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The non-Oberbeck-Boussinesq (NOB) effects arising from variations in thermal expansivity
are theoretically and numerically studied in the context of rotating Rayleigh-Bénard convec-
tion under 2D configuration. The thermal expansivity increases from top to bottom, and its
variation is measured by a dimensionless factor 𝜖 . Utilizing an asymptotic expansion with
weak nonlinearity, we derive an amplitude equation, revealing that NOB effects amplify the
magnitude of convection. An order-𝜖2 NOB correction leads to a symmetry breaking about
the horizontal mid-plane, manifested in the strengthening of convection near the bottom and
its weakening near the top, forming a bottom-heavy profiles. At order 𝜖3, the conjunction of
NOB effects and nonlinear advection leads to a horizontal symmetry breaking. The downward
cold plumes become stronger and more concentrated compared to the upward warm plumes.
Numerical simulations validate the theoretical analyses in the weak nonlinear regime and
confirm robust horizontal asymmetry and stronger downward plumes at very large Rayleigh
numbers. This work advances our understanding of hydrothermal plumes in the subglacial
oceans on icy moons as well as tracer transport from the seafloor to the ice shell.
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1. Introduction
Rayleigh-Bénard convection (RBC) commonly exists in nature, manifested in various
scenarios such as afternoon convection in the atmosphere, hydrothermal plumes on the
seafloor, and flows in the convective zone of the sun. The RBC problem is generally
investigated under the Oberbeck-Boussinesq (OB) approximation, where fluid properties are
assumed to be constant, except for a linear relation between density and temperature in the
buoyancy term (Oberbeck 1879; Boussinesq 1903). However, this approximation becomes
invalid when flow compressibility or variations of fluid properties become considerable,
referring to Gray & Giorgini (1976). This can be achieved in a fluid with specific properties
(e.g., fresh water near freezing point, Wang et al. 2019), or if the imposed temperature
difference is sufficiently large (e.g., Zhang et al. 1997; Ahlers et al. 2006, 2008). The
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departures from the OB approximation are termed as non-Oberbeck-Boussinesq (NOB)
effects.

NOB effects arising from variations in fluid properties under large temperature difference in
non-rotating convection have been investigated for various fluids using theoretical analyses
(Fröhlich et al. 1992; Ahlers et al. 2006, 2007, 2008, 2010; Liu et al. 2018), laboratory
experiments (Zhang et al. 1997; Ahlers et al. 2006, 2007, 2008, 2010; Valori et al. 2017),
and numerical models (Fröhlich et al. 1992; Sugiyama et al. 2007; Ahlers et al. 2008; Sameen
et al. 2008, 2009; Sugiyama et al. 2009; Horn et al. 2013; Horn & Shishkina 2014; Buijs
2015; Demou et al. 2018; Liu et al. 2018; Demou & Grigoriadis 2019; Wan et al. 2020; Pan
& Choi 2023; Pan et al. 2023). The literature confirmed that NOB effects lead to a symmetry
breaking about the horizontal mid-plane in temperature drops, thicknesses of boundary
layers, and velocities. This symmetry breaking is related to a shift in the temperature at the
center (bulk) of the convective cell, 𝑇𝑐, away from the corresponding temperature in the OB
convection. The shift of 𝑇𝑐 in liquid has been attributed to variations in viscosity 𝜈, which
decreases with temperature, enhancing mixing near the cold surface relative to the hot surface
and raising the bulk liquid temperature. Building upon this argument, Ahlers et al. (2006)
extended Prandtl-Blasius boundary-layer theory to provide a theoretical calculation on 𝑇𝑐.
For gases, Ahlers et al. (2007, 2008) applied the same principles and found a decrease in the
bulk temperature in pressurized ethane gas, attributed to variations in thermal expansivity 𝛼.

NOB effects also alter the heat transport efficiency, characterized by the ratio of Nus-
selt number 𝑁𝑁𝑂𝐵

𝑢 to that in the OB convection 𝑁𝑂𝐵
𝑢 . In water, NOB effects decrease

𝑁𝑁𝑂𝐵
𝑢 /𝑁𝑂𝐵

𝑢 (Ahlers et al. 2006; Sugiyama et al. 2009; Horn & Shishkina 2014; Demou
et al. 2018; Demou & Grigoriadis 2019; Pan & Choi 2023). In glycerol, 𝑁𝑁𝑂𝐵

𝑢 /𝑁𝑂𝐵
𝑢 also

decreases at large Rayleigh number (Zhang et al. 1997; Ahlers et al. 2006; Sugiyama et al.
2007; Horn et al. 2013; Pan & Choi 2023; Pan et al. 2023). This decrease is attributed to
variations in thermal diffusivity 𝜅 in water (Ahlers et al. 2006), while in glycerol, it is linked
to strong nonlinear temperature dependence of 𝜈 (Sugiyama et al. 2007; Horn et al. 2013). In
gases, NOB corrections are mainly caused by the strong temperature dependence of multiple
fluid properties. While some studies have observed a decrease in 𝑁𝑁𝑂𝐵

𝑢 /𝑁𝑂𝐵
𝑢 in perfect

gases with significant variations in 𝜅 (Fröhlich et al. 1992), others have reported an increase
in pressurized ethane gas, mainly attributed to variations in 𝛼 (Ahlers et al. 2007, 2008).
A comprehensive discussion on NOB effects on 𝑇𝑐 and 𝑁𝑢 can be found in Sameen et al.
(2009).

Convection in meteorology, geophysics, and astrophysics is generally influenced by the
rotation of planets and stars. Therefore, it becomes imperative to extend the study of NOB
effects to rotating RBC. Horn & Shishkina (2014) explored NOB effects caused by variations
in 𝜈 in rotating RBC and observed that strong rotation suppresses NOB effects, evident in
a sharp weakening in the shift of 𝑇𝑐. Nevertheless, there are still unknowns in this field, as
emphasized in the review by Ecke & Shishkina (2023).

In the present paper, we pay attention to another type of NOB effects where only 𝛼 is not a
constant, and its variation can be induced by both pressure gradient and temperature gradient.
This situation is relevant to the deep fresh subglacial ocean on icy satellites. Heading toward
greater depth, both pressure and temperature increase, leading to a substantial increase in 𝛼.
This type of NOB effects is more pronounced in a freshwater ocean, because 𝛼 is negative
near the freezing point at low pressure and becomes positive in the deep ocean (Melosh et al.
2004; Zeng & Jansen 2021). Recently, Kang et al. (2022) used an oceanic general circulation
model to simulate convective plumes on Enceladus, taking into account this type of NOB
effects. They found only several pronounced cold plumes descending from the top, although
the ocean is mainly heated from the bottom. With all strong plumes oriented downward,
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tracers injected by hydrothermal vents on the seafloor may be much harder to be transported
upward to encounter the ice shell.

In this paper, we will use asymptotic expansion to solve the governing equations for 2D
rotating RBC to explore NOB effects arising from depth-dependent 𝛼. The structure of this
paper is as follows. Problem setup is provided in § 2. A brief linear instability analysis is
provided in § 3. The major theoretical analyses, NOB effects on convection pattern based on
weak nonlinear analysis are presented in § 4. Numerical simulations and results are displayed
in § 5. § 6 is a brief summary and discussion.

2. Problem setup
The rotating RBC system is illustrated in figure 1. The fluid is confined between a cold
top plate and a warm bottom plate, separated by 𝐻. The two plates are thermostatic, with
temperatures 𝜃𝑡 and 𝜃𝑏, respectively, where 𝜃𝑏 is larger than 𝜃𝑡 . The lateral conditions are
infinity. The system rotates around the vertical axis. The rotating RBC is well-described by
the governing equations

𝜕𝒖

𝜕𝑡
= −𝒖 · ∇𝒖 − 𝑓 𝑧 × 𝒖 − ∇𝜙 + 𝑔𝛼𝜃𝑧 + 𝜈∇2𝒖, (2.1)

𝜕𝜃

𝜕𝑡
= −𝒖 · ∇𝜃 + 𝜅∇2𝜃, (2.2)

𝜕𝑤

𝜕𝑧
= −

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

)
, (2.3)

where (𝑥, �̂�, 𝑧) represent unit vectors along corresponding axes, 𝒖 = (𝑢, 𝑣, 𝑤) denotes
the velocity components along axes, 𝑓 is the Coriolis parameter, 𝑔 is the gravity, 𝜙 is
geopotential, and 𝜃 is temperature. Fluid viscosity 𝜈 and diffusivity 𝜅 are constant, while
thermal expansivity 𝛼 is a function of 𝑧. The governing equations are equivalent to the
vertical vorticity equation

𝐷𝜈𝑞 = − 𝑓 𝜎 + ∇ℎ × (−𝒖 · ∇𝒖ℎ), (2.4)

the horizontal convergence equation

𝐷𝜈𝜎 = 𝑓 𝑞 − ∇2
ℎ𝜙 + ∇ℎ · (−𝒖 · ∇𝒖ℎ), (2.5)

and the vertical velocity equation

𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
𝑤 = 𝑔𝐷𝜅𝐷𝜈 (𝛼∇2

ℎ𝜃) − 𝑓 𝐷𝜅

𝜕

𝜕𝑧
∇ℎ × (−𝒖 · ∇𝒖ℎ)

