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Abstract

Optimization over the set of matrices that sat-
isfy X⊤BX = Ip, referred to as the generalized
Stiefel manifold, appears in many applications
involving sampled covariance matrices such as
canonical correlation analysis (CCA), indepen-
dent component analysis (ICA), and the general-
ized eigenvalue problem (GEVP). Solving these
problems is typically done by iterative methods,
such as Riemannian approaches, which require a
computationally expensive eigenvalue decompo-
sition involving fully formed B. We propose a
cheap stochastic iterative method that solves the
optimization problem while having access only to
a random estimate of the feasible set. Our method
does not enforce the constraint in every iteration
exactly, but instead it produces iterations that con-
verge to a critical point on the generalized Stiefel
manifold defined in expectation. The method has
lower per-iteration cost, requires only matrix mul-
tiplications, and has the same convergence rates as
its Riemannian counterparts involving the full ma-
trix B. Experiments demonstrate its effectiveness
in various machine learning applications involv-
ing generalized orthogonality constraints, includ-
ing CCA, ICA, and GEVP.

1. Introduction
Many problems in machine learning and engineering, in-
cluding the canonical correlation analysis (CCA) (Hotelling,
1936), independent component analysis (ICA) (Comon,
1994), linear discriminant analysis (McLachlan, 1992), and
the generalized eigenvalue problem (GEVP) (Saad, 2011),
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can be formulated as the following optimization problem

min
X∈StB(p,n)

f(X) := E[fξ(X)],

StB(p, n) :=
{
X ∈ Rn×p|X⊤BX = Ip

}
and B = E[Bζ ],

(1)
where the objective function f is the expectation of L-
smooth functions fξ, and B ∈ Rn×n is a positive definite
matrix defined as the expectation B = Eζ [Bζ ] ≻ 0, and
ξ, ζ are independent random variables. We assume that
individual random matrices Bζ do not need to be of full
rank and are only positive semi-definite. The feasible set
StB(p, n) ⊂ Rn×p defines a smooth manifold referred to
as the generalized Stiefel manifold.

In the deterministic case, when we have access to the matrix
B, the optimization problem can be solved by Riemannian
techniques (Absil et al., 2008; Boumal, 2023). Rieman-
nian methods produce a sequence of iterates belonging to
the set StB(p, n), often by repeatedly applying a retraction
that maps tangent vectors to points on the manifold. In
the case of StB(p, n) retractions require non-trivial linear
algebra operations such as eigenvalue or Cholesky decom-
position. On the other hand, optimization on StB(p, n) also
lends itself to infeasible optimization methods, such as the
augmented Lagrangian method. Such methods are also typ-
ically employed in deterministic setting when the feasible
set does not have a convenient projection, e.g. by the lack
of a closed-form expression or because they require solving
an expensive optimization problem themselves (Bertsekas,
1982). Infeasible approaches produce iterates that do not
strictly remain in the feasible set but gradually converge
to it by solving a sequence of unconstrained optimization
problems. However, solving the optimization subproblems
in each iteration might be computationally expensive and
the methods are sensitive to the choice of hyper-parameters,
both in theory and in practice.

In this paper, unlike in the aforementioned areas of study,
we consider the setting (1) where the feasible set itself is
stochastic, i.e. the matrix B is unknown and is an expecta-
tion of random estimates Bζ , for which, neither Riemannian
methods nor infeasible optimization techniques, are well-
suited. In particular, we are interested in the case where we
only have access to i.i.d. samples from ξ and ζ, and not to
the full function f and matrix B.
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Figure 1. Illustration of the landing field on the random feasible set.

We design an iterative landing method requiring only a ran-
dom estimates Bζ that provably converges to a critical point
of (1) while performing only matrix multiplications. The
main principle of the method is depicted in the diagram in
Figure 1 and is inspired by the recent line of work, but for
the deterministic feasible set of the orthogonal set (Ablin
& Peyré, 2022) and the Stiefel manifold (Gao et al., 2022b;
Ablin et al., 2023; Schechtman et al., 2023). Instead of per-
forming retractions after each iteration, the proposed algo-
rithm only tracks an approximate distance to the constraint
by following an unbiased estimator of the direction towards
the manifold, while remaining within an initially prescribed
ε-safe region, and finally “lands” on, i.e. converges to, the
manifold.

The proposed stochastic landing iteration for solving (1) is
a simple, cheap, and stochastic update rule

Xk+1 = Xk − ηkΛξk,ζk,ζ′k(Xk)

with Λξ,ζ,ζ′(X) = Ψξ,ζ,ζ′(X) + ω∇Nζ,ζ′(X),
(2)

in Rn×p whose two components are

Ψξ,ζ,ζ′(X) = 2 skew
(
∇fξ(X)X⊤Bζ

)
Bζ′X

∇Nζ,ζ′(X) = 2BζX
(
X⊤Bζ′X − Ip

) , (3)

where ω > 0, ∇Nζ,ζ′(X) is an unbiased stochastic es-
timator of the gradient of N (X) = 1

2∥X
⊤BX − Ip∥2F,

and skew(A) = (A − A⊤)/2. The above landing field
formula (2) applies in the general case when both the func-
tion f and the constraint matrix B are stochastic; the deter-
ministic case is recovered by substituting ∇fξ = ∇f and
Bζ = Bζ′ = B. Note that in many applications of inter-
est, Bζ =

∑r
i=1 xix

⊤
i /r is a subsampled covariance matrix

with batch-size r, that is of rank r when r ≤ n. Unlike
retractions, the landing method benefits in this setting since
the cost of multiplication by Bζ , which is the dominant cost
of (2) becomes O(npr) instead of O(n2p) where r is the
batch size. The landing method never requires to form the
matrix B, thus having space complexity defined by only
saving the iterates: O(np) instead of O(n2).

We prove that the landing iteration converges to an e-critical
point, i.e. a point for which the Riemannian gradient is

bounded by e and ∥N (X)∥ ≤ e, with a fixed step size in
the deterministic case (Theorem 2.7) and with decaying
step size in the stochastic case (Theorem 2.8), with a rate
that matches that of deterministic (Boumal et al., 2019) and
stochastic Riemannian gradient descent (Bonnabel, 2013)
on StB(p, n). The advantages of the landing field in (2)
are that i) its computation involves only parallelizable ma-
trix multiplications, which is cheaper than the computations
of the Riemannian gradient and retraction and ii) it han-
dles gracefully the stochastic constraint, while Riemannian
approaches need form the full estimate of B.

While the presented theory holds for a general smooth, pos-
sibly non-convex objective f , a particular problem that can
be either phrased as (1) or framed as an optimization over
the product manifold of two StB(p, n) is CCA, which is
a widely used technique for measuring similarity between
datasets (Raghu et al., 2017). CCA aims to find the top-
p most correlated principal components X,Y ∈ Rn×p,
for two zero-centered datasets D1 = (d11, . . . , d

N
1 ), D2 =

(d12, . . . , d
N
2 ) ∈ Rn×N of N iid samples from two different

distributions and is formulated as

min
X,Y ∈Rn×p

Ei

[
−Tr(X⊤di1(d

i
2)

⊤Y )
]

X⊤Ei[d
i
1(d

i
1)

⊤]X = Ip and Y ⊤Ei[d
i
2(d

i
2)

⊤]Y = Ip,
(4)

where the expectations are w.r.t. the uniform distribution
over {1, . . . , N}. Here, the constraint matrices Bζ corre-
spond to individual or mini-batch sample covariances, and
the constraints are that the two matrices X,Y ∈ Rn×p are
in the generalized Stiefel manifold.

The rest of the introduction gives a brief overview on the
current optimization techniques for solving (1) and its forth-
coming generalization (5) when the feasible set is deter-
ministic, since we are not aware of existing techniques for
(1) with stochastic feasible set. The rest of the paper is
organized as follows.

• In Section 2 we give a form to a generalized landing
algorithm for solving a smooth optimization problem
minx∈M f(x) on a smooth manifold M defined below
in (5), which under suitable assumptions, converges to
a critical point with the same sublinear rate O(1/K), as
its Riemannian counterpart (Boumal et al., 2019), see
Theorem 2.7, where K is the iteration number. Unlike
previous works (Schechtman et al., 2023; Ablin et al.,
2023), our analysis is based on a smooth merit function
allowing us to obtain a convergence result for the stochas-
tic variant of the algorithm, when having an unbiased
estimator for the landing field, see Theorem 2.8.

• In Section 3 we build on the general theory developed in
the previous section and prove that the update rule for the
generalized Stiefel manifold in (2) converges to a critical
point of (1), both in the deterministic case with the rate
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O(1/K), and in expectation with the rate O(1/
√
K) in

the case when both the gradient of the objective function
and the feasible set are stochastic estimates.

• In Section 4 we numerically demonstrate the efficiency of
the proposed method on a deterministic example of solv-
ing a generalized eigenvalue problem, stochastic CCA
and ICA.

Notation. We denote vectors by lower case letters
x, y, z, . . ., matrices with uppercase letters X,Y, Z, . . ., and
In denotes the n × n identity matrix. Let Df(x)[v] =
limt→0(f(x+ tv)− f(x))/t denote the derivative of f at
x along v. The ∥ · ∥ denotes the ℓ2-norm or the Frobenius
norm for matrices, whereas ∥ · ∥2 denotes the operator norm
induced by ℓ2-norm.

