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Abstract. Each numerical semigroup S with smallest positive element m corre-
sponds to an integer point in a polyhedral cone Cm, known as the Kunz cone.
The faces of Cm form a stratification of numerical semigroups that has been shown
to respect a number of algebraic properties of S, including the combinatorial struc-
ture of the minimal free resolution of the defining toric ideal IS . In this work, we
prove that the structure of the infinite free resolution of the ground field k over the
semigroup algebra k[S] also respects this stratification, yielding a new combinatorial
approach to classifying homological properties like Golodness and rationality of the
poincare series in this setting. Additionally, we give a complete classification of such
resolutions in the special case m = 4, and demonstrate that the associated graded
algebras do not generally respect the same stratification.

1. Introduction

A numerical semigroup is a cofinite, additively closed set S ⊆ Z≥0 containing 0.
We often specify a numerical semigroup via a list of generators, i.e.,

S = ⟨n1, . . . , nk⟩ = {z1n1 + · · ·+ nkzk : zi ∈ Z≥0}.
Any numerical semigroup has a unique minimal generating set under inclusion; the
number e(S) of minimal generators is called the embedding dimension of S, and the
smallest generator m(S) = min(S \ {0}) is called the multiplicity of S. See [37] for a
thorough introduction.

A number of recent papers examine a family of convex rational polyhedral cones Cm,
one for each integer m ≥ 2, for which each numerical semigroup with multiplicity m
corresponds to an integer point in Cm. Originally introduced in [29], much of the recent
work centers around the face structure of Cm and the observation that two numerical
semigroups S and T correspond to points on the interior of the same face of Cm if and
only if certain subsets of their divisibility posets coincide [10, 28]. Geometric results
in this direction include, for instance, a classification of the faces of Cm containing
points corresponding to certain well-studied families of numerical semigroups [2] and a
realization of the faces of Cm as cones in the Gröbner fans of certain lattice ideals [8].

Of particular relevance to the present manuscript are two recent works concerning
the defining toric ideal IS of a numerical semigroup S. Kunz observed in [29] that
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if S and T lie on the interior of the same face of Cm, then the Betti numbers of IS
and IT coincide. This result was strengthened in [23] to show that there exist minimal
binomial generating sets for IS and IT that coincide except in the exponent of the
variable with degree m, and further extended in [7] to show the existence of minimal
free resolutions of IS and IT whose matrix entries coincide except for the exponents of
that same variable. Said another way, the minimal resolutions of IS and IT are seen
to have identical structure when S and T lie in the interior of the same face of Cm.

Broadly, these results identify a novel method of combinatorially classifying the
structure of minimal free resolutions of the defining toric ideals of numerical semigroups
with a given multiplicity m. This family of toric ideals has already seen some headway
over the general setting, due in part to the unique set of tools numerical semigroups
have to offer (see the survey [39] and the references therein), and stratification by the
faces of Cm is an addition to this toolkit. Indeed, this approach is already being put
to use in the classification of possible Betti numbers for fixed m [16].

This article, in the spirit of [20, 21, 26, 33], seeks to utilize a combinatorial ap-
proach in understanding infinite free resolutions over numerical semigroup algebras.
Such resolutions over singular rings are typically more complicated than those over
polynomial rings, perhaps most evidently because such resolutions are almost always
infinite. Some resolutions are known, in particular for the field k [1, 9, 17, 30, 35, 40],
either for special types of rings or without guarantee of minimality, but by and large
these resolutions remain mysterious. Further details and references can be found in
the surveys [3, 31].

Following a similar roadmap to that of the finite case in [7], we construct in Section 3
an infinite free resolution of k over any numerical semigroup ring R, which we call the
infinite Apéry resolution of k, that is minimal if and only if S is MED. The maps
in this resolution are seen to allow for simultaneous minimization for all semigroups
S and T residing in the interior of the same face of Cm, resulting in a uniformity of
resolution structure analogous to that obtained for the finite case in [7].

One of the primary consequences of our results is that the Kunz cone does indeed
allow one to classify resolutions of k over numerical semigroup rings combinatorially.
This combinatorial classification does not a priori appeal to usual homological no-
tions relevant in infinite resolutions, like complete intersection, Golod, and Koszul, yet
some homological properties whose classifications remain elusive in general, such as
Golodness and rationality of the Poincare series, respect this stratification.

As a demonstration of this approach, Section 4 exhibits a minimal free resolution
whenever S has multiplicity 4, obtained by considering each face of C4 in turn. After a
brief demonstration in Section 5 that the associated graded rings grm(R) do not seem
to obey the stratification imposed by the Kunz cone, we close by identifying several
future research directions in Section 6.
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2. Background and Setup

Throughout this paper, fix a numerical semigroup S ⊆ Z≥0 with multiplicity

m(S) = min(S \ {0}) = m,

and write

Ap(S) = {n ∈ S : n−m /∈ S}
= {0, a1, . . . , am−1}

for the set consisting of the minimal element of S from each equivalence class modulom,
with ai ≡ i mod m for each i. In particular,

S = ⟨m, a1, . . . , am−1⟩,
though this generating set need not be minimal (e.g., if ai + aj = ai+j for some i, j).
If this generating set is minimal, we say S has maximal embedding dimension (MED).
For convenience, define a0 = m.

Grade k[y, x1, . . . , xm−1] by S with deg(y) = m and deg(xi) = ai. Let x0 = y.
Consider the ring homomorphism

φ : k[y, x1, . . . , xm−1] −→ k[t]
xi 7−→ tai ,

and let IS = ker(φ), called the defining toric ideal of S, and R = k[y, x1, . . . , xm−1]/IS.
It is known (see, e.g., [7, Lemma 3.1]) that

(2.1) IS = ⟨xixj − ybijxi+j : 1 ≤ i ≤ j ≤ m− 1⟩
where each bij = 1

m
(ai + aj − ai+j) ≥ 0 is determined by the grading, and that the

above is a minimal generating set if and only if S is MED. Note the definition of bij here
differs from that in [7]; the discrepency in matrix entries necessitates this distinction.