−𝐷𝜅𝐷𝜈

𝜕

𝜕𝑧
∇ℎ · (−𝒖 · ∇𝒖ℎ) + 𝐷𝜅𝐷𝜈∇2

ℎ (−𝒖 · ∇𝑤) , (2.6)

where

𝐷𝜈 =
𝜕

𝜕𝑡
− 𝜈∇2, 𝐷𝜅 =

𝜕

𝜕𝑡
− 𝜅∇2, (2.7a)

𝑞 =
𝜕𝑣

𝜕𝑦
− 𝜕𝑢

𝜕𝑥
, 𝜎 =

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦
, (2.7b)

∇ℎ = 𝑥
𝜕

𝜕𝑥
+ �̂� 𝜕

𝜕𝑦
, ∇2

ℎ = ∇ℎ · ∇ℎ, 𝒖ℎ = (𝑢, 𝑣). (2.7c)

We also introduce the Rayleigh number 𝑅𝑎, Taylor number 𝑇𝑎, Prandlt number 𝑃𝑟 , and the
dimensionless differential of thermal expansivity 𝜖 to facilitate subsequent analysis. They
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𝐻𝐻
�̂�𝑧

𝑥𝑥� or𝑦𝑦�

𝜃𝜃𝑡𝑡

𝜃𝜃𝑏𝑏

𝑓𝑓�̂�𝑧

Figure 1: Schematic of rotating RBC confined between top and bottom plates spaced by a
distance 𝐻. Two plates are kept at 𝜃𝑡 and 𝜃𝑏 , respectively. 𝑥, �̂�, and 𝑧 represent unit

vectors along axes. Rotation (red vector) is along vertical axis.

are defined as follows:

𝑅𝑎 =
𝑔�̄�𝐻3Δ𝜃

𝜅𝜈
, 𝑇𝑎 =

𝑓 2𝐻4

𝜈2 , 𝑃𝑟 =
𝜈

𝜅
, 𝜖 =

Δ𝛼

2�̄�
, (2.8a, b, c, d)

where Δ𝜃 and Δ𝛼 are differences of temperature and thermal expansivity from bottom to
top plates, and �̄� represents the spatial average of 𝛼.

We follows the procedure outlined in Scheel (2007) and Liu et al. (2018) to do weak
nonlinear analysis, assuming all quantities are a superposition of the following asymptotic
expansions in powers of 𝜖 :

A = A0 + 𝜖A1 + 𝜖2A2 + 𝜖3A3 + ..., (2.9)

where A denotes (𝒖, 𝜃, 𝑞, 𝜎, 𝜙). NOB effects are reflected in

𝛼 = 𝛼0 + 𝜖𝛼1, (2.10)

where the two terms satisfy �̄�0 = �̄� and �̄�1 = 0. Since Eqs. (2.1)–(2.6) can be expressed in a
power series of 𝜖 and equations for each power of 𝜖 should be homogeneous, we can obtain
solutions for each power of 𝜖 , as shown in subsequent sections.

The equations and solutions are constrained by the following thermostatic and stress-free
boundary conditions:

𝜃0 = 𝜃𝑏, 𝜃1 = 𝜃2 = ... = 0 for 𝑧 = 0, (2.11a)
𝜃0 = 𝜃𝑡 , 𝜃1 = 𝜃2 = ... = 0 for 𝑧 = 𝐻, (2.11b)

𝑤𝑖 =
𝜕2𝑤𝑖

𝜕𝑧2 = 0 𝑖 = 0, 1, 2, ... for 𝑧 = 0, 𝐻. (2.11c)

3. Linear stability analysis
Before the onset of convection, a quiescent conductive state is a stable solution. The governing
equations are reduced to

d2𝜃0

d𝑧2 = 0, (3.1)

d𝜙0
d𝑧

= 𝑔𝛼𝜃0. (3.2)

Focus on Fluids articles must not exceed this page length
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The corresponding solutions are

𝑢0 = 𝑣0 = 𝑤0 = 𝑞0 = 𝜎0 = 0, (3.3)
𝜃0 = Γ𝑧 + 𝜃𝑏, (3.4)

𝜙0 = 𝑔𝛼0

(
1
2
Γ𝑧2 + 𝜃𝑏𝑧

)
+ 𝜖𝑔

∫ 𝑧

0
𝛼1𝜃0d𝑧′, (3.5)

where Γ = (𝜃𝑡 − 𝜃𝑏)/𝐻 represents the temperature lapse rate. Note that the second term
on the right-hand side of 𝜙0 is retained despite its dependence on the power of 𝜖 , as it only
appears in 𝜙0 and does not generate any motion.

The motions of convection occur at order 𝜖 and higher orders. At order 𝜖 , Eq. (2.6) has the
form of [

𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
+ 𝑔𝛼0Γ𝐷𝜈∇2

ℎ

]
𝑤1 = 0. (3.6)

The simplest solution of 𝑤1 satisfying the boundary conditions (2.11) is a two-dimensional
roll described as

𝑤1 ∼ 𝑒𝜎𝑡 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (3.7)
where 𝜎 is the growth rate, 𝑘 and 𝑙 are the horizontal wavenumbers in 𝑥- and 𝑦-directions,
and 𝑚 ≡ 𝜋/𝐻 is the vertical wavenumber. Substituting this solution into Eq. (3.6) leads to
the dispersion relation

𝜎3 + 𝐵𝜎2 + 𝐶𝜎 + 𝐷 = 0, (3.8)
where

𝐵 = (2𝜈 + 𝜅)𝐾2
11, (3.9a)

𝐶 = 𝜈(𝜈 + 2𝜅)𝐾4
11 +

𝑓 2𝑚2

𝐾2
11

+ 𝑔𝛼0Γ
𝑘2
ℎ

𝐾2
11
, (3.9b)

𝐷 = 𝜅(𝜈2𝐾6
11 + 𝑓 2𝑚2) + 𝑔𝛼0Γ𝜈𝑘

2
ℎ . (3.9c)

Here, 𝑘2
ℎ
= 𝑘2 + 𝑙2 and 𝐾2

11 = 𝑘2
ℎ
+ 𝑚2. Due to the presence of rotation, two marginal

instabilities can occur. One is a steady convection corresponding to 𝐷 = 0, and the other is
an oscillatory state corresponding to 𝐵𝐶 = 𝐷 (Chandrasekhar 1953; Boubnov & Golitsyn
1995; Wood & Bushby 2016; Yano 2023b). In the present paper, we solely focus on the onset
of the first instability at 𝐷 = 0, which yields a critical Rayleigh number

𝑅𝑎𝑐 = −𝑔𝛼0Γ𝑐𝐻
4

𝜅𝜈
=
𝐾6

11 + 𝑓 2𝑚2𝜈−2

𝑘2
ℎ

𝐻4, (3.10)

where Γ𝑐 is the critical lapse rate of temperature. 𝑅𝑎𝑐 is the same as in the OB case, while
its NOB correction is of leading order 𝜖2, as demonstrated in § 4.2.

The most unstable mode should satisfy 𝜕𝑅𝑎𝑐/𝜕𝑘2
ℎ
= 0, leading to

2

(
𝑘2
ℎ

𝑚2

)3

+ 3

(
𝑘2
ℎ

𝑚2

)2

− 1 =
𝑓 2

𝜈2𝑚4 =
𝑇𝑎

𝜋4 . (3.11)

The cubic function on the left-hand side monotonically increases as 𝑘2
ℎ
/𝑚2 increases. The

truncation condition is 𝑘2
ℎ
/𝑚2 ⩾ 1/2 due to the constraint 𝑇𝑎 ⩾ 0.

The convection occur at a slightly supercritical 𝑅𝑎, with the supercriticality 𝛿𝑅𝑎 = 𝑅𝑎−𝑅𝑎𝑐

being nearly of 𝜖2 order. To facilitate the following analysis, we denote this supercriticality
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Figure 2: Spatial patterns of the vertical velocity, temperature, horizontal divergence, and
vertical vorticity at order 𝜖 (from left to right). Red shadings represent positive phase, and

blue shadings represent negative phase.

as 𝛿Γ = Γ − Γ𝑐 ∼ 𝜖2Γ𝑐. Thus, the convection can be treated as a quasi-steady state with very
slow changes. That is, 𝜕/𝜕𝑡 ≈ 0 but 𝜕/𝜕𝑇 ≠ 0, where 𝜕/𝜕𝑇 ∼ 𝜖2.

4. Asymptotic solution and NOB effects on convection pattern
4.1. Asymptotic solution

At order 𝜖 , solutions of the steady two-dimensional rolls are:

𝑢1 = 𝑈1 cos (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (4.1)
𝑣1 = 𝑉1 cos (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (4.2)
𝑤1 = 𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (4.3)
𝜃1 = Θ1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (4.4)
𝑞1 = 𝑄1 sin (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (4.5)
𝜎1 = Σ1 sin (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧. (4.6)

The specific derivation and formulas of coefficients are given in Appendix A. The spatial
patterns of these solutions are depicted in figure 2. They are analogous to those in the OB
case.