1.1. Prior work related to the optimization on the
generalized Stiefel manifold

Riemannian optimization. A widely used approach to
solving the optimization problems constrained to manifolds
as in (5) are the techniques from Riemannian optimization.
These methods are based on the observation that smooth sets
can be locally approximated by a linear subspace, which
allows to extend classical Euclidean optimization methods,
such as gradient descent and the stochastic gradient descent
to the Riemannian setting. For example, Riemannian gra-
dient descent iterates xk+1 = RetrM(xk,−ηkgradf(x

k)),
where ηk > 0 is the stepsize at iteration k, gradf(xk) is
the Riemannian gradient that is computed as a projection of
∇f(xk) on the tangent space of M at xk, and Retr is the re-
traction operation, which projects the updated iterate along
the direction −ηkgradf(x

k) on the manifold and is accurate
up to the first-order, i.e., RetrM(x, d) = x + d + o(∥d∥).
Retractions allow the implementation of Riemannian coun-
terparts to classical Euclidean methods on the generalized
Stiefel manifold, such as Riemannian (stochastic) gradi-
ent descent (Bonnabel, 2013; Zhang & Sra, 2016), trust-
region methods (Absil et al., 2007), and accelerated meth-
ods (Ahn & Sra, 2020); for an overview, see (Absil et al.,
2008; Boumal, 2023).

There are several ways to compute a retraction to the gener-
alized Stiefel manifold, which we summarize in Table 1 and

Matrix factorizations Complexity

Polar matrix inverse square root O(n2p)
SVD-based SVD O(n2p)
Cholesky-QR Cholesky, matrix inverse O(n2p)
Λ(X) formula in (2) None min{O(n2p),O(npr)}

Table 1. Cost comparison of retractions and the landing formula
on the generalized Stiefel manifold. The matrices are of size n× p
with p ≤ n, and r is the rank of the stochastic matrices Bζ . Matrix
factorizations are hard to parallelize. The retractions do not allow
for reduced complexities when Bζ is low-rank and are not suited
for stochastic Bζ .

we give a more detailed explanation in Appendix A. Overall,
we see that the landing field (2) is much cheaper to compute
than all these retractions in two cases: i) when n ≃ p, then
the bottleneck in the retractions becomes the matrix factor-
ization, which, although they are of the same complexity as
matrix multiplications, are much more expensive and hard
to parallelize, ii) when n gets extremely large, the cost of
all retractions grows quadratically with n, while the use of
mini-batches of size r allows computing the landing field in
linear time. We demonstrate numerically the practical cost
of computing retractions in Fig 7b in the appendices.

Infeasible optimization methods. A popular approach
for solving constrained optimization is to employ the
squared ℓ2-penalty method by adding the ωN (X) regu-
larizer to the objective. However, unlike the landing method,
the iterates of the squared penalty method do not converge to
the constraint exactly for any fixed choice of ω and converge
only when ω are increasing in iterations (Nocedal & Wright,
2006). In contrast, the landing method provably converges
to the constraint for any fixed ω > 0, which is enabled by
the gradient component having a Riemannian interpretation
and being orthogonal to the normalizing component.

Infeasible methods, such as the augmented Lagrangian meth-
ods, with an augmented Lagrangian function L(x, λ), such
as the one introduced later in (9), by updating the solution
vector x and the vector of Lagrange multipliers λ respec-
tively (Bertsekas, 1982). This is typically done by solving a
sequence of optimization problems of L(·, λk) followed by
a first-order update of the multipliers λk+1 = λk − βh(xk)
depending on the penalty parameter β. The iterates are
gradually pushed towards the constraint by increasing the
penalty parameter β. However, each optimization subprob-
lem may be expensive, and the methods are sensitive to the
choice of the penalty parameter β.

Recently, a number of works explored the possibility of in-
feasible methods for optimization on Riemannian manifolds,
when the feasible set is deterministic, in order to eliminate
the cost of retractions, which can be limiting in some situ-
ations, e.g. when the evaluation of stochastic gradients is
cheap. The works of (Gao et al., 2019a; 2022a) proposed a
modified augmented Lagrangian method which allows for
fast computation and better better bounds on the penalty
parameter β. (Ablin & Peyré, 2022) designed a simple iter-
ative method called landing, consisting of two orthogonal
components, to be used on the orthogonal group, which was
later expanded to the Stiefel manifold (Gao et al., 2022b;
Ablin et al., 2023). (Schechtman et al., 2023) expanded the
landing approach to be used on a general smooth constraint
using a non-smooth merit function. More recently, (Goyens
et al., 2023) analysed the classical Fletcher’s augmented La-
grangian for solving smoothly constrained problems through
the Riemannian perspective and proposed an algorithm that
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provably finds second-order critical points of the minimiza-
tion problem.

1.2. Methods for the GEVP and CCA
Deterministic methods. A lot of effort has been spent in
recent years on finding fast and memory-efficient solvers
for CCA and the GEVP, that seeks to find a solution to
Ax = λBx, both of which can be framed as (1). The major-
ity of the existing methods specialized for CCA and GEVP
that compute the top-p vector solution aim to circumvent the
need to compute B− 1

2 or B−1, e.g. by using an approximate
solver to compute the action of multiplying with B−1. The
classic Lanczos algorithm for computation of eigenvalues
can be adapted to the GEVP by noting that we can look for
standard eigenvectors of B−1A, see (Saad, 2011, Algorithm
9.1). (Ma et al., 2015) proposes AppGradwhich performs a
projected gradient descent with ℓ2-regularization and proves
its convergence when initialized sufficiently close to the min-
imum. The work of (Ge et al., 2016) proposes GenELinK
algorithm based on the block power method, using inexact
linear solvers, that has provable convergence with a rate de-
pending on 1/δ, where δ = βp−βp+1 is the eigenvalue gap.
(Allen-Zhu & Li, 2017) improves upon this in terms of the
eigenvalue gap and proposes the doubly accelerated method
LazyCCA, which is based on the shift-and-invert strategy
with iteration complexity that depends on 1/

√
δ. (Xu & Li,

2020) present a first-order Riemannian algorithm that com-
putes gradients using fast linear solvers to approximate the
action of B−1 and performs polar retraction. (Meng et al.,
2021) presents a Riemannian optimization technique that
finds top-p vectors using online estimates of the covariance
matrices with O(n2p) per-iteration computational cost and
convergence rate of O(1/K).

Stochastic methods. While the stochastic CCA problem
is of high practical interest, fewer works consider it. Al-
though several of the aforementioned deterministic solvers
can be implemented for streaming data using sampled in-
formation (Ma et al., 2015; Wang et al., 2016; Meng et al.,
2021), they do not analyse stochastic convergence. The
main challenge comes from designing an unbiased estima-
tor for the whitening part of the method that ensures the
constraint X⊤BX = I in expectation. (Arora et al., 2017)
propose a stochastic approximation algorithm, MSG, that
keeps a running weighted average of covariance matrices
used for projection, requiring computing B−1/2 at each iter-
ation. Additionally, the work of (Gao et al., 2019b) proves
stochastic convergence of an algorithm based on the shift-
and-invert scheme and SVRG to solve linear subproblems,
but only for the top-1 setting.

Comparison with the landing. Constrained optimiza-
tion methods such as the augmented Lagrangian methods
and Riemannian optimization techniques can be applied on
stochastic problems only when the gradient of the objective

function is random, however, not on problems when the
feasible set is stochastic. The landing method has provable
global convergence guarantees with the same asymptotic
rate as its Riemannian counterpart, while also allowing for
stochasticity in the constraint. Our work is conceptually
related to the recently developed infeasible methods (Ablin
& Peyré, 2022; Ablin et al., 2023; Schechtman et al., 2023),
with the key difference of constructing a smooth merit func-
tion for a general constraint h(x), which is necessary for the
convergence analysis of stochastic iterative updates that can
have error in the normal space of M. In Table 2 we show
the overview of relevant GEVP/CCA methods by compar-
ing their asymptotic operations cost required to converge
to an e-critical point1. The operation count takes into ac-
count both the number of iterations and the per-iteration
cost, which is bounded asymptotically for the landing in
Proposition 3.4. Despite the landing iteration (2) being de-
signed for a general non-convex smooth problem (1) and
not being tailored specifically to GEVP/CCA, we achieve
theoretically interesting rate, which outperforms the other
methods for well-conditioned matrices, when κ is small,
and when the variance of samples is small. Additionally, we
provide an improved space complexity O(np) by not having
to form the full matrix B and only to save the iterates.