Example 2.1. If S = ⟨4, 5, 7⟩, then Ap(S) = {0, 5, 10, 7}, and
IS = ⟨x2

1 − x2, x
2
2 − y5, x2

3 − yx2, x1x2 − y2x3, x1x3 − y3, x2x3 − y3x1⟩
= ⟨x2

1 − x2, x
3
1 − y2x3, x

2
3 − yx2

1, x1x3 − y3⟩
We emaphasize that R is the quotient by IS, so

R = k[y, x1, x2, x3]/IS ∼= k[y, x1, x3]/⟨x3
1 − y2x3, x

2
3 − yx2

1, x1x3 − y3⟩,
and in particular x2

1 − x2 = 0 and x1x2 − yx3 = x3
1 − x3 in R.

A given collection of integers a1, . . . , am−1 ≥ m with ai ≡ i mod m for each i comprise
the nonzero elements of the Apéry set of a numerical semigroup S if and only if the
point (a1, . . . , am−1) lies in the cone Cm ⊆ Rm−1

≥0 defined by the inequalities

xi + xj ≥ xi+j for each i, j = 1, . . . ,m− 1 with i+ j ̸= 0,
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Figure 1. The Kunz cones C3 (left) and C4 (right). Each face contain-
ing numerical semigroups is labeled with its Kunz poset.

called the Kunz cone due to [29]. Each facet equality ai + aj = ai+j occurs precisely
when bij = 0, and this is not possible in the case i + j = 0. As such, the Kunz poset
P = (Zm,⪯) of S, which sets i ⪯ j for distinct i, j ̸= 0 if aj−ai ∈ Ap(S), is determined
by which facets of Cm contain (a1, . . . , am−1).

With this in mind, if (a1, . . . , am−1) lies in the relative interior F ◦ of a face F ⊆ Cm,
we conflate notation and say S lies in F . In particular, a numerical semigroup T lies
in the same face of Cm as S if and only if its Kunz poset is identical to that of S.

Example 2.2. The Kunz posets of each face of C3 and C4 are depicted in Figure 1.
The latter has defining inequalities

2a1 ≥ a2, a1 + a2 ≥ a3, a2 + a3 ≥ a1, and 2a3 ≥ a2.

Resuming notation from Example 2.1, the point (5, 10, 7) ∈ C4 lies in the interior of
the upper-left facet, and the Kunz poset depicted therein reflects that x2

1 − x2 ∈ IS.
The numerical semigroup T = ⟨4, 13, 31⟩ lies in the same facet of C4 as S since

Ap(T ) = {0, 13, 26, 31} with 26 = 2 · 13 and 13 + 26 > 31. In the generating sets

IS = ⟨x2
1 − x2, x

3
1 − y2x3, x

2
3 − yx2

1, x1x3 − y3⟩,
IT = ⟨x2

1 − x2, x
3
1 − y3x3, x

2
3 − y7x2

1, x1x3 − y10⟩,
each exponent of y equals bij for some i, j. More specifically, both generating sets
consist of the binomials

x2
1 − x2, x3

1 − yb12x3, x2
3 − yb33x2

1, and x1x3 − yb13+1,

and only the values b12, b13, and b33 depend on which semigroup is chosen.

The second paragraph of Example 2.2 illustrates [23, Corollary 5.16]: if S and T
are numerical semigroups in the same face of Cm, then there exist minimal binomial
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generating sets for IS and IT that coincide except in the exponents of y. Each exponent
of y therein equals bij for some i, j, and an expression for the generating set that is
consistent across the face of Cm containing S and T (such as the one in the last centered
line of Example 2.2) can be recovered directly from the Kunz poset of S and T .

This result was further extended in [7, Theorem 4.4]: there exist minimal free resolu-
tions of IS and IT whose matrix entries coincide except in the exponents of y. Just like
the generating sets for IS and IT constructed in [23], each exponent of y in the matrices
in these resolutions coincides with bij for some i, j. This result is best illustrated with
an example; the following is an exerpt from [7, Example 4.2], though we encourage
the reader to consult the full resolution depicted therein (the reader may also wish
to consult [32] for background on graded free resolutions, and [39] in the context of
numerical semigroups).

Example 2.3. Resuming notation from Example 2.2, there exist minimal free resolu-
tions for IS and IT such that within each, the second matrix equals

x3
1 − x3y

b12 x2
3 − x2

1y
b33 x1x3 − yb13+1

−(x2
1 − x2) yb33 −x3

−(x2
1 − x2) x1 −yb12

−(x2
1 − x2) −x3 x2

1


and only the exponents b12, b13, and b33 depend on which semigroup is chosen.

Unlike the construction of binomial generating sets, which can be done explicitly from
the Kunz poset by [23], the proof of [7, Theorem 4.4] is non-constructive. Instead,
a explicit free resolution is constructed for IS, called the Apéry resolution, that is
minimal if and only if S is MED. It is then proven that there exists a sequence of row
and column operations, dependent only on the face of Cm containing S, that may be
performed to obtain the minimal free resolution of IS from the Apéry resolution.

3. The infinite Apéry resolution

In this section, we construct a free resolution for k over R that is minimal if and
only if S is MED.