Nonlinear advection and NOB effects would then affect convection at the 𝜖2 order. We
adopt a special form of 𝛼1 = 𝛼0 cos𝑚𝑧 to roughly mimic the increase in 𝛼 due to increased
pressure and obtain the following solutions:

𝑢2 = 𝑈21 cos (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +𝑈22 sin 2(𝑘𝑥 + 𝑙𝑦), (4.7)
𝑣2 = 𝑉21 cos (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +𝑉22 sin 2(𝑘𝑥 + 𝑙𝑦), (4.8)
𝑤2 = 𝑊2 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧, (4.9)
𝜃2 = Θ21 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧 + Θ22 sin 2𝑚𝑧, (4.10)
𝑞2 = 𝑄21 sin (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +𝑄22 cos 2(𝑘𝑥 + 𝑙𝑦), (4.11)
𝜎2 = Σ2 sin (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧. (4.12)

The specific derivation and formulas of coefficients are given in Appendix A. Nonlinear
advection generates a vertically homogeneous field of horizontal velocities and vorticity
and a horizontally homogeneous field of temperature, whereas it cannot generate any vertical
motion at the 𝜖2 order, as elaborated in Appendix A (also consistent with Boubnov & Golitsyn
1995). The only contribution to 𝑤2 comes from the NOB effects. The dynamics induced by
NOB effects are illustrated in figure 3. They tend to enhance convection in the lower column
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Figure 3: Similar to figure 2 but at order 𝜖2 resulting from NOB effects. Grey contour
lines represent solutions at power of 𝜖 . Solid lines represent positive phase, and dashed

lines represent negative phase.
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z/
H

(a)

0 2
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(b)

0 2
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(c)

Figure 4: Spatial patterns of vertical velocity at order 𝜖3 with wavenumbers of (a)
(𝑘, 𝑙, 3𝑚), (b) (3𝑘, 3𝑙, 𝑚), and (c) the sum of (2𝑘, 2𝑙, 𝑚) and (2𝑘, 2𝑙, 3𝑚). Red shadings
represent positive phase, and blue shadings represent negative phase. Contour lines are the

same as figure 3. 𝑇𝑎 = 103, 𝑃𝑟 = 7.

while diminish it in the upper column. This phenomenon arises from the fact that a fluid
parcel with a constant temperature anomaly gains more buoyancy in the lower column and
less in the upper column.

At order 𝜖3, only the solution of 𝑤3 is presented below own to the complexity of solutions,
and our main focus is on vertical velocity:

𝑤3 = 𝑊31 sin (𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧 +𝑊32 sin 3(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧
+ cos 2(𝑘𝑥 + 𝑙𝑦) (𝑊33 sin𝑚𝑧 +𝑊34 sin 3𝑚𝑧). (4.13)

Detailed derivation and formulas of coefficients are given in Appendix A. Figure 4 displays
the patterns of these components with 𝑇𝑎 set to 103 and 𝑃𝑟 set to 7. The first two components
tend to homogenize the velocity field within the bulk of convection cells but strengthen it near
the vertical and lateral boundaries of the cells, as shown in panels (a) and (b), respectively.
The component with horizontal wavenumber of (2𝑘, 2𝑙) tends to weaken the upwellings
(solid contour) but strengthen the downwellings (dashed contours), as shown in panel (c). It
is this 3rd order (2𝑘, 2𝑙) term that breaks the horizontal symmetry of the convective plumes,
as observed in previous works (Horn et al. 2013; Buijs 2015; Liu et al. 2018; Kang et al.
2022).
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4.2. Amplitude equation
Also at order 𝜖3, the nonlinear and NOB terms with wavenumber (𝑘, 𝑙, 𝑚) project to the
null space of the equation. Solvability condition then yields an amplitude equation

𝑔0
𝜕𝑊1
𝜕𝑇

= 𝑔1𝑊1 − 𝑔3𝑊
3
1 , (4.14)

where

𝑔0 =
𝜅𝜖−2

𝑘2
ℎ
/𝑚2 + 1

(
1 + 1

𝑃𝑟

𝜈2𝐾6
11 − 𝑓 2𝑚2

𝜈2𝐾6
11 + 𝑓 2𝑚2

)
, (4.15a)

𝑔1 = 𝑚2𝜅2

(
1
𝜖2
𝛿𝑅𝑎

𝑅𝑎𝑐

+
𝐾2

11

2𝐾2
12
𝜒2

)
, (4.15b)

𝑔3 =
1

8(𝑘2
ℎ
/𝑚2 + 1)

(
1 − 𝑚2

𝑘2
ℎ
𝑃2
𝑟

𝑓 2𝑚2

𝜈2𝐾6
11 + 𝑓 2𝑚2

)
, (4.15c)

are coefficients as functions of 𝑃𝑟 and 𝑇𝑎. Here 𝐾2
12 = 𝑘2

ℎ
+ 4𝑚2, and 𝜒2 is a positive dimen-

sionless coefficient. The derivation and the forms of coefficients are shown in Appendix A.
To better demonstrate the underlying physics, we collect the terms related to geopotential
and temperature tendencies, and rewrite the above equation into

𝜕𝑊1
𝜕𝑇

= −𝜕𝛿𝜙1
𝜕𝑧

+ 𝑔𝛼𝛿𝜃1, (4.16)

where 𝛿𝜙1 = 𝜙1(𝑅𝑎) − 𝜙1(𝑅𝑎𝑐) and 𝛿𝜃1 = 𝜃1(𝑅𝑎) − 𝜃1(𝑅𝑎𝑐), represent departures of
O(𝜖) geopotential and temperature at supercritical 𝑅𝑎 from those in critical state at 𝑅𝑎𝑐,
respectively. 𝛿𝜙1 is mainly induced by the nonlinear term ∇ℎ×(−𝒖1 ·∇𝒖ℎ2), since any change
of vorticity corresponds to a change in local geopotential that satisfies the quasi-geostrophic
approximation, i.e., 𝛿𝑞 ≈ ∇2

ℎ
𝜙/ 𝑓 . Then, this variation in local geopotential should be yield

via additional vertical motion. 𝛿𝜃1 is caused by the nonlinear thermal advection−𝒖1 ·∇𝜃2 and
the supercritical thermal transport −𝑤1𝛿Γ. The terms associated with 𝛿𝜙1 and 𝛿𝜃1 resulting
from nonlinear advection lead to 𝑔3-term in Eq. (4.14), and supercritical transport and NOB
effects lead to 𝑔1-term.

When the convection reaches equilibrium state (i.e., 𝜕𝑊1
𝜕𝑇

= 0), the final amplitude satisfies

𝑊2
1 =

𝑚2𝜅2

𝑔3𝜖2
𝛿𝑅𝑎

𝑅𝑎𝑐︸      ︷︷      ︸
(𝑊OB

1 )2

+
𝑚2𝜅2𝐾2

11

2𝑔3𝐾
2
12
𝜒2︸        ︷︷        ︸

(𝑊NOB
1 )2

(4.17)

The first term corresponds to the 𝑤 amplitude under OB approximation, and the second term
is an additional component related to NOB effects. As can be seen, the NOB effects amplify
the convection and reduce the critical 𝑅𝑎 where𝑊1 = 0. The corrected 𝑅∗

𝑎𝑐 follows

𝑅∗
𝑎𝑐 = 𝑅𝑎𝑐

(
1 − 𝜖2 𝜒2𝐾

2
11

2𝐾2
12

)
, (4.18)

A similar 𝜖2-correction has also been proposed by Paolucci & Chenoweth (1987), Fröhlich
et al. (1992), Liu et al. (2018), and Pan et al. (2023) to be able to suppress convection (i.e.,
increase 𝑅𝑎𝑐), when the 𝜈, 𝜅-related NOB effects are considered.

The dependencies of 𝑔0 and 𝑔3 on 𝑇𝑎 and 𝑃𝑟 are illustrated in figure 5. Our results are
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the downwelling center, i.e., 𝑘𝑥 + 𝑙𝑦 = 3𝜋/2, and (c) the mid-plane, i.e., 𝑧 = 𝐻/2, scaled
by 𝜖𝑊1. Different colored curves represent components for each power of 𝜖 . Black solid

curves represent their sum. Here, 𝑇𝑎 = 103, 𝑃𝑟 = 7, 𝜖 = 2.

generally consistent with Scheel (2007), except that the magnitudes of 𝑔0 and 𝑔3 are off
by a constant factor. This discrepancy may stem from two key distinctions: firstly, they
applied the no-slip condition at top and bottom plates and employed hyperbolic functions
in the 𝑧-direction, whereas the present paper uses the stress-free condition and sinusoidal
functions; secondly, they considered slow changes along the axis aligned with convective
rolls, whereas no changes in this direction here. For fluid with large 𝑃𝑟 , such as water, the
pitchfork bifurcation is always supercritical and stable (𝑔3 > 0). However, in fluids with very
small 𝑃𝑟 , there exist a range of 𝑇𝑎 where the bifurcation is subcritical but unstable (𝑔3 < 0),
corresponding to an intermittent convection, as proposed by Bajaj et al. (2002) and Scheel
(2007). Fröhlich et al. (1992) and Liu et al. (2018) found that pronounced 𝜈, 𝜅-related NOB
effects can also cause this subcritical pitchfork bifurcation.

When there are no NOB effects and rotation, Eq. (4.17) reduces to 8𝜅2𝐾2
11𝛿𝑅𝑎/(𝜖2𝑅𝑎𝑐),

consistent with standard results under OB approximation (Yano 2023a).