2. Generalized landing with stochastic
constraints

This section is devoted to analyzing the landing method in
the general case where the constraint is given by the zero
set of a smooth function. We will later use these results in
Section 3 devoted to extending and analyzing the landing
method (2) on StB(p, n). The theory presented here im-
proves on that of Schechtman et al. (2023) in two important
directions. First, we generalize the notion of relative descent
direction, which allows us to consider a richer class than
that of geometry-aware orthogonal directions (Schechtman
et al., 2023, Eq.18). Second, we do not require any structure
on the noise term Ẽ defined later in (10), for the stochastic
case, while A2(iii) in (Schechtman et al., 2023) requires the
noise to be in the tangent space. This enhancement is due to
the smoothness of our merit function L, while Schechtman
et al. (2023) consider a non-smooth merit function. Im-
portantly, for the case of StB(p, n) with the formula given
in (2), there is indeed noise in the normal space, rendering
Schechtman et al. (2023)’s theory inapplicable, while we
show in the next section that Theorem 2.8 applies in that
case.

Given a continuously differentiable function f : Rd → R,

1Note that some of the works show linear convergence, i.e.
log(1/e), to a global minimizer, which by the smoothness of f
also implies a e-critical point, whereas we prove 1/e2 convergence
to a critical point. For the purpose of the comparison, we overlook
this difference. Also, there are no local non-global minimizers in
the GEVP.
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Stochastic Matrix factorizations Total operation count complexity for e-criticality Memory

AppGrad* (Ma et al., 2015) - SVD O((n2pκB + p2n)δ−1 log(1/e) + Nn2) n2

CCALin (Ge et al., 2016) - linear solver O((n2p
√
κB + p2n)δ−1 log(1/e) + Nn2) n2

rgCCALin (Xu & Li, 2020) - linear solver O((n2p
√
κB + p2n)δ′−2 log(1/e) + Nn2) n2

LazyCCA (Allen-Zhu & Li, 2017) - linear solver O((n2p
√
κB + p2n)δ−1/2 log(1/e) + Nn2) n2

MSG (Arora et al., 2017) ✓ inverse square root O(n3(p(σ′)2 + p2κ2
B)/e2) n2

Λ(X) formula† in (2) ✓ None O(κ5
Bσ2np/e2) np

Table 2. Overview of CCA and GEVP solvers for finding top-p vectors simultaneously that achieve e-critical point, i.e. ∥gradf(Xk)∥ ≤ e.
We assume that the number of samples is much greater than the dimension, i.e. N ≫ n and denote κB = β1/βn to be the condition
number of B. Deterministic methods depend on the gap δ = βp − βp+1, while stochastic methods are independent of the δ and depend
on the variance, where σ′ is the variance of the data x, whereas σ is the variance of the covariance estimate xx⊤. The first three methods
achieve linear rate O(log(1/e)), while the last two methods have sublinear rate O(1/e2). “Stochastic” marks methods with convergence
analysis for the stochastic case. Deterministic methods require forming the matrix B at the start with additional cost O(Nn2). *marks
local convergence result to the minimum and †marks convergence to a critical point.

we address the optimization problem:

min
x∈Rd

f(x) s. t. x ∈ M =
{
x ∈ Rd : h(x) = 0

}
,

(5)
where h : Rd → Rq is continuously differentiable, non-
convex, q ∈ N represents the number of constraints, and M
defines a smooth manifold set. We will consider algorithms
that stay within an initially prescribed ε-proximity region

Mε =
{
x ∈ Rd : ∥h(x)∥ ≤ ε

}
. (6)

The first assumption we make is a blanket assumption from
f having a smooth derivative. The second one requires that
the differential Dh(x)∗ inside the ε-safe region has bounded
singular values.

Assumption 2.1 (Smoothness of the objective). The objec-
tive function f : Rd → R is continuously differentiable and
its gradient is Lf -Lipschitz.

Assumption 2.2 (Smoothness of the constraint). Let
Dh(x)∗ : Rq → Rd be the adjoint of the differential of
the constraint function h. The adjoint of the differential
has bounded singular values for x in the safe ε-region, i.e.,
∀x ∈ Mε : C̄h ≤ σ (Dh(x)∗) ≤ Ch. Additionally, the
gradient ∇N (x) of the penalty term N (x) = 1

2∥h(x)∥
2 is

Lipschitz continuous with constant LN over Mε.

Assumption 2.1 is standard in optimization. Assumption 2.2
is necessary for the analysis of smooth constrained optimiza-
tion (Goyens et al., 2023) and holds, e.g., when Mε is a
compact set, Dh(x)∗ is smooth, and Dh(x) has full rank
for all x ∈ Mε. Next, we define a relative gradient descent
direction Ψ(x), which is an extension of the Riemannian
gradient outside of the manifold.

Definition 2.1 (Relative descent direction). A relative de-
scent direction Ψ(x) : Rd → Rd, with a parameter ρ > 0
that may depend on ε satisfies:

(i) ∀x ∈ Mε, ∀v ∈ span(Dh(x)∗) : ⟨Ψ(x), v⟩ = 0;

(ii) ∀x ∈ Mε, ⟨Ψ(x), ∇f(x)⟩ ≥ ρ∥Ψ(x)∥2;

(iii) ∀x ∈ M, ⟨Ψ(x), ∇f(x)⟩ = 0 if and only if x is a
critical point of f on M.

In short, the relative descent direction must be orthogonal to
the normal space span(Dh(x)∗) while remaining positively
aligned with the Euclidean gradient ∇f(x). While there
may be many examples of relative descent directions, a
particular example is the Riemannian gradient of f with
respect to the sheet manifold h(x) = c when ∥c∥ ≤ ε. Note,
the above definition is not scale invariant to ρ, i.e. taking
cΨ(x) for c > 0 will result in cρ, and this is in line with the
forthcoming convergence guarantees deriving upper bound
on ∥Ψ(x)∥.

Proposition 2.2 (Riemannian gradient is a relative descent
direction). The Riemannian gradient of f with respect to
the sheet manifold h(x) = c, defined as

gradf(x) = ∇f(x)−Dh(x)∗ (Dh(x)∗)
† ∇f(x), (7)

where c ∈ Rp is an error term such that ∥c∥ ≤ ε, Dh(x)

denotes a differential, and Dh(x)∗ (Dh(x)∗)
† acts as a pro-

jection on the normal space of h(x) = c at x, is a relative
descent direction on Mε with ρ = 1.

The proof can be found in the appendices in Subsection C.1.
Such extension of the Riemannian gradient to the whole
space was already considered by Gao et al. (2022b) in the
particular case of the Stiefel manifold and by Schechtman
et al. (2023). We now define the general form of the deter-
ministic landing iteration as

xk+1 = xk−ηkΛ(x
k)withΛ(x) = Ψ(x)+ω∇N (x), (8)

where Ψ(x) is a relative descent direction described in
Def. 2.1, ∇N (x) is the gradient of the penalty N (x) =
1
2∥h(x)∥

2 weighted by the parameter ω > 0, ∇N (x) =
Dh(x)∗h(x), and ∥ · ∥ is the ℓ2-norm. The stochastic it-
erations, where noise is added at each iteration, will be
introduced later in (10). Condition (i) in Def. 2.1 guarantees
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that ⟨∇N (x), Ψ(x)⟩ = 0, so that the two terms in Λ are
orthogonal.

Note that we can use any relative descent directions as
Ψ depending on the specific problem. The Riemannian
gradient in (7) is just one special case, which has some
shortcomings. Firstly, it requires a potentially expensive
projection Dh(x)∗ (Dh(x)∗)

†. Secondly, if the constraint
involves a random noise on h, formula (7) it does not give an
unbiased formula in expectation. An important contribution
of the present work is the derivation of a computationally
convenient form for the relative descent direction in the
specific case of the generalized Stiefel manifold in Section 3.

We now turn to the analysis of the convergence of this
method. The main object allowing for the convergence
analysis is Fletcher’s augmented Lagrangian

L(x) = f(x)− ⟨h(x), λ(x)⟩+ β∥h(x)∥2, (9)

with the Lagrange multiplier λ(x) ∈ Rp defined as
λ(x) = (Dh(x)∗)†[∇f(x)]. The differential of λ(x) must
be smooth, which is met when h is continuously differen-
tiable and Mε is a compact set.

Assumption 2.3 (Multipliers of Fletcher’s augmented
Lagrangian). The norm of the differential of the multi-
pliers of Fletcher’s augmented Lagrangian is bounded:
supx∈Mε ∥Dλ(x)∥ ≤ Cλ.

Proposition 2.3 (Lipschitz constant of Fletcher’s augmented
Lagrangian). Fletcher’s augmented Lagrangian L in (9) is
LL-smooth on Mε, with LL = Lf+λ + LN , where Lf+λ

is the smoothness constant of f(x) + ⟨λ(x), h(x)⟩ and LN
is that of N (x).

The following two lemmas show that there exists a positive
step-size η that guarantees that the next landing iteration
stays within Mε provided that the current iterate is inside
Mε.

Lemma 2.4 (Upper bound on the safe step size). Let x ∈
Mε and consider the iterative update x̃ = x−ηΛ(x), where
η > 0 is a step size and Λ(x) is the landing field in (8). If
the step size satisfies η ≤ η(x) with

η(x) :=
1

LN ∥Λ(x)∥2
(
ω∥∇N (x)∥2+√

ω2∥∇N (x)∥4 + LN ∥Λ(x)∥2(ε2 − ∥h(x)∥2)
)

where LN is from Assumption 2.2, then the line segment
from the current to the next iterate remains in the safe region.