Definition 3.1. The infinite Apéry resolution of R is the free resolution

(3.1) F• : 0←− F0 ←− F1 ←− F2 ←− · · · ,
where each Fd is generated as a module as

Fd = ⟨ew : w = (w1, w2, . . . , wd) ∈ Zd
m⟩, where deg(ew) =

d∑
i=1

deg(xwi
)

and ew = 0 whenever wi = 0 for some i > 1. One can readily check that F0 = R and

rankFd = m(m− 1)d−1
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Figure 2. The infinite multiplicity resolution for m = 4.

for each d ≥ 1. Each map ∂ : Fd → Fd−1 in F• is given by

ew 7→ xwd
eŵ +

d−1∑
i=1

(−1)d−iybwiwi+1eτiw

for each d ≥ 1, where ŵ = (w1, w2, . . . , wd−1) and τi : Zd
m → Zd−1

m is given by

τiw = (w1, . . . , wi−1, wi + wi+1, wi+2, . . . , wd).

Note that if wi = 0 for some i > 1, then τiw = τi−1w, and eτjw = 0 whenever
j /∈ {i, i − 1}, so under the above definition ∂dew = 0 whenever ew = 0. Figure 2
depicts the beginning of the resolution for m = 4.

Lastly, we say a term ctnew ∈ Fd has class k if n ≡ k mod m. In particular, any
class 0 term can be written as yqew for some q ≥ 0.

Theorem 3.2. The complex F• is a resolution. Additionally, F• is minimal if and
only if S is MED.

Proof. We first check that F• is a complex. If d = 2, then

∂2euv = xv∂eu − ybuv∂eu+v = xvxu − ybuvxu+v = 0.

On the other hand, fix d ≥ 2 and w ∈ Zd
m with wi ̸= 0 whenever i > 1. Since ∂ew

is homogeneous under the fine grading by S, all occurances of a given basis vector in
∂2ew have identical monomial coefficient, so it suffices to check the k-coefficients of
each sum to 0. To this end, since

(i) τ̂d−1w = ̂̂w,
(ii) τiŵ = τ̂iw for 1 ≤ i ≤ d− 2, and
(iii) τiτjw = τj−1τiw for 1 ≤ i < j ≤ d− 1,
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each basis vector arising in ∂2ew appears exactly twice, and with opposite signs.
We next prove F• is a resolution. The claim is clear for d = 1, so fix d ≥ 2 and

f ∈ ker ∂d. We claim that if every term in f has class 0, then f = 0. Indeed, for
any nonzero term yqew in f , the image ∂yqew has exactly one term with nonzero
class, namely yqxwd

eŵ. Moreover, for any two nonzero terms yqew and yq
′
ew′ in f ,

if yqxwd
eŵ = yq

′
xw′

d
eŵ′ , then ŵ = ŵ′, wd = w′

d, and q = q′. As such, the image of
any nonzero term in f has a term that cannot be cancelled by the image of any other
nonzero term in f . This necessitates f = 0, proving the claim.

Now, suppose f has a nonzero term tnew with nonzero class. Write n = qm + ar
with q, r ∈ Z and 0 < r < m, so that tn = yqxr. The image ∂yqewr has exactly one
nonzero term with nonzero class, namely yqxrew = tnew, so

f − ∂d+1y
qewr ∈ ker ∂d

has one fewer term with nonzero class than f does. The exactness of F• now follows
from induction on the number of terms in f with nonzero class.

For the final claim, recall that a graded resolution is minimal if and only if the
matrices for ∂ contain no nonzero constant entries. The only matrix entries that depend
on the particular values of a1, . . . , am−1 are the powers of y, and their exponents bij are
all positive precisely when S is MED. This completes the proof. □

The following consequence of Theorem 3.2 has identical proof to [7, Theorem 4.4].

Corollary 3.3. Consider the set

M = {xi : 1 ≤ i ≤ m− 1} ∪ {ybij : 1 ≤ i, j ≤ m− 1}
of formal symbols appearing as matrix entries in infinite Apéry resolutions. Fix a face
F of Cm. There is a sequence of matrices, whose entries are k-linear combinations
of formal products of elements of M, with the following property: for each numerical
semigroup S in the relative interior of F , substituting R-variables and the values bij
for S into the entries of each matrix yields boundary maps for a graded minimal free
resolution of k over R.

The following results focus on the Betti numbers of these and related resolutions,
which are encoded in the Poincaré series of R, i.e., the formal power series

PR
k (z) :=

∞∑
i=0

βR
i (k)zi.

Remark 3.4. Proposition 3.5 and Corollary 3.6 below can be seen as consequences
of [29, Example 2.4] using standard tools [3, Proposition 3.3.5], and some interest was
shown therein for classification of the Betti numbers and syzygies of IS for numerical
semigroups S with fixed multiplicity m. The infinite Apéry resolution is a step in this
direction for the Betti numbers βR

i (k); we include short proofs of these results here as
a demonstration of this fact.
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Proposition 3.5. If R and R′ are the respective semigroup rings of numerical semi-
groups S and S ′ in the same face of the Kunz cone Cm, then they have the same
Poincaré series, that is, PR

k (z) = PR′

k (z). In particular, the rationality of the Poincaré
series of R is determined by the face of Cm containing S.

Proof. The following proof is much in the spirit of the proof of [7, Theorem 4.3].

Let F• and F ′
• be the infinite Apéry resolutions for k over R and R′ respectively. If

F• and F ′
• are not minimal, then they have ±1s in identical places in the differentials,

since the only way for an entry to be 1 in such a resolution is if some bij = 0, which
happens simultaneously for S and S ′ in the same face. Betti numbers can be realized
as the dimension of Tor, so we consider the homology of F• ⊗ k and F ′

• ⊗ k. These
tensored complexes are identical – any element of the maximal ideal vanishes, leaving
matching ±1s in matching places, which means the images and kernels of these new
differentials are also identical. Now we can see that

βR
i (k) = dimk Tor

R
i (k, k) = dimkHi(F• ⊗ k) = dimk Hi(F ′

• ⊗ k)

= dimk Tor
R′

i (k,k) = βR′

i (k),

as desired. □

Use Q to denote the polynomial ring k[y, x1, . . . , xm−1] graded as in the definition of
R = Q/IS. Recall that R is Golod when the Poincaré series PR

k (z) satisfies

(3.2) PR
k (z) =

(1 + z)n

1− z2PQ
I (z)

,

where PQ
I (z) =

∑
i≥0

βQ
i (I)z

i and n is the number of minimal generators of S.