4.3. Symmetry breaking
Figure 6 shows an example solution for 𝑤 with 𝑇𝑎 = 103 and 𝑃𝑟 = 7. We set 𝜖 to 2 to
emphasize NOB effects, which only show up in higher-order terms (Eq. 2.9). Although this
choice gets beyond where weakly nonlinear analysis should hold, the results still illuminate
the correct general trends.

The key feature that shows up in figure 6 is the asymmetry about the horizontal mid-
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plane, 𝑤(𝑥, 𝑦, 𝑧) ≠ 𝑤(𝑥, 𝑦, 𝐻 − 𝑧). The vertical profiles of 𝑤 are bottom-heavy in both
the upwelling and downwelling branches. The most substantial contribution comes from the
NOB-induced 𝑤2 at O(𝜖2), as summarized in figure 12. Similar asymmetry is also evident
in other physical properties and is in line with previous literature on the NOB effects induced
by the inhomogeneity of 𝜈 and 𝜅 (e.g., Fröhlich et al. 1992; Horn & Shishkina 2014; Valori
et al. 2017; Liu et al. 2018). A notable difference between the 𝜈, 𝜅-related and 𝛼-related
NOB effects here is that there is no asymmetry in the vertical profile of mean temperature or
a shift of the center (bulk) temperature of the fluid. This difference stems from the fact that
the 𝛼 variations in our work is prescribed to be a function of depth, whereas the variations of
𝜈 and 𝜅 in previous work are set by temperature, which in turn is determined by dynamics.
Our 𝛼 variations act equally on both the upward warm branch and the downward cold
branch, thereby entirely offsetting any warming in the upward branch with the cooling in the
downward branch.

Figure 6(a,b) also illustrates a symmetry breaking between upward and downward
convection, i.e., 𝑤(𝑥, 𝑦, 𝑧) ≠ −𝑤(−𝑥, −𝑦, 𝑧). The downward convection is stronger than
the upward convection. Figure 6(c) depicts the vertical velocity structure in the horizontal
mid-plane 𝑧 = 𝐻/2, highlighting the horizontal asymmetry. The upward convection is
weaker, more homogeneous and occupies a larger portion of the area, whilst the downward
convection is stronger and more concentrated. This phenomenon is primarily attributed to the
fact that the component of 𝑤3 with wavenumber of (2𝑘, 2𝑙, 𝑚) remains negative in both the
upwelling and downwelling branches, which is at order 𝜖3 and arises from the conjunction
of nonlinear advection and NOB-induced bottom-heavy profiles (figure 12).

This horizontal symmetry breaking aligns with numerical results in previous literature.
Buijs (2015) conducted direct numerical simulations of water convection where many fluid
properties vary spatially. The author found a similar asymmetric structure of vertical velocity
as illustrated in figure 6(c), which may be attributed to variations of 𝛼 in the experiment.
Kang et al. (2022) employed a more complicated general circulation model to simulate
hydrothermal plumes in a hypothetical fresh subglacial ocean on Enceladus. In this scenario,
𝛼 undergoes a transition from a negative to a positive value, resulting in concentrated cold
plumes descending from the top with much greater strength than the upward warm plumes.

Notably, horizontal symmetry breaking arises from 𝑤3 with wavenumber of (2𝑘, 2𝑙).
However, whether the upward or downward branch is stronger depends on the phase of this
𝑤3. In our analysis, the bottom-heavy profile of 𝛼 induces the bottom-heavy profile of 𝑤2,
which in turn induces 𝑤3 favoring the downward branch (figures 6 and 12). However, the
asymmetry could reverse when the phase of the aforementioned 𝑤3 is opposite. This could
happen in our analysis if 𝑇𝑎 and 𝑃𝑟 are both very small (see Appendix A). In gaslike ethane
where 𝛼 decreases from top to bottom, we expect 𝑤 to be top-heavy and upward plumes
to dominate downward ones. Also, changes in 𝜈 and 𝜅 can also induce symmetry breaking:
DNS for convection in glycerol (Horn et al. 2013) and the nonlinear analysis for convection
in perfect gas (Liu et al. 2018) both exhibit top-heavy velocity profiles and amplify upward
plumes relative to downward ones.

4.4. Effects of rotation
To apply NOB effects to geo- and astrophysics, rotation must be considered. In this section, we
discuss the effects of rotation on the NOB convection, where rotation is characterized by the
Taylor number 𝑇𝑎. It is evident that rotation postpones the onset of convection, as manifested
by an increase in 𝑅𝑎𝑐 with 𝑇𝑎 (shown in figure 7a). In the rapidly rotating regime, 𝑅𝑎𝑐 from
linear analysis well matches the two-third power law of 8.7𝑇2/3

𝑎 proposed by Chandrasekhar
(1953).

Rapids articles must not exceed this page length
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The two-third power law is attached in panel (a). 𝑃𝑟 is set to 7.

In figure 7(b), we show the magnitude of convective velocity as a function of 𝑇𝑎 (Eq. 4.17)
with 𝑃𝑟 = 7. As we vary 𝑇𝑎, we remain 𝛿𝑅𝑎 = 𝜖2𝑅0

𝑎𝑐 as a constant, where 𝑅0
𝑎𝑐 is the

critical Rayleigh number for non-rotating RBC. By so doing, we consider a system whose
Rayleigh number exceed critical values by a fixed amount regardless of the rotation rate.
As a result, 𝛿𝑅𝑎/𝑅𝑎𝑐 in Eq. (4.17) decreases with 𝑇𝑎, as 𝑅𝑎𝑐 increases. The amplitude first
slightly decreases then increases with 𝑇𝑎 due to the competition between a decreased 𝑊OB

1
and an increased 𝑊NOB

1 . The decreased 𝑊OB
1 is consistent with the fact that strong rotation

suppresses vertical motion, known as the Taylor column. 𝑊NOB
1 is enhanced because the

temperature anomaly in the interior increases with 𝑇𝑎, leading to a stronger NOB buoyancy
forcing.

In figure 8, we present the coefficients of 𝑤 at each power of 𝜖 to𝑊1 as the function of 𝑇𝑎
(i.e.,𝑊𝑛/𝑊1, obtained from Appendix A). These ratios represent the relative strengths of 𝑤
at each power of 𝜖 to 𝑤1 at 𝜖 = 1. The increases in𝑊2/𝑊1 and𝑊31/𝑊1 with 𝑇𝑎 indicate that
the contributions from 𝑤2 and 𝑤3 with wavenumber (𝑘, 𝑙, 3𝑚) become more prominent as
rotation gets stronger. These components mainly arise from the NOB buoyancy (see forcing
terms Eq. A 33), and thus are expected to strengthen as the temperature anomaly increases
with rotation. In contrast,𝑊32/𝑊1,𝑊33/𝑊1, and𝑊34/𝑊1 decrease with rotation and approach
zero as 𝑇𝑎 increases. These components are primarily generated by the advection of vorticity
and temperature (see forcing terms Eqs. A 35 and A 36). However, the stronger rotation
makes the flows follow the thermal-wind relation more closely, meaning that the flows align
almost parallel to the isotherms and become less effective in advecting heat and vorticity. As
a result, the corresponding vertical motion weakens. This suggests that horizontal symmetry
breaking is more prominent at weak rotation, whereas the bottom-heavy profile of vertical
velocity is more prominent at strong rotation.

5. Numerical simulations
In this section, we use numerical simulations to validate our asymptotic solutions and to
explore NOB effects under more supercritical conditions (i.e., greater 𝛿𝑅𝑎). As demonstrated
in previous sections, the 𝛼-induced NOB effects mainly have two effects. First, the order 𝜖2

correction has a 2𝑚 vertical wavenumber, making the convection bottom-heavy. The degree
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of this vertical asymmetry is quantified by a ratio 𝑟1

𝑟1 =
𝜖2𝑊2
𝜖𝑊1

= 𝜖 𝜒2, (5.1)

where we utilize the expression of 𝑊2 provided in Appendix A. Second, at order 𝜖3, the
correction terms with 2𝑘ℎ horizontal wavenumber induce an asymmetry between upward and
downward plumes. For the NOB effects considered in this work, where thermal expansivity
𝛼 increases with depth, downward plumes are stronger than upward ones. This horizontal
asymmetry primarily stems from 𝑤3 with the wavenumber of (2𝑘, 2𝑙, 𝑚), and can be
quantified by

𝑟2 =
𝜖3𝑊33
𝜖𝑊1

= 𝑐𝑟 𝜖

(
𝛿𝑅𝑎

𝑅𝑎𝑐

+ 𝜖2 𝐾
2
11

2𝐾2
12
𝜒2

)1/2

, (5.2)

where 𝑐𝑟 is a dimensionless coefficient varying with 𝑇𝑎, and its specific value at arbitrary
𝑇𝑎 can be determined using the expression of 𝑊33 provided in Appendix A. 𝑟1 and 𝑟2 both
increase with 𝜖 , the strength of NOB effects, as expected. Meanwhile, they are modulated by
𝑇𝑎, and 𝑟2, the measure of the asymmetry between upward and downward plumes, increases
with supercriticality (𝛿𝑅𝑎), which has been assumed to be O(𝜖2) in our analysis.