The proof can be found in the appendices in Subsection C.2.
Next, we require that the norm of the relative descent direc-
tion must remain bounded in the safe region.

Assumption 2.4 (Bounded relative descent direction). We
require that supx∈Mε ∥Ψ(x)∥ ≤ CΨ.

This holds, for instance, if ∇f is bounded in Mε, using
Def. 2.1 (ii) and Cauchy-Schwarz inequality. Under this
assumption, we can lower bound the safe step in Lemma 2.4
for all x ∈ Mε, implying that there is always a positive step
size that keeps the next iterate in the safe region.

Lemma 2.5 (Non-disappearing safe step size). The upper
bound on the safe step size in Lemma 2.4 is lower bounded
as η(x) ≥ min

{
ε√

2LNCΨ
,

ωC̄2
hε

2

LN (C2
Ψ+ω2Chε2)

}
for all x ∈

Mε where Ch, C̄h, CΨ > 0 are constants from Assump-
tion 2.2 and 2.4.

The proof can be found in Subsection C.3.

Lemma 2.6. Let L(x) be Fletcher’s augmented Lagrangian
in (9) with β≥( ρ

4C2
h
+ Cλ

2Ch
+

C2
λ

C2
h
)/ω, where ρ is de-

fined in Def. 2.1. We have that ⟨∇L(x), Λ(x)⟩ ≥
ρ
2

(
∥Ψ(x)∥2 + ∥h(x)∥2

)
.

The proof can be found in the appendices in Subsection C.4.
This critical lemma shows that L is a valid merit function
for the landing iterations and allows the study of conver-
gence of the method with ease. The following statement
combines Lemma 2.6 with the bound on the safe step size
in Lemma 2.5 to prove sublinear convergence to a critical
point on the manifold.

Theorem 2.7 (Deterministic landing). The landing iteration
in (8) starting from x0 ∈ Mε satisfies

1

K

K∑
k=0

∥Ψ(xk)∥2 ≤ 4
L(x0)− L∗

ηρK
,

1

K

K∑
k=0

∥h(xk)∥2 ≤ 4
L(x0)− L∗

ηρω2K
.

for η ≤ min
{

ρ
2LL

, ρ
2LLC2

h
, ε√

2LNCΨ
,

ωC̄2
hε

2

LN (C2
Ψ+ω2Chε2)

}
and L∗ = minx∈Mε L(x).

The proof is given in Subsection C.5 and implies the iter-
ates xk converge to a critical point with the sublinear rate
O(1/K).

Due to the smoothness of Fletcher’s augmented Lagrangian
in the Mε region, we can extend the convergence result to
the stochastic setting, where the iterates are

xk+1 = xk − ηk

[
Λ(xk) + Ẽ(xk,Ξk)

]
, (10)

where the Ξk are random i.i.d. variables and Ẽ(xk,Ξk)
is the random error term at iteration xk, and Λ(xk) is the
landing field in (8). We require the landing update in (10)
to be an unbiased estimator with bounded variance.

Assumption 2.5 (Zero-centered and bounded variance).
There exists γ > 0 such that for all x ∈ Mε, we have
EΞ[Ẽ(x,Ξ)] = 0 and EΞ[∥Ẽ(x,Ξ)∥2] ≤ γ2.

6
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We obtain the following result with decaying step sizes.

Theorem 2.8 (Stochastic landing). The stochastic landing
iteration in (10) with a diminishing step size ηk = η0 ×
(1 + k)−1/2, whose updates are unbiased estimators with
bounded variance as in Assumption 2.5 and assuming the
line segments between the iterates remain within Mε with
probability one, produces iterates for which

inf
k≤K

E
[
∥Ψ(xk)∥2

]
≤ 4

ρη0
√
K

(
L(x0)− L∗ + cγ2 log(K)

)
inf
k≤K

E
[
∥h(x)∥2

]
≤ 4

ρω2η0
√
K

(
L(x0)− L∗ + cγ2 log(K)

)
,

where c = η0LL
2 for η0 ≤ ρ

2LL
min

{
1, C−2

h

}
and L∗ =

minx∈Mε L(x).

The theorem is proved in subsection C.6. Unlike in the
deterministic case in Lemma 2.4, without further assump-
tion on the distribution of Ξk, it cannot be ensured that the
iterates xk, or the line segments connecting them, are within
Mε with probability one. Under the assumption that the
line segments between the iterates remain in the safe re-
gion, we recover the same convergence rate as Riemannian
SGD in the non-convex setting for a deterministic constraint
(Bonnabel, 2013), but in our case, we require only an online
estimate of the random manifold constraint.

3. Landing on the generalized Stiefel manifold
This section builds on the results of the previous Section 2
and proves that the simple landing update rule Xk+1 =
Xk−ηkΛ(X

k), as defined as in (2), converges to the critical
points of (1). The generalized Stiefel manifold StB(p, n) is
defined by the constraint function h(X) = X⊤BX − Ip,
and we have ∇N (X) = 2BX(XTBX − Ip). We now
derive the quantities required for Assumption 2.2.

Proposition 3.1 (Smoothness constants for the generalized
Stiefel manifold). Smoothness constants in Assumption 2.2
for the generalized Stiefel manifold are

Ch = 2
√
(1 + ε)κ and C̄h = 2

√
(1− ε)κ−1,

where κ is the condition number of B.

Proof is presented in Subsection D.2. We show two candi-
dates for the relative descent direction:

Proposition 3.2 (Relative descent directions for the gener-
alized Stiefel manifold). The following three formulas are
viable relative descent directions on the generalized Stiefel
manifold.

ΨB(X) = 2skew(∇f(X)X⊤B)BX (11)

ΨR
B(X) = 2skew(B−1∇f(X)X⊤)BX (12)

with ΨB(X) having ρB = 1/(κ(1+ε)) and ΨR
B(X) having

ρRB = β2
n/(κ(1 + ε)) for κ = β1/βn, where βi denotes the

ith eigenvalue of B.

Proof is given in Subsection D.3. The formula for the rel-
ative descent ΨR

B(X) can be derived as a Riemannian gra-
dient for StB(p, n) in a metric derived from a canonical
metric on the standard Stiefel manifold via specific isome-
try; see Appendix E. The fact that ΨB(X) above meets the
conditions of Def. 2.1 allows us to define the deterministic
landing iterations as Xk+1 = Xk − ηkΛ(Xk) with

Λ(X) = 2 skew(∇f(X)X⊤B)BX+2ωBX(XTBX−Ip),
(13)

and Theorem 2.7 applies to these iterations, showing that
they converge to critical points.

3.1. Stochastic generalized Stiefel case

One of the main features of the formulation in (13) is that
it seamlessly extends to the stochastic case when both the
objective f and the constraint matrix B are expectations.
Indeed, using the stochastic estimate Λξ,ζ,ζ′ defined in
Eq. (2), we have Eξ,ζ,ζ′ [Λξ,ζ,ζ′(X)] = Λ(X). The stochas-
tic landing iterations are, therefore, of the same form as
section 2, (10). To apply Theorem 2.8 we need to bound
the variance of Ẽ(X,Ξ) = Λξ,ζ,ζ′(X)− Λ(X) where the
random variable Ξ is the triplet (ξ, ζ, ζ ′) using standard
U-statistics techniques (Van der Vaart, 2000).

Proposition 3.3 (Variance estimation of the generalized
Stiefel landing iteration). Let σ2

B be the variance of Bζ and
σ2
G the variance of ∇fξ(X). We have that

EΞ[∥Ẽ(X,Ξ)∥2] ≤ σ2
Gp

2
B

(1 + ε)2

β2
n

+σ2
B

1 + ε

βn

(
4∆(pB + β2

1) + pN + (1 + ε)2
)
,

(14)

with pB = E[∥Bζ∥22], pN = 1+ε
βn

σ2
B + ε and ∆ =

supX∈StεB(p,n) ∥∇f(X)X⊤∥22.

The proof is found in subsection D.4. Note, that as expected,
the variance in (14) cancels when both variances σB and
σG cancel. A consequence of Proposition 3.3 is that Theo-
rem 2.8 applies in the case of the stochastic landing method
on the generalized Stiefel manifold, and more specifically,
also for solving the GEVP.

Proposition 3.4. (Landing complexity for GEVP) For LL =
O(Lf + LN ) we have that the asymptotic number of iter-
ations the stochastic landing algorithm takes to achieve e-
critical point for the generalized eigenvalue problem where
f(X) = − 1

2 Tr(X
⊤AX) and h(X) = X⊤BX − I is:

O
((

κβ1σ
2
G +

(
1 + β−2

1

)
σ2
B

)
β1κ

3(κ+ α1 + β1)
np

e2

)
,

7
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Figure 2. Generalized eigenvalue problem (n = 1000, p = 500).
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Figure 3. Stochastic CCA on the split MNIST dataset for p = 5.
An epoch takes roughly 2.5 sec.

where αi, βi denote the eigenvalues of A,B in decreasing
order and κ is the condition number of B.

The proof is given in subsection D.5. Note that the bound
above assumes LL = O(Lf + LN ), which are derived in
Lemma D.1 and does not take into account the middle term
of L(X) in (9).

