (1, 0, . . . , 0) ∈ Sd−1 ;
for i ∈ {0, . . . , k − 1} do

Find vi ⊥ xi, ‖vi‖ = 1, s.t.: 〈∇2H(xi),v
⊗2
i 〉 ≤ 1

2
min

u⊥xi,‖u‖=1
〈∇2H(xi),u

⊗2〉 ;

δi =

(
1

30C1

1

p4max log(pmax)

√
(d− n)H(xi)

d
∧ 1

pmax

)1/2

;

si = sign (H(xi + δivi)−H(xi − δivi)) ;
yi+1 = xi − siδivi ;
xi+1 =

yi+1

‖yi+1‖
;

if H(xi+1) ≤ p−c0d
max then

return xHD = xi+1 ;
end

end

return xHD = xk

5



Above we use the convention that sign(0) = 1.

Remark 1.1. In the pseudo-code above we allowed ourselves to be imprecise, to improve readability.
Specifically, we did not explain how we ‘find’ the vector vi or when it is even possible. More
accurately, our algorithm will use a sub-routine which we define in Section 7. On an event of
overwhelmingly high probability, uniformly in xi, the sub-routine outputs a vector vi as required.

To explain the basic idea, consider a Taylor expansion of H(x) of degree 3 around xi. The
choice of the sign si in the pseudocode above guarantees that the first and third order terms in
the expansion may only decrease the energy as we move from xi to yi+1. Hence, assuming an
appropriate bound on the fourth order derivative along the path from from xi to yi+1, we may
conclude a decrease in the energy by an amount which we can explicitly bound using the condition

〈∇2H(xi),v
⊗2
i 〉 ≤ 1

2
min

u⊥xi,‖u‖=1
〈∇2H(xi),u

⊗2〉 .

Since Fi(x) are homogeneous, projecting yi+1 to xi+1 can only reduce the energy.
The algorithm of Theorem 1 runs the Hessian descent algorithm for k = Cd3/2p4max log(pmax)

2

iterations, for some absolute constant C. We will prove that the algorithm outputs an approximate
solution when a certain ‘good’ event E holds. The event E is defined in Section 5 by: (1) upper
bounds on the derivatives of H(x) of different orders and certain Lipschitz constants uniformly over
Sd−1; (2) a uniform lower bound on the smallest eigenvalue of ∇2H(x) restricted to the orthogonal
space; and (3) a lower bound on the singular value of DF (x) uniformly over the solutions of the
system F (x) = 0.

Using (3), we will show quantitatively in Section 6 that in order for x to be an approximate
solution, it is sufficient for it to be close enough to some exact solution α. In our analysis of the
Hessian descent algorithm in Theorem 4, we will prove bounds for H(xi) and ‖xi−xj‖, which holds
for any i ≥ 1 (even if we produce an infinite sequence xi by running the Hessian descent indefinitely).
These bounds imply that x∞ = limi→∞ xi is well-defined and is a solution F (x∞) = 0, and that
for k as above, for some i ≤ k, ‖xi − x∞‖ is small enough to conclude that xi is an approximate
solution.

1.4 Brute-force search: the case of large pmax > d2

The algorithm in this case is much simpler. Since the input size

N ≥
(
pmax + d− 1

d− 1

)
≥

(pmax

d

)d−1
, (7)

is extremely large, we can perform a brute-force search by sampling the space on a dense enough
net. We look for a point where the norm, or energy, is small and the minimal singular value of
the projected differential is not too small. As the minimal singular value σmin(A) of a matrix A is
equal to the minimal solution of the characteristic polynomial, we can only approximate it. What
we mean below by an approximation of σmin(DF (x)

∣∣
Tx

) will be made precise in Section 7 where we
will also define a sub-routine that computes the approximation. In the proof of Theorem 2 we will
show that, for appropriate choice of the parameters δ and η, with high probability the algorithm in
the following pseudo-code returns an approximate solution.
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Algorithm 2: Brute-force search

Data: The coefficients a :=
(( pi!

k1!···kd!
) 1

2 a
(i)
k1,...,kd

)
i≤n, k1+···+kd=pi

, parameters δ, η̄

Result: xBF ∈ Sd−1

Set δ0 =
δ

2C0d5p3max log(pmax)
, t =

δ

d4p2max

√
log(pmax)

;

for y ∈ N := {z = (z1, . . . , zd) ∈ [−1, 1]d : zi/δ0 ∈ Z} do

x = y/‖y‖;
Compute smin(x) an approximation of σmin(DF (x)

∣∣
Tx

) ;
if ‖F (x)‖ ≤ t, smin(x) ≥ η̄

d7/4
then

return xBF = x

end

end

return xBF = (1, 0, . . . , 0)

1.5 Smale’s 17th problem in the complex case

The study of Smale’s 17th problem actually started in Shub and Smale’s ‘Bézout series’ [SS93a,
SS93b, SS93c, SS96, SS94], several years before it was posed in [Sma98]. This sequence of papers
studies a homotopy continuation method, which in turn builds on numerical analysis approaches that
were studied since the seventies [Dre78, GZ79, Kel78]. The basic idea of this approach is to define
an interpolation tF + (1 − t)F̄ , t ∈ [0, 1], between the system one wishes to solve F and another
system F̄ of homogeneous polynomials of the same degrees with a root x0 which we know of. If
the system F̄ is not singular, then a.s. the number of roots in the projective space of each of the
systems F = 0 and F̄ = 0 is exactly the Bézout number

∏N−1
i=1 pi. On the unit sphere the number

of solutions is double. These roots come in pairs (x(0),x(1)), where x(0) solves F̄ (x(0)) = 0 and
x(1) solves F (x(1)) = 0. Each pair is connected by a smooth path [0, 1] ∋ t 7→ x(t) of solutions
to tF + (1 − t)F̄ = 0. Homotopy based algorithms start at time t = 0 with F̄ and x(0) and
iteratively increase the time parameter t by a small step while trying to keep track of the root by
an iteration of Newton’s method, in order to end at time t = 1 with F and an approximate root
x1. The size of the step was analyzed in terms of a condition number in the Bézout series and in
[BP11, BC11, Shu09, ABB+16]. However, major difficulties remained in how to choose the system
F̄ and root x0 to start from.

In the last paper in the Bézout series [SS94], Shub and Smale proved that there exists a good
system and a root to start from, but their argument was not constructive and no practical way
(an algorithm) to pick such a system and a root was provided. In major breakthroughs [BP08,
BP09], Beltrán and Pardo had an ingenious idea for how to choose a good system and a starting
solution at random, which led to a randomized polynomial time algorithm (on average). This
solved Smale’s problem, up to the point of using randomization as opposed to a deterministic
algorithm. Another breakthrough was made by Bürgisser and Cucker [BC11] who performed a
smoothed analysis of the algorithm of Beltrán and Pardo, leading to a deterministic algorithm of
(almost polynomial) complexity NO(log logN). Finally, Lairez [Lai17] found a remarkable way to
de-randomize the algorithm of Beltrán and Pardo by using the random input itself to generate the
initial pair. The combination of those works gave a solution to Smale’s problem in the complex
case. Important improvements to the latter algorithms were recently established in [BCL23, Lai20].
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2 Preliminaries

For any ℓ, let G(ℓ) = (G
(ℓ)
i1,...,ipℓ

)i1,...,ipℓ≤d be a tensor with i.i.d. entries G
(ℓ)
i1,...,ipℓ

∼ N(0, 1). We will

also assume that G(ℓ) are independent for different values of ℓ. We define G
(ℓ)

= (G
(ℓ)
i1,...,ipℓ

)i1,...,ipℓ≤d

the symmetrization of G(ℓ) by

G
(ℓ)
i1,...,ipℓ

:= (pℓ!)
−1

∑

π∈Spℓ

G
(ℓ)
iπ(1),...,iπ(pℓ)

. (8)

Observe that
( pℓ!

k1! · · · kd!
) 1

2
a
(ℓ)
k1,...,kd

and
∑

J (k1,...,kd)

G
(ℓ)
i1,...,ipℓ

=
∑

J (k1,...,kd)

G
(ℓ)
i1,...,ipℓ

(9)

have the same law, where J (k1, . . . , kd) is the set of indices i1, . . . , ipℓ such that xi1 · · · xipℓ =

xk11 · · · xkdd . Hence we can assume that they are defined on the same probability space such that
both sides of (9) are equal and thus

Fℓ(x) = 〈G(ℓ),x⊗pℓ〉 = 〈G(ℓ)
,x⊗pℓ〉 . (10)

We will often work with this representation for the random polynomials. As the representation in
(1) requires less variables to describe Fℓ(x), it is used to define the input in the algorithmic problem.
Yet another equivalent way to describe the polynomials is through their covariance function

E
[
Fi(x

1)Fj(x
2)
]
= δijξi

(
〈x1,x2〉

)
, where ξi(t) := tpi . (11)

Recall that we denote by DF (x) := (∂jFi(x))ij ∈ Rn×d the differential or Jacobian matrix
and by Tx ⊂ Rd the orthogonal space to x, which we identify with the tangent space to the sphere
of radius

√
q, Sd−1(

√
q) at x, when ‖x‖22 = q > 0. We often view ∇kF1(x) = (∂i1,...,ikF1(x))i1...ik≤d

as a k-th order tensor ∇kF1(x) ∈ (Rd)⊗k and ∇kF (x) = (∂i1,...,ikFℓ(x))ℓ≤n,i1...ik≤d as a (k + 1)-th
order tensor ∇kF (x) ∈ Rn ⊗ (Rd)⊗k. The operator norm of a tensor T ∈ Rn1 ⊗ · · · ⊗Rnk is

‖T ‖op := max
v1∈Sn1−1

· · · max
vk∈Snk−1

〈T ,v1 ⊗ · · · ⊗ vk〉 . (12)

Finally, we denote by Bd(r) := {x ∈ Rd : ‖x‖ ≤ r} the ball of radius r, and let Bd(r1, r2) :=
Bd(r2) \ Bd(r1).

Throughout, we will write W ∼ GOE(N) if W = W T and (Wij)i≤j≤N are independent with
Wii ∼ N(0, 2), Wij ∼ N(0, 1) for i < j. We write Z ∼ GOE(M,N) if (Zij)i≤M,j≤N are independent
with Zij ∼ N(0, 1). It is useful to recall that (under the present setting) Fℓ(x) and its derivatives
are jointly Gaussian and

E

{ ∂

∂xi1
· · · ∂

∂xik
Fℓ(x)

∂

∂yj1
· · · ∂

∂yjm
Fℓ(y)

}
=

∂

∂xi1
· · · ∂

∂xik

∂

∂yj1
· · · ∂

∂yjm
E
{
Fℓ(x)Fℓ(y)

}
. (13)

Our first preliminary result provides bounds on the norm of F (x) and its derivatives.

Lemma 2.1. Assume that n ≤ d. Then, for any kmax ≥ 2 there exist constants C∗, C1 depending
on kmax, such that, with probability at least 1− C∗ exp(−d/C∗)

max
x∈Bd(1)

‖F (x)‖2 ≤ C1

√
d log(pmax) , (14)
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max
x∈Bd(1)

‖DF (x)‖op ≤ C1pmax

√
d log(pmax) , (15)

max
x∈Bd(1)

∥∥∇kF (x)
∥∥

op
≤ C1p

k
max

√
d log pmax , ∀2 ≤ k ≤ kmax , (16)

max
x∈Bd(1)

∥∥∇kH(x)
∥∥

op
≤ C1p

k
maxd log pmax . ∀1 ≤ k ≤ kmax . (17)

In fact, it will be clear from the proof that the last two inequalities follow for 2 ≤ k ≤ K with
general K, if one allows the constants C∗, C1 to depend on K.

Proof. It will be enough to prove a bound on the probability for each of the inequalities (14)-(17)
separately, and conclude the lemma by a union bound.

Proof of Eq. (14). Consider the following Gaussian process indexed by u ∈ Sn−1, x ∈ Sd−1:

Z0(u,x) := 〈u,F (x)〉 , (18)

and notice that, using homogeneity,

max
x∈Bd(1)

‖F (x)‖2 = max
u∈Sn−1,x∈Sd−1

Z0(u,x) . (19)

With e1 = (1, 0, . . . , 0) denoting the standard basis element, define the spherical cap Capd(π/4) :=
{x ∈ Sd−1 : 〈x,e1〉 ≥ 1/

√
2} and note that for any x1,x2 ∈ Capd(π/4), 〈x1,x2〉 ≥ 0. We claim

that to prove (14), it is enough to prove that for some absolute C1, C2, C3 > 0,

P

(
M0 := max

u∈Sn−1,x∈Capd(π/4)
Z0(u,x) > C1pmax

√
d log(pmax)

)
< C2 exp(−C3d/C∗) . (20)

Indeed, by the Borell-TIS inequality, by increasing C1 we can make sure that the same bound
holds with C3 is as large as we wish. Thus, noting that Sd−1 can be covered by eC

′d rotations of
Capd(π/4) for some absolute constant C ′ > 0, by rotational invariance and a union bound we obtain
the required bound with x maximized over Sd−1 instead of Capd(π/4).

In order to prove Eq. (20), we compute the canonical distance of this process to get (using
ξi(1) = 1)

d0(u1,x1;u2,x2)
2 := E

{(
〈u1,F (x1)〉 − 〈u2,F (x2)〉

)2}

=

n∑

i=1

{
u21,i − 2u1,iu2,i ξi(〈x1,x2〉) + u22,i

}

=
1

2

n∑

i=1

(u21,i + u22,i)
(
2− 2ξi(〈x1,x2〉)

)
+

n∑

i=1

(u1,i − u2,i)
2ξi(〈x1,x2〉)

≤ max
i≤n

(
2− 2ξi(〈x1,x2〉)

)
+ ‖u1 − u2‖22

≤ ξmin(‖x1‖2)− 2ξmin(〈x1,x2〉) + ξmin(‖x2‖2) + ‖u1 − u2‖22 ,

where ξmin(q) := mini≤n ξi(q) = qpmax and we assume that x1,x2 ∈ Capd(π/4) so that 〈x1,x2〉 ≥ 0.
We recognize that the right-hand side is the canonical distance of the process Z(u,x) := 〈g,u〉 +
Fmax(x), where g ∼ N(0, In) and Fmax is the centered Gaussian process with covariance 〈x1,x2〉pmax .