Corollary 3.6. Golodness is a uniform property across the faces of Cm, that is, either
all semigroups from a given face of Cm give rise to Golod semigroup rings or none do.

Proof. Let S and S ′ be two semigroups from the same face of Cm and let R and R′ be
their numerical semgroup rings, respectively. By Proposition 3.5, PR

k (z) = PR′

k (z), and

it is known from [7, Corollary 4.5] that βd(IS) = βd(IS′) for all d, so PQ
IS
(z) = PQ

IS′ (z).

Therefore, the left and right hand sides of (3.2) are identical for S and S ′. □

Corollary 3.7. If S is MED, then R is Golod.

Proof. The resolution F• is minimal when S is MED, so

PR
k (z) = 1 +

∞∑
i=1

(m)(m− 1)i−1zi = 1 +
mz

1− (m− 1)z
=

1 + z

1− (m− 1)z
.
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0 1

[ ]∅ y x1

01 13[ ]
0 x1 −yb13
1 −y x3

1

013 131[ ]
01 x3

1 yb13

13 y x1

0131 1313[ ]
013 x1 −yb13
131 −y x3

1

0← R←−−−−−R2←−−−−−−−−−R2←−−−−−−−−−R2←−−−−−−−−−−−R2 ← · · ·

Figure 3. Specialized resolution when m = 4, a2 = 2a1, and a3 = 3a1.

On the other hand, the resolution of I over S is given by the Apéry resolution [7], so
one can readily verify that

PQ
I (z) =

m−2∑
i=0

(i+ 1)

(
m

i+ 2

)
zi =

1− (1 + z)m−1(1− (m− 1)z)

z2

and thus R is Golod. □

Remark 3.8. It is worth noting that, despite R being Golod in the MED case, the
infinite Apéry resolution does not use the same basis as the resolution of Golod–Eagon–
Shamash [25]. This is easily seen in even the second differential, where each column
has exactly one xi entry, whereas any Eagon resolution will have columns with two x
entries, since it is based in part on the Koszul complex resolving k over Q.

4. Specialized resolutions for m = 4

Throughout this section, assume m = 4, and as before, let Ap(S) = {0, a1, a2, a3}
with ai ≡ i mod 4. In what follows, we obtain the minimal resolution of k over k[S]
by considering which face of C4 ⊆ R3 contains S. Up to symmetry under Z∗

4 action,
C4 has two facets and one ray that contain numerical semigroups. The ray is easy:
any numerical semigroup in this face has the form S = ⟨4, a1⟩ with a1 ≡ 1 mod 4, so
IS = ⟨x4

1 − yb13⟩ is principle and the resolution of k over k[S] is the one in Figure 3
(due to the periodicity of the matrices therein, it suffices to check exactness in two
places to verify this is a resolution).

When S lies in a facet of C4, S has 3 minimal generators, so the resolution of k
over k[S] is more complicated. The facets in one orbit of the Z∗

4-action contain only
complete intersection numerical semigroups, while semigroups in the facets in the other
orbit are not. We handle these two cases in turn.

4.1. A facet of C4 containing CI numerical semigroups. For this subsection,
suppose a3 = a1 + a2 and thus x3 = x1x2, so that S = ⟨4, a1, a2⟩ lies in the lower-left
facet of C4 in Figure 1.

It turns out the infinite Apéry resolution over R can in this case be minimized leaving
only the summands ew for which wi ≤ wi+1 for each i. This can be seen in the row
and column labels on the matrices in Figure 4. However, note that some columns have
more than one xi entry. As such, it will be convenient to index the basis vectors in
this resolution by multisets c of elements of {0, 1, 2}.
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0 1 2

[ ]∅ y x1 x2

01 02 11 12 22[ ]
0 x1 x2 −yb22
1 −y x1 x2

2 −y −yb11−x1 x2

011 012 022 111 112 122 222


01 x1 x2 yb22

02 −yb11−x1 x2 yb22

11 y x1 x2

12 y −yb11−x1 x2

22 y x1 x2

0← R←−−−−−−−−R3←−−−−−−−−−−−−−−−−−−R5←−−−−−−−−−−−−−−−−−−−−−−−−−−−
0111 0112 0122 0222 1111 1112 1122 1222 2222



011 x1 x2 −yb22
012 −yb11−x1 x2 −yb22
022 x1 x2 −yb22
111 −y x1 x2

112 −y −yb11−x1 x2

122 −y x1 x2

222 −y −yb11−x1 x2

R7←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−R9 ← · · ·

Figure 4. Specialized resolution when m = 4 and a1 + a2 = a3.

To this end, let A denote the collection of all finite multisets comprised of elements
from {0, 1, 2}. For c ∈ A, let ci denote the number of copies of i in c, and write
|c| = c0 + c1 + c2 for the cardinality of c. For each i = 0, 1, 2, denote by c + i the
multiset with one additional copy of i, and if ci > 0, denote by c− i the multiset with
one less copy of i. Define

F ′
d = ⟨e′c : c ∈ A, |c| = d⟩, where deg(e′c) =

2∑
i=0

ci deg(xi).

Let e′c = 0 if c0 > 1, and for convenience, write e′c−i = 0 if ci = 0. Clearly

rankF ′
d = 2d+ 1.