4. Numerical experiments
Generalized eigenvalue problem. We compare the meth-
ods on the deterministic top-p GEVP that consists of solving
minX∈Rn×p − 1

2 Tr(X
⊤AX) for X ∈ StB(p, n). The two

matrices are randomly generated with a condition number
κ = 100 and with the size n = 1000 and p = 500; see
further specifics in Appendix B.

Fig. 2 shows the timings of four methods with fixed step-
size: Riemannian steepest descent with QR-based Cholesky
retraction (Sato & Aihara, 2019), the two landing meth-
ods with either ΨR

B(X) and ΨB(X) in Prop. 3.2, and the
PLAM method (Gao et al., 2022a). The landing method
with ΨB(X) converges the fastest in terms of time, due to its
cheap per-iteration computation, which is also demonstrated
in Fig. 5 and Fig. 7 in the appendices. It can be also ob-
served, that the landing method with ΨB(X) is more robust
to the choice of parameters η and ω compared to PLAM,

which we show in Fig. 8 and Fig. 10 in the appendices, and
is in line with the equivalent observations previously made
for the orthogonal manifold (Ablin & Peyré, 2022, Fig. 9).
In Fig. 9 in the appendices we track numerically the value
of the upper bound η(X) of the safe stepsize in Lemma 2.4,
which shows that it is mildly restricting at the start and
becomes relaxed as the iterations approach a critical point.
Stochastic CCA and ICA. For stochastic CCA, we use
the standard benchmark problem, in which the MNIST
dataset is split in half by taking left and right halves of
each image, and compute the top-p canonical correlation
components by solving (4).

The stochastic ICA is performed by solving

min
X∈Rn×n

1

N

N∑
i=1

n∑
j=1

σ([AX]i,j), s.t. X ∈ St 1
N A⊤A(n, n)

where σ(x) = log(cosh(x)) is performed elementwise and
σ′(x) = tanh(x). We generate the matrix A as A = SB⊤,
where S ∈ RN×n is a random orthogonal n × n mixing
matrix, the number of samples N = 100 000 and n = 10.

Fig. 3 and Fig. 4 show the timings for the Riemannian gradi-
ent descent with rolling averaged covariance matrix and the
landing algorithm with ΨB(X) in its online and averaged
form for the CCA and the ICA experiment respectively. The
averaged methods keep track of the covariance matrices
during the first pass through the dataset, which is around
3 sec. and 0.6 sec. respectively, after which they have the
exact fully sampled covariance matrices. The online meth-
ods have always only the sampled estimate with the batch
size of r = 512. The stepsize for all the methods is η = 0.1
and ω = 1; in practice, the hyperparameters can be picked
by grid-search as is common for stochastic optimization
methods.

The online landing method outperforms the averaged Rie-
mannian gradient descent in the online setting in terms of
the objective value after only a few passes over the data,
e.g. at the 3 sec. mark and the 0.6 sec. mark respectively,
which corresponds to the first epoch, at which point each
sample appeared just once. After the first epoch, the rolling
avg. methods get the advantage of the exact fully sampled
covariance matrix and, consequently, have better distance
N (X), but at the cost of requiring O(n2) memory for the
full covariance matrix. The online method does not form B
and requires only O(np) memory. The behavior is also con-
sistent when p = 10 as shown in Fig. 6 in the appendices.

5. Conclusion
We extend the theory of the landing method from the
Stiefel manifold to the general case of a smooth constraint
h(x) = 0. We improve the existing analysis by using a
smooth Lagrangian function, which allows us to also con-
sider situations when we have only random estimates of the

8



Optimization without retraction on the random generalized Stiefel manifold for canonical correlation analysis

3.3
3.4
3.5
3.6
3.7

Ob
je

ct
iv

e 
va

lu
e

10 3

10 1

Am
ar

i d
ist

an
ce Riem. GD (avg.)

PLAM (avg.)
Landing ( B(X), avg.)
Landing ( B(X), online)

0.0 0.5 1.0 1.5 2.0
Time (sec.)

10 5

10 3

10 1

Di
st

an
ce

 
(x

)

Figure 4. Stochastic ICA on the synthetic dataset for n = 10.

manifold, and we wish our iterates to be in the feasible set
defined by an expectation. We show that random general-
ized Stiefel manifold, which is central to problems such as
stochastic CCA, ICA, and the GEVP, falls into the category
of random manifold constraints and derive specific bounds
for it. The analysis yields improved complexity bounds for
stochastic GEVP when the matrices are well-conditioned.
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A. Summary of retractions on the generalized Stiefel manifold
For an update to a matrix X ∈ StB(p, n) following the direction Z ∈ Rn×p there are several ways to compute a retraction.

• The Polar decomposition (Yger et al., 2012) uses

RetrStB (X,Z) = (X + Z)
(
Ip + Z⊤BZ

)−1/2
, (15)

where it is necessary to compute matrix product and a matrix square root inverse, amounting to O(n2p) flops.

• Mishra & Sepulchre (2016) observed that the aforementioned polar decomposition can be expressed as UV ⊤ in terms
of an SVD-like decomposition of X + Z = UΣV ⊤, where U, V are orthogonal in respect to B-inner product, whose
main cost is the eigendecomposition of (X + Z)⊤B(X + Z).

• Recently, (Sato & Aihara, 2019) proposed the Cholesky-QR based retraction

RetrStB (X,Z) = (X + Z)R−1, (16)

where R ∈ Rp×p comes from Cholesky factorization of R⊤R = (X + Z)⊤B(X + Z). The flops required for the
computation amount to O(n2p), which comes from the matrix multiplications, the Cholesky factorization of an p× p
matrix, and finally, the inverse multiplication by a small triangular p× p matrix requires O(p3) to form and O(np2) to
multiply with.

B. Additional experiments and figures
For the experiment showed in Fig. 2, we generate the matrix A ∈ Rn×n to have equidistant eigenvalues λ(A)i ∈ [1/κ, 1]
and B ∈ Rn×n has exponentially decaying eigenvalues λ(B)i ∈ [1/κ, 1]. We pick the step-size η parameter to be η = 0.01
for the Riemannian gradient descent, the landing with ΨR

B(X), and PLAM, and η = 200 for the landing with ΨB(X)
and we run a grid-search with step-sizes cη, where c ∈ [1/4, 1/2, 1, 2, 4, 8]. The normalizing parameter ω is chosen to be
ω = 105 for the landing with ΨR

B(X), ω = 0.1 for the landing with ΨB(X), and ω = 200 for PLAM.
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Figure 5. Deterministic computation of the generalized eigenvalue problem with n = 1000, p = 500, the condition number of the two
matrices κ = 100. Each algorithm is given a time limit of 120 seconds.

C. Proofs for Section 2
C.1. Proof of Proposition 2.2

Proof. It follows from the definition (7) and Dh(x)Dh(x)∗ (Dh(x)∗)
†
= Dh(x) that Dh(x)(gradf(x)) = 0, which

implies the first condition in Definition 2.1 holds, i.e., ⟨gradf(x), v⟩ = 0 for all v ∈ span(Dh(x)∗). Since
Dh(x)∗ (Dh(x)∗)

† ∇f(x) ∈ span(Dh(x)∗), we have

∥gradf(x)∥2 = ⟨gradf(x), gradf(x)⟩

=
〈
gradf(x), ∇f(x)−Dh(x)∗ (Dh(x)∗)

† ∇f(x)
〉

= ⟨gradf(x), ∇f(x)⟩ ,
which verifies the second condition with ρ = 1 and the third condition with gradf(x) = 0 for a critical point x ∈ M.

11
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Figure 6. Stochastic canonical correlation analysis on the split MNIST dataset for p = 10 canonical components.
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Figure 7. Comparison of per-iteration computational time for different problem sizes of the descent directions of algorithms in Fig. 2
and the cost of retractions compared to ∇N (X), both in the deterministic setting when n = p = r, for which the matrix multiplication
in ΨB(X) and ∇N (X) are at the disadvantage. Computation time of randomly generated B,X ∈ Rn×n averaged over 100 runs with
CUDA implementation using cupy.

C.2. Proof of Lemma 2.4

Proof. For ease of notation we denote the current iterate x and the subsequent iterate as x̃ = x−ηΛ(x). From LN -Lipschitz
of N we have

N (x̃) ≤ N (x) + ⟨∇N (x), −ηΛ(x)⟩+ η2LN

2
∥Λ(x)∥2 (17)

= N (x)− ηω∥∇N (x)∥2 + η2LN

2
∥Λ(x)∥2, (18)

where in the first line we use that N (x) has Lipschitz gradient with the constants LN for x in the safe-region. To guarantee
h(x̃) ≤ ε, we have to ensure that

N (x)− ηω∥∇N (x)∥2 + η2LN

2
∥Λ(x)∥2 ≤ ε2

2
. (19)

Solving the quadratic inequality in (19) for the positive root η > 0 yields the results.
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Figure 8. Comparison of the sensitivity to the choice of the step-size η and ω of the landing with ΨB(X) and the PLAM method (Gao
et al., 2022a) in the generalized eigenvalue problem experiment presented in Fig. 2 with n = 1000, p = 500, and the condition number of
the two matrices κ = 100. On the right we show log-log scale to better see the effect in earlier iterations. Both parameters are picked as
in the experiment for Fig. 2 and multiplied by a scalar from the set {0.25, 0.75, 1.25, 1.75} for all possible pair combinations.
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Figure 9. Numerical evaluation of the upper safe-step bound η(X) in Lemmma 2.4 per time, which ensures that the iterates stay in
StεB(p, n), for the two landing methods tested in Fig. 2 with the LN bounded for the GEVP as in Lemma D.1. We see that the upper
bound is only mildly restricting and becomes even less restricting as the iterates come close to a stationary point.