Using [MS23, Proposition A1], we get

E max
u∈Sn−1x∈Sd−1

Z(u,x) ≤ E‖g‖+ E max
x∈Sd−1

Fmax(x) ≤ C
√
n+ C

√
d log pmax . (21)
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Hence, for M0 as in (20), using the Sudakov-Fernique inequality we get, for n ≤ d,

EM0 ≤ C
√

d log pmax . (22)

On the other hand, Z0(u,x) is a Lipschitz function of G, hence so is M0, whence, by Gaussian
concentration

P
(
M0 ≥ EM0 + t

)
≤ e−t2/2 . (23)

Equation (20), and thus (14), follow from the last two displays.

Proof of Eq. (15). We have

max
x∈Bd(1)

‖DF (x)‖op

(a)

≤ max
x∈Bd(1)

max
v∈Sd−1:〈v,x〉=0

‖DF (x)v‖+ max
x∈Bd(1)\0

‖DF (x)x‖
‖x‖

(b)

≤ max
x,v∈Sd−1:〈v,x〉=0

‖DF (x)v‖+ max
x∈Sd−1

‖DF (x)x‖

(c)

≤ max
(u,x,v)∈An,d

Z1(u,x,v) + max
x∈Sd−1

‖DF (x)x‖ , (24)

where (a) follows by triangle inequality, (b) by homogeneity, and in (c) we defined:

An,d :=
{
(u,x,v) ∈ S

n−1 × (Sd−1)2 : 〈v,x〉 = 0
}
, (25)

Z1(u,x,v) := 〈u,DF (x)v〉 . (26)

The second term in the upper bound (24) is easily treated since
(
DF (x)x

)
i
= pi〈G(i),x⊗pi〉 = pi Fi(x) ,

and therefore

E
∥∥DF (x)x

∥∥ ≤ pmaxE‖F (x)‖ ≤ Cpmax

√
d log(pmax) . (27)

It is therefore sufficient to bound the first term in Eq. (24).
We next compute the canonical distance associated to the process Z1. For (us,xs,vs) ∈ An,d,

s ∈ {1, 2}, we get

d1(u1,v1,x1;u2,v2,x2)
2 = ∆1(u1,v1,x1;u2,v2,x2) + ∆2(u1,v1,x1;u2,v2,x2) , (28)

∆1(u1,v1,x1;u2,v2,x2) := −2〈x1,v2〉〈x2,v1〉
n∑

i=1

u1,iu2,iξ
′′
i (〈x1,x2〉) ,

∆2(u1,v1,x1;u2,v2,x2) :=
n∑

i=1

u21,iξ
′
i(1) +

n∑

i=1

u22,iξ
′
i(1)− 2〈v1,v2〉

n∑

i=1

u1,iu2,iξ
′
i(〈x1,x1〉) . (29)

Denoting by P⊥
s the projector orthogonal to xs, we have

∆1(u1,v1,x1;u2,v2,x2) ≤ 2 max
i≤n

ξ′′i (1)‖P⊥
1 x2‖ ‖P⊥

2 x1‖

= 2pmax(pmax − 1)
(
1− 〈x1,x2〉2

)

≤ 2p2max‖x1 − x2‖2 .
(30)
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On the other hand,

∆2(u1,v1,x1;u2,v2,x2) ≤
n∑

i=1

u21,iξ
′
i(1) +

n∑

i=1

u22,iξ
′
i(1) − 2

n∑

i=1

u1,iu2,iξ
′
i(〈x1,x1〉) + pmax‖v1 − v2‖2 .

Putting the above bounds together and using Sudakov-Fernique inequality, we see that

E max
(u,x,v)∈An,d

Z1(u,x,v) ≤ E max
(u,x,v)∈An,d

{√
2pmax〈g,x〉+

√
pmax〈h,v〉+ 〈u, F̂ (x)〉

}
, (31)

where g, h are mutually independent standard normal vectors, independent of F̂ , a centered Gaus-
sian process (taking values in Rn) with covariance E{F̂i(x1)F̂j(x2)} = δijξ

′
i(〈x1,x2〉). By the same

argument used for F , we have Emaxx∈Sd−1 ‖F̂ (x)‖ ≤ Cpmax
√
d log pmax. We then have

E max
(u,x,v)∈An,d

Z1(u,x,v) ≤ Cpmax

√
d+ E max

x∈Sd−1
‖F̂ (x)‖ ≤ Cpmax

√
d log pmax .

Using this bound together with (27), we thus obtain

E‖DF (x)‖op ≤ Cpmax

√
d log pmax . (32)

The tail probability is controlled by Gaussian concentration as in the case of maxx∈Sd−1 ‖F (x)‖
treated above.

Proof of Eq. (16). To generalize the argument at the previous point, we define the process

Zk(u,x,v) :=

n∑

i=1

ui〈∇kFi(x),v
⊗k〉 . (33)

The quantity we want to upper bound is

max
x∈Bd(1)

∥∥∇kF (x)
∥∥

op
= max

x∈Bd(1)
max

u∈Sn−1
max

v∈Sd−1
Zk(u,x,v) . (34)

Note that we can always decompose v = ax+ v⊥ where 〈v⊥,x〉 = 0, and therefore1

Zk(u,x,v) :=

k∑

j=0

(
k

j

)
ak−j

n∑

i=1

ui〈∇kFi(x){xk−j},v⊗j
⊥ 〉 . (35)

By homogeneity, ∇kFi(x){xk−j} = (pi − j) · · · (pi − k + 1)∇jFi(x), and therefore all terms except
the one with j = k can be controlled by bounds on lower order derivatives k. We therefore need to
bound Emax(u,x,v)∈An,d

Zk(u,x,v), i.e. to consider the case 〈v,x〉 = 0.
Define the covaraince function

Ck(u1,v1,x1;u2,v2,x2) := E
{
Zk(u1,x1,v1)Zk(u2,x2,v2)

}
=

n∑

i=1

u1,iu2,i∂
k
v1
∂k
v2
ξi(〈x1,x2〉)

=
∑

j1,j2

âj1,j2,k

n∑

i=1

u1,iu2,iξ
(j1+j2)
i (〈x1,x2〉)〈v1,x2〉j1+j2−k〈v2,x1〉j1+j2−k〈v1,v2〉2k−j1−j2

1Given symmetric tensors A ∈ (Rn)⊗k, B ∈ (Rn)⊗(k−j), we denote by T = A{B} the tensor with components

Ti1...ij =
∑

ij+1...ik
Ai1...ikBij+1...ik .
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=
∑

j

aj,k

n∑

i=1

u1,iu2,iξ
(j)
i (〈x1,x2〉)〈v1,x2〉j−k〈v2,x1〉j−k〈v1,v2〉2k−j ,

where ∂vi denotes the directional derivative corresponding to vi w.r.t. the coordinates of xi, âj1,j2,k
and aj,k are combinatorial factors and the summation is over j or j1, j2 such that all the exponents
above are non-negative. Define Ĉk(u1,v1,x1;u2,v2,x2) by the same expression as above with
summation only over j 6= k and note that, for (u,x,v) ∈ An,d, we have that

Ĉk(u,v,x;u,v,x) = 0,

Ck(u,v,x;u,v,x) = ak,k

n∑

i=1

u2i ξ
(k)
i (1) .

Thus, for (ui,xi,vi) ∈ An,d, the squared canonical distance of Zk(u,x,v) is given by

dk(u1,v1,x1;u2,v2,x2)
2

= Ck(u1,v1,x1;u1,v1,x1)− 2Ck(u1,v1,x1;u2,v2,x2) +Ck(u2,v2,x2;u2,v2,x2)

= Ĉk(u1,v1,x1;u1,v1,x1)− 2Ĉk(u1,v1,x1;u2,v2,x2) + Ĉk(u2,v2,x2;u2,v2,x2) (36)

+ ak,k

( n∑

i=1

u21,iξ
(k)
i (1) +

n∑

i=1

u22,iξ
(k)
i (1) − 2

n∑

i=1

u1,iu2,iξ
(k)
i (〈x1,x2〉)〈v1,v2〉k

)
. (37)

The expression in (36) is bounded by

Ak max
i≤n,j≤k

ξ
(2j)
i (1)|〈v1,x2〉〈v2,x1〉| ≤ Akp

2k
max‖x1 − x2‖2 ,

where Ak is a combinatorial factor and we used the same bound as in (30). On the other hand,
assuming that 〈v1,v2〉 ≥ 0, the expression in (37) is bounded by

ak,k

( n∑

i=1

u21,iξ
(k)
i (1) +

n∑

i=1

u22,iξ
(k)
i (1)− 2

n∑

i=1

u1,iu2,iξ
(k)
i (〈x1,x2〉)

)
+ kpkmax‖v1 − v2‖2 .

Hence, by the Sudakov-Fernique inequality

E max
(u,x,v)∈An,d :v∈Capd(π/4)

Zk(u,x,v) ≤ E max
(u,x,v)∈An,d

{√
Akp

k
max〈g,x〉+

√
kpkmax〈h,v〉+ 〈u, F̂ (x)〉

}
,

where g, h are mutually independent standard normal vectors, independent of F̂ , a centered Gaus-
sian process (taking values in Rn) with covariance E{F̂i(x1)F̂j(x2)} = δijξ

(k)
i (〈x1,x2〉). The proof

of Eq. (16) thus follows by a similar argument to that following (31) and the argument used in the
proof of Eq. (14) to move from Capd(π/4) to the whole sphere.

Proof of Eq. (17). We use
∥∥∇kH(x)

∥∥
op

≤ 2k max
0≤i≤k

∥∥∇iF (x)
∥∥

op

∥∥∇k−iF (x)
∥∥

op
,

and therefore this claim follows from the previous ones.

For any x ∈ Rd \ {0}, we let Ux ∈ Rd×(d−1) be an arbitray matrix whose columns form a basis
of Tx. For x1,x2 ∈ Rd \ {0}, define Ux1,x2 := Rx1,x2Ux1 , where Rx1,x2 is the rotation that keeps
unchanged the space orthogonal to x1, x2, and maps x1/‖x1‖2 to x2/‖x2‖2. We will need the
following geometric fact.
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Lemma 2.2. For any non-zero x1,x2 ∈ Bd(1), we have

∥∥Ux1,x2 −Ux1‖op ≤ ‖x1 − x2‖2
‖x1‖2 ∧ ‖x2‖2

. (38)

Proof. Note that ‖(Rx1,x2 − I)v‖2 is constant for any unit vector v ∈ span(x1,x2), and vanishes if
v ⊥ span(x1,x2). By using v = v1 := x1/‖x1‖2, we then have

∥∥Ux1,x2 −Ux1‖op ≤ ‖Rx1,x2 − I‖op

= ‖(Rx1,x2 − I)v1‖2
=

∥∥∥ x1

‖x1‖
− x2

‖x2‖
∥∥∥
2

≤ ‖x1 − x2‖2
‖x1‖2 ∧ ‖x2‖2

.

Definition 2.3. For Ω ⊆ Rd, we define the following Lipschitz constants:

Lip(F ; Ω) := sup
x1 6=x2∈Ω

‖F (x1)− F (x2)‖
‖x1 − x2‖2

, (39)

Lip(DF ; Ω) := sup
x1 6=x2∈Ω

‖DF (x1)−DF (x2)‖op

‖x1 − x2‖2
, (40)

Lip(∇2F ; Ω) := sup
x1 6=x2∈Ω

max
ℓ≤n

‖∇2Fℓ(x1)−∇2Fℓ(x2)‖op

‖x1 − x2‖2
. (41)

We also define the following Lipschitz constants for projections onto the tangent space:

Lip⊥(DF ; Ω) := sup
x1 6=x2∈Ω

‖DF (x1)Ux1 −DF (x2)Ux1,x2‖op

‖x1 − x2‖2
, (42)

Lip⊥(∇2F ; Ω) := sup
x1 6=x2∈Ω

max
ℓ≤n

‖UT
x1
∇2Fℓ(x1)Ux1 −UT

x1,x2
∇2Fℓ(x2)Ux1,x2‖op

‖x1 − x2‖2
. (43)

The next lemma is an immediate consequence of Lemma 2.1 and Lemma 2.2.

Lemma 2.4. Assume that n ≤ d. Then there exist absolute constants C0, C∗ such that the following
hold with probability at least 1− C∗ exp(−d/C∗):

Lip(F ;Bd(1)) ≤ C0pmax

√
d log(pmax) , (44)

Lip(DF ;Bd(1)) ≤ C0p
2
max

√
d log(pmax) , Lip⊥(DF ;Bd(ρ, 1)) ≤ C0

ρ
p2max

√
d log(pmax) , (45)

Lip(∇2F ;Bd(1)) ≤ C0p
3
max

√
d log(pmax) , Lip⊥(∇2F ;Bd(ρ, 1)) ≤ C0

ρ
p3max

√
d log(pmax) . (46)

Proof. The bounds on Lip(F ;Bd(1)), Lip(DF ;Bd(1)), Lip(∇2F ;Bd(1)) follow immediately from
Lemma 2.1. The bounds on Lip⊥(DF ;Bd(1)), Lip⊥(∇2F ;Bd(1)) are proved similarly and we limit
ourselves to the last one. Writing U1 := Ux1 , U2 := Ux1,x2 , and assuming without loss of generality
‖x1‖2 ≤ ‖x2‖2,

max
ℓ≤n

‖UT
1∇2Fℓ(x1)U1 −UT

2∇2Fℓ(x2)U 2‖op
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≤ max
ℓ≤n

∥∥∇2Fℓ(x1)−∇2Fℓ(x2)
∥∥

op
+ 3max

ℓ≤n
‖∇2Fℓ(x1)‖op

∥∥U1 −U2

∥∥
op

≤ max
ℓ≤n

∥∥∇2Fℓ(x1)−∇2Fℓ(x2)
∥∥

op
+ 3Cmax

ℓ≤n

‖∇2Fℓ(x1)‖op

‖x1‖2
‖x1 − x2‖2

≤ C0p
3
max

√
d log(pmax)‖x1 − x2‖2 +

C0

ρ
p2max

√
d log(pmax)‖x1 − x2‖2 .

3 Bounds on the Hessian

In this section we derive the main lower bound on the eigenvalues of the Hessian, which will be used
in the analysis of the Hessian descent algorithm.

Denote by H(x) := ∇2H(x)|Tx
the restriction of the Hessian on the tangent space. In a matrix

representation, this is given by

H(x) =

n∑

ℓ=1

Fℓ(x)U
T
x∇2Fℓ(x)Ux +UT

xDF (x)TDF (x)Ux (47)

=: H1(x) +H2(x) . (48)

We omit the calculation for the next lemma, which is similar e.g. to [ABAČ13, MS23, Sub17,
Sub23]. Recall that ξi(t) := tpi .