Define ∂ : F ′
d → F ′

d−1 by

e′c 7→

{
x2e

′
c−2 + x1e

′
c−1 − yb11e′c−11+2 + (−1)d−1(ye′c−0 + yb22e′c−22+0) if 2 | c2;

x2e
′
c−2 − x1e

′
c−1 + (−1)d−1(ye′c−0 + yb22e′c−22+0) if 2 ∤ c2,

a few matrices of which are depicted in Figure 4 (in the row and column labels therein
are multisets, e.g., 0111122 denotes the multiset c with c0 = 1, c1 = 4, and c2 = 2).

Remark 4.1. With enough patience and a healthy disrespect for checking signs, the
resolution given in F ′

• can be seen as the Tate complex [40] resolving the field over a
complete intersection. Indeed, pairs of ones and twos in the indexing multisets corre-
spond to powers of y1 and y2 in the divided power algebra when the Tate complex is
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cast in the language of higher homotopies (see [15] and the references therein). Never-
theless, we include it here both for completeness and to indicate that such resolutions
are possible to build for numerical semigroup rings without appealing to the higher
homological toolkit.

Theorem 4.2. Under the above definitions, F ′
• is a resolution of k over k[S] that is

minimal if and only if b11 > 0.

Proof. To verify ∂2ec = 0, there are 4 cases to consider, based on whether c0 = 0 and
whether 2 | c2. We only show the case where c0 = 1 and 2 ∤ c2 here, as the other cases
are similar. In this case, we see

∂2ec = ∂(x2e
′
c−2 − x1e

′
c−1 + (−1)d−1ye′c−0)

= x2(x2e
′
c−22 + x1e

′
c−12 − yb11e′c−11 + (−1)d−2ye′c−02)

− x1(x2e
′
c−12 − x1e

′
c−11 + (−1)d−1ye′c−01)

+ (−1)d−1y(x2e
′
c−02 − x1e

′
c−01 + (−1)d−2yb22e′c−22)

= (x2
2 − yb22+1)e′c−22 + (x2

1 − x2y
b11)e′c−11 = 0.

We now prove exactness. Fix f ∈ ker ∂d. If a has a nonzero term ctne′c of class 3,
then a3 = a1 + a2 implies n − a2 ∈ S, so replacing f with f − ctn−a2∂e′c+2 results in
one fewer class 3 term. Repeating this as necessary, we may assume f has no class 3
terms. Next, for each class 2 term of f , we may do an analogous replacement, and
subsequently assume f only has terms of class 0 and 1.

Now, suppose ctne′c is a nonzero term in f with class 1. If c2 > 0, then ∂(ctne′c) has
a class 3 term that cannot be cancelled by the image of any other terms in f . As such,
we must have c2 = 0, and replacing f with f − ctn−a1∂e′c+1 results in one fewer term
with nonzero class. With this, we may assume every term in f is class 0. However,
each term in f then has one or two terms in its image under ∂ with nonzero class,
neither of which can cancel with any other term in ∂f . We conclude f = 0.

For the minimality claim, a2 > m implies b22 > 0, so every term in the definition of ∂
has a positive degree coefficient precisely when b11 > 0. This completes the proof. □

4.2. A facet of C4 containing non-CI numerical semigroups. For this subsection,
suppose a2 = 2a1 and thus x2 = x2

1, so that S = ⟨4, a1, a3⟩ lies in the upper-left facet
of C4 in Figure 1. Resuming notation from Definition 3.1, let

Fd = ⟨ew : w = (w1, w2, . . . , wd) ∈ Zd
4⟩, where deg(ew) =

d∑
i=1

deg(xwi
).

Let Wd ⊆ Zd
m denote the set of w ∈ Zd

m such that w1 ∈ {0, 1, 3} and for each i ≥ 2 we
have wi ∈ {2, 3} if wi−1 = 1 and wi ∈ {1, 3} otherwise. Let

F ′
d = ⟨ew : w ∈ Wd⟩ ⊆ Fd
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so that
rankF ′

d = 3 · 2d−1 for d ≥ 1.

We show in Theorem 4.5 that row and column operations may be performed to the
infinite Apéry resolution to obtain a resolution whose first few matrices are depicted
in Figure 5.

Example 4.3. The idea of the proof of Theorem 4.5 is to define maps pd : Fd → F ′
d

that express each ew ∈ Fd\F ′
d in terms of generators of F ′

d in a manner that is consistent
with ∂. For instance, it is natural to define

p1e2 = x1e1 since ∂e2 = ∂x1e1 = x2
1,

and p1(ei) = ei if i ̸= 2. Composing p1 and ∂ yields a map F2 → F ′
1 that sends, e.g.,

e11 7→ p1∂e11 = p1(x1e1 − yb11e2) = x1e1 − x1e1 = 0,

e12 7→ p1∂e12 = p1(x1e2 − yb12e3) = x2
1e1 − yb12e3,

e21 7→ p1∂e21 = p1(x2e1 − yb21e3) = x2
1e1 − yb12e3.

Restricting p1∂ to F ′
2 yields the second matrix in Figure 5; the second line above

appears therein since e12 ∈ F ′
2. From there, we may define p2e11 = 0 and p2e21 = e12

based on the above, and after subsequently defining

p2e23 = 0, p2e32 = x1(e31 − e13), p2e22 = yb12e13, and p2e02 = x1e01

via analogous reasoning, restricting p2∂ to F ′
3 yields the third matrix in Figure 5.

In what follows, we say a term ctnew ∈ F ′
d is reduced if (i) it has class 0, or (ii) it has

class 1 and wd = 1. We say an element of F ′
d is reduced if all of its terms are reduced.