C.3. Proof of Lemma 2.5

Proof. Assume that ∥∇N (x)∥ ≥ C̄h∥h(x)∥ is lower bounded in Mε. We proceed to lower bound the numerator of the
safe-step size bound in Lemma 2.4 by making it independent of x ∈ Mε as follows

ω∥∇N (x)∥2+
√

ω2∥∇N (x)∥4 + LN ∥Λ(x)∥2(ε2 − ∥h(x)∥2)

≥ ωC̄2
h∥h(x)∥2 +

√
ω2C̄4

h∥h(x)∥4 + LN ∥Ψ(x)∥2 (ε2 − ∥h(x)∥2) (20)

≥ ωC̄2
h∥h(x)∥2

(
1 +

1√
2

)
+

1√
2
∥Ψ(x)∥

√
LN (ε2 − ∥h(x)∥2) (21)

≥
√

LN

2
∥Ψ(x)∥(ε− ∥h(x)∥) +

(
1 +

1√
2

)
ωC̄2

h∥h(x)∥2 (22)

where the first inequality comes from using bounds from Assumption 2.2, the second inequality comes from
√
a+ b ≥

(
√
a+

√
b)/

√
2 for a, b ≥ 0, and the final inequality from the fact that

√
a− b ≥

√
a−

√
b for a, b ≥ 0 and a ≥ b. As a

result we have that the upper bound in Lemma 2.4 is lower-bounded by

η(x) ≥

√
LN
2 ∥Ψ(x)∥(ε− ∥h(x)∥) +

(
1 + 1√

2

)
ωC̄2

h∥h(x)∥2

LN (∥Ψ(x)∥2 + ω2C2
h∥h(x)∥2)

, (23)
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Figure 10. Robustness of the convergence towards the StB(p, n) for the landing with ΨB(X) in the experiment for Fig. 2 based on the
multiplied perturbations of η and ω parameters with the values from {1/8, 1/4, 1/2, 2, 4}.

using the fact that ∥Λ(x)∥2 = ∥Ψ(x)∥2 + ω2∥∇N (x)∥2 and ∥∇N (x)∥2 ≤ C2
h∥h(x)∥2. Since the minimum of (23) in

terms of ∥h(x)∥ ∈ [0, ε] is on the boundary, when ∥h(x)∥ = 0 or ∥h(x)∥ = ε, we can further lower bound the safe step size
as

η(x) ≥ min

{
ε√

2LNCΨ

,
ωC̄2

hε
2

LN (C2
Ψ + ω2Chε2)

}
(24)

where we used for the minimum at ∥h(x)∥ = 0 and the bound supx∈Mε ∥Ψ(x)∥ ≤ CΨ.

C.4. Proof of Lemma 2.6

Proof. The inner product has two parts

⟨∇L(x), Λ(x)⟩ = DL(x)[Λ(x)]
= DL(x)[Ψ(x)] + ωDL(x)[∇N (x)]. (25)

We expand the first term of the right hand side of (25) as

DL(x)[Ψ(x)] = ⟨∇f(x), Ψ(x)⟩ −
〈
(Dh(x)∗)†∇f(x), Dh(x)Ψ(x)

〉
− ⟨Dλ(x)[Ψ(x)], h(x)⟩+ 2β ⟨∇N (x), Ψ(x)⟩

= ⟨∇f(x), Ψ(x)⟩ − ⟨Dλ(x)[Ψ(x)], h(x)⟩ (26)

where we use that ∇∥h(x)∥2 = 2∇N (x) and that the second and the third term are zero due to the orthogonality of Ψ(x)
with the span of Dh(x)∗. We expand the second term of the right hand side of in (25) as

DL(x)[∇N (x)] = ⟨∇f(x), ∇N (x)⟩ −
〈
(Dh(x)∗)†∇f(x), Dh(x)∇N (x)

〉
− ⟨Dλ(x)[∇N (x)], h(x)⟩+ 2β∥∇N (x)∥2

=
〈
(In −Dh(x)∗(Dh(x)∗)†)∇f(x), ∇N (x)

〉
− ⟨Dλ(x)[∇N (x)], h(x)⟩+ 2β∥∇N (x)∥2

= −⟨Dλ(x)[∇N (x)], h(x)⟩+ 2β∥∇N (x)∥2, (27)

14
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where in the second equality we move the adjoint Dh(x)∗ in the second inner product to the left side and join it with the first
inner product. The third equality comes from the fact that due to the projection of ∇f(x) on the orthogonal complement of
Dh(x)∗ and ∇N (x) = Dh(x)∗h(x) are orthogonal.

Joining the two components (26) and (27) together we get

⟨∇L(x), Λ(x)⟩ = ⟨∇f(x), Ψ(x)⟩ − ⟨Dλ(x)[Λ(x)], h(x)⟩+ 2βω∥∇N (x)∥2

≥ ρ∥Ψ(x)∥2 − Cλ (∥Ψ(x)∥+ ω∥∇N (x)∥) ∥h(x)∥+ 2βω∥∇N (x)∥2

≥ ρ∥Ψ(x)∥2 + ω(2βCh − Cλ)Ch∥h(x)∥2 − Cλ∥Ψ(x)∥∥h(x)∥
≥ ρ∥Ψ(x)∥2 + ω(2βCh − Cλ)Ch∥h(x)∥2 − Cλ

(
α∥Ψ(x)∥2 + α−1∥h(x)∥2

)
≥ (ρ− Cλα) ∥Ψ(x)∥2 + (2ωβC2

h − ωChCλ − α−1Cλ)∥h(x)∥2

≥ ρ

2

(
∥Ψ(x)∥2 + ∥h(x)∥2

)
where the first inequality comes from ⟨∇f(x), Ψ(x)⟩ ≥ ρ∥Ψ(x)∥2 in Def. 2.1 combined with the bound
supx∈Mε ∥Dλ(x)∥ ≤ Cλ and the triangle inequality, the second inequality comes from bounding ∥∇N (x)∥ ≤ Ch∥h(x)∥
using Assumption 2.2 and rearranging terms, the third inequality comes from using the AG-inequality

√
ab ≤ (a+ b)/2

with a = α∥h(x)∥ and b = α−1∥Ψ(x)∥ for an arbitrary α > 0, in the fourth inequality we only rearrange terms, and finally,
in the fifth inequality we choose α = ρ/(2Cλ) and use that β = ( ρ

4C2
h
+ Cλ

2Ch
+

C2
λ

C2
h
)/ω.

C.5. Proof of Theorem 2.7

Proof. Due to x0 ∈ Mε and the step size being smaller than the bound in Lemma 2.5, we have that all iterates remain in
the safe region xk ∈ Mε. By smoothness of Fletcher’s augmented Lagrangian and the fact that the segment [xk, xk+1] ∈
StεB(p, n) by η being a safe-stepsize from Lemma 2.4, we can expand

L(xk+1) ≤ L(xk)− η
〈
Λ(xk), ∇L(xk)

〉
+

LLη
2

2
∥Λ(xk)∥2 (28)

≤ L(xk)− ηρ

2

(
∥Ψ(xk)∥2 + ω2∥h(xk)∥2

)
+

LLη
2

2
∥Λ(xk)∥2 (29)

≤ L(xk)− η

2

(
(ρ− LLη) ∥Ψ(xk)∥2 + ω2

(
ρ− ηLLC

2
h

)
∥h(xk)∥2

)
, (30)

where in the second inequality we used the results of Lemma 2.6, and in the third inequality we use the bound on
∥∇N (x)∥ ≤ Ch∥h(x)∥ by Assumption 2.2. By the step size η < min

{
ρ

2LL
, ρ
2LLC2

h

}
we have

ηρ

4
∥Ψ(xk)∥2 + ηρω2

4
∥h(x)∥2 ≤ L(xk)− L(xk+1). (31)

Telescopically summing the first K terms gives

ηρ

4

K∑
k=0

∥Ψ(xk)∥2 + ηρω2

4

K∑
k=0

∥h(x)∥2 ≤ L(x0)− L(xK+1) ≤ L(x0)− L∗,

which implies that the inequalities hold individually also

ηρ

4

K∑
k=0

∥Ψ(xk)∥2 ≤ L(x0)− L∗ and
ηρω2

4

K∑
k=0

∥h(x)∥2 ≤ L(x0)− L∗.