5.1. Dependence on 𝜖 and 𝑇𝑎
We use the Dedalus solver (Burns et al. 2020) to integrate governing equations for RBC
(2.1)–(2.3) with the free-slip boundary conditions (2.11). The thermal expansivity is set
to increase with depth following �̄� + 𝜖�̄� cos 𝜋𝑧, with 𝜖 being the measure of the relative
variation of 𝛼 throughout the domain. The model is configured to have only two dimensions,
𝑥 and 𝑧, where all fields including 𝑣, the velocity in 𝑦-direction, remains unchanged along
𝑦-direction. By limiting the dynamics to 2D, we are able to conduct a decent number of
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Figure 9: Dependencies of (a) 𝑅∗𝑎𝑐 , (b) 𝑟1, and (c) 𝑟2 on 𝜖 . In panels (b) and (c), 𝑅𝑎 = 700
and 𝑃𝑟 = 7. In panel (c), blue squares correspond to using the first method in Eq. (5.5),

and red ones correspond to using the second method. Theoretical predictions (Eqs. 4.18,
5.1, and 5.2) are represented by the solid curves in each panel.

simulations with relatively low computational cost. Our domain is periodic in the horizontal
dimension(s) and has a dimensionless width of 2

√
2. The vertical extension of our domain

is set to 1 (dimensionless). This width is chosen to accommodate the most unstable mode
𝑘ℎ = 𝑚/

√
2 and to mitigate the effects of finite domain on the most unstable 𝑘ℎ. The grid

points are 128 × 64.
We first explore how the bottom-heavy structure (𝑟1) and the asymmetry between the

upward and downward plumes (𝑟2) vary with 𝜖 in the absence of rotation. The critical
Rayleigh numbers are firstly examined. As illustrated in figure 9(a), the critical Rayleigh
number decreases with 𝜖 following a quadratic shape, indicating that NOB effects indeed
promote convection onset at O(𝜖2), as predicted by Eq. (4.18).

Knowing that 𝑅𝑎𝑐 is around 650, we set a series of experiments with 𝑅𝑎 = 700, 𝑃𝑟 = 7
to ensure low supercriticality (𝛿𝑅𝑎/𝑅𝑎𝑐 < 0.1), and increase 𝜖 from 0 to 1 by an interval of
0.1. The numerical solutions for these experiments (not shown) exhibit similar convection
pattern to what is shown in figures 2–4. As 𝜖 increased, the convection in the lower domain
intensifies, and the vertical asymmetry becomes more pronounced, consistent with previous
theoretical analyses. To quantify this asymmetry, we utilize Eq. (5.1), with the 𝑊1 and 𝑊2
amplitudes measured by

𝑊1 = 2
∫ 1

0
𝑤c sin 𝜋𝑧d𝑧, (5.3)

𝑊2 = 2
∫ 1

0
𝑤c sin 2𝜋𝑧d𝑧, (5.4)

where 𝑤c is the vertical velocity magnitude profile measured at centers of plumes, both
upward and downward. Figure 9(b) shows that 𝑟1 from numerical experiments increases
from zero in the OB case to approximately 6% at 𝜖 = 1, which matches almost perfectly with
the prediction by Eq. (5.1) (shown by black curve).

To quantify the asymmetry between upward and downward plumes (𝑟2), we decompose
the amplitude of 𝑤 with horizontal wavenumber of (2𝑘, 2𝑙) in the numerical results. The
following two methods are employed to measure𝑊33 from numerical simulations,

𝑊33 =
|𝑤mid

down | − |𝑤mid
up |

2
, 𝑊33 =

1
√

2

∫ 2
√

2

0
𝑤mid cos

√
2𝜋𝑥d𝑥, (5.5)

where 𝑤mid represents the 𝑤 profile in the mid-plane, and subscripts ‘up’ and ‘down’ denote
upward and downward centers, respectively. Here, we use the most unstable 𝑘ℎ = 𝜋/

√
2.
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𝑘ℎ
𝑚
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1√
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2√
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3√
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4√
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5√
2

6√
2

7√
2

8√
2

𝑇𝑎 1 10 2630 23573 118352 426068 1230764 3040333 6682946

𝑅𝑎𝑐 658 677 2630 8840 23671 53259 105494 190021 318236

𝑅𝑎 700 700 2672 8882 23713 53301 105536 190063 318278

Table 1: Most unstable wavenumbers ( 𝑘ℎ𝑚 ), Taylor numbers (𝑇𝑎), critical Rayleigh
numbers in OB case (𝑅𝑎𝑐), and the setting Rayleigh numbers (𝑅𝑎). 𝑇𝑎 is calculated from

Eq. (3.11) and 𝑅𝑎𝑐 is calculated from Eq. (3.10).

101 103 105 107

Ta

0

1

2

3

4

5

6

W
1/(

m
)

(a)
OB
NOB

101 103 105 107

Ta

0.00

0.05

0.10

0.15

0.20

0.25

r 1

(b)

101 103 105 107

Ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

r 2

(c)

Figure 10: Dependencies of (a)𝑊1, (b) 𝑟1, and (c) 𝑟2 on 𝑇𝑎 . Empty and solid squares
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panel, respectively.

Figure 9(c) illustrates the ratio 𝑟2 = 𝑊33/𝑊1 given by the two methods at various 𝜖 . There
is a systematic bias between the two methods, yet they both capture the general dependence
of 𝑟2 on 𝜖 predicted by Eq. (5.2). It is worth noting that the power law of 𝑟2 with respect
to 𝜖 is nearly linear rather than quadratic. This is because the bracketed term in Eq. (5.2)
is dominated by the constant 𝛿𝑅𝑎/𝑅𝑎𝑐, which is about 6% and is much larger than the
maximum NOB correction (about 1% at 𝜖 = 1). Also, at low supercriticality, the asymmetry
between upward and downward plumes 𝑟2 is only up to 1%, so is impossible to eyeball it
from the solutions. However, we expect this asymmetry to become ever stronger at higher
supercriticality from Eq. (5.2). This will be discussed in the next section.

We then explore how rotation affects 𝑟1 and 𝑟2. 𝑇𝑎 and 𝑅𝑎 set in experiments are
summarized in table 1. These 𝑇𝑎 values are chosen to ensure there are integer numbers
of convection cells in the domain, and 𝑅𝑎 values are chosen to remain 𝛿𝑅𝑎 constant to be
consistent with the assumption in § 4.4. The results are shown in figure 10. The strength of
the convection, quantified by𝑊1, is suppressed as the system rotates faster (corresponding to
increased𝑇𝑎) for OB cases following Taylor-Proudman theorem, whereas it becomes stronger
for NOB cases, in line with Eq. (4.17) and figure 7(b). The strengthening of𝑊1 stems from the
enhanced NOB buoyancy as rotation rate increases. In figure 10(b), the vertical asymmetry
𝑟1, which also arises from NOB buoyancy, monotonically increases with 𝑇𝑎, agreeing with
the theoretical prediction by Eq. (5.1) as illustrated by the 𝑊2/𝑊1-curve in figure 8. This
asymmetry reaches up to 25% at very large 𝑇𝑎 and is obvious enough to eyeball it from the
solution. In contrast, the asymmetry between upward and downward plumes as measured by
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Figure 11: Long-term mean vertical velocities in (a & b) 2D models and (c & d) in the
horizontal mid-plane (𝑧 = 0.5) and the vertical cross-section (𝑦 = 0.5) in 3D models. Left

and right columns represent the OB and NOB (𝜖 = 1) experiments, respectively.

𝑟2 generally decreases with 𝑇𝑎 (figure 10c). Although 𝑟2 in NOB experiments is only less
than 1%, the signals can still be measured and they match well with the prediction given by
Eq. (5.2), which is illustrated by the𝑊33/𝑊1-curve in figure 8. This decrease of 𝑟2 with 𝑇𝑎 is
because stronger rotation forces the dynamics to follow thermal-wind relation more closely,
which weakens heat/vorticity advection and hence horizontal asymmetry, as discussed in
§ 4.4.

5.2. Convection at very large supercritical Rayleigh number
In this section, we perform additional numerical experiments to illustrate that the NOB effects
discussed in previous sections can be even more prominent in more supercritical scenarios.
To this purpose, we conduct four experiments to cover the OB and NOB (𝜖 = 1) cases under
2D configuration without rotation, as well as the OB and NOB cases under 3D configuration
with 𝑇𝑎 = 106. In all four experiments, 𝑅𝑎 is 106. The resolutions for 2D and 3D models are
512 × 256 and 128 × 128 × 64, respectively.

As can be seen in figure 11, the two NOB cases (panels b and d) both exhibit unpro-
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portionally strong downward plumes, a feature that is not observed in the OB equivalents
(panels a and c). Since convection becomes turbulent at such a high 𝑅𝑎, to quantify the plume
asymmetry, we necessarily need to track the long-term statistics of upward and downward
motions. Under non-rotating 2D configuration, the NOB case has an average downward plume
speed of 181 (scaled by 𝑚𝜅), significantly stronger than the average upward plume speed of
66. The OB equivalents’ upward and downward plume speeds are 108 and 109, respectively,
which exhibits no significant difference. Similarly, the NOB rotating 3D experiment has
average downward and upward speeds of 153 and 77, with the former significantly larger
than the latter. The OB equivalent again shows similar upward and downward speeds of
134 and 129, respectively. Such differences between OB and NOB experiments confirms the
consistency of our theory at very large 𝑅𝑎.