Lemma 4.4. Suppose there exists a map ∂′ : F ′
d → F ′

d−1 such that:

(i) the term xwd
eŵ appears in ∂′ew for each w ∈ Wd; and

(ii) for each w ∈ Wd, each term of ∂′ew not involving eŵ is reduced.

Then each f ∈ F ′
d−1 is equivalent modulo ∂′F ′

d to a reduced element.

Proof. For each class 3 term ctnew in f , we have n − a3 ∈ S, so replacing f with
f − ctn−a3∂′ew,3 results in one fewer class 3 term. Repeating this process for each
class 3 term, we may assume f has no terms with class 3. Analogously, if a term ctnew
in f has class 2, then either wd−1 = 1, in which case f − ctn−a2∂′ew,2 has one fewer
class 2 term, or wd−1 ∈ {2, 3}, in which case a2 = 2a1 implies n − a1 ∈ S and thus
f − ctn−a1∂′ew,1 has one fewer class 2 term. In the end, we may assume a also has no
terms of class 2.

Now, suppose ctnew is a class 1 term in f . If wd−1 ̸= 1, then f − ctn−a1∂′ew,1 has no
ew term, and each new class 1 term is reduced by (ii), so there is one less non-reduced
term. As such, after finitely many such replacements, we obtain an element equivalent
to f modulo ∂′F ′

d in which every term is reduced. □
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Theorem 4.5. Under the above definitions, performing appropriate row and column
operations to the infinite Apéry resolution yields a resolution

(4.1) F ′
• : 0←− R←− F ′

1 ←− F ′
2 ←− · · ·

for k over k[S]. Moreover, F ′
• is minimal if and only if b12 > 0.

Proof. We will construct a commutative diagram

0 R F1 F2 · · ·

0 R F ′
1 F ′

2 · · ·

p0

∂1

p1

∂2

p2

∂′
1 ∂′

2

in which the bottom row is the desired resolution. First, define p0 as the identity map
on R, and define ∂′ew = ∂ew for each w ∈ W1. Since x2 = x2

1, we have ∂e2 = ∂x1e1,
so ∂′ is indeed surjective onto the maximal monomial ideal of R.

Proceeding by induction on d ≥ 2, assume the maps ∂′
i and pi−1 are defined for i < d,

and that the following hold:

(i) ∂′
d−1F

′
d−1 = ker ∂′

d−2 (i.e., the bottom row is exact);
(ii) pd−2∂d−1ew = ∂′

d−1ew for each w ∈ Wd−1;
(iii) the term xwd−1

eŵ appears in ∂′
d−1ew for each w ∈ Wd−1; and

(iv) for each w ∈ Wd−1, each term of ∂′
d−1ew not involving eŵ is reduced.

Clearly (i)-(iv) hold in the case d = 2. We now construct the maps pd−1 and ∂′
d.

First, fix ew ∈ Fd−1. If d = 2, then define

p1ei =

{
x1e1 if i = 2;

ei otherwise.

If, on the other hand, d > 2, then since ∂d−2∂d−1ew = 0, we have pd−3∂d−2∂d−1ew = 0.
By commutativity of the diagram, ∂′

d−2pd−2∂d−1ew = 0, and thus pd−2∂d−1ew ∈ ker ∂′
d−2.

By (i), we then have pd−2∂d−1ew ∈ ∂′
d−1F

′
d−1. As such, choosing pd−1ew = aw for any

element aw ∈ F ′
d−1 with ∂′

d−1aw = pd−2∂d−1ew ensures the diagram commutes. We do
so, subject to the following stipulations:

• if w ∈ Wd−1, then choose aw = ew, which we may do by (ii); and
• if w /∈ Wd−1, then aw is reduced, which we may do by (iii), (iv), and Lemma 4.4.

Having now defined pd−1, for each w ∈ Wd define

∂′
dew 7→ xwd

pd−1eŵ +
d−1∑
i=1

(−1)d−iybwiwi+1pd−1eτiw.

We record the following observations for each w ∈ Wd:

• by construction, ∂′
dew = pd−1∂dew;

• since ŵ ∈ Wd−1, we have pd−1eŵ = eŵ, so the term xwd
eŵ appears in ∂′

dew; and
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0 1 3

[ ]∅ y x1 x3

01 03 12 13 31 33[ ]
0 x1 x3 −yb13 −yb13
1 −y x2

1 x3 −x1y
b33

3 −y −yb12 x1 x3

0← R←−−−−−−−−R3←−−−−−−−−−−−−−−−−−−−−−−−−−−
012 013 031 033 121 123 131 133 312 313 331 333


01 x2

1 x3 −yb33 yb13 x1y
b13 −yb13+b33

03 −yb12 x1 x3 yb13 yb13

12 y x1 x3 −yb33 yb33

13 y −yb12 x1 x3

31 y yb12 x2
1 x3 −x1y

b33

33 y yb12 −yb12 x1 x3

R6←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−R12 ← · · ·

Figure 5. Specialized resolution when m = 4 and a2 = 2a1.

• by the stipulations on aw, each term of ∂′
dew not involving eŵ is reduced.

In particular, under the above definitions of pd−1 and ∂′
d, the only thing left to complete

the induction proof is to verify that ∂′
dF

′
d = ker ∂′

d−1.

The first centered equation in the proof of Theorem 3.2 verifies ∂′
d∂

′
d−1 = 0, so

in particular ∂′
dF

′
d ⊆ ker ∂′

d−1. To prove the reverse containment, fix f ∈ ker ∂′
d−1.