Lemma 3.1. Define for k ∈ N, q ∈ [0, 1] define Sk(q) := diag
(√

ξ
(k)
i (q) : i ≤ n

)
, where ξ

(k)
i is

the k-th derivative of ξi. For a fixed x ∈ Rd with ‖x‖22 = q, we have F (x) = S0(q)g, DF (x)Ux =
S1(q)Z, UT

x∇2Fℓ(x)Ux =
√

ξ′′ℓ (q)W ℓ. Where g, (W ℓ)ℓ≤n,Z are mutually independent with

g ∼ N(0, In) , W ℓ ∼ GOE(d− 1) , Z ∼ GOE(n, d− 1) . (49)

As a consequence

H(x) = ‖S0(q)S2(q)g‖2W +ZTS1(q)
2Z , (50)

H(x) =
1

2
‖S0(q)g‖22 , (51)

where

(g,W ,Z) ∼ N(0, In)⊗ GOE(d− 1)⊗ GOE(n, d− 1) . (52)

We denote by λi(M ) the i-th smallest eigenvalue of a symmetric matrix M .

Theorem 3. For t ∈ (0, 1), define ξ′min(t) := mini≤n ξ
′
i(t) and ξ′′min(t) := mini≤n ξ

′′
i (t). Then for

any s ∈ N, there exist constants C∗, C#, and d0 = d0(s) such that the following holds. Define
A#, B# via

A# = C#


1 ∨

√
log pmax

log d
∨
√

− log[ξ′min(ρ
2) ∧ ρ]

log d


 , (53)

B# = C#

(√
log pmax ∨

√
− log(ξ′′min(ρ

2)ρ2 ∧ 1) ∨
√
log d

)
. (54)
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If n ≤ d− 4A# (d log d)1/2, n ≤ d−B# d1/2, then the following holds for all d ≥ d0(s):

P

(
∀x ∈ Bd(ρ, 1) λs(H(x)) ≤ − 1

10

√
(d− n)ξ′′min(ρ

2)H(x)
)
≥ 1− C∗e

−d/C∗ . (55)

Proof. For α ∈ Rn, define the symmetric form M (x;α) on Tx by

M(x;α) =

n∑

ℓ=1

αℓ∇2Fℓ(x)
∣∣∣
Tx

. (56)

Let v1(x), . . . ,vd−1(x) be right singular vectors of DF (x)|Tx
corresponding to singular values

σ1(DF (x)|Tx
) ≥ σ2(DF (x)|Tx

) ≥ · · · ≥ σd−1(DF (x)|Tx
) (whereby we include zero singular val-

ues). For m ∈ {1, . . . , n+ 1}, define

Vm(x) := span
(
vn−m+2(x), . . . ,vd−1(x)

)
. (57)

Let null(DF (x)|Tx
) ⊆ Tx denote the null space of DF (x)|Tx

(in the basis Ux, this is equivalent
to the null space of DF (x)Ux). Since dim(null(DF (x)|Tx

)) ≥ d− 1− n, we have

V1(x) ⊆ null(DF (x)|Tx
) , (58)

V1(x) ⊆ V2(x) ⊆ · · · ⊆ Vn+1(x) . (59)

(with V1(x) = null(DF (x)|Tx
) if DF (x)|Tx

has full row rank.) We will define dm := dim(Vm(x)) =
d− n+m− 2 and, for each m,

Lk,m(x;α) := λk

(
M(x;α)|Vm(x)

)
. (60)

where λℓ(A) denotes the ℓ-th smallest eigenvalue of matrix A.
Defining α∗(x) := F (x)/‖F (x)‖2, we then have

λs(H(x)) ≤ λs(H1(x)|null(DF (x)Ux)) (61)

= ‖F (x)‖2 · λs(M(x;α∗(x))|null(DF (x)Ux)
) (62)

≤ ‖F (x)‖2 · λs(M(x;α∗(x)|V1(x)) (63)

= ‖F (x)‖2 · Ls,1(x;α∗(x)) . (64)

Further notice that, by the variational representation of eigenvalues, we have, for each k,m,

Lk,m(x;α) ≤ Lk+1,m+1(x;α) . (65)

To see this, writing for simplicity M = M(s;α) and Vm = Vm(x), note that

λk+1(M |Vm+1) = max
U⊆Vm+1

dim(U)=dm+1−k

λ1(M |U )

≥ max
U⊆Vm

dim(U)=dm−(k−1)

λ1(M |U )

= λk(M |Vm) ,

where the inequality holds, since Vm ⊆ Vm+1 and dm+1 − k = dm − (k − 1).
We then have

Pgood := P

(
∀x ∈ Bd(ρ, 1) λs(H(x)) ≤ − 1

10

√
(d− n)ξ′′min(ρ

2)H(x)
)
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≥ P

(
max

x∈Bd(ρ,1)
max

α∈Sn−1
Ls,1(x;α) ≤ − 1

10

√
ξ′′min(ρ

2)(d − n)
)
. (66)

Now note that, for fixed α,x, with ‖α‖2 = 1, we have

(
M(x;α),DF (x)|Tx

) d
=

(
ν(α; ‖x‖22) ·W , S1(‖x‖22) ·G

)
, (67)

ν(α; q) =
( n∑

i=1

α2
i ξ

′′
i (q)

)1/2
, (68)

where W ∼ GOE(d − 1), G ∼ GOE(n, d − 1) are independent random matrices (cf. Lemma 3.1).
Hence M(x;α)|Vm(x) ∼ ν(α; q)GOE(dm), q = ‖x‖22. Since ‖α‖2 = 1, we have ν(α; q) ≥

√
ξ′′min(q).

Therefore, by Lemma B.1, there exists an absolute constant C2 > 0 such that, for any k ≤ 3(d−n)/8,

P

(
Lk,m(x;α) ≥ −1

5

√
ξ′′min(‖x‖22)(d− n)

)
≤ e−C2(d−n)2 . (69)

Define the following events, depending on absolute constants C0, C1 > 0, which will be chosen
below

E1(C0) :=
{∣∣Ls,1(x;α1)− Ls,1(x;α2)

∣∣ ≤ C0dp
3
max‖α1 −α2‖2 ∀x ∈ Bd(1)∀α1,α2 ∈ S

n−1
}
,

(70)

E2,m(C1, ρ) :=
{
Ls,1(x1;α) ≤ Lm+s−1,m(x0;α) +

C1d
2p5max

ξ′min(ρ
2)1/2ρ

‖x0 − x1‖2 ∀x0,x1 ∈ Bd(ρ, 1)∀α ∈ S
n−1

}
,

(71)

where we recall that ξ′min(t) := mini≤n ξ
′
i(t). Further, define

E2(C1, ρ) := E2,m=⌊(d−n)/4⌋(C1, ρ). (72)

Let Nd(η) be an η-net in Bd(ρ, 1) × Sn−1. Denoting by (xη,αη) the projection of (x,α) ∈
Bd(ρ, 1) × Sn−1 onto Nd(η), we have that, on E1(C0) ∩ E2(C1, ρ),

Ls,1(x;α) ≤ Lm+s−1,m(xη;αη) +
(C0 + C1)d

2p5maxη

1 ∧ [ρξ′min(ρ
2)1/2]

. (73)

Taking

η =
1

10(C0 +C1)d2p5max

ξ′′min(ρ
2)1/2{[ρξ′min(ρ

2)1/2] ∧ 1} , (74)

this implies Ls,1(x;α) ≤ Lm+s−1,m(xη;αη) + ξ′′min(ρ
2)1/2/10. Then continuing from Eq. (66), with

m = ⌊(d− n)/4⌋ we obtain, for C,C2 absolute constants and s ≤ (d− n)/8,

Pgood ≥ 1− |Nd(η)| max
(x,α)∈Nd(η)

P
(
Lm+s−1,m(x;α) ≥ −1

5

√
ξ′′min(ρ

2)(d− n)
)
− P(Ec

1(C0))− P(Ec
2(C1, ρ))

≥ 1−
(
C

η

)2d

e−C2(d−n)2 − P(Ec
1(C0))− P(Ec

2(C1, ρ))

≥ 1− e−Λd − C∗ e
−d/C∗ ,
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where the last step follows from Lemma 3.2 and Lemma 3.3 (since n ≤ d − 4A#(d log d)
1/2 holds

by assumption), and Λ = C2(d− n)2/d− 2 log(C/η) is bounded by

Λ ≥ C2
(d− n)2

d
− C ′

(
log d ∨ log pmax ∨ log

1

ξ′′min(ρ
2)ρ2

)
, (75)

for some absolute C ′, where we used the fact that pmaxξ
′
i(ρ

2) ≥ ξ′′i (ρ
2)ρ2. The requirement that

n ≤ d−B# d1/2 with sufficiently large C# guarantees that Λ > c for some absolute c > 0.

Lemma 3.2. Under the assumptions of Theorem 3, there exists an absolute constant C∗ such that,
defining E1 as per Eq. (70), we have

P(Ec
1(C∗)) ≤ C∗ e

−d/C∗ . (76)

Proof. By Weyl’s inequality,
∣∣Ls,1(x;α1)− Ls,1(x;α2)

∣∣ ≤
∥∥M(x;α1)−M(x;α2)

∥∥
op

≤ √
n‖α1 −α2‖2 ·max

ℓ≤n

∥∥∇2Fℓ(x)|Tx

∥∥
op

≤ C
√
n‖α1 −α2‖2p2max

√
d log pmax ,

where the last step holds with probability at least 1− C exp(−d/C) by Lemma 2.1.

Lemma 3.3. Under the assumptions of Theorem 3, there exist absolute constants C#, C∗ > 0 such
that the following holds. Define E2 as per Eq. (71), and let A# be defined by

A# = C#


1 ∨

√
log pmax

log d
∨
√

− log(ξ′min(ρ
2) ∧ ρ)

log d


 . (77)

If n ≤ d−A# (d log d)1/2, m = ⌊(d − n)/4⌋ then we have

P(Ec
2,m(C∗, ρ)) ≤ C∗ e

−d/C∗ . (78)

Before proving Lemma 3.3, it is useful to state and prove an auxiliary result.

Lemma 3.4. For t ∈ (0, 1), let ξ′min(t) := mini≤n ξ
′
i(t). For x ∈ Bd(1), denote by σ1(x) ≥ σ2(x) ≥

· · · ≥ σd−1(x) the singular values of DF (x)|Tx
(including the vanishing ones).

Then there exist absolute constants C∗, C#, ε0 > 0 such that the following holds, with A#

defined as per Eq. (77). For any ε ∈ (0, ε0], ρ ∈ (0, 1), m ≥ (d− n)ε and n ≤ d−A#

√
ε−1d(log d),

we have

P

(
∀x ∈ Bd(ρ, 1) : σn−m+1(x) ≥

1

C∗

√
ξ′min(‖x‖22)(

√
d−√

n)
)
≥ 1− C∗e

−d/C∗ . (79)

Proof. If ai ∈ R(d−1), i ≤ n + 1, define Qij := 〈ai,aj〉, and Qℓ := (Qij)i,j≤ℓ ∈ Rℓ×ℓ, then, by the
variational principle, for any i ≤ n

λi(Qn+1) ≤ λi(Qn) . (80)

Note that σn−m+1(x)
2 = λm−1(Qn) for Qn := DF (x)Ux(DF (x)Ux)

T. In particular, removing
one row of DF (x) cannot increase these eigenvalues. Hence, without loss of generality we can
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assume throughout the proof that n ≥ d/2. Also note that since m is an integer, we may assume
that ε(d− n) ≥ 1.

First consider a fixed point x ∈ Bd(1). Recall that, by Lemma 3.1, DF (x)Ux = S(1)(‖x‖22)Z,
with Z ∼ GOE(n, d − 1). Denoting the eigenvalues of ZZT by λ1(ZZT) ≤ λ2(ZZT) ≤ · · · ≤
λn(ZZT), we have that, for any 1 ≤ m ≤ n,

ξ′min(‖x‖2)λk(ε)(ZZT) ≤ ξ′min(‖x‖2)λm(ZZT) ≤ σn−m+1(x)
2 , (81)

where we define k(ε) = ⌊ε(d − n)⌋.
By Lemma B.2, with N = d− 1, M = n, ℓ = k(ε), there exists constants ε0 > 0, ∆∗ > 0, such

that for all ε ∈ (0, ε0),

P

(
λk(ε)(ZZT) ≤ 4∆2

∗(
√
d−√

n)2
)
≤ e−ε(d−n)2 , (82)

where we used that
√
d−√

n ≤
√
d− 1−

√
n− 1. Therefore, for n ≤ d−Ad1/2(log d)1/2, we have

P

(
λk(ε)(ZZT) ≤ 4∆2

∗(
√
d−√

n)2
)
≤ exp

(
−A2ε(d log d)

)
. (83)

Let Nd(η) be an η-net in Bd(ρ, 1). For x ∈ Bd(ρ, 1), let xη = argminy∈Nd(η) ‖x − y‖2 be its
projection onto the net. Then, using

√
d−√

n ≥ 1/(2
√
d),

P

(
∃x ∈ Bd(ρ, 1) :

∣∣σn−m+1(x)− σn−m+1(x
η)
∣∣ ≥ ∆∗

√
ξ′min(‖x‖22)(

√
d−√

n)
)

≤ P

(
Lip⊥(DF ;Bd(1)) ≥ ∆∗

2η
√
d

√
ξ′min(ρ

2)
)

≤ C∗e
−d/C∗ ,

where the last inequality holds by Lemma 2.4 for η < C d−1p−3
maxρ

√
ξ′min(ρ

2) with C a sufficiently
small constant, and C∗ > 0 an absolute constant. For any m ≥ k(ε) we therefore get, using (81)
and (83),

P

(
∃x ∈ Bd(ρ, 1) : σn−m+1(x) ≤ ∆∗

√
ξ′min(‖x‖22)(

√
d−√

n)
)

≤ P

(
∃x ∈ Nd(η) : σn−m+1(x) ≤ 2∆∗

√
ξ
(1)
min(‖x‖22)(

√
d−√

n)
)
+ C∗e

−d/C∗

≤ |Nd(η)| exp
(
−A2ε(d log d)

)
+ C∗e

−d/C∗

≤ exp
(
d log

10

η
−A2εd log d

)
+ C∗e

−d/C∗ .