C.6. Proof of Theorem 2.8

Proof. Let xk+1 = xk − ηΛ̃(xk), where we denote Λ̃(xk) = Λ(xk) + Ẽ(xk,Ξk) the unbiased estimator of the landing
update, and we assume that the line segment between the iterates remain within Mε. By the Lipschitz continuity of the
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gradient of Fletcher’s augmented Lagrangian inside of Mε, we have

E
[
L(xk+1)

]
≤ E

[
L(xk)− η

〈
Λ̃(xk), ∇L(xk)

〉
+

LLη
2

2
∥Λ̃(xk)∥2

]
≤ L(xk)− η

〈
Λ(xk), ∇L(xk)

〉
+

LLη
2

2

(
∥Λ(xk)∥2 + γ2

)
≤ L(xk)− ηρ

2

(
∥Ψ(xk)∥2 + ω2∥h(x)∥2

)
+

LLη
2

2

(
∥Λ(xk)∥2 + γ2

)
≤ L(xk) +

LLη
2

2
γ2 − η

2

(
(ρ− LLη) ∥Ψ(xk)∥2 + ω2

(
ρ− ηLLC

2
h

)
∥h(xk)∥2

)
,

where the first inequality comes from taking an expectation of the Lipschitz-continuity of L(x), in the second inequality we
take the expectation inside of the inner product using the fact that Λ̃(xk) is zero-centered and has bounded variance, the third
and the last inequality comes as a consequence of Lemma 2.6. By the step size being smaller than η < min

{
ρ

2LL
, ρ
2LLC2

h

}
we have that

ηρ

4
∥Ψ(xk)∥2 + ηρω2

4
∥h(x)∥2 ≤ L(xk)− L(xk+1) +

LLη
2

2
γ2

Telescopically summing the first K terms gives

ηρ

4

K∑
k=1

∥Ψ(xk)∥2 + ηρω2

4

K∑
k=0

∥h(xk)∥2 ≤ L(x0)− L(xK+1) +
LLη

2γ2

2

K∑
k=0

(1 + k)−1 (32)

≤ L(x0)− L∗ +
LLη

2γ2

2
log(K)

which implies that the inequalities hold also individually

inf
k≤K

∥Ψ(xk)∥2 ≤ 4

ρη0
√
K

(
L(x0)− L∗ +

η0LLγ
2

2
log(K)

)
,

inf
k≤K

∥h(xk)∥2 ≤ 4

ρω2η0
√
K

(
L(x0)− L∗ +

η0LLγ
2

2
log(K)

)
,

where we used that infk≤K ∥Ψ(xk)∥2 ≤
∑K

k=0 ηk∥Ψ(xk)∥2
(∑K

k=0 ηk

)−1

and the fact that
∑

k≤K ηk ≥ η0
√
K.

D. Proofs for Section 3
D.1. Specific forms of Dh(x), λ(X) for StB(p, n)

We begin by showing the specific form of the formulations derived in the previous section for the case of the generalized
Stiefel manifold. Differentiating the generalized Stiefel constraint yields Dh(X)[V ] = X⊤BV + V ⊤BX and the adjoint
is derived as

⟨Dh(X)∗[V ], W ⟩ = ⟨V, Dh(X)[W ]⟩ =
〈
V, WTBX +XTBW

〉
= ⟨2BXsym(V ), W ⟩ , (33)

as such we have that Dh(X)∗[V ] = 2BXsym(V ). Consequently

Dh(X)Dh(X)∗[V ] = 2sym(V )X⊤B2X + 2X⊤B2Xsym(V ), (34)

and the Lagrange multiplier λ(X) is defined in the case of the generalized Stiefel manifold as the solution to the following
Lyapunov equation

2λ(X)X⊤B2X + 2X⊤B2Xλ(X) = X⊤B∇f(X) +∇f(X)⊤BX. (35)

Importantly, due to λ(X) being the unique solution to the linear equation and ∇f(X) being smooth, λ(X) is also
smooth with respect to X , and as a smooth function defined over a compact set StεB(p, n), its operator norm is bounded
supX∈StεB(p,n) ∥Dλ(X)∥F ≤ Cλ as required by Assumption 2.3.
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D.2. Proof of Proposition 3.1

Proof. For ∥X⊤BX − Ip∥F ≤ ε, X = UΣV ⊤ be the singular value decomposition of X , and QDQ⊤ be the spectral
decomposition of B. We then have

ε2 ≥ ∥X⊤BX − Ip∥2F = ∥ΣU⊤QD(U⊤Q)⊤Σ− Ip∥2F (36)

where βi, σi are the positive eigenvalues of B and the singular values of X respectively in the decreasing order. This implies
that √

(1− ε)/β1 ≤ σi ≤
√

(1 + ε)/βn. (37)

The above bound gives that the singular values of Dh(X)∗ = 2BX are in the interval [2
√

(1− ε)κ−1, 2
√

(1 + ε)κ] which
in turn gives the constants Ch, C̄h.

Lemma D.1 (Lipschitz constants for the generalized eigenvalue problem). Let f = − 1
2 Tr(X

⊤AX) and N (X) =
∥X⊤BX − Ip∥2F as in the optimization problem corresponding to the generalized eigenvalue problem. We have that, for
X ∈ StεB(p, n), the Lipschitz constant for ∇N is LN = β1ε + 2(1 + ε)κ and the for ∇f is Lf = α1 where α1 is the
largest eigenvalue of A.

Proof. Take X,Y ∈ StB(p, n), we have that ∇N (X) = BX(X⊤BX), thus

∇N (X)−∇N (Y ) = B
(
X(X⊤BX − Ip)− Y (Y ⊤BY )

)
(38)

= B(X − Y )(X⊤BX − Ip) +B(X⊤BX − Y ⊤BY ) (39)

= B(X − Y )(X⊤BX − Ip) +BY (X − Y )⊤BX +BY Y ⊤B(X − Y ) (40)

Taking the Frobenius norm and by the triangle inequality we get

∥∇N (X)−∇N (Y )∥ ≤ ∥X − Y ∥
(
∥B∥∥X⊤BX − Ip∥+ ∥B∥2∥X∥∥Y ∥+ ∥B∥2∥Y ∥2

)
(41)

≤ ∥X − Y ∥(β1ε+ 2(1 + ε)κ), (42)

where we used the fact that X ∈ StεB(p, n) and we have that ∥X∥2 ≤
√
(1 + ε)κ and the same for Y ∈ StεB(p, n).

When f = 1
2 Tr(X

⊤AX), we have that ∥∇f(X)−∇f(Y )∥ ≤ ∥A∥2∥X − Y ∥.

D.3. Proof of Proposition 3.2

Proof. For ease of notation we denote G = ∇f(X) ∈ Rn×p. The first property Definition 2.1 (i) comes from〈
skew(GX⊤B)BX, BXS

〉
= 0, (43)

which holds for a symmetric matrix S, since a skew-symmetric matrix is orthogonal in the trace inner product to a symmetric
matrix,

The second property (ii) is a consequence of the following

⟨ΨB(X), G⟩ =
〈
skew(GXTB)BX, G

〉
=∥skew(GXTB)∥2F ≥ 1

(1 + ε)κ
∥ΨB(X)∥2F,

where we use the bounds on ∥BX∥2 ≤
√
(1 + ε)κ derived in the proof of Proposition 3.1 in (37) for κ = β1/βn the

condition number of B.

To show the third property (iii), we first consider a critical point X ∈ StB(p, n), for which must hold

G = BXS, (44)
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for some S ∈ sym(p) due to the constraints being symmetric and that X⊤BX = Ip by feasibility. We have that at the
critical point defined in (44), the relative descent direction is

ΨB(X) = skew(GX⊤B)BX = skew(BXSX⊤B)BX = 0, (45)

where the second equality is the consequence of (44) and the third equality comes from the fact that BXSX⊤B is symmetric.

To show the other side of the implication, that ΨB(X) = 0 combined with feasibility imply that X is a critical point, we
consider

0 = Ψ(x) = skew(GX⊤B)BX = GX⊤B2X −BXG⊤BX (46)

which, since X⊤B2X ∈ Rp×p is invertible, is equivalent to

G = BXG⊤BX
(
X⊤B2X

)−1
. (47)

For X to be a critical point, we must have that G⊤BX
(
X⊤B2X

)−1
is symmetric:

G⊤BX
(
X⊤B2X

)−1
=

(
X⊤B2X

)−1
X⊤BG, (48)

which, after multiplying by
(
X⊤B2X

)
from both sides and rearranging terms, is equivalent to

X⊤Bskew(BXG⊤)BX = 0, (49)

that is true from multiplying (46) by X⊤B from the left.