By Lemma 4.4, it suffices to assume f has no terms of class 2 or 3, and that any class 1
term ktnew has wd−1 = 1. We will prove that this forces f = 0. Indeed, examining
∂(ktnew), the term involving eŵ has class 2, but since wd−2 ̸= 1, no other term in f
has a class 2 term involving eŵ in its image under ∂d−1. This proves every term in f
has class 0. Lastly, examining the image under ∂d−1 of each term ktnew in f , the term
involving eŵ has nonzero class distinct from that appearing in the image under ∂d−1 of
any other term in f . We conclude f = 0, thus proving exactness.

All that remains in the minimality claim. Since a2 = 2a1 and a1 ̸≡ a3 mod 4, we
cannot have a2 = 2a3, so b33 > 0. As such, every term in the image of ∂ has coefficient
in k[S] of positive degree unless b12 = 0. □

Remark 4.6. There is a significant difference in the proofs of Theorems 4.2 and 4.5.
For one, the latter is non-constructive; however, there is also a combintorial distinction.
In Theorem 4.5, the map ∂ from Definition 3.1 is still used, and in order to ensure
minimality, care is taken to avoid the subsequence “11” in any summands of F ′

d so
that yb11 = 1 does not make an appearance. In Theorem 4.2, on the other hand, the
subsequence “12” (which would yield a coefficient yb12 = 1 in the map ∂), does appear in
some chosen summands; minimality is instead ensured by avoiding the subsequence “3”
and introducing an extra xi in some columns.



INFINITE FREE RESOLUTIONS OVER NUMERICAL SEMIGROUP ALGEBRAS 15

Remark 4.7. As a consequence of Theorems 4.2 and 4.5, and the results of [7], one
can see that if m = 4, then R is either Golod or complete intersection. Indeed, if
a2 = 2a1 as in the current subsection, or if a2 = 2a3, then

PR
k (z) =

1 + z

1− 2z
and PQ

I (z) = 3 + 2z

by Theorem 4.5 and [7, Example 4.2], respectively, so one can readily verify that
R is Golod. Aside from the interior, within which S is MED and thus R is Golod by
Theorem 3.2, any numerical semgroup in a remaining face of C4 is complete intersection
by Theorem 4.2 and the discussion at the start of Section 4.

5. The Koszul property and resolving over the associated graded

When investigating the nature of infinite resolutions, one must consider the notion
of Koszulness.

Definition 5.1. A standard N-graded k-algebra A is Koszul when βA
i,j(k) = 0 whenever

i ̸= j, that is, whenever the residue field k has linear resolution as an A-module.

Various criteria (though no complete characterization) exist for detecting Koszulness.
For example, if I is the defining ideal of A, I must be quadratic in order for A to be
Koszul. On the other hand, if I has a quadratic Gröbner basis, then A must be Koszul.
The converses for both of these statements are false, however. More details on Koszul
algebras can be found in [12, 13, 18, 34] and the references therein.

Upon observation, the infinite Apéry resolution given in Section 3 is nearly linear in
some sense, as the x variables only appear in the differentials with exponent 1. However,
the resolution is not linear in the strictest sense, as the twists on the modules jump
by more than 1 at successive steps of the resolution due to the nonstandard grading
on R. Indeed, the traditional notion of Koszul assumes a standard N-grading, so some
generalization is necessary. We follow [26, 27, 36] in making such a generalization.

Definition 5.2. The associated graded ring (with respect to m), written grm(R), is the
N-graded algebra

grm(R) =
⊕
i≥0

mi/mi+1.

For a non-zero polynomial f in R, use f ∗ to denote the homogeneous component of f
of lowest degree, called the initial form of f , and use I∗ = ⟨f ∗ | f ∈ I⟩ for the ideal
generated by the lowest degree components of elements in I. A set of polynomials
{f1, . . . , fr} in I is a standard basis for I if I∗ = ⟨f ∗

1 , . . . , f
∗
r ⟩.

It can be shown that a standard basis is also a generating set for I. Furthermore, I∗

defines grm(R), that is, grm(R) = Q/I∗. Details for these facts, as well as algorithms
to compute I∗, can be checked in [14, Sections 5.1 and 15.10.3].
The associated graded ring is used to extend the notion of Koszulness to non-

standard graded rings.
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Figure 6. The face of C5 containing the semigroups in Example 5.4
(left), and the Kunz posets of the face and its two rays (right).

Definition 5.3. An N-graded ring R is Koszul if grm(R) is Koszul. Furthermore, we
call a semigroup S Koszul if grm(k[S]) is Koszul.

The above notion subsumes the usual definition of Koszul, since if R is already
standard N-graded, then R ∼= grm(R).

Example 5.4. Consider the numerical semigroups

S = ⟨5, 6, 19⟩, S ′ = ⟨5, 21, 69⟩, and S ′′ = ⟨5, 31, 99⟩,
each of multiplicity 5. The Apéry sets {5, a1, a2, a3, a4} of S, S ′, and S ′′ each have a1
and a4 as minimal generators, and a2 = 2a1 and a3 = 3a1 as the only expressions for a2
and a3, so they all lie in the same face F ⊆ C5. This shared face, depicted in Figure 6,
implies that the generators for their defining toric ideals

IS = ⟨x4
1 − x4y, x1x4 − y5, x2

4 − x3
1y

4⟩,
IS′ = ⟨x4

1 − x4y
3, x1x4 − y18, x2

4 − x3
1y

15⟩,
IS′′ = ⟨x4

1 − x4y
5, x1x4 − y26, x2

4 − x3
1y

21⟩

vary only in their y-exponents (the light, red dots in the poset for F indicate the
graded degree of these generators; see [23, Section 5] for more detail). However, their
associated graded algebras, defined by

I∗S = ⟨x5
1, yx4, x1x4, x

2
4⟩, I∗S′ = ⟨x4

1−x4y
3, x1x4, x

2
4⟩, and I∗S′′ = ⟨x4

1, x1x4, x
2
4⟩,

vary significantly. For example, I∗S and I∗S′′ are purely monomial, while I∗S′ is not.

