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Abstract: We construct unitary irreducible representation of the de Sitter group,

that forms the basis for the study of dSd+1 QFT. Using the intertwining kernel anal-

ysis, we discuss bosonic symmetric tensor, and fermionic higher-spinors. Particular

care is given to the structure and construction of exceptional series and fermionic

operators. We discuss the discrete series, and explain how and why the exceptional

series give rise to seemingly non-invariant correlators in de Sitter. Using tools from

Clifford analysis, we show that for d > 3, there are no exceptional fermionic represen-

tations, and so no unitary (higher)-gravitino fields. We also consider the structure of

representations for d = 3 and d = 2, as relevant for the study of dS4, the only space

allowing for unitary gravitino and its generalisation, and of dS3.
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1 Introduction

What we can say about a physical system revolves around its symmetries. Much

of what we know of quantum field theories springs out from Wigner’s program,

and its identification between unitary irreducible representation and particles [1, 2].

As it has become apparent from observation that our space-time is expanding [3],

the leading incorporation of gravity to QFT at large scale is that of a background

rigid de Sitter spacetime structure. The study of de Sitter QFT is a vibrant area of

research, which touches on experiments, trying to understand the physics of the CMB

[4–8], and grapples with fundamental questions aiming to understand its physical
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properties at the level of correlation functions [9–30], of the wavefunction [31–34], or

in a holographic perspective [35–40] .

It seems crucial then, to have a good physical understanding of the Hilbert space

structure consistent with the de Sitter isometries, meaning representation theory of

SO(1, d + 1), the conformal group, and its double cover, which is the one actually

relevant for a quantum Hilbert space. The present work is a step in that direction.

This is very clearly not the first work on the de Sitter group : the study of SO(1, d+1)

is a central element of the theory of non-compact Lie groups, with (non-exhaustive)

references dating back more almost 80 years and spanning decades [41–50]. From

a physicist perspective however, the most crucial early reference seems to be [51],

since it places the construction of the unitary representations in a footing that is

close to how quantum field are manipulated ; working with correlation functions,

quotienting out null states, and making harmonic decompositions. This account,

though extremely complete, only investigated a specific class of representation, the

totally symmetric traceless tensors. A modern treatment along these lines is given

in [52].

This creates a problem, since the existing mathematical literature, most notably

the very exhaustive [47, 49, 50], are not formulated in a language that is anywhere

close to how we think of building fields, using instead Gelfand-Tsetlin patterns and

recursively building unitary generators. These tools are of course extremely powerful

and interesting in and of themselves, but they hide a lot of the physical content

beyond sophistication. So, even though they have been used successfully to discuss

more general representation like antisymmetric tensors etc. [53], this method is not

transparent and an alternative, following the lines of [51], is ultimately preferable.

An apt illustration of the present situation, and the motivation for this work,

is the case of the (partially)-conserved (massless in the bulk) tensor-spinors [54–58].

These are not unitary irreducible representation in dSd+1, except in d = 3. This

specific dimension dependent feature seems to have been mostly overlooked in the

literature, hidden away in the list of indices and weights, until it was pointed out

by [59–61], which rediscovered it by studying the mode functions of a few of these

(partially)-massless higher-spinors across dimension.1 Since this family of represen-

tation includes the gravitino and our space is well described at large distance by

dS4, this rather exceptional fact must be thoroughly understood, especially given

supersymmetry’s difficult cohabitation with expanding space [36, 39, 62–65]. Be-

yond these exceptional representations, more mundane questions such as why there

are no complementary series spinors do not seem to have received a simple physical

explanation so far.

1The method used in [59–61] does not construct the representation from scratch at the level

of the Hilbert space itself, but rather shows that the explicit field mode solutions transform in a

unitary representation.
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The goal of the present work is to give a self-contained treatment, along the

lines of [52, 66], of the symmetric tensor-spinors unitary irreducible representations,

leveraging the modern framework of conformal field theories, drawing notably [67–

71]. This might make the endeavour sound more restrictive than it really is. Precisely

because supersymmetry is hard to come by in de Sitter, one cannot avoid studying

the fermions by themselves and for their own sakes, even more so since fermions are

plentiful in our universe. While spin-1/2 fermions have received some attention in

the literature, see for example [24, 72], it would be wrong to discard higher-spinors.

After all, there are plenty of known resonances, see fig. 1, which are of this type in

our universe.

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

Figure 1: Some baryon with spin 3/2 generated by QCD, organised

in a decuplet [73]. Dressed multi-quark states are expected to overlap

with excitations of all spin and in all families of unitary representa-

tions.