6. Summary and discussion
In this study, we explore non-Oberbeck-Boussinesq (NOB) effects on rotating Rayleigh-
Bénard Convection due to the depth-dependent thermal expansivity 𝛼. The convection is
considered to be two-dimensional. NOB corrections can be manifested in various aspects
of the fluid dynamics, we here focus on the convection patterns, especially the asymmetry
between the upward and downward plumes and the vertical structure of each plume.

Figure 12 summarizes the 𝑤 patterns from each order of the asymptotic analysis.
Linear convection solution is O(𝜖); nonlinear advection induced by the linear solution
(black arrow) and the NOB correction (red arrow) on linear solution is of O(𝜖2); and
the interference between O(𝜖) and O(𝜖2) solutions via nonlinear advection (black arrows)
and NOB correction (red arrows) are presented at O(𝜖3). The primary NOB correction
induces a symmetry breaking about the horizontal mid-plane, which occurs at order 𝜖2.
Both upward and downward plumes are strengthened near the bottom but weakened near the
top (vertical asymmetry), as larger/smaller 𝛼 near the bottom/top makes fluid parcel gain
more/less buoyancy. However, there is not an asymmetry in the horizontal-averaged fields
of fluid properties, because 𝛼 solely depends on depth and equally influences both upward
and downward branches. At order 𝜖3, the symmetry between the upward and downward
plumes breaks due to the 2𝑘ℎ modes. The downward plumes thus become stronger and more
concentrated, while the upward plumes are weaker and spread over a broader region. This
horizontal asymmetry align with results from previous studies (Horn et al. 2013; Buijs 2015;
Liu et al. 2018; Kang et al. 2022).

We then conducted numerical simulations in the weak nonlinear regime to validate our
analytical predictions. Although the vertical and horizontal asymmetries are challenging
to discern visually, they can be quantified using two ratios, 𝑟1 (Eq. 5.1) measuring the
vertical asymmetry and 𝑟2 (Eq. 5.2) measuring the horizontal asymmetry. These ratios
monotonically increases with 𝜖 and supercriticality 𝛿𝑅𝑎, consistent with the predictions from
weak nonlinear analyses. Moreover, 𝑟1 increases with𝑇𝑎, because stronger rotation intensifies
NOB-related buoyancy and enhances vertical asymmetry. Conversely, 𝑟2 decreases with 𝑇𝑎,
because stronger rotation leads to more closely aligned flows with the thermal-wind relation,
impeding the transport of heat and vorticity, which are key to the generation of asymmetry
between upward and downward plumes (horizontal asymmetry). These trends are in line
with our theoretical predictions. In addition, simulations conducted at very large 𝑅𝑎, closer
to realistic conditions, reveal that NOB effects induce robust asymmetry between upward
and downward plumes, even in the presence of strong nonlinear interactions and high-order
terms neglected in our weak nonlinear analyses.

In this work, we limited our analysis to 2D convection, which naturally excludes pattern
formations. However, it should be noted that when patterns (hexagon, square) form, the phase
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Figure 12: A schematic diagram of asymptotic expansion. Contour patterns represent
vertical velocity at each order, except (0, 2𝑚) for temperature and (2𝑘ℎ, 0) for horizontal

velocity. Arrows represent the generation of higher-order components, black ones are
directly related to nonlinear advection, and red ones are directly related to NOB buoyancy.

Note that some components are vanished own to boundary conditions, and they are
marked with empty boxes and gray dashed arrows.

configuration of different plane waves can by itself give rise to large horizontal asymmetry
(𝑟2), making either the upward or downward plumes dominate. It has been found that NOB
effects create preference to form hexagon patterns (Busse 1967; Bodenschatz et al. 2000;
Roy & Steinberg 2002; Madruga et al. 2006; Ahlers et al. 2010), which seems to resemble
our 3D simulations. In addition, how NOB effects influence pattern formation in the present
of rotation remains not fully understood and should be investigated in the future.

As convective plumes become more bottom-heavy (vertical asymmetry) and more dom-
inated by downward plumes (horizontal asymmetry), the transport of passive tracers can
be greatly influenced. For instance, Kang et al. (2022) considered the tracer transport by
convection in the ocean of an icy satellite, Enceladus. At low salinity, tracers released from
the seafloor are found to concentrate near the bottom due to the strong NOB effects, compared
to the high salinity cases. The tracer transport timescale plays a key role in the habitability
and detectability of life activity on Enceladus, and thus deserves more detailed analysis.
Funding. WK acknowledges support from startup funding.
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Appendix A. Solutions of convection
The asymptotic solution involves multiple distinct wavenumbers. For simplicity, we define
the following symbols:

𝐾2
11 = 𝑘2

ℎ + 𝑚
2, 𝐾2

12 = 𝑘2
ℎ + 4𝑚2, 𝐾2

13 = 𝑘2
ℎ + 9𝑚2,

𝐾2
21 = 4𝑘2

ℎ + 𝑚
2, 𝐾2

23 = 4𝑘2
ℎ + 9𝑚2, 𝐾2

31 = 9𝑘2
ℎ + 𝑚

2.

A.1. 𝜖 order
At order 𝜖 , retaining corresponding terms in Eqs. (2.1)–(2.4) yields

𝐷𝜈𝒖1 = − 𝑓 𝑧 × 𝒖1 − ∇𝜙1 + 𝑔𝛼0𝜃1𝑧, (A 2)
𝐷𝜅𝜃1 = −𝑤1Γ𝑐, (A 3)

𝜎1 = −𝜕𝑤1
𝜕𝑧

, (A 4)

𝐷𝜈𝑞1 = − 𝑓 𝜎1. (A 5)

We consider a convection occurring at slightly supercritical Rayleigh number, which
is usually assumed to be a quasi-steady convection with very slow changes. With this
assumption, we would find steady solutions of the governing equations, where 𝐷𝜈 → −𝜈∇2

and 𝐷𝜅 → −𝜅∇2. We consider 2D configuration, where 𝑤1 has the form

𝑤1 = 𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (A 6)

since it satisfies the stress-free boundary conditions (2.11). To be consistent with this 𝑤
ansatz, the other fields should take the following forms following Eqs. (A 2)–(A 5),

𝑢1 = 𝑈1 cos (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧 =
𝑚(𝑘𝜈𝐾2

11 + 𝑙 𝑓 )
𝜈𝐾2

11𝑘
2
ℎ

𝑊1 cos (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (A 7)

𝑣1 = 𝑉1 cos (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧 =
𝑚(𝑙𝜈𝐾2

11 − 𝑘 𝑓 )
𝜈𝐾2

11𝑘
2
ℎ

𝑊1 cos (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (A 8)

𝜃1 = Θ1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧 = − Γ𝑐

𝜅𝐾2
11
𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (A 9)

𝑞1 = 𝑄1 sin (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧 =
𝑓 𝑚

𝜈𝐾2
11
𝑊1 sin (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (A 10)

𝜎1 = Σ1 sin (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧 = −𝑚𝑊1 sin (𝑘𝑥 + 𝑙𝑦) cos𝑚𝑧, (A 11)

which automatically satisfies the boundary conditions (2.11).

A.2. 𝜖2 order
At order 𝜖2, Eqs. (2.1)–(2.4) include the following terms

𝐷𝜈𝒖2 = −𝒖1 · ∇𝒖1 − 𝑓 𝑧 × 𝒖2 − ∇𝜙2 + 𝑔(𝛼0𝜃2 + 𝛼1𝜃1)𝑧, (A 12)
𝐷𝜅𝜃2 = −𝒖1 · ∇𝜃1 − 𝑤2Γ𝑐, (A 13)

𝜎2 = −𝜕𝑤2
𝜕𝑧

, (A 14)

𝐷𝜈𝑞2 = − 𝑓 𝜎2 + ∇ℎ × (−𝒖1 · ∇𝒖ℎ1), (A 15)
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We then cancel variables following the same manner as we derive Eq. (2.6) to obtain a single
equation for 𝑤2, which is forced by the nonlinear interaction of the O(𝜖) solution

[
𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
+ 𝑔𝛼0Γ𝑐𝐷𝜈∇2

ℎ

]
𝑤2

= 𝑔𝐷𝜅𝐷𝜈 (𝛼1∇2
ℎ𝜃1) + 𝑔𝛼0𝐷𝜈∇2

ℎ (−𝒖1 · ∇𝜃1) + 𝐷𝜅𝐷𝜈∇2
ℎ (−𝒖1 · ∇𝑤1)

− 𝑓 𝐷𝜅

𝜕

𝜕𝑧
[∇ℎ × (−𝒖1 · ∇𝒖ℎ1)] − 𝐷𝜅𝐷𝜈

𝜕

𝜕𝑧
[∇ℎ · (−𝒖1 · ∇𝒖ℎ1)] . (A 16)

This equation is analytically solvable as we assume a thermal expansivity profile𝛼 = 𝛼0+𝜖𝛼1,
where 𝛼1 = 𝛼0 cos𝑚𝑧. Substituting this profile as well as the O(𝜖) solutions (Eqs. A 6–A 11),
we obtain the following nonlinear terms associated with NOB effects and advection, which
show up on the right-hand side of Eq. (A 16):

𝑔𝐷𝜅𝐷𝜈 (𝛼1∇2
ℎ𝜃1) =

𝑔𝛼0Γ𝑐𝜈𝑘
2
ℎ

2
𝐾4

12

𝐾2
11
𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧, (A 17)

−𝒖1 · ∇𝜃1 =
𝑚Γ𝑐𝑊

2
1

2𝜅𝐾2
11

sin 2𝑚𝑧, (A 18)

−𝒖1 · ∇𝑤1 = −
𝑚𝑊2

1
2

sin 2𝑚𝑧, (A 19)

−𝒖1 · ∇(𝑢1, 𝑣1) =
(
𝑘𝜈𝐾2

11 + 𝑙 𝑓 , 𝑙𝜈𝐾
2
11 − 𝑘 𝑓

) 𝑚2𝑊2
1

2𝜈𝐾2
11𝑘

2
ℎ

sin 2(𝑘𝑥 + 𝑙𝑦). (A 20)

The first term is related to NOB effects, and it is the only term that contributes to 𝑤2.
The other terms related to nonlinear advection vanishes after taking the spatial derivatives
requested by Eq. (A 16). Substituting these into Eq. (A 16), we obtain the 𝑤2 solution

𝑤2 = 𝑊2 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧 = 𝜒2𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧, (A 21)

where

𝜒2 =
𝜈2𝐾6

11 + 𝑓 2𝑚2

2[𝜈2(𝐾6
12 − 𝐾

6
11) + 3 𝑓 2𝑚2]

·
𝐾2

12

𝐾2
11
, (A 22)
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is a positive dimensionless coefficient. Substituting 𝑤2 into Eqs. (A 12)–(A 15), we obtain
the expressions for other fields

𝑢2 = 𝑈21 cos (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +𝑈22 sin 2(𝑘𝑥 + 𝑙𝑦)

=
2𝑚(𝑘𝜈𝐾2

12 + 𝑙 𝑓 )
𝜈𝐾2

12𝑘
2
ℎ

𝜒2𝑊1 cos (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +
𝑓 𝑙𝑚2𝑊2

1

8𝜈2𝐾2
11𝑘

4
ℎ

sin 2(𝑘𝑥 + 𝑙𝑦), (A 23)

𝑣2 = 𝑉21 cos (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +𝑉22 sin 2(𝑘𝑥 + 𝑙𝑦)

=
2𝑚(𝑙𝜈𝐾2

12 − 𝑘 𝑓 )
𝜈𝐾2

12𝑘
2
ℎ

𝜒2𝑊1 cos (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 −
𝑓 𝑘𝑚2𝑊2

1

8𝜈2𝐾2
11𝑘

4
ℎ

sin 2(𝑘𝑥 + 𝑙𝑦), (A 24)

𝜃2 = Θ21 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧 + Θ22 sin 2𝑚𝑧

= − Γ𝑐

𝜅𝐾2
12
𝜒2𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin 2𝑚𝑧 +

Γ𝑐𝑊
2
1

8𝜅2𝐾2
11𝑚

sin 2𝑚𝑧, (A 25)

𝑞2 = 𝑄21 sin (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 +𝑄22 cos 2(𝑘𝑥 + 𝑙𝑦)

=
2 𝑓 𝑚
𝜈𝐾2

12
𝜒2𝑊1 sin (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 −

𝑓 𝑚2𝑊2
1

4𝜈2𝐾2
11𝑘

2
ℎ

cos 2(𝑘𝑥 + 𝑙𝑦), (A 26)

𝜎2 = Σ2 sin (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧 = −2𝑚𝜒2𝑊1 sin (𝑘𝑥 + 𝑙𝑦) cos 2𝑚𝑧, (A 27)

which automatically satisfies the boundary conditions (2.11).

A.3. 𝜖3 order
At order 𝜖3, retaining corresponding terms in Eqs. (2.1)–(2.4) yields:

𝐷𝜈𝒖3 = −𝒖1 · ∇𝒖2 − 𝒖2 · ∇𝒖1 − 𝑓 𝑧 × 𝒖3 − ∇𝜙3 + 𝑔(𝛼0𝜃3 + 𝛼1𝜃2)𝑧 −
𝜕𝒖1

𝜖2𝜕𝑇
, (A 28)

𝐷𝜅𝜃3 = −𝒖1 · ∇𝜃2 − 𝒖2 · ∇𝜃1 − 𝑤3Γ𝑐 −
1
𝜖2𝑤1𝛿Γ − 𝜕𝜃1

𝜖2𝜕𝑇
, (A 29)

𝜎3 = −𝜕𝑤3
𝜕𝑧

, (A 30)

𝐷𝜈𝑞3 = − 𝑓 𝜎3 + ∇ℎ × (−𝒖1 · ∇𝒖ℎ2 − 𝒖2 · ∇𝒖ℎ1) −
𝜕𝑞1

𝜖2𝜕𝑇
. (A 31)

Here, the supercritical term and slowly changing terms occur, as 𝛿Γ and 𝜕/𝜕𝑇 are O(𝜖2) and
act on O(𝜖) fields. Following the same procedure as in order 𝜖2, we obtain an equation for
𝑤3 that is forced by the nonlinear interaction between O(𝜖) and O(𝜖2) solutions[

𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
+ 𝑔𝛼0Γ𝑐𝐷𝜈∇2

ℎ

]
𝑤3

= 𝑔𝐷𝜅𝐷𝜈 (𝛼1∇2
ℎ𝜃2) − 𝜖−2𝑔𝛼0𝛿Γ𝐷𝜈∇2

ℎ𝑤1

+𝑔𝛼0𝐷𝜈∇2
ℎ (−𝒖1 · ∇𝜃2 − 𝒖2 · ∇𝜃1)

+𝐷𝜅𝐷𝜈∇2
ℎ (−𝒖1 · ∇𝑤2 − 𝒖2 · ∇𝑤1)

− 𝑓 𝐷𝜅

𝜕

𝜕𝑧
[∇ℎ × (−𝒖1 · ∇𝒖ℎ2 − 𝒖2 · ∇𝒖ℎ1)]

−𝐷𝜅𝐷𝜈

𝜕

𝜕𝑧
[∇ℎ · (−𝒖1 · ∇𝒖ℎ2 − 𝒖2 · ∇𝒖ℎ1)]

−𝜖−2𝑔𝛼0𝐷𝜈∇2
ℎ

𝜕𝜃1
𝜕𝑇

+ 𝜖−2𝐷𝜅

(
𝑓
𝜕2𝑞1
𝜕𝑧𝜕𝑇

+ 𝐷𝜈

𝜕2𝜎1
𝜕𝑧𝜕𝑇

− 𝐷𝜈∇2
ℎ

𝜕𝑤1
𝜕𝑇

)
. (A 32)
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Substituting the profile of 𝛼, O(𝜖) solutions (Eqs. A 6–A 11), and O(𝜖2) solutions (Eqs.
A 21–A 27), we can expand the right-hand side of Eq. (A 32). These terms are categorized
into a term directly arising from NOB effects:

𝑔𝐷𝜅𝐷𝜈 (𝛼1∇2
ℎ𝜃2)

=
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ

2
𝜒2𝑊1 sin (𝑘𝑥 + 𝑙𝑦)

(
𝐾4

11

𝐾2
12

sin𝑚𝑧 +
𝐾4

13

𝐾2
12

sin 3𝑚𝑧

)
; (A 33)

a supercritical term:

−𝜖−2𝑔𝛼0𝛿Γ𝐷𝜈∇2
ℎ𝑤1 = 𝜖−2𝑔𝛼0𝛿Γ𝜈𝐾

2
11𝑘

2
ℎ𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧; (A 34)

a term arising from nonlinear advection of heat:

𝑔𝛼0𝐷𝜈∇2
ℎ (−𝒖1 · ∇𝜃2 − 𝒖2 · ∇𝜃1)

= +
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝑚

𝜅
𝐾2

21

(
3
𝐾2

11
− 3
𝐾2

12

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

−
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝑚

𝜅
𝐾2

23

(
1
𝐾2

11
− 1
𝐾2

12

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧

−
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝑊3

1
8𝜅2 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

+
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝑊3

1
8𝜅2

𝐾2
13

𝐾2
11

sin (𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧; (A 35)

a term associated with the curl of nonlinear advection of horizontal momentum:

− 𝑓 𝐷𝜅

𝜕

𝜕𝑧
[∇ℎ × (−𝒖1 · ∇𝒖ℎ2 − 𝒖2 · ∇𝒖ℎ1)]

= − 𝜅 𝑓
2𝑚3

2𝜈
𝐾2

21

(
6
𝐾2

12
+ 3
𝐾2

11

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

+ 𝜅 𝑓
2𝑚3

2𝜈
𝐾2

23

(
6
𝐾2

12
− 3
𝐾2

11

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧

− 𝜅 𝑓
2𝑚4

8𝜈2𝑘2
ℎ

𝑊3
1 sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

−3𝜅 𝑓 2𝑚4

8𝜈2𝑘2
ℎ

𝐾2
31

𝐾2
11
𝑊3

1 sin 3(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧; (A 36)

a term associated with the divergence of nonlinear advection of horizontal momentum:

−𝐷𝜅𝐷𝜈

𝜕

𝜕𝑧
[∇ℎ · (−𝒖1 · ∇𝒖ℎ2 − 𝒖2 · ∇𝒖ℎ1)]

= +9𝜅𝜈𝑚3

2
𝐾4

21𝜒2𝑊
2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

−3𝜅𝜈𝑚3

2
𝐾4

23𝜒2𝑊
2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧; (A 37)
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and the slowly changing terms:

−𝜖−2𝑔𝛼0𝐷𝜈∇2
ℎ

𝜕𝜃1
𝜕𝑇

+ 𝜖−2𝐷𝜅

(
𝑓
𝜕2𝑞1
𝜕𝑧𝜕𝑇

+ 𝐷𝜈

𝜕2𝜎1
𝜕𝑧𝜕𝑇

− 𝐷𝜈∇2
ℎ

𝜕𝑤1
𝜕𝑇

)
=

1
𝜖2

( 𝜈 + 𝜅
𝜈

𝜈2𝐾6
11 +

𝜈 − 𝜅
𝜈

𝑓 2𝑚2
) 𝜕𝑊1
𝜕𝑇

sin (𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧. (A 38)

Note that the nonlinear advection of vertical momentum is horizontally homogeneous,

−𝒖1 · ∇𝑤2 − 𝒖2 · ∇𝑤1 =
𝑚

2
𝜒2𝑊

2
1 (sin𝑚𝑧 − 3 sin 3𝑚𝑧), (A 39)

so the corresponding spatial derivative on the right-hand side of Eq. (A 32) is zero. The above
expressions suggest that the solutions of 𝑤3 consists of components with wavenumbers of
(𝑘, 𝑙, 𝑚), (𝑘, 𝑙, 3𝑚), (2𝑘, 2𝑙, 𝑚), (2𝑘, 2𝑙, 3𝑚), and (3𝑘, 3𝑙, 𝑚).

(i) The wavenumber (𝑘, 𝑙, 𝑚) component falls into the null space of Eq. (A 32). The
solvability condition yields the following amplitude equation

1
𝜖2

( 𝜈 + 𝜅
𝜈

𝜈2𝐾6
11 +

𝜈 − 𝜅
𝜈

𝑓 2𝑚2
) 𝜕𝑊1
𝜕𝑇

=
𝜅 𝑓 2𝑚4

8𝜈2𝑘2
ℎ

𝑊3
1 +

𝑔𝛼0Γ𝑐𝜈𝑘
2
ℎ

8𝜅2 𝑊3
1 − 𝑔𝛼0

𝛿Γ

𝜖2 𝜈𝐾
2
11𝑘

2
ℎ𝑊1 − 𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ

𝜒2
2
𝐾4

11

𝐾2
12
𝑊1. (A 40)

(ii) For wavenumber (𝑘, 𝑙, 3𝑚), the corresponding terms in Eq. (A 32) will generate a
vertical velocity with the same wavenumber:[

𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
+ 𝑔𝛼0Γ𝑐𝐷𝜈∇2

ℎ

]
𝑤3

=
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝐾2

13
2

(
𝑊3

1

4𝜅2𝐾2
11

+
𝐾2

13

𝐾2
12
𝜒2𝑊1

)
sin (𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧, (A 41)

and the corresponding solution is

𝑤3 = 𝑊31 sin (𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧

=

(
𝑊2

1

4𝜅2𝐾2
11

+
𝐾2

13

𝐾2
12
𝜒2

)
𝜒31𝑊1 sin (𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧, (A 42)

where

𝜒31 =
𝑣2𝐾6

11 + 𝑓 2𝑚2

2[𝜈2(𝐾6
13 − 𝐾

6
11) + 8 𝑓 2𝑚2]

, (A 43)

is a positive dimensionless coefficient. This vertical velocity is produced by Eqs. (A 33) and
(A 35), which are associated with direct NOB effects and heat advection, respectively.

(iii) For wavenumber (3𝑘, 3𝑙, 𝑚), the corresponding terms in Eq. (A 32) will generate a
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vertical velocity with the same wavenumber:[
𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
+ 𝑔𝛼0Γ𝑐𝐷𝜈∇2

ℎ

]
𝑤3

= −3𝜅 𝑓 2𝑚4

8𝜈2𝑘2
ℎ

𝐾2
31

𝐾2
11
𝑊3

1 sin 3(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (A 44)

and the correspongding solution is

𝑤3 = 𝑊32 sin 3(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

=
3 𝑓 2𝑚4

4𝜈2𝐾2
11𝑘

2
ℎ
(𝜈2𝐾6

11 + 𝑓 2𝑚2)
𝜒32𝑊

3
1 sin 3(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧, (A 45)

where

𝜒32 =
𝜈2𝐾6

11 + 𝑓 2𝑚2

2
[
𝜈2(𝐾6

31 − 9𝐾6
11) − 8 𝑓 2𝑚2

] , (A 46)

is a positive dimensionless factor, proven by eliminating 𝑓 via Eq. (3.11). This vertical
velocity is produced by Eq. (A 36), which is associated with vorticity advection.

(iv) For wavenumber (2𝑘, 2𝑙, 𝑚) and (2𝑘, 2𝑙, 3𝑚), the corresponding terms in Eq. (A 32)
will generate one vertical velocity with vertical wavenumber 𝑚 and the other with vertical
wavenumber 3𝑚, respectively. Together, they can be written as[

𝐷𝜅

(
𝐷2

𝜈∇2 + 𝑓 2 𝜕
2

𝜕𝑧2

)
+ 𝑔𝛼0Γ𝑐𝐷𝜈∇2

ℎ

]
𝑤3

= − 𝜅 𝑓
2𝑚3

2𝜈
𝐾2

21

(
6
𝐾2

12
+ 3
𝐾2

11

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

+9𝜅𝜈𝑚3

2
𝐾4

21𝜒2𝑊
2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

+
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝑚

𝜅
𝐾2

21

(
3
𝐾2

11
− 3
𝐾2

12

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

+ 𝜅 𝑓
2𝑚3

2𝜈
𝐾2

23

(
6
𝐾2

12
− 3
𝐾2

11

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧

−3𝜅𝜈𝑚3

2
𝐾4

23𝜒2𝑊
2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧

−
𝑔𝛼0Γ𝑐𝜈𝑘

2
ℎ
𝑚

𝜅
𝐾2

23

(
1
𝐾2

11
− 1
𝐾2

12

)
𝜒2𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧. (A 47)

For simplifying solution, we use Eqs. (3.10) to eliminate Γ𝑐 in the above equation. After
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doing so, we obtain the following solution:

𝑤3 = cos 2(𝑘𝑥 + 𝑙𝑦) (𝑊33 sin𝑚𝑧 +𝑊34 sin 3𝑚𝑧)

= + 9𝜈𝑚9

𝐾2
11𝐾

2
12(𝜈2𝐾6

11 + 𝑓 2𝑚2)
𝐺1𝜒2𝜒33𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin𝑚𝑧

− 3𝜈𝑚9

𝐾2
11𝐾

2
12(𝜈2𝐾6

11 + 𝑓 2𝑚2)
𝐺2𝜒2𝜒34𝑊

2
1 cos 2(𝑘𝑥 + 𝑙𝑦) sin 3𝑚𝑧, (A 48)

where

𝜒33 =
𝜈2𝐾6

11 + 𝑓 2𝑚2

2[𝜈2(𝐾6
21 − 4𝐾6

11) − 3 𝑓 2𝑚2]
, (A 49a)

𝜒34 =
𝜈2𝐾6

11 + 𝑓 2𝑚2

2[𝜈2(𝐾6
23 − 4𝐾6

11) + 5 𝑓 2𝑚2]
, (A 49b)

𝐺1 =
2𝑘8

ℎ

𝑚8 + (6𝑃𝑟 + 3)
𝑘6
ℎ

𝑚6 + (12𝑃𝑟 − 15)
𝑘4
ℎ

𝑚4 + (6𝑃𝑟 − 22)
𝑘2
ℎ

𝑚2 − 6, (A 49c)

𝐺2 =
2𝑘8

ℎ

𝑚8 + (6𝑃𝑟 − 5)
𝑘6
ℎ

𝑚6 + (12𝑃𝑟 − 35)
𝑘4
ℎ

𝑚4 + (6𝑃𝑟 − 62)
𝑘2
ℎ

𝑚2 − 34, (A 49d)

are four dimensionless coefficients.
The signs of the above four coefficients largely determine the spatial pattern of Eq. (A 48),

and we give a brief discussion here. We prove that both 𝜒33 and 𝜒34 are positive by eliminating
𝑓 using Eq. (3.11), and 𝜒33 is larger than 𝜒34. However, the signs of 𝐺1 and 𝐺2 depend on
𝑇𝑎 and 𝑃𝑟 . When 𝑇𝑎 is very large, we can estimate from Eq. (3.11) that 𝑘ℎ is much larger
than 𝑚. Consequently, this yields

𝐺1, 𝐺2 →
2𝑘8

ℎ

𝑚8 , (A 50)

and they are both positive. This is so-called rotating-dominant scenario, where 𝑤3 is mainly
produced by Eq. (A 36), a term related to vorticity advection. In non-rotating RBC, 𝑘ℎ =

𝑚/
√

2, causing that

𝐺1 =
27
4
(𝑃𝑟 − 3), 𝐺2 =

27
4
(𝑃𝑟 − 11). (A 51)

For the mixtures of gases that 𝑃𝑟 is very small, both 𝐺1 and 𝐺2 are negative, resulting in 𝑤3
favoring upward motions. While for water that 𝑃𝑟 = 7, 𝐺1 becomes positive, resulting in an
opposite 𝑤3 that favors downward motions. No matter which scenario, it is always true that
𝐺1 is larger than 𝐺2.
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