Looking more generally within the face containing S, S ′, and S ′′, any numerical
semigroup on the orange line 4a1 = a4 + 15 splitting the face in Figure 6 has asso-
cated graded I∗S′ , any numerical semigroup in the shaded region below the orange line
has associated graded I∗S or ⟨x5

1, y
2x4, x1x4, x

2
4⟩, and any numerical semigroup in the

unshaded region has associated graded I∗S′′ .
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This variance can lead to some disappointment.

Proposition 5.5. The Kunz cone does not distinguish between the following for semi-
groups coming from the same face:

• the finite Betti numbers βQ
i (grm(R));

• the Poincaré series of grm(R); and
• the Koszulness of grm(R), and therefore the Koszulness of R.

Proof. The semigroups S and S ′′ from Example 5.4 are already enough to see the first
two items. Namely, βQ

1 (Q/I∗S) = 4 and βQ
1 (Q/I∗S′′) = 3. Furthermore, if one computes

the first few steps of the resolutions of the field, one finds that β
grm(k[S])
2 (k) = 7, but

β
grm(k[S′′])
2 (k) = 6.
The following example gives a pair T and T ′ where k[T ] is Koszul but k[T ′] is not even

quadratic, but T and T ′ come from the same face of Cm. Let T = ⟨8, 9, 10, 12, 23⟩ and
T ′ = ⟨8, 81, 90, 108, 207⟩. Note that T ′ is obtained from T by multiplying each generator
besides 8 by 9, which preserves the relations within the Apéry set since 9 ≡ 1 mod 8,
and so T and T ′ are in the same face of the Kunz cone C8. The associated graded rings
in this case are quotients of k[y, x1, x2, x4, x7] with the standard grading.
One can check with Macaulay2 [24] that

I∗T = ⟨x2
1 − yx2, x

2
2 − yx4, x

2
4, yx7, x1x7, x2x7, x4x7, x

2
7⟩,

and the generators listed form a quadratic Gröbner basis, so T is Koszul. However,

I∗T ′ = ⟨x2
1, x

2
2, x

2
4, x1x2x4, x1x7, x2x7, x4x7, x

2
7⟩,

which is not even quadratic due to the presence of x1x2x4, and so T ′ is not Koszul. □

Remark 5.6. It is worth pointing out that [27] proves that MED semigroups are
Koszul, so such pathologies can only appear on the boundary of Cm. In this regard,
numerical semigroup rings in fixed multiplicity are “generically” Koszul.

6. Open Problems

In [26, 33], βR
i (k) is expressed in terms of homology of the divisibility poset of S.

Corollary 3.3 implies these Betti numbers are in fact determined by a finite subposet,
namely the Kunz poset of S. This begs the following natural question, especially in
light of similar results in the finite case [11].

Problem 6.1. Locate a formula for βR
i (k) in terms of the Kunz poset of S.

By [22], so-called “generic” toric rings are Golod, so Golodness is a common property
among toric rings. Although numerical semigroup rings are rarely generic in the sense
of [22], Corollary 3.7 implies Golodness is still a common property within the family
of numerical semigroup rings since most numerical semigroups are MED. As the faces
of Cm provide a natural means for classifying numerical semigroups, a more refined
question about the prevelence of Golodness now has a combinatorial approach.
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Problem 6.2. Obtain a combinatorial (i.e., Kunz poset-theoretic) characterization of
when R is Golod. How common are the faces of Cm containing numerical semigroups
for which R is Golod?

Another property of interest is the rationality of the Poincaré series PR
k (z), which by

Proposition 3.5 is uniform across any given face of Cm. The smallest known example of
a numerical semigroup S for which PR

k (z) is irrational, given in [19], has m = 18. An
answer to the following question would yield a computational approach to determining
whether smaller examples exist (see [10] for detail on face lattice computations of Cm

with m ≤ 18).

Problem 6.3. Obtain a combinatorial (i.e., Kunz poset-theoretic) characterization of
when PR

k (z) is rational.

By Theorem 3.2, each summand in the minimal resolution of k over R corresponds
to a word w ∈ Zd

m. In the nomenclature of theoretical computer science, one may
define a language LS consisting of all such words w (note that LS is dependent only on
the Kunz poset of S by Corollary 3.3). By the results in Section 4, for any numerical
semigroup with m = 4, LS is a regular language, which implies PR

k (z) is rational (see,
e.g., the discussion and references in [4]). The following, although a loftier goal than
the above problems, is thus one possible approach to Problem 6.3.

Problem 6.4. Classify the language LS in terms of the Kunz poset of S.

Cellular resolutions are a popular tool from combinatorial commutative algebra used
to resolve monomial ideals over the polynomial ring [5, 6]. For example, the Koszul
resolution of the field over the polynomial ring can be seen as a cellular resolution
supported on the simplex. Given the combinatorial nature of numerical semigroup
rings, after some preliminary computations, we make the following conjecture.

Conjecture 6.5. One can ascribe a cellular structure to the infinite Apéry resolution.

Given the consistency of the resolution of k across each face of Cm, do there exist
other families of modules (e.g., quotients by certain monomial ideals) whose resolutions
are also consistent across the face? For instance, after some preliminary computations,
the Betti numbers of the quotient M = R/⟨x1, . . . , xm−1⟩, resolved over R, appear to
be consistent across the face (note that M is spanned over k by finitely many powers
of y, but its dimension over k can vary for semigroups in the same face of Cm).

Problem 6.6. Locate families of ideals I ⊆ R for which the resolutions over R are
consistent across the face of Cm containing S.

To this end, we also pose the following, inspired by the resolutions constructed in [38].

Problem 6.7. Does there exist a Taylor-like resolution for monomial ideals over R?
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