Because of the nature of these puzzling spinorial representations, which are in the

exceptional (and actually discrete) series, one must confront the associated intricacies

of these families of representations. On of the goal is to give here an exposition

that makes the structure and construction of these representations clear, using the

bosonic case as a review. Although essentially contained in the analysis of [51, 52],

this is still worthwhile from the standpoint of pedagogy and self-containment. This

is not the only draw, since we tried to give a more detailed account of the peculiar,

logarithmic yet conformally invariant, inner product of these representations and

their quotient space structure, and relating it to the recent progress on the study

of the discrete series in dS2 and dS4 [26, 74–76]. An important take away from our

discussion, summarised in the appendix A, is that the interesting features of these

special representations is that they are exceptional, not whether they are discrete,

since their features persist whether or not the group element have finite square-

average.
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Studying spinorial representations is an ambitious project by itself, and so this

work will not address all of the associated issues. Notably, we will not consider the

question of the characters of the representations, which can be understood in principle

by applying the results of [52, 77], nor discuss the tensor-product decomposition

[66, 78]. We leave these matters to future work. We will also not tackle the case

d = 1, relevant for the study of dS2, simply because it was felt to be adequately

studied in the present literature, see e.g. [52, 79, 80].

The paper proceeds as follows. In sec. 2, we review the construction of unitary

irreducible representations, using the symmetric traceleless tensor representations

as an explicit case study. We explain the general strategy, detail the harmonic

decomposition of the inner product. We investigate closely the exceptional points,

first discussing scalars and then spinning representations. In sec. 3, we perform the

analogous analysis for tensor-spinor representations. The technique for the harmonic

decomposition is not standard, and so we carefully derive them. The output is a

proof that for d > 3, there are no spinorial representations beyond the principal

series because of a pairing of eigenvalues. What differentiates lower-dimension is

clear : the Clifford algebra contracts, and one must study it case by case. This is

done in sec. 4, for d = 3 and d = 2, where one can treat bosonic and fermionic

representations at once. It is found that for d = 3 only, at the exceptional points one

can define a positive inner product, and so there are indeed some unitary partially-

massless higher-spinors. We conclude with a discussion of the results and future

research directions.

2 Story of Bose : Symmetric Tensor Representations

The goal of this section is to review the construction of the unitary irreducible rep-

resentations (UIR) for the symmetric traceless tensors (STT). The central tool is

Knapp-Stein intertwining kernel [81]. Induced representations generate “elementary

representations”, on which one tries to find an invariant, unitary inner product. The

L2 inner product, defines the Principal Series P∆. Another non-trivial inner product

exists, which is a conformal 2pt. function. Through a partial wave analysis, we

find bounds on the allowed ranges of ∆, defining the complementary series C∆. For

exceptional points, this analysis breakdowns, giving rise to a peculiar inner-product

and the associated exceptional (sometimes discrete) series, Vn, Uℓ,t. We give a self-

contained, conceptual discussion and try to give interpretation for this last procedure,

which explains some features of fields in de Sitter.

Our exposition is geared for the two other cases later considered ; fermionic

representations, and lower-dimensions. Hence, care is given to the crucial role played

by the harmonic decomposition to investigate the positive definiteness, and to the

methodology for the investigation of exceptional points.

– 4 –



2.1 Bruhat Decomposition And Intertwining Kernel

The method of induced representations for semi-simple non-compact group follows

by using a particular factorisation into subgroups [1, 51, 82, 83] To consider unitary

irreducible representations (UIR) of the group G = SO(1, d + 1), we start from the

Bruhat decomposition into factors

N =
{
eb·K

}
, A =

{
eλD
}
, M =

{
e

1
2
ω·M
}
, Ñ =

{
ex·P

}
. (2.1)

With K the generator of special conformal transformations, D of dilation, M of

rotations, and P of translations. A representation of the subgroup NAM lifts to

a representation of the whole group. More precisely, starting from representations

in the kernel of the nilpotent N , transforming as irreducible representations (ρ,∆)

of M and A, one can act with an element of Ñ to generate a full “elementary”

representation; modulo some conditions regarding smoothness. The associated states

can be associated to point in the homogeneous space G/NAM ∼ Rd, which define a

group action.2

We start with bosonic representation of the subgroup SO(d), and we limit our-

selves to fields in a representation ρ, with associated abstract indices α, β, . . ., given

by a young tableau with a single row of ℓ boxes, i.e. symmetric traceless tensors of

spin-ℓ.3 We use anti-hermitian generators, Q† = −Q. This defines complex conju-

gation and gives a framework to compute the norm of states, defining a notion of

unitarity. The transformation properties of the elementary representation is conve-

niently encoded in braket notation[20, 52], by defining a primary state

D |∆, 0⟩α = ∆ |∆, 0⟩α ,
Ki |∆, 0⟩α = 0 ,

Mkl |∆, 0⟩α = −(Σkl)α
β |∆, 0⟩β ,

(2.2)

where the matrices Σkl are the matrix representation of theMkl in the representation

ρ of SO(d), i.e. Dρ(Mkl) = Σkl. This state is irreducible under A ∼ D, N ∼ K, and

M . The leftover Ñ ∼ P are translations that produce the whole conformal family

|∆, x⟩α = ex·P |∆, 0⟩α , (2.3)

Which span the whole elementary representation. These states for finite x transform

as one would expect a primary with scaling dimension ∆ to. We define the elementary

2This construction is called the “non-compact” picture. It renders the M subgroup evident.