We then choose η = C d−1p−3
maxρ

√
ξ′min(ρ

2) and A = A#/
√
ε, with C# a sufficiently large absolute

constant to conclude the proof.

We are now in position to prove Lemma 3.3.

Proof of Lemma 3.3. Denote by G1 and G2 the high probability events of Lemmas 2.1 and 2.4.
Further, let G3 be the high probability event of Lemma 3.4 with m = ⌊(d − n)/4⌋ and some fixed
ε < 1/4. We suppose that n ≤ d − A#

√
d(log d). Since ε is fixed, by increasing C# if needed, we

may assume that the conclusion of Lemma 3.4 holds. Namely, that G3 holds with probability at
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least 1−C∗e−d/C∗ . To complete the proof of the lemma, we will prove that the constant c2 > 0 can
be chosen so that E2(c2, ρ) ⊇ G1 ∩ G2 ∩ G3. Hence, we hereafter assume that events G1, G2, G3 hold.

In the following we will identify Tx with V ⊥(x) (the orthogonal complement of x) in the
obvious way, and therefore identify Tx1 , Tx2 when x1 = αx2 for α ∈ R \ {0}. We also recall the
rotation Rx1,x2 ∈ Rd×d defined Section 2, which maps Tx1 to Tx2 . We will use the same notation
for the restriction Rx1,x2 : Tx1 → Tx2 , which is the parallel transport on the sphere, along the
geodesic connecting the two points x1/‖x1‖ and x2/‖x2‖. Note that Rx1,x2 = R−1

x2,x1
= RT

x2,x1

Fix two points x0,x1 ∈ Bd(1), and define the following linear operators:

D0 := DF (x0)
∣∣
Tx0

, D1 := DF (x1)
∣∣
Tx1

Rx0,x1 , (84)

M0 := M(x0;α) , M1 := RT
x0,x1

M(x1;α)Rx0,x1 . (85)

We view D0,D1 as linear operators D0,D1 : Tx0 → Rn, and M0,M 1 as symmetric forms
M0,M1 : Tx0 ×Tx0 → R. We note that below restrictions Mi|V to a linear subspace V ⊂ Tx0 are
defined as V × V → R symmetric forms.

Recall definition (57), which we repeat here for the reader’s convenience

Vm(x) := span
(
vn−m+2(x), . . . ,vd−1(x)

)
⊆ Tx , (86)

where v1(x), . . . ,vd−1(x) denote the right singular vectors of DF (x)|Tx
(corresponding to the

singular values in decreasing order). In particular, letting va,1, . . . ,va,d−1 denote the right singular
vectors of Da, we introduce the shorthands

V0,m := Vm(x0) = span
(
v0,n−m+2, . . . ,v0,d−1

)
, (87)

V1,s := span
(
v1,n−s+2, . . . ,v1,d−1

)
. (88)

Note that we have V1,s = Rx1,x0Vs(x1) and therefore we obtain the following identities:

Lk,m(x0;α) = λk(M0|V0,m) , Ls,1(x1;α) = λs(M 1|V1,1) . (89)

Recall that dm := dim(V0,m) = d − n +m − 2. Let E0 ∈ Rd×dm be a matrix whose columns form
an orthonormal basis of V0,m, and E1 ∈ Rd×d1 a matrix whose columns form an orthonormal basis
of V1,1. Then we can rewrite the above formulas as

Lk,m(x0;α) = λk(E
T
0M0E0) , Ls,1(x1;α) = λs(E

T
1M 1E1) . (90)

By the variational representation of eigenvalues, for m > s, k ≥ s, we have

Lk,m(x0;α) = max
Q∈O(dm,dm−k+s)

λs

(
QTET

0M 0E0Q
)
, (91)

where the maximization is over the Stiefel manifold O(dm, dm − k+ s) ⊆ Rdm×(dm−k+s) of matrices
whose columns form an orthonormal frame.

Let E0 ∈ Rd×(d−1−dm) be such that [E0|E0] ∈ Rd×(d−1) is an orthonormal basis of Tx0 . Note
that E0E

T
0 and E0E

T

0 are the projections to the column space of E0 and E0, respectively. We
then have

ET
1M1E1 = ET

1E0E
T
0M 1E0E

T
0E1 +ET

1E0E
T

0M1E0E
T
0E1

+ET
1E0E

T
0M 1E0E

T

0E1 +ET
1E0E

T

0M1E0E
T

0E1
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� ATET
0M1E0A+ 2‖ET

1E0‖op‖M 1‖op · I + ‖ET
1E0‖2op‖M 1‖op · I

� ATET
0M1E0A+ 3‖ET

1E0‖op‖M 1‖op · I ,

where we defined A := ET
0E1 ∈ Rdm×d1 , ‖A‖op ≤ 1 and we write B1 � B2 if B2 − B1 is

non-negative definite. Continuing from the previous sequence of inequalities,

ET
1M1E1 � ATET

0M0E0A+ ‖M 0 −M1‖op · I + 3‖ET
1E0‖op‖M1‖op · I . (92)

Let A = Q∗SO
T, Q∗ ∈ O(dm, d1), O ∈ O(d1, d1), S � 0 diagonal, be the reduced singular

value decomposition of A (if rank(A) < d1, orthogonal columns are added to Q∗, O), and define
A0 := Q∗O

T. Noting that ‖S‖op ≤ 1 we have

‖A−A0‖op = ‖I − S‖op ≤ ‖I − S2‖op

= ‖I −ATA‖op = ‖I −ET
1E0E

T
0E1‖op

= ‖ET

0E1‖2op ,

where for the last equality we used that I = E0E
T
0 +E0E

T

0 + x0x
T
0 /‖x0‖2 and xT

0E1 = 0. Hence

ATET
0M 0E0A ≤ AT

0E
T
0M0E0A0 + 3‖ET

0E1‖2op‖M0‖op · I .

Substituting this in Eq. (92) and using ‖ET
0E1‖2op ≤ 1, we get

ET
1M1E1 � OQT

∗E
T
0M0E0Q∗O

T + ‖M0 −M1‖op · I + 3‖ET
1E0‖op(‖M 0‖op + ‖M 1‖op) · I ,

and therefore

λs(E
T
1M1E1) ≤ λs(Q

T
∗E

T
0M0E0Q∗) + ‖M 0 −M 1‖op + 3‖ET

1E0‖op(‖M 0‖op + ‖M1‖op) .

By Eq. (90) we have λs(E
T
1M 1E1) = Ls,1(x1;α). Further, by Eq. (91), λs(Q

T
∗E

T
0M0E0Q∗) ≤

Lm+s−1,m(x0;α). We thus obtained

Ls,1(x1;α) ≤ Lm+s−1,m(x0;α) + ‖M 0 −M 1‖op + 3‖ET
1E0‖op(‖M 0‖op + ‖M1‖op) . (93)

We finally bound the error terms on the right-hand side of Eq. (93). Recall the definitions of
Eqs. (84), (85). We now choose an orthonormal basis on Tx0 , which we write as an orthogonal
matrix U0 ∈ O(d, d − 1), and an orthonormal basis for Tx1 , given by U1 = Rx0,x1U 0. We then
obtain (identifying operators with their matrix representation)

D0 := DF (x0)U 0 , D1 := DF (x1)Rx0,x1U0 = DF (x1)U 1 , (94)

M0 :=
n∑

ℓ=1

αℓU
T
0∇2Fℓ(x0)U0 , M1 :=

n∑

ℓ=1

αℓU
T
1∇2Fℓ(x1)U1 . (95)

We then have

‖M 0 −M 1‖op ≤ ‖α‖1 max
ℓ≤n

∥∥UT
0∇2Fℓ(x0)U 0 −UT

1∇2Fℓ(x1)U 1

∥∥
op

(96)

≤ C0

ρ
dp3max

√
log(pmax)‖x0 − x1‖ , (97)

where we used ‖α‖1 ≤
√
n ≤

√
d. The last inequality holds on the event G2 of Lemma 2.4.
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By a similar argument,

‖M 1‖op ≤ ‖α‖1 max
ℓ≤n

‖∇2Fℓ(x0)‖op ≤ C1dp
2
max

√
log(pmax) . (98)

on the event G1 of Lemma 2.1, and similarly for ‖M 0‖op.
Further,

‖D0 −D1‖op =
∥∥DF (x0)U 0 −DF (x1)U 1

∥∥
op

(99)

≤ C0

ρ
p2max

√
d log(pmax)‖x0 − x1‖ ,

where the last step we used once more the fact that event G2 of Lemma 2.4 holds.
Finally, by Corollary A.1 (applied with Ai = Di, and d replaced by d− 1), we get

∥∥ET
1E0

∥∥
op

≤ 1

σn−m+1(D0)
‖D0 −D1‖op

(a)

≤ C0/C∗
(
√
d−√

n)ξ′min(‖x0‖2)1/2ρ
p2max

√
d log(pmax)‖x0 − x1‖ (100)

(b)

≤ 2C0/C∗dp2max

√
log(pmax)

ξ′min(‖x0‖2)1/2ρ
‖x0 − x1‖ . (101)

Here (a) holds by the bound (99), on the event G3 of Lemma 3.4 (with m = ⌊(d − n)/4⌋) and (b)
since, we have

√
d−√

n ≥ (d− n)/(2
√
d) ≥ 1/(2

√
d).

Using the bounds (97), (98), and (101) in Eq. (93), we finally obtain

Ls,1(x1;α) ≤ Lm+s−1,m(x0;α)
C0

ρ
dp3max

√
log(pmax)‖x0 − x1‖+

Cd2p4max log(pmax)

ξ′min(‖x0‖2)1/2ρ
‖x0 − x1‖

≤ Lm+s−1,m(x0;α) +
C ′d2p5max

ξ′min(ρ
2)1/2ρ

‖x0 − x1‖ ,

for some absolute constants C,C ′ > 0, which concludes the proof.

4 Minimal singular value at solutions

In Section 6 we will prove that w.h.p. any point sufficiently close to a solution is an approximate
solution. The distance from the solution will be controlled by Lipschitz constants which we have
already analyzed in Section 2, and the minimal singular value of the Jacobian DF (x) at the solution
which we study in this section.

In the analysis of the brute-force search algorithm (Algorithm 2) that applies to pmax > d2,
we will use the following proposition, controlling the maximal value of σmin(DF (x)Ux) over all
solutions.

Proposition 4.1. Suppose n = d− 1. For some universal constants C, η > 0,

P

(
∃x ∈ S

d−1 : F (x) = 0, σmin(DF (x)Ux) ≥
η

d7/4

)
≥ 1− C√

d
. (102)

In contrast, in the analysis of the Hessian descent algorithm (Algorithm 1) for pmax ≤ d2,
we will use the following proposition, concerning the minimal value of σmin(DF (x)Ux) over the
solutions.
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Proposition 4.2. There exist universal constants C,C ′ > 0 such that, defining, for d/2 ≤ n ≤ d−1,

τ :=

(
eCdp

d− 3
4
n−1

max log(pmax)
1
4
(d−n−1)d

1
4
(d−n)

)−1

, (103)

we have that

P

(
min

{
σmin(DF (x)Ux) : x ∈ S

d−1, F (x) = 0
}
≥ τ

)
≥ 1− C ′ exp(−d/C ′). (104)

4.1 Upper bound on volume in expectation

Consider the set
Ψ(τ) :=

{
x ∈ S

d−1 : F (x) = 0, σmin(DF (x)Ux) ≤ τ
}
.

Denote by Volk the k-dimensional Hausdorff measure. We start by proving an upper bound for the
volume of Ψ(τ) in expectation. This bound will be used in the proof of both propositions above.

Lemma 4.3. Let Z ∼ GOE(n, d− 1). Then,

EVold−1−n(Ψ(τ)) ≤ Vold−1(S
d−1)

∏

i≤n

√
pi
2π

E

(
|det(ZZ⊺)|1/21{σmin(Z) ≤ τ}

)
. (105)

Moreover, if we assume that τ ≤ 1/n, then for some universal constant C1 > 0,

EVold−1−n(Ψ(τ)) ≤ Vold−1(S
d−1)

∏

i≤n

√
pi
2π

E

(
|det(ZZ⊺)|1/2

)
· C1d

5/2τP
(
σmin(Z) ≤ τ

)
. (106)

Proof. The expectation EVold−1−n(Ψ(τ)) can be expressed by a variant of the Kac-Rice formula,
e.g. as in [AW09, Theorem 6.8] (see [Sub23, Remark 3] for a discussion on the regularity conditions
required for its application). Precisely, abbreviating ∆(x) = DF (x)Ux, the formula gives

EVold−1−n(Ψ(τ))

=

∫

Sd−1

ϕF (x)(0)E
[
|det(∆(x)∆(x)⊺)|1/21{σmin(∆(x)) ≤ τ}

∣∣∣F (x) = 0
]
dVold−1(x)

= Vold−1(S
d−1)(2π)−n/2

E

[
|det(∆(x)∆(x)⊺)|1/21{σmin(∆(x)) ≤ τ}

∣∣∣F (x) = 0
]
,

where ϕF (x)(0) = (2π)−n/2 is the density of the random vector F (x) evaluated at the origin and,
using symmetry, in the second line x is an arbitrary point in Sd−1.

Recall that by Lemma 3.1, conditional on F (x) = 0, ∆(x)
d
= S1(1)Z where S1(1) :=

diag(
√
pi : i ≤ n) and Z ∼ GOE(n, d − 1). Note that σmin(S1(1)Z) ≥ σmin(Z), since σmin(A) =

minv∈Sn−1 maxu∈Sd−2 v⊺Au for any A ∈ Rn×(d−1). This proves (105).
The random matrix ZZ⊺ is a Wishart matrix. Recall that its eigenvalues λ1 ≤ · · · ≤ λn have

density cdφn,d−1 where cd is a normalizing constant and

φn,d−1(x1, . . . , xn) =
∏

i

x
(d−n−2)/2
i e−xi/2

∏

i<j

|xi − xj| (107)

on Bn := {(x1, . . . , xn) : 0 < x1 < · · · < xn}. Since

φn,d−1(x1, . . . , xn) = x
(d−n−2)/2
1 e−x1/2

n∏

i=2

|xi − x1|φn−1,d−2(x2, . . . , xn) ,
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by conditioning on σmin(Z)2 = λ1,

E

[
|det(ZZ⊺)|1/2

∣∣∣ σmin(Z) ≤ τ
]
=

∫ τ2

0

E

[∏n−1
i=1 λ̄

1/2
i |λ̄i − t|1{λ̄1 > t}

]

E

[∏n−1
i=1 |λ̄i − t|1{λ̄1 > t}

] fn,d−1(t)
√
t dt , (108)

where λ̄1 ≤ · · · ≤ λ̄n−1 are the eigenvalues of Z̄Z̄
⊺ with Z̄ ∼ GOE(n− 1, d− 2) and fn,d−1(t) is the

density of λ1 normalized so that
∫ τ2

0 fn,d−1(t)dt = 1.
The numerator on the right-hand side of (108) is bounded from above by

E

[
|det(Z̄Z̄

⊺
)|3/2

]
.