For the other choice of relative gradient ΨR
B(X) = skew(B−1GX⊤)BX , letting M = B−1GX⊤, we find

⟨ΨR
B(X), G⟩ = ⟨skew(M), BMB⟩ (50)

= ⟨skew(M), skew(BMB)⟩ (51)
= ⟨skew(M), Bskew(M)B⟩ (52)

≥ ∥skew(M)∥2Fβ2
n (53)

and similarly as before, it holds ∥ΨR
B(X)∥2 ≤ ∥skew(M)∥2F(1 + ε)κ which in turn leads to ⟨ΨR

B(X), G⟩ ≥ β2
n

(1+ε)κ∥ΨB∥2

D.4. Proof of Proposition 3.3

Proof. We start by deriving the bound on the variance of the normalizing component ∇N (X). Consider U and V to be two
independent random matrices taking i.i.d. values from the distribution of Bζ with variance σ2

B . We have that

Var
[
UX(X⊤V X − Ip)

]
= EU,V

[
∥UX(X⊤V X − Ip)−BX(X⊤BX − Ip)∥2

]
(54)

Introducing the random marginal BX(X⊤V X − Ip), we further decompose

Var
[
UX(X⊤V X − Ip)

]
= EU,V

[
∥UX(X⊤V X − Ip)−BX(X⊤V X − Ip)∥2

]
(55)

+ EV

[
∥BX(X⊤V X − Ip)−BX(X⊤BX − Ip)∥2

]
. (56)

The first term in the above is upper bounded as

EU,V

[
∥UX(X⊤V X − Ip)−BX(X⊤V X − Ip)∥2

]
≤ EU,V

[
∥U −B∥2F∥X(X⊤V X − Ip)∥22

]
(57)

= σ2
BEV [∥X(X⊤V X − Ip)∥22] (58)

and the second is controlled by

EV

[
∥BX(X⊤V X − Ip)−BX(X⊤BX − Ip)∥2

]
= EV

[
∥BXX⊤(V −B)X∥2

]
(59)

≤ σ2
B∥B∥22∥X∥62. (60)
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Taking things together

Var
[
UX(X⊤V X − Ip)

]
≤ (EV [∥X(X⊤V X − Ip)∥22] + ∥B∥22∥X∥62)σ2

B (61)

≤
(
1 + ε

βn
EV [∥X⊤V X − Ip∥22] +

(1 + ε)3

βn

)
σ2
B , (62)

where for the second inequality we can use the bounds on the singular values of X ∈ StεB(p, n).

Similarly, the variance of the first term in the landing is controlled by introducing yet another random variable G that takes
values from ∇fξ(X). We use the U-statistics variance decomposition twice to get

Var[skew
(
GX⊤U

)
V X] =

EG,U,V [∥skew((G−∇f(X))X⊤U)V X∥2]
+ EU,V [∥skew(∇f(X)X⊤(U −B))V X∥2]
+ EV [∥skew(∇f(X)X⊤B)(V −B)X∥2]

which leads to the bound

Var[skew
(
GX⊤U

)
V X] ≤ σ2

GEU [∥UX∥22]2

+ σ2
B(∥∇f(X)X⊤∥22EU [∥UX∥22]

+ ∥∇f(X)X⊤B∥22∥X∥22)

Joining the two bounds above, we get the result.

D.5. Proof of Proposition 3.4

Proof. Same as in the proof of Theorem 2.8, by telescopically summing and averaging the iterates in (32), we arrive at the
inequality

ηρ

4K

K∑
k=1

∥ΨB(X
k)∥2 + ηρω2

4K

K∑
k=0

∥h(Xk)∥2

≤ L(X0)− L(XK+1)

K
+

LLη
2γ2

2
,

which implies also that the following two inequalities hold individually

1

K

K∑
k=1

∥ΨB(X
k)∥2 ≤ 2

ρ

(
2
L(X0)− L(XK+1)

Kη
+ LLηγ

2

)
(63)

1

K

K∑
k=0

∥h(Xk)∥2 ≤ 2

ρω2

(
2
L(X0)− L(XK+1)

Kη
+ LLηγ

2

)
. (64)

In the above we see that the optimal step-size given K iterations is

η∗ =

√
2(L(XK+1)− L(X0))√

KLLγ
(65)

and the value of the parenthesis on the right-hand side becomes 2
√

2(L(X0)− L(XK))LL/Kγ. We thus need

K = 32LLγ
2L(X0)− L(XK)

e2ρ2
(66)

iterations to decrease infk≤K E∥Ψ(Xk)∥ ≤ e and similarly, but with extra ω4 in the denominator, for the constraint
infk≤K E∥h(Xk)∥ ≤ e.
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Consider batch r = 1, since each iteration cost npr, we have the following number flops to get e-critical point

32LLγ
2L(X0)− L(XK)

e2ρ2
np. (67)

Taking that LL = O(α1 + β1 + κ) from the previous Lemma D.1 and by the fact that ρ = O(1/κ), we have that we require
O(γ2κ2(κ+ α1 + β1)np/e

2) flops.

It remains to estimate the variance of the landing γ in terms of the variances of σG, σB using Proposition 3.3, which states:

γ2 ≤ σ2
Gp

2
B

(1 + ε)2

β2
n

+ σ2
B

1 + ε

βn

(
4∆(pB + β2

1) + pN + (1 + ε)2
)
. (68)

Here we have that pN = 1+ε
βn

σ2
B + ε, ∆ = supX∈StεB(p,n) ∥∇f(X)X⊤∥22, and pB = Eζ∥Bζ∥22 which can be bounded as

pB ≤ β2
1 + σ2

B . When the variance of the constraint is small and we have that σB < β1 we get pB ≤ 2β2
1 and

γ2 ≤ 8κ2β2
1σ

2
G + (24β1κ+ 10/βn)σ

2
B +

4

βn
σ4
B (69)

where we also use that ε < 1. This gives an asymptotic bound

γ2 ≤ O
(
κ2β2

1σ
2
G +

(
β1κ+ β−1

n

)
σ2
B + σ4

B/βn

)
, (70)

leading to the asymptotic number of floating point operations for e-criticality to be(
κ2β2

1σ
2
G +

(
β1κ+ β−1

n

)
σ2
B + σ4

B/βn

) κ2(κ+ α1 + β1)np

e2
, (71)

where the leading term is (
κβ1σ

2
G +

(
1 + β−2

1

)
σ2
B

) β1κ
3(κ+ α1 + β1)np

e2
. (72)

E. Riemannian interpretation of ΨR
B(X) in Prop. 3.2

Similar to the work of (Gao et al., 2022b), we can provide a geometric interpretation of the relative descent direction ΨR
B(X)

as a Riemannian gradient in a canonical-induced metric and the isometry between the standard Stiefel manifold St(p, n)
and the generalized Stiefel manifold StB(p, n). Let

StB,M (p, n) := {X : X⊤BX = M},

for B,M ≻ 0, which is the sheet manifold of StB(p, n), and consider a map

ΦB,M : St(p, n) → StB,M (p, n) : Y 7→ B− 1
2YM

1
2 .

The map ΦB,M acts as a diffeomorphism of the set of the full rank Rn×p matrices onto itself and maps the standard Stiefel
manifold St(p, n) to the generalized Stiefel manifold StB,M (p, n). It is easy to obtain the tangent space at X ∈ StB,M (p, n)
via the standard definition:

TXStB,M (p, n) = {ξ ∈ Rn×p : ξTBX +XTBξ = 0}
= {X(XTBX)−1Ω+B−1X⊥K : ΩT +Ω = 0,Ω ∈ Rp×p,K ∈ R(n−p)×p}
= {WBX : WT +W = 0,W ∈ Rn×n}
= {ΦB,M (ζ) : ζ ∈ TΦ−1

B,M (X)St(p, n)}

Consider the canonical metric on the standard Stiefel manifold St(p, n):

g
St(p,n)
Y (Z1, Z2) =

〈
Z1, (I −

1

2
Y Y T )Z2

〉
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Using the map ΦB,M , we define the metric gStB,M (p,n) which makes ΦB,M an isometry as. Hence, we have that this metric
is defined as

g
StB,M (p,n)
X (ξ, ζ) = g

St(p,n)

Φ−1
B (X)

(Φ−1
B (ξ),Φ−1

B (ζ))

=

〈
ξ, (B − 1

2
BX(XTBX)−1XTB)ζ(XTBX)−1

〉
.

Consequently, the corresponding normal space of StB,M (p, n) is

NXStB,M (p, n) = {X(XTBX)−1S : ST = S, S ∈ Rp×p}.

The form of the derived tangent and normal spaces allow us to derive their projection operators PX and P⊥
X respectively as

P⊥
X (Y ) = X(XTBX)−1sym(XTBY ),

PX(Y ) = Y −X(XTBX)−1sym(XTBY ).

Since ΦB,M is isometric, the Riemannian gradient w.r.t. gStB,M (p,n) can be computed directly by

gradB,Mf(X) = ΦB,M (gradY f(Y ))

= ΦB,M (gradΦ−1
B,M (X)f(Φ

−1
B,M (X)))

= B− 1
2 gradΦ−1

B,M (X)f(Φ
−1
B,M (X))M

1
2

= 2B− 1
2 skew

(
∇f(Φ−1

B,M (X))(Φ−1
B,M (X))T

)
Φ−1

B,M (X)M
1
2

= 2skew(B− 1
2∇f(B

1
2XM− 1

2 )M− 1
2XT )BX

= 2skew(B− 1
2B− 1

2∇f(X)M
1
2M− 1

2XT )BX

= 2skew(B−1∇f(X)XT )BX.

Hence, akin to the work of (Gao et al., 2022b) for the standard Stiefel manifold, we derived the equivalent Riemannian
interpretation of ΨR

B(X) and the landing algorithm for the generalized Stiefel manifold StB(p, n). Note, the formula for
ΨR

B(X) involves computing an inverse of B and thus does not allow a simple unbiased estimator to be used in the stochastic
case, as opposed to ΨB(X).
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