Using the density (107), we can write the denominator as

cd−1

∫

Bn−1+t

n−1∏

i=1

|xi − t|x(d−n−2)/2
i e−xi/2

∏

i<j

|xi − xj |dx1 · · · dxn−1

≥ cd−1

∫

Bn−1

n−1∏

i=1

|xi|x(d−n−2)/2
i e−(xi+t)/2

∏

i<j

|xi − xj|dx1 · · · dxn−1 ≥
1

2
E

[
|det(Z̄Z̄

⊺
)|
]
,

where by an abuse of notation we denote by Bn−1 + t the Minkowski sum of Bn−1 and {(t, . . . , t)}
and the inequality holds if t < 1/n.

Recall that for any matrix A ∈ RM×N , |det(AA⊺)|1/2 =
∏

i≤M ‖Θi(A)‖, where Θi(A) is
the projection of the i-th row of A onto the orthogonal space to its first i − 1 rows. Hence,
|det(Z̄Z̄

⊺
)| = ∏n−1

i=1 χ2
d−1−i and |det(ZZ⊺)| = ∏n

i=1 χ
2
d−i in distribution, where χ2

k are i.i.d. chi-
squared variables of k degrees of freedom. Using this, one can verify that, for absolute C > 0,

E
[
|det(Z̄Z̄

⊺
)|3/2

]

E

[
|det(Z̄Z̄

⊺
)|
]
E

[
|det(Z̄Z̄

⊺
)|1/2

] ≤ Cd2 and
E
[
|det(Z̄Z̄

⊺
)|1/2

]

E
[
|det(ZZ⊺)|1/2

] ≤ C/
√
d .

Combining the above with (108) and plugging back into (105) completes the proof.

4.2 Lower bound on the volume of a neighborhood

Recall the definitions of Lip(DF ; Ω) and Lip⊥(DF ; Ω) in Eqs. (40), (42).

Lemma 4.4. Let c, τ, r > 0 such that r < 1/10 and (1− r)pmaxτ − rc
√
d ≥ τ/2. On the event that

Lip⊥(DF ;Sd−1(1)) ∨ Lip(DF ;Bd(1)) ≤ c
√
d, (109)

if there exists a point x ∈ Sd−1(1) such that F (x) = 0 and σmin(DF (x)Ux) ∈ [τ, 2τ ] then

Vold−n−1(Ψ(3τ)) ≥
( r

2
√
2

)d−n−1
Vold−n−1

(
Bd−n−1(1)

)
. (110)

Proof. Assume throughout the proof that the event in (109) occurs and let x be a point as in the
lemma. Since the Fi are homogeneous, DF (x)x = 0. Setting t = 1 − r, for z = tx we have that
DF (z) = diag(tpi−1 : 1 ≤ i ≤ n)DF (x) and σmin(DF (z)) = σmin(DF (z)Uz) ∈ tpmax [τ, 2τ ].
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Let V := {DF (z)⊺ · v : v ∈ Rn} ⊂ Tz, let T ∈ Rd×n be a matrix whose columns are an
orthonormal basis of V and let K ∈ Rd×(d−n−1) be a matrix whose columns are an orthonormal
basis of V ⊥ ∩ Tz. For (a, b) ∈ Rd−n−1 × Rn, define

F̂ (a, b) = F (z +K · a+ T · b),

and note that

D1F̂ (a, b) :=
( d

daj
F̂i(a, b)

)
i≤n, j≤d−n−1

= DF (z +K · a+ T · b) ·K,

D2F̂ (a, b) :=
( d

dbj
F̂i(a, b)

)
i≤n, j≤n

= DF (z +K · a+ T · b) · T .

Since λmin(D2F̂ (0, 0)) = σmin(DF (z)) and, for i = 1, 2,

‖DiF̂ (a, b)−DiF̂ (0, 0)‖op ≤ ‖DF (z +K · a+ T · b)−DF (z)‖op

≤ ‖K · a+ T · b‖Lip(DF ;Bd(1)) ≤ c
√
d ‖(a, b)‖ ,

if ‖(a, b)‖ = ‖K · a+ T · b‖ ≤ r then, using the assumption (1− r)pmaxτ − rc
√
d ≥ τ/2,

σmin(D2F̂ (a, b)), σmin(DF (z +K · a+ T · b)) ≥ τ/2. (111)

Suppose that (a, b) is a point such that ‖(a, b)‖ < r and F̂ (a, b) = 0. Then by the implicit
function theorem, there is a unique continuously differentiable function g from an open neighborhood
of a to Rn such that g(a) = b and for any a′ in this neighborhood F̂ (a′, g(a′)) = 0. From
compactness, there exists a closed set A ⊂ Rd−n−1 containing the origin and a unique g : A →
Rn continuous on A and continuously differentiable on its interior Ao such that g(0) = 0 and
F̂ (a, g(a)) = 0 for any a ∈ A, and such that ‖(a, g(a))‖ < r on Ao and ‖(a, g(a))‖ = r on
∂A = A \ Ao. Moreover, by the implicit function theorem, on Ao,

Dg(a) :=
( d

daj
gi(a)

)
i≤n, j≤d−n−1

= −D2F̂ (a, g(a))−1 ·D1F̂ (a, g(a)).

Since D1F̂ (0, g(0)) = 0 ∈ Rn×(d−n−1), on ‖(a, g(a))‖ < r,

‖D1F̂ (a, g(a))‖op ≤ c
√
d · ‖(a, g(a))‖ < τ/2

and therefore, by Eq. (111),
‖Dg(a)‖op < 1.

Define B =
{
a ∈ Rd−n−1 : ‖a‖ < r/

√
2
}
. Obviously, A ⊃ B for otherwise we would have some

a ∈ ∂A ∩ B for which ‖(a, g(a))‖ = r while ‖a‖ ∨ ‖g(a)‖ < r/
√
2. Define P (y) := y/‖y‖ and

y(a) = z +K · a+ T · g(a). We have that
{
y ∈ S

d−1 : F (y) = 0
}
⊃ P

({
y(a) : a ∈ B

})
. (112)

We note that (using that r < 1/10)) for any a1,a2 ∈ B,

‖P (y(a1))− P (y(a2))‖ ≥ 1

2

∥∥∥ y(a1)

‖y(a1)‖ ∧ ‖y(a2)‖
− y(a2)

‖y(a1)‖ ∧ ‖y(a2)‖
∥∥∥ ≥ 1

2
‖a1 − a2‖ . (113)
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It thus follows that

Vold−n−1

(
P
({

y(a) : a ∈ B
}))

≥ 2−(d−n−1)Vold−n−1(B)

=
( r

2
√
2

)d−n−1
Vold−n−1

(
Bd−n−1(1)

)
.

Moreover, for any a in the set on the right-hand side of (112), if w = P (y(a)) then ‖w − x‖ ≤ 2r
and thus σmin(DF (w)Uw) ≤ 2τ + 2rc

√
d ≤ 3τ .

4.3 Proof of Proposition 4.1

We assume throughout this proof that n = d−1, and therefore Vold−1−n(Ψ(τ)) =: |Ψ(τ)| is just the
cardinality of the set Ψ(τ). Note that Ψ(∞) = {x ∈ Sd−1 : F (x) = 0}. By Eq. (2.2) of [Sub23],
we have that Eq. (105) holds with equality for τ = ∞, namely

E |Ψ(∞)| = Vold−1(S
d−1)

∏

i≤n

√
pi
2π

E

(
|det(ZZ⊺)|1/2

)
. (114)

Using Eq. (106) in Lemma 4.3 and Corollary B.4, we obtain that, for some absolute constant C0,

E|Ψ(τ)|
E|Ψ(∞)| ≤ C0d

3τ2 .

Hence, by Markov’s inequality,

P

(
|Ψ(τ)| ≥ 1

2
E|Ψ(∞)|

)
≤ 2C0d

3τ2 .

By Theorem 2 of [Sub23], for some absolute constant C1,

P

(
|Ψ(∞)| < 1

2
E|Ψ(∞)|

)
≤ C1d

−1/2 .

The proof is completed since

P
(
Ψ(∞) \Ψ(τ) 6= ∅

)
≥ 1− C1d

−1/2 − 2C0d
3τ2 .

4.4 Proof of Proposition 4.2

Let C0 and C1 be the absolute constants as in Lemmas 2.4 and 4.3 and denote by E the event that
(45) occurs. For any τ < 1/n, from Lemmas 4.3 and 4.4 and Markov’s inequality,

P

(
E ∩

{
∃x ∈ S

d−1 : F (x) = 0, σmin(DF (x)Ux) ∈ [τ, 2τ ]
})

≤ Md,n(τ) ,

where

Md,n(τ) :=
Vold−1(S

d−1)
∏

i≤n

√
pi
2πE

(
|det(ZZ⊺)|1/2

)
· C1d

5/23τP
(
σmin(Z) ≤ 3τ

)

(
r

2
√
2

)d−n−1
Vold−n−1

(
Bd−n−1(1)

) , (115)

provided that that

r <
1

10
, (1− r)pmaxτ − rC0p

2
max

√
log(pmax)d ≥ τ

2
. (116)
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To satisfy these two inequalities, we shall assume without loss of generality that C0 > 1, and set

r =
τ

4C0p2max

√
log(pmax)d

. (117)

Recall that Volk−1(S
k−1) = 2πk/2/Γ(k2 ) and Volk(B

k(1)) = π(k/2)/Γ(k/2+1) and E|det(ZZ⊺)|1/2 =

2n/2Γ(d/2)/Γ((d−n)/2) (e.g., by the relation to chi-variables as in the proof of Lemma 4.3). Hence,

Vold−1(S
d−1)

∏
i≤n

√
1
2πE

(
|det(ZZ⊺)|1/2

)

Vold−n−1

(
Bd−n−1(1)

) ≤ c
√
d− n ,

for some universal c > 0. By Corollary B.4, for universal c′ > 0,

P

(
σmin(Z) ≤ 3τ

)
≤

( c′τ√
d− 1−

√
n− 1

)d−n
.

Combining the above and substituting r as in (117), we have that Md,n(τ), defined in Eq. (115), is
bounded as

Md,n(τ) ≤ cd−n
0 p

n
2
maxd

5/2
√
d− nτ

(p2max

√
log(pmax)d

τ

)d−n−1( τ√
d− 1−

√
n− 1

)d−n

≤ τ2 · cd−n
0 p

n
2
maxd

3
(
p2max

√
log(pmax)d

)d−n−1
=: τ2A ,

for some universal constant c0 > 0.
By a union bound,

P

(
E ∩

{
∃x ∈ S

d−1 : F (x) = 0, σmin(DF (x)Ux) ≤ τ
})

≤
∞∑

i=1

(2−iτ)2A < τ2A .

Since P(E) ≥ 1 − C∗ exp(−d/C∗) by Lemma 2.4, taking τ as in (103) with large enough C, this
completes the proof.

5 Good events

Our algorithms output an approximate solution on an event with high probability, which we now
define precisely. We treat the two cases pmax ≤ d2 and pmax > d2 separately. Denote the left-hand
side of (44), (45) and (46) by Lip(0)(F ), Lip(1)(F ) and Lip(2)(F ), respectively, with Ω = Bd(1). With
ρ = 1 and A# and B# as in Theorem 3, define A = 4A#∨B# so that A(d log d)1/2 ≥ 4A#(d log d)

1/2

and A(d log d)1/2 ≥ B#d
1/2. Let C, C0 and C1 be the absolute constants from Proposition 4.2 and

Lemmas 2.4 and 2.1, and let η > 0 be the absolute constant as in Proposition 4.1. As in (103), we
define

τ :=

(
eCdp

d− 3
4
n−1

max log(pmax)
1
4
(d−n−1)d

1
4
(d−n+5)

)−1

.

Definition 5.1 (Good event for pmax ≤ d2). Suppose that pmax ≤ d2 and d
2 ≤ n ≤ d−A(d log d)1/2.

We denote by E = E(d, n) the event that:

1. max
x∈Bd(1)

‖F (x)‖2 ≤ C1

√
d log(pmax) .
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2. Lip(i)(F ) ≤ C0p
1+i
max

√
d log(pmax) , for i = 0, 1, 2.

3. min
{
σmin(DF (x)Ux) : x ∈ S

d−1, F (x) = 0
}
≥ τ .

4. ∀x ∈ S
d−1 : λ1(H(x)) ≤ − 1

10

√
(d− n)H(x).

5. ∀x ∈ Bd(1, 1 + 1/pmax), 2 ≤ k ≤ 4 :
∥∥∇kH(x)

∥∥
op

≤ 9C1dp
k
max log(pmax) .

6. For x0 = (1, 0, . . . , 0), H(x0) ≤ d.

Lemma 5.2. Assume the setting of Definition 5.1. Then, for some universal constant C > 0,

P (E(d, n)) ≥ 1− C exp(−d/C) .

Proof. It is enough to prove the bound on the probability for each of the events in Items 1-6 of Defi-
nition 5.1 separately. For Items 1-5 the bound follows from Lemma 2.1, Lemma 2.4, Proposition 4.2
and Theorem 3, where for Item 5 we used the fact that for t > 1,

∥∥∇4H(tx)
∥∥

op
≤ t2pmax

∥∥∇4H(x)
∥∥

op
,

since ∇kFi(tx) = tpi−k∇kFi(x). The bound for Item 6 is trivial.

Definition 5.3 (Good event for pmax > d2). Suppose that pmax > d2 and n = d − 1. Denote by
E = E(d) the event that:

1. Lip(i)(F ) ≤ C0p
1+i
max

√
d log(pmax) , for i = 0, 1.

2. max
x∈Bd(1)

‖DF (x)‖op ≤ C1pmax

√
d log(pmax).

3. There exists α ∈ Sd−1 such that F (α) = 0 and σmin(DF (α)Uα) ≥ η/d7/4.

Lemma 5.4. Assume the setting of Definition 5.3. Then, for some universal constant C > 0,

P (E(d)) ≥ 1− Cd−1/2 .

Proof. Here too it will be enough to prove the bound for each item separately. Items 1 and 2 follow
from Lemma 2.4 and Lemma 2.1. Item 3 follows from Proposition 4.1

6 Sufficient conditions for approximate solutions

Throughout the section, we consider the Newton iteration introduced in Section 1.1, and denoted
formally by

x0 = x , xk+1 = ΦNM(xk) , (118)

for a general initialization x ∈ Sd−1. More explicitly, we have ΦNM(xk) = (xk + vk)/‖xk + vk‖,
where vk solves

F (xk) +DF (xk)vk = 0 subject to vk ⊥ xk, vk ⊥ ker(DF (xk)) . (119)

In this section we will always work on the event that σmin(DF (xk)|Tx
) > 0, so that a solution to

the above indeed exits. Assuming that there exists at least one non-zero solution to F (x) = 0, we
will denote by

αk := argmin
{
‖xk −α‖ : α ∈ S

d−1,F (α) = 0
}
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the closest solution to xk (if more than one solution with minimal distance exists, choose one
arbitrarily). We will prove sufficient conditions for a point x ∈ Sd−1 to be an approximate solution.
We shall treat the two cases pmax ≤ d2 and pmax > d2 separately. In both we will rely on the
following.

Proposition 6.1 (Quadratic convergence). Assume that F (x) = 0 has at least one non-zero solu-
tion. Let L := Lip(DF ;Sd−1)∨Lip⊥(DF ;Sd−1) as defined in (40) and (42), M := supx∈Sd−1 ‖DF (x)x‖
and T := infk≥0 σmin(DF (αk)|T

α
k
). Assume that T > 0 and set B := 3 + (8L + 4M)/T . If the

initial point x0 ∈ Sd−1 satisfies ‖x0 −α0‖ ≤ 1/B, then

∀k ≥ 0 : ‖xk+1 −αk+1‖ ≤ ‖xk+1 −αk‖ ≤ B‖xk −αk‖2 . (120)

Proof. The first inequality in (120) follows by definition. We claim that to prove the proposition,
it will be enough to show that

∀k ≥ 0, ‖xk + vk −αk‖ ≤ B‖xk −αk‖2 . (121)

Indeed, this will imply that ‖xk +vk −αk‖ ≤ ‖αk‖ = 1 and 〈αk,xk +vk〉 ≥ 0, from which one can
easily verify that

‖xk+1 −αk‖ ≤ ‖xk + vk −αk‖ .
To prove (121) by induction, we let k ≥ 0 be an arbitrary integer number. Assuming that

(121) holds for any 0 ≤ i ≤ k − 1, we will show that it holds for k. Note that by assumption,
‖x0 − α0‖ ≤ 1/B. Since we assume (121) for 0 ≤ i ≤ k − 1, we have from the above that for
0 ≤ i ≤ k, ‖xi −αi‖ is a decreasing sequence and therefore also ‖xk −αk‖ ≤ 1/B.

Denote V (x) := ker(DF (x)
∣∣
Tx

) ⊂ Tx and let V (x)⊥ := {u ∈ Tx : u ⊥ V (x)} be its
orthogonal complement in Tx. Denote by PV (xk), P

⊥
V (xk)

and Pxk the orthogonal projection matrices

onto V (xk), V (xk)⊥ and xk. We claim that

σmin(DF (xk)
∣∣
T
x
k
) = σmin(DF (xk)Uxk) = σmin(DF (xk)P⊥

V (xk)) ,

σmin(DF (αk)
∣∣
T
α
k
) = σmin(DF (αk)Uαk) = σmin(DF (αk)) .

The first equality in both lines follows by definition. From homogeneity of Fi(x) and since F (αk) =
0, the rows of DF (αk) are orthogonal to αk. The second equality in the second line follows
from this. The second equality in the first line holds whenever σmin(DF (xk)Uxk) > 0. Indeed,
using ‖xk − αk‖ ≤ 1

B , σmin(DF (xk)Uxk) ≥ T − L‖xk − αk‖ ≥ T/2. Note that by assumption,
σmin(DF (αk)) ≥ T .

Hence, to prove (121), using that PV (xk) + P⊥
V (xk)

+ Pxk = I it will be sufficient to show that

‖P⊥
V (xk)(x

k + vk −αk)‖ ≤ 2(L+M)

σmin(DF (xk)P⊥
V (xk)

)
‖xk −αk‖2 , (122)

‖PV (xk)(x
k + vk −αk)‖ ≤

(
2 +

4L

σmin(DF (αk))

)
‖xk −αk‖2 , (123)

‖Pxk(xk + vk −αk)‖ ≤ 1

2
‖xk −αk‖2 . (124)

Denote by d(x,y) = arccos(〈x,y〉) be the geodesic distance on Sd−1 and let tk := d(αk,xk).
For t ∈ [0, tk], let xk(t) ∈ Sd−1 be a geodesic from xk to αk with constant speed 1 (so that, in
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particular, xk(0) = xk and xk(tk) = αk). Using (119) we write

0 = F (αk) = F (xk) +

∫ tk

0

dF (xk(t))

dt
dt

= −DF (xk)vk +

∫ tk

0
DF (xk(t))ẋk(t)dt

= −DF (xk)P⊥
V (xk)v

k +DF (xk)P⊥
V (xk)(α

k − xk)

+

∫ tk

0

[
DF (xk(t))−DF (xk)

]
ẋk(t)dt

︸ ︷︷ ︸
=:R1

+DF (xk)PV (xk)(α
k − xk)

︸ ︷︷ ︸
=:R2

+DF (xk)Pxk(αk − xk)︸ ︷︷ ︸
=:R3

,

(125)

where integrals of vector valued functions are carried out elementwise.
By the definition of V (x), DF (xk)PV (xk) is the zero matrix and R2 = 0. Moreover,

‖R1‖ ≤ tk sup
t≤tk

‖DF (xk(t))−DF (xk)‖op ≤ d(αk,xk) · L‖xk −αk‖ ≤ 2L‖xk −αk‖2

and

‖R3‖ ≤ ‖DF (xk)xk‖ · |〈xk,xk −αk〉| = ‖DF (xk)xk‖ · ‖xk −αk‖2/2 ≤ M‖xk −αk‖2 .

Continuing from (125) we have that

0 = DF (xk)P⊥
V (xk)(α

k − xk − vk) +R ,

where R := R1 +R2 +R3 and ‖R‖ ≤ 2(L+M)‖xk −αk‖2, from which (122) follows.
Next, we prove (123). Since we assume that T > 0, note that by the implicit function theorem,

for any u ∈ V (αk) there exist small ε > 0 and a function ϕ : (−ε, ε) → Rd such that ‖ϕ(t)‖ = O(t2)
and, for any t ∈ (−ε, ε),

γ(t) :=
αk + tu+ϕ(t)

‖αk + tu+ϕ(t)‖ ∈ S
d−1

is a solution (i.e., F (γ(t)) = 0). If there existed vector u ∈ V (αk) such that 〈ẋk(tk),u〉 < 0, we
would have ‖γ(t)− xk‖ < ‖αk − xk‖ for sufficiently small t > 0. We conclude that no such vector
exists, i.e., that ẋk(tk) ⊥ V (αk) or, equivalently, PV (αk)ẋ

k(tk) = 0. From homogeneity of Fi(x), at
the solution αk we have that ker(DF (αk)) = V (αk)⊕ span{αk}. Since ẋk(tk) ⊥ αk, we also have
that Pker(DF (αk))ẋ

k(tk) = 0.
Using that vk ⊥ V (xk), we write

PV (xk)(x
k + vk −αk) = PV (xk)(x

k −αk) = −
∫ tk

0
PV (xk)ẋ

k(t)dt

= −
∫ tk

0
PV (xk)(ẋ

k(t)− ẋk(tk))dt− tkPV (xk)ẋ
k(tk) .

Noting that ‖ẋk(t)− ẋk(tk)‖ is maximal over [0, tk] for t = 0 and recalling that ‖ẋk(tk)‖ = 1,

‖PV (xk)(x
k + vk −αk)‖ ≤ tk‖ẋk(0)− ẋk(tk)‖+ tk‖PV (xk)(I − Pker(DF (αk)))‖op .

29



Since tk ≤ 2‖xk −αk‖, the first term is bounded by

tk‖ẋk(0) − ẋk(tk)‖ = tk‖xk(0)− xk(tk)‖ ≤ 2‖xk −αk‖2 .

For any x ∈ Sd−1, V (x) ⊂ ker(DF (x)). Thus,

‖PV (xk)(I − Pker(DF (αk)))‖op ≤ ‖Pker(DF (xk))(I − Pker(DF (αk)))‖op . (126)

Applying Theorem 5 (specifically, Eq. (145)) with A0 = DF (xk), A1 = DF (αk) and k(a) =
rank(Aa) so that ∆ = σmin(DF (αk)) > 0 (by Eq. (104)), we obtain that the right-hand side of
(126) is bounded as follows:

‖Pker(DF (xk))(I − Pker(DF (αk)))‖op ≤ 2
‖DF (xk)−DF (αk)‖

σmin(DF (αk))

≤ 2L‖xk −αk‖
σmin(DF (αk))

.

Combining the above and using again that tk ≤ 2‖xk −αk‖, we obtain (123).
Finally, (124) follows since

‖Pxk(xk + vk −αk)‖ = ‖Pxk(xk −αk)‖ = 1− 〈xk,αk〉 = 1

2
‖xk −αk‖2 .

Corollary 6.2. Assume that F (x) = 0 has at least one non-zero solution. Define L and M as in
Proposition 6.1 and

T := σmin(DF (x0)
∣∣
T
x
0
)− 5L‖x0 −α0‖ .

Assume that T > 0 and set B := 3 + (8L + 4M)/T . If the initial point x0 ∈ Sd−1 satisfies
‖x0 −α0‖ ≤ 1/4B, then

∀k ≥ 0 : ‖xk+1 −αk+1‖ ≤ ‖xk+1 −αk‖ ≤ B‖xk −αk‖2 . (127)

Proof. As in Proposition 6.1, we will prove (127) by induction on k. Here, however, we do not
assume the uniform bound on the minimal singular value at αk and k ≥ 0.

We start with k = 0. By definition, σmin(DF (α0)
∣∣
T
α
0
) > T . Observe that the proof of (127)

in Proposition 6.1 for k = 0 only relied the latter bound on the singular value at α0 but did not
use the same bound for αi with i > 0. Hence, by exactly the same argument as in Proposition 6.1,
(127) follows for k = 0.

Now, assume that (127) holds for any 0 ≤ i ≤ k − 1. Then, by induction, for any 1 ≤ i ≤ k,

‖xi −αi‖ ≤ ‖xi −αi−1‖ ≤ ‖x0 −α0‖
(
B‖x0 −α0‖

)2i−1 ≤ ‖x0 −α0‖
(1
4

)2i−1
(128)

and therefore

‖xi − xi−1‖ ≤ ‖xi −αi−1‖+ ‖xi−1 −αi−1‖ ≤ 5

4
‖x0 −α0‖

(1
4

)2i−1−1
. (129)

Thus,

‖αi − x0‖ ≤ ‖αi − xi‖+ ‖xi − x0‖+ ‖x0 −α0‖

30



≤ ‖x0 −α0‖
[(1

4

)2i−1
+

5

4

i∑

j=1

(1
4

)2j−1−1
+ 1

]
≤ 5‖x0 −α0‖ .

And we conclude that

σmin(DF (αi)
∣∣
T
α
i
) ≥ σmin(DF (x0)

∣∣
T
x
0
)− 5L‖x0 −α0‖ = T . (130)

The proof of (127) for k follows by the same induction argument we used in the proof of
Proposition 6.1, which relied on the bound σmin(DF (αi)

∣∣
T
α
i
) ≥ T with i ≤ k only and not on the

same bound for i > k.

6.1 The case of moderate pmax ≤ d2

We prove the following sufficient condition for an approximate solution.

Proposition 6.3. Assume the same setting and notation as in Definition 5.1 and that points 1, 2
and 3 in the definition hold. Let τ be defined as in (103) and let

B :=
cp2max

√
d log pmax

τ
, c := 15(C0 ∨ C1 ∨ 1) . (131)

If ‖x−α‖ ≤ 1
4B and F (α) = 0 for some x,α ∈ Sd−1, then x is an approximate solution.

Proof. Let x0 = x and define xi+1 = ΦNM(xi) by Newton’s method as in Eqs. (118), (119).
Let L, M and T be as defined in Proposition 6.1. By Points 2 and 3 of Definition 5.1, L ≤
C0p

2
max

√
d log(pmax) and T ≥ τ . Note that for any x ∈ Sd−1, the i-th element of DF (x)x is the

radial derivative of Fi at x which is equal to piFi(x), since Fi is homogeneous. Thus, by Point 1 of
Definition 5.1, M ≤ C1pmax

√
d log(pmax). Hence, for B as defined in (131), 8L+4M

T + 3 ≤ B. By
Proposition 6.1, it follows that (120) holds.

Therefore, as in (128) and (129),

‖xk −αk‖ ≤ ‖x0 −α0‖
(1
4

)2k−1
and ‖xk − xk−1‖ ≤ 5

4
‖x0 −α0‖

(1
4

)2k−1−1
.

Thus, the limit ᾱ = limk→∞ xk limk→∞αk is well-defined, F (ᾱ) = 0 and, for k ≥ 1,

‖xk − ᾱ‖ ≤
∞∑

j=k

‖xj+1 − xj‖ ≤ 5

4
‖x0 −α0‖

∞∑

j=k

41−2j ≤
(5
4

)2
‖x0 −α0‖41−2k ≤ ‖x0 − ᾱ‖21−2k .

6.2 The case of large pmax > d2

Corollary 6.4. Let n ≤ d−1 be arbitrary and assume that the bounds of Points 1 and 2 in Definition
5.3 occur for some constants C0 and C1. Then, there exists δ = δ(C0, C1, η̄) such that any x ∈ Sd−1

that satisfies

‖F (x)‖ ≤ δ

d4p2max

√
log(pmax)

and σmin(DF (x)Ux) ≥
η̄

2d7/4
(132)

is an approximate solution.
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Proof. Assume that x ∈ Sd−1 satisfies (132), for some 0 < δ which will be assumed to be small
enough whenever needed and may depend on C0, C1 and η̄. First, we will show that there exists a
solution close to x by appealing to [MS23, Lemma E.1] about gradient flow.

Since, assuming δ is small,

Lip⊥(DF ;Sd−1)‖F (x)‖ ≤ C0p
2
max

√
d log(pmax) ·

δ

d4p2max

√
log(pmax)

≤ η̄2

16d7/2
≤ 1

4

(
σmin(DF (x)Ux)

)2
,

by [MS23, Lemma E.1], gradient flow x(t) on Sd−1 started from x(0) = x converges to a solution
α := limt→∞ x(t). Namely, F (α) = 0. By Eq. (162) of [MS23],

‖x−α‖ ≤ 2
‖F (x)‖

σmin(DF (x)Ux)
≤ 4δ

η̄d9/4p2max

√
log(pmax)

.

For Newton’s method started from x0 = x, in the notation of Corollary 6.2, L = Lip(1)(F ) ≤
C0p

2
max

√
d log(pmax), M ≤ C1pmax

√
d log(pmax) (see the proof of Proposition 6.3 for the last in-

equality),

T ≥ η̄

2d7/4
− 5C0p

2
max

√
d log(pmax) ·

4δ

η̄d9/4p2max

√
log(pmax)

≥ η̄ − 40C0δ/η̄

2d7/4
.

Therefore, for small δ, we have T > 0 and

B ≤ 8(C0 + C1)p
2
max

√
d log(pmax) ·

d7/4

η̄/4
+ 3

and
‖x0 −α‖ ≤ 1

4B
.

Hence, (127) follows, by Corollary 6.2. The fact that x is an approximate solution follows by
the same argument in the last paragraph of the proof of Proposition 6.3.

7 Sub-routines and their complexity

In this section we define and analyze sub-routines that are used by the main algorithms. The first
is for finding vectors vi as in Algorithm 1. Its pseudo-code is given below. Below ei denotes the
standard basis of Rd and C1 and c0 are constants as in Lemma 2.1 and Algorithm 1. (The value of
c0 will be determined in the proof of Theorem 1.) The absolute constant c = c(C1, c0) > 0 in the
pseudo-code will be determined in the proof of Lemma 7.1.
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Algorithm 3: Find a good direction

Input: The coefficients a, a point x ∈ Sd−1

Output: A unit vector v ∈ Sd−1 orthogonal to x

µ = 9C1dp
2
max log(pmax) ;

A = (I − xx⊺)(µI −∇2H(x))(I − xx⊺) ;
k = 1 ;
while k < ec(d+log pmax) do

A = A2, k = 2k ;
end

i0 = argmini≤d〈∇2H(x), (Aei/‖Aei‖)⊗2〉 ;
return v = Aei0/‖Aei0‖

In our running time analysis below, we compare the number of operation with the input size
N (the number of coefficients to specify the function F ). Recall that

N =
n∑

i=1

(
d+ pi − 1

pi

)
. (133)

Lemma 7.1. The running time of Algorithm 3 is O(Nd3(1 + pmax/d)). On the event that Points
4 and 5 of Definition 5.1 hold, for any x ∈ Sd−1 such that H(x) ≥ p−c0d

max , the algorithm outputs a
vector v such that v ⊥ x, ‖v‖ = 1 and

〈∇2H(xi),v
⊗2〉 ≤ 1

2
min

u⊥x,‖u‖=1
〈∇2H(x),u⊗2〉 . (134)

Proof. Let v1, . . . ,vd−1 and λ1 ≤ · · · ≤ λd−1 be the eigenvectors and eigenvalues of ∇2H(x)|Tx
.

On the event as in the statement of the lemma, |λi| ≤ µ and λ1 ≤ − 1
10

√
(d− n)H(x). We have

that

Akei =
∑

j≤d−1

(µ− λj)
k〈ei,vj〉vj

and

〈∇2H(x), (Akei/‖Akei‖)⊗2〉 =
∑

j≤d−1(µ− λj)
2k〈ei,vj〉2λj∑

j≤d−1(µ− λj)2k〈ei,vj〉2

≤
∑

j∈I

(
µ−λj

µ−λ1

)2k
〈ei,vj〉2λj + µe−

k|λ1|
4µ

∑
j∈I

(
µ−λj

µ−λ1

)2k
〈ei,vj〉2 + e−

k|λ1|
4µ

,

provided that the numerator in the second ratio is negative, where I is the set of indices such that
λj ≤ 3

4λ1 and we used that, for j /∈ I,

µ− λj

µ− λ1
≤ 1− |λ1|

8µ
≤ e−

|λ1|
8µ .

For some i, 〈ei,v1〉2 ≥ 1/d. Hence, (134) follows since |λ1|/(10d) ≥ µe
− k|λ1|

4µ and 1/(10d) ≥
e
− k|λ1|

4µ if k < ec(d+log pmax) and c = c(C1, c0) is sufficiently large.
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By induction on pi, one can check that computing all products of the form xk11 · · · xkdd that
appear in (1) requires c1

(d+p1
pi

)
operations for some constant c1. Hence, calculating Fi(x) from the

coefficients a requires c1N(1 + pmax/d) operations at most. Any first or second order derivative of
Fi(x) can be obtained with the same running time. Therefore, A can be computed in c′1Nd3(1 +
pmax/d) operations. The number of iterations in the while-loop is bounded by 1+c(d+log pmax)/ log 2
and each iteration requires O(d3) operations. The complexity of running the while-loop can therefore
be absorbed in the previous term.

The next sub-routines approximate the maximal and minimal singular value of a matrix. Denote
by ωL the time complexity for L× L matrix multiplication.

Lemma 7.2. There are an absolute constant c > 0 and an algorithm that, given a matrix A ∈
RM×L, computes in time complexity c(log logM · ωM + ωL)) a value

smax ∈
[ 1
2
σmax(A), σmax(A)

]
. (135)

Proof. Define B = AA⊺ and denote its eigenvalues by 0 ≤ λ1 ≤ · · · ≤ λM . Let k = 2s with s =
⌈log2 logM⌉. We claim that smax := maxi≤N ‖Bkei‖1/k satisfies µ ∈ [12λM , λM ]. Indeed, denoting
by vj the eigenvector corresponding to λj , λ2k

M ≥ ‖Bkei‖2 =
∑

j λ
2k
j 〈ei,vj〉2 ≥ λ2k

M 〈ei,vM 〉2. The
claim thus follows since maxi〈ei,vM 〉2 ≥ 1/M . Exploiting the fact that k is a power of 2 as
in Algorithm 3, the time complexity for computing µ is as stated in the lemma. We note that
computing the k-th root for k a power of two can be done by iterative computing the square root,
which we assume as part of our computational model.

Lemma 7.3. There are an absolute constant c > 0 and an algorithm that, given a symmetric matrix
A ∈ RM×L and κ > 1, computes in time complexity c((log κ+ log logM)ωM + ωL)) a value

smin ∈
[
σmin(A), σmin(A) +

√
2σmax(A)(1 −M−1/2κ)

]
. (136)

Proof. Define B = AA⊺, λi and smax as in the previous proof. Define D = 2smaxI−B and set κ′ =
2⌈log2 κ⌉. Similarly to the previous proof, S := maxi ‖Dκ′

ei‖1/κ
′ ∈ [M−1/2κ′

(2smax−λ1), 2smax−λ1].
Therefore, smin :=

√
2smax − S satisfies (136).

The time complexity for computing smax is O(log logM ·ωM+ωL)). Exploiting the fact that κ′ is
a power of 2 as in Algorithm 3, the running time for computing smin given smax is O(log(κ)ωM ).

8 Analysis of Hessian descent: Proof of Theorem 1

We start with an analysis of the Hessian Descent algorithm (Algorithm 1). In the theorem below
we will assume that (xi,yi,vi, δi)i≥0 is an infinite sequence as follows. For i = 0, x0 = y0 =
(1, 0, . . . , 0). For any i ≥ 0, vi is a unit vector such that vi ⊥ xi,

〈∇2H(xi),v
⊗2
i 〉 ≤ − 1

20

√
(d− n)H(xi), (137)

yi+1 = xi ± δivi, with the sign chosen such that H(yi+1) ≤ min{H(xi + δivi),H(xi − δivi)}, and
xi+1 = yi+1/‖yi+1‖. δi is as defined in Algorithm 1.
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Theorem 4. Suppose the sequence (xi,yi,vi, δi)i≥0 is as above and that the event in Point 5 of
Definition 5.1 occurs. For some universal constants c1, c2 we have the following. If

√
(d− n)H(xi) ≥ 30C1dp

3
max log(pmax) (138)

then

H(xi+1)−H(xi) ≤ −3

8
C1dp

2
max log(pmax) . (139)

Otherwise, if (138) does not hold, for any j ≥ i,

H(xj) ≤ H(xi) ·
(
1− c1

p4max log(pmax)

d− n

d

)j−i
(140)

and ∥∥xi − xj

∥∥
2
≤ c2H(xi)

1
4 p2max

√
d log(pmax) . (141)

Proof. By Taylor’s theorem,

H(yi+1)−H(xi)
(a)

≤
3∑

k=1

δki
k!
〈∇kH(xi),v

⊗k
i 〉+ δ4i

4!
3C1dp

4
max log(pmax)

(b)

≤ δ2i
2
〈∇2H(xi),v

⊗2
i 〉+ δ4i

4!
3C1dp

4
max log(pmax)

(c)

≤ − δ2i
40

√
(d− n)H(xi) +

δ4i
4!
3C1dp

4
max log(pmax)

(d)

≤ − δ2i
80

√
(d− n)H(xi) ,

(142)

where for (a) we used that δi ≤
√

1/pmax and Point 5 of Definition 5.1 and C1 is as there, for (b)
we used the fact that the same bound holds whether we take yi+1 = xi + vi or yi+1 = xi − vi and
we choose the sign that minimizes H(yi+1), for (c) we used (137), and (d) follows from the choice
of δi as in Algorithm 1.

We have that δi =
√

1/pmax if and only if (138) holds, in which case, using homogeneity for
the first inequality,

H(xi+1)−H(xi) ≤ H(yi+1)−H(xi) ≤ −3

8
C1dp

2
max log(pmax) ,

and (139) follows.
Now, suppose (138) does not hold for some given i. Then, using (142) and the definition of δi,

H(xi+1)−H(xi) ≤ H(yi+1)−H(xi) ≤ − 1

2400C1

1

p4max log(pmax)

d− n

d
H(xi) ,

and for c1 = 1/2400C1,

H(xi+1) ≤ H(xi)
(
1− c1

p4max log(pmax)

d− n

d

)
,

which completes the proof of (140).
For any j > i,

‖xj − xi‖ ≤
j−1∑

k=i

‖xk+1 − xk‖ ≤
j−1∑

k=i

‖yk+1 − xk‖ =

j−1∑

k=i

δk
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=

(
1

30C1

1

p4max log(pmax)

√
(d− n)

d

) 1
2
j−1∑

k=i

H(xk)
1
4

≤ H(xi)
1
4

(
1

30C1

1

p4max log(pmax)

√
(d− n)

d

) 1
2
(
1−

(
1− c1

p4max log(pmax)

d− n

d

) 1
4

)−1

≤ H(xi)
1
4

(
1

30C1

1

p4max log(pmax)

√
(d− n)

d

) 1
2
(
1

4

c1
p4max log(pmax)

d− n

d

)−1

,

which proves (141) with c2 =
√

8/(15C1c21).

8.1 Proof of Theorem 1

Consider the Hessian Descent algorithm (Algorithm 1), with k = C ′
0d

3/2p4max log(pmax)
2 iterations

for some absolute C ′
0 > 0 to be determined below. Recall that to find a vector vi we use the

sub-routine from Section 7. By Lemma 7.1, the time complexity for a single iteration is O(Nd3(1+
pmax/d)) and the total time complexity is

χ ≤ C0Nd9/2p4max(1 + pmax/d) log(pmax)
2

for appropriate C0, which proves (2).
Next, we will assume that the good event E(d, n) of Definition 5.1 occurs and prove that the

output xHD is an approximate solution (recall Definition 1.1). Indeed, in light of the lower bound
on P(E(d, n)) in Lemma 5.2, this will complete the proof of the theorem.

Suppose that i0 is the largest index for which xi0 is computed before the algorithm terminates.
By Lemma 7.1, on E(d, n), for all indices i < i0,

〈∇2H(xi),v
⊗2
i 〉 ≤ 1

2
min

u⊥xi,‖u‖=1
〈∇2H(xi),u

⊗2〉.

From that bound of Point 4 Definition 5.1, vi therefore also satisfies (137). By the same point in
Definition 5.1, for i ≥ i0 there exists vi such that (137) holds. Hence, we may extend the sequence
(xi,yi,vi, δi)i≤i0 produced by the Algorithm 1 to an infinite sequence (xi,yi,vi, δi)i≥0 as in the
setting of Theorem 4.

From (139) and the bound H(x0) ≤ d as in Point 6 of Definition 5.1, for some absolute constant
c > 0, for any i ≥ cd the condition in (138) does not hold.

By (140) and (141), xi is a Cauchy sequence, and α := limi→∞ xi ∈ Sd−1 is an exact solution,
F (α) = 0. Moreover, for any i ≥ cd,

H(xi) ≤ d ·
(
1− c1

p4max log(pmax)

d− n

d

)i−cd
.

Therefore, if the number of steps k is as above with sufficiently large C ′
0, then of some i ≤ k we

have that H(xi) ≤ p−c0d
max , and the algorithm outputs xHD = xi. By (141),

‖xHD −α‖ ≤ c2p
−c0d/4
max p2max

√
d log(pmax) .

If c0 is sufficiently large, then in the notation of Proposition 6.3 we have that ‖xHD − α‖ ≤ 1/4B
and xHD is therefore an approximate solution.
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9 Analysis of brute-force search: Proof of Theorem 2

Recall the good event E = E(d) of Definition 5.3. Below we use the same notation as in the latter
definition and Algorithm 2. We assume that the algorithm is run with η̄ = η/2 for η as in Definition
5.3 and δ = δ(C0, C1, η̄) ∧ η/2, where δ(C0, C1, η̄) is as in Corollary 6.4.

Equipped with the sub-routines of Lemma 7.3, we now make precise the approximation of
σmin(DF (x)

∣∣
Tx

) in Algorithm 2. Namely, we define smin(x) as the output of the algorithm of
Lemma 7.3 with input A = DF (x)Ux and κ = 2η̄−1C1pmax

√
log pmaxd

9/4 log d, with an arbitrary
matrix Ux whose columns form an orthonormal basis of Tx.

The number of iterations of the for-loop is ⌈2/δ0⌉d at most. By the explanation in the proof
of Lemma 7.1, ‖F (x)‖ and DF (x) can be computed from a in O(N(1 + pmax/d)nd) operations.
By Lemma 7.3, smin(x) can be computed in O(log κ + log log dωd) operations. Hence, the total
complexity of the algorithm is bounded, for some absolute constant c, by

(
cd5p2max log(pmax)

)d
Nd2(1 + pmax/d).

By Lemma 5.4, the probability of event E(d) is at least 1 − C/
√
d. To complete the proof,

we will show that on E , Algorithm 2 outputs an approximate solution. The value of κ above was
chosen so that, by Lemma 7.3,

smin(x) ∈
[
σmin(DF (x)

∣∣
Tx

), σmin(DF (x)
∣∣
Tx

) +
η̄

2d7/4

]
.

Suppose that on one of the iterations of the for-loop, a point x ∈ Sd−1 such that ‖F (x)‖ ≤ t and
smin(x) ≥ η̄

d7/4
is found. Then, σmin(DF (x)

∣∣
Tx

) ≥ η̄
2d7/4

. Hence, by Corollary 6.4 the output will
be an approximate solution.

It remains to show that on E , a point as above is indeed found in the for-loop (instead of
returning xBF = (1, 0, . . . , 0)). Namely, denoting by N̄ the projection of N to Sd−1, we need to
show that there exists some x ∈ N̄ such that ‖F (x)‖ ≤ t and smin(x) ≥ η̄

d7/4
. The set N over which

the for-loop runs is a
√
dδ0-net of the cube [−1, 1]d. Suppose that w is an arbitrary point in Sd−1

and let y be the closest point to it in N . Since ‖y − y/‖y‖‖ ≤ ‖w − y‖ ≤
√
dδ0, the projection N̄

is a 2
√
dδ0-net of Sd−1.

By Point 3 of Definition 5.3, there exists some solution α ∈ Sd−1 such that σmin(DF (α)Uα) ≥
η/

√
d. Let x be the closest point to α in N̄ . Then, from Points 1 and 2 of Definition 5.3,

‖F (x)‖ ≤ ‖F (α)‖+ 2
√
dδ0 Lip

(0)(F ) ≤ 2δC0

d4p2max

√
log(pmax)

= t ,

and

smin(x) ≥ σmin(DF (x)Ux) ≥ σmin(DF (α)Uα)− 2
√
dδ0 Lip

(1)(F )

≥ η

d7/4
− δ

d4pmax

√
log(pmax)

≥ η

2d7/4
=

η̄

d7/4
.

This completes the proof.
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A Tools: Linear algebra

Theorem 5 (Wedin [Wed72]). Let A0,A1 ∈ Rm×n have singular value decomposition (for a ∈
{0, 1})

Aa = UaΣaV
T
a , (143)

with Σa containing the singular values in decreasing order. Further let Ua,+ ∈ Rm×k(a), V a,+ ∈
Rn×k(a), be formed by the first k(a) columns of U a, V a, so that

Ua =
[
Ua,+

∣∣Ua,−
]
, V a =

[
V a,+

∣∣V a,−
]
. (144)

Finally assume ∆ ≡ σk(1)(A1) − σk(0)+1(A0) > 0. Let P a = V a,+V
T
a,+ (respectively Qa =

Ua,+U
T
a,+) denote the projector onto the right singular space (left singular space) corresponding

to large singular values of Aa. Then we have

∥∥(In − P 0)P 1

∥∥
op

≤ 1

∆

{∥∥(I −Q0)(A0 −A1)P 1

∥∥
op
∨
∥∥Q1(A0 −A1)(I − P 0)

∥∥
op

}
, (145)

If instead we have ∆ ≡ σk(0)(A0)− σk(1)+1(A1) > 0, then

∥∥P 0(In − P 1)
∥∥

op
≤ 1

∆

{∥∥(I −Q1)(A0 −A1)P 0

∥∥
op
∨
∥∥Q0(A0 −A1)(I − P 1)

∥∥
op

}
. (146)

Corollary A.1. Let A0,A1 ∈ Rn×d and denote by v1(a), . . . ,vn(a), a ∈ {0, 1} two bases of right
singular vectors of these matrices, with associated singular values σ1(Aa) ≥ · · · ≥ σd(Aa) (including
vanishing singular values). Assume n < d and define, for m ≥ 1,

V0,m = span(vn−m+2(0), . . . ,vd(0)) , (147)

V1,1 = span(vn+1(1), . . . ,vd(1)) . (148)

(In particular, V1,1 is a subspace of the null space of A1.) Finally, denote by E1 ∈ Rd×(d−n) a
matrix whose columns form an orthonormal basis of V1,1, and by E0 ∈ Rd×(d−n+m−1) a matrix
whose columns form an orthonormal basis of V ⊥

0,m.
Then we have

∥∥ET
1E0

∥∥
op

≤ 1

σn−m+1(A0)
‖A0 −A1‖op . (149)

B Tools: Random matrix theory

Given the symmetric matrix M ∈ Rn×n, we denote by λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M ) its the
eigenvalues in increasing order. We denote by Fsc(t) = 1

2π

∫ (t∧2)∨(−2)
−2

√
4− x2 dx the semicircle

distribution.

Lemma B.1. For any t ∈ (−2, 2) and ε > 0 there exists a constant C0 = C0(t, ε) such that for
W ∼ GOE(N) and any k such that k/N ≤ Fsc(t)− ε,

P

(
λk(W ) > t

√
N
)
≤ C0 e

−N2/C0 . (150)

Proof. Since λk(W ) > t
√
N if and only if #{λi(W ) ≤ t

√
N} < k, the lemma follows from the large

deviation principle for the empirical measure of eigenvalues of a GOE matrix proved in [BAG97,
Theorem 2.1.1].
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Lemma B.2. For all c0 > 0, there exists C∗(c0) such that the following holds. If Z ∼ GOE(M,N),
c0N < M ≤ N and 1 ≤ ℓ ≤ M/2 then, for any ∆ > 0,

P

(
λℓ(ZZT) ≤ ∆2

(√
N −

√
M − 1

)2) ≤ (C∗(c0)∆)ℓ(N−M+ℓ) . (151)

Proof. Let f(u) = f(u1, . . . , uM ) denote the joint density of the ordered eigenvalues λ1 ≤ · · · ≤ λM ,
λi = λi(ZZT). We have [AGZ09, Proposition 4.1.3]

f(u) =
1

ZM,N

M∏

i=1

u
(N−M−1)/2
i e−ui/2

∏

i<j

(uj − ui)1JM (u) , (152)

where JM = JM (0) and JM (a) ⊆ RM is the set JM (a) := {u : a ≤ u1 ≤ · · · ≤ uM}, and

ZM,N =

(
2N

π

)M/2 M∏

i=1

Γ
(N − i+ 1

2

)
Γ
(M − i+ 1

2

)
. (153)

We denote joint density of the lowest ℓ eigenvalues u≤ℓ = (u1, . . . , uℓ) by fℓ. It is given by

fℓ(u≤ℓ) =
Fℓ(u≤ℓ)

ZM,N

∫

JM−ℓ(uℓ)

M∏

i=ℓ+1

ℓ∏

m=1

(ui − um)

M∏

i=ℓ+1

u
(N−M−1)/2
i e−ui/2

∏

ℓ<i<j

(uj − ui)du>ℓ ,

Fℓ(u≤ℓ) :=
ℓ∏

i=1

u
N−M−1

2
i e−

ui
2

∏

i<j≤ℓ

(uj − ui)1Jℓ
(u≤ℓ) .

We can bound the integral as

fℓ(u≤ℓ) ≤
Fℓ(u≤ℓ)

ZM,N

∫

JM−ℓ(uℓ)

M∏

i=ℓ+1

u
(N−M+2ℓ−1)/2
i e−ui/2

∏

ℓ<i<j

(uj − ui)du>ℓ

≤ Fℓ(u≤ℓ)

ZM,N

∫

JM−ℓ(0)

M∏

i=ℓ+1

u
(N−M+2ℓ−1)/2
i e−ui/2

∏

ℓ<i<j

(uj − ui)du>ℓ

=
ZM−ℓ,N+ℓ

ZM,N
Fℓ(u≤ℓ) .

Therefore

P

(
λℓ(ZZT) ≤ δ

)
≤ ZM−ℓ,N+ℓ

ZM,N

∫
Fℓ(u≤ℓ)1uℓ≤δdu≤ℓ

≤ ZM−ℓ,N+ℓ

ZM,N

1

ℓ!

∫ ℓ∏

i=1

u
N−M−1

2
i

∏

i<j≤ℓ

|uj − ui|
ℓ∏

i=1

10≤ui≤δdu≤ℓ

≤ ZM−ℓ,N+ℓ

ZM,N

1

ℓ!
Sℓ

(N −M + 1

2
, 1,

1

2

)
· δℓ(N−M+ℓ)/2 ,

where Sℓ(α, β, γ) is Selberg’s integral [AGZ09, Theorem 2,5.8]. In particular, we have

Sℓ(α, 1, 1/2) =

ℓ−1∏

i=0

Γ(α+ (i/2))Γ(1 + (i/2))Γ((3 + i)/2)

Γ(α+ 1 + (ℓ+ i− 1)/2)Γ(3/2)
.
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After reordering we can write the above bound as

P

(
λℓ(ZZT) ≤ δ

)
≤ 1

Γ(3/2)ℓℓ!

QM,N,ℓ

RM,N,ℓ
SM,N,ℓ TM,N,ℓ · δℓ(N−M+ℓ)/2 , (154)

where

QM,N,ℓ := 2−
ℓ
2
(N−M)− ℓ2

2 πℓ/2 ,

RM,N,ℓ :=
2ℓ∏

i=1

Γ
(
(N −M + i)/2

)
,

SM,N,ℓ :=

ℓ∏

i=1

Γ
(
(N + i)/2

)

Γ
(
(M − ℓ+ i)/2

) ,

TM,N,ℓ :=

ℓ∏

i=1

Γ
(
(N −M + i)/2

)

Γ
(
(N −M + ℓ+ 1 + i)/2

) ·
ℓ∏

i=1

Γ
(
(i+ 1)/2

)
Γ
(
(i+ 2)/2

)
.

We estimate the above quantities in the following lemma.

Lemma B.3. For all c0 > 0, there exists a constant C1 = C1(c0) such that the following holds. If
c0N < M ≤ N and 1 ≤ ℓ ≤ M/2, then

log
TM,N,ℓ

RM,N,ℓ
≤ −ℓ(N −M + ℓ) log(N −M + ℓ) + C1ℓ(N −M + ℓ) , (155)

log SM,N,ℓ ≤ ℓ
N −M + ℓ

2
logM + C1ℓ(N −M + 1) . (156)

The proof of this lemma is postponed. We will now use it to prove the claim of the present
one. Continuing from Eq. (154) (and denoting by C constants that depend on c0 and can change
from line to line):

P

(
λℓ(ZZT) ≤ ∆2

(√
N −

√
M − 1

)2) ≤ P

(
λℓ(ZZT) ≤ C∆2 (N −M)2

N

)

≤ TM,N,ℓ

RM,N,ℓ
SM,N,ℓ · (C∆)ℓ(N−M+ℓ) ·

(
(N −M)2

N

)ℓ(N−M+ℓ)/2

≤ (C∆)ℓ(N−M+ℓ) exp(EM,N,ℓ) ,

where, for C1, C2 depending on c0,

EM,N,ℓ :=− ℓ(N −M + ℓ) log(N −M + ℓ) + ℓ
N −M + ℓ

2
logM + C1ℓ(N −M + ℓ)

+ ℓ(N −M + ℓ) log(N −M)− 1

2
ℓ(N −M + ℓ) logN

≤C2ℓ(N −M + ℓ) .

Substituting above, and adjusting the constant C yields the claim.

We now complete the last proof by proving Lemma B.3.
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Proof of Lemma B.3. Recalling the Legendre duplication formula, Γ(z)Γ
(
z + 1

2

)
= 21−2z√π Γ(2z),

we have that

TM,N,ℓ

RM,N,ℓ
=

ℓ∏

i=1

Γ
(
(i+ 1)/2

)
Γ
(
(i+ 2)/2

)

Γ
(
(N −M + ℓ+ 1 + i)/2

)
Γ
(
(N −M + ℓ+ i)/2

)

= 2ℓ(N−M+ℓ−1)
ℓ∏

i=1

Γ(i+ 1)

Γ(N −M + ℓ+ i)
.

Using | log(n!)− n log n| < Cn for some absolute constant C > 0, (155) follows since

log

(
TM,N,ℓ

RM,N,ℓ

)
≤ 2(C + log 2)ℓ(N −M + 2ℓ)

+

ℓ∑

i=1

(
i log(i)− (N −M + ℓ+ i− 1) log(N −M + ℓ+ i− 1)

)

≤ 2(C + log 2)ℓ(N −M + 2ℓ)− ℓ(N −M + ℓ− 1) log(N −M + ℓ) .

In order to prove Eq. (156), we use Stirling’s formula to get, for some absolute constant C > 0,

log SM,N,ℓ ≤
ℓ∑

i=1

{
N + i

2
log

N + i

2
− N + i

2
− 1

2
log

N + i

2

−M − ℓ+ i

2
log

M − ℓ+ i

2
+

M − ℓ+ i

2
+

1

2
log

M − ℓ+ i

2

}
+ Cℓ

=

ℓ∑

i=1

{
N + i

2
log

N + i

M − ℓ+ i
+

N −M + ℓ

2
log

M − ℓ+ i

2

}

−
ℓ∑

i=1

{
N −M + ℓ

2
+

1

2
log

N + i

M − ℓ+ i

}
+ Cℓ

(a)

≤ −
ℓ∑

i=1

N + i

2
log

(
1− N −M + ℓ

N + i

)
+ ℓ

N −M + ℓ

2
logM + Cℓ

(b)

≤ ℓ
N −M + ℓ

2
logM +Cℓ+ C1(c0)ℓ(N −M) ,

where in (a) we omitted the negative sum and for (b) we applied the inequality − log(1− x) ≤ Cx
for 0 ≤ x ≤ 1− C−1 with C = (1− x)−1 to x = (N −M + ℓ)/(N + i).

Since (σmin(Z))2 = λ1(ZZT), the following is an immediate consequence of Lemma B.2.

Corollary B.4. In the setting of Lemma B.2,

P

(
σmin(Z) ≤ ε

(√
N −

√
M − 1

))
≤ (C∗(c0)ε)

N−M+1 . (157)
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