The “compact” or K-picture, makes the maximal compact subgroup K = SO(d + 1) manifest,

and can be obtained from an inverse-stereographic projection. It is associated with the Iwasawa

decomposition, whereby one writes a group element as KAN .
3In the classic work [51], these are called type I representations.
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representation as the functional space F∆,ℓ, generically not unitary nor irreducible,

of states created by wavefunctions of the form

|ψ⟩ =
∫

ddx ψα(x)
∣∣∆, x〉

α
. (2.4)

where we defined ∆ = d − ∆. The transformation properties of the states induces

a transformation of the wavefunctions ψ, which is that of a primary operator with

scaling dimension ∆ in an Euclidean CFTd, transforming under the conjugate rep-

resentation ρC of SO(d). We now would like to stress the following important fact :

the base-states are a useful tool to induce the transformation properties of the wave-

functions ψ, which should ultimately be promoted to distribution-valued operators.

All along however, they will be treated as functions to define the representations. It

is the properly smeared states |ψ⟩ which are part of the elementary representations,

not the underlying
∣∣∆, x〉. Although in most instances one can work with ultra-local

wavefunctions, this fails to capture some of the physics in the degenerate instances

we will encounter, where one needs to quotient out null-subspaces. This distinction

is crucial to understand the peculiar nature of the exceptional points later on.

We consider wavefunctions which are smooth and on which the generator of spe-

cial conformal transformation is well behaved.4 This implies an asymptotic condition,

which is the mapping of the local continuity unto infinity,

ψ(x)
x→∞
≈ 1

(x2)∆

∑
n

hn

(
xµ

x · x

)
| x̃ · ∂hn(x̃) = nhn(x̃) , (2.5)

where hn is an homogeneous tensor-polynomial of order n, with scaling dimension

−n in x. This fixes the functional space F∆,ℓ, and the elementary representation.

It is a general result known as subrepresentation theorem [83, 84], that any

(unitary) irreducible representation can be found as an invariant subspace or quotient

of elementary representation. Our goal is then to study the norm of states to find

these spaces. It turns out that, except for isolated points, the representations are

irreducible, making the analysis more streamlined.

To study unitarity and irreducibility, we need to define an inner-product ⟨·|·⟩ on
F∆,ℓ, which has to to satisfy multiple desiderata : positive definiteness, normalisabil-

ity and irreducibility. It must take the generic form

⟨ψ1|ψ2⟩ =
∫

ddx ddy ψ1
†
α(x)G∆,ℓ(x, y)

α
βψ

β
2 (y) =

(
ψ1, G∆,ℓ[ψ2]

)
. (2.6)

The operation (·, ·) is the L2 pairing of states transforming in conjugate representa-

tions.5 The function G∆ is called the intertwining kernel, as convoluting a state of

4This can be understood as an artefact of the non-compact picture. In the compact picture, this

simply translates into smoothness over K, the compactification of Rd.
5Conjugation acts on representations of A, dilations, by sending ∆ to ∆ = d−∆
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Fd−∆,ℓ with G∆,ℓ gives (barring exceptional cases) a state in F∆,ℓ.
6

G∆,ℓ : Fd−∆,ℓ → F∆,ℓ ,

ψα(x) 7→
∫
G∆,ℓ(x, y)

α
βψ

β(y)ddy .
(2.7)

Conformal invariance implies Ward identities on the kernel, that in turn implies

that G transforms like a 2-point function of conformal primary fields with scaling

dimension ∆. Intuitively, this follows from G∆,ℓ(x, y) =
〈
∆, x

∣∣∆, y〉.7 This implies

two qualitatively different cases :

1. Im(∆) ̸= 0. Conformal invariance imposes ∆ + ∆† = d, giving ∆ = d
2
+ iν.

The only allowed kernel is ultra-local, G d
2
−iν(x, y) = δd(x − y) and the fields

transform in the irreducible8 and unitary Principal Series P d
2
+iν,ℓ, which is

equipped with the usual L2 inner product (·, ·).

2. ∆ ∈ R, where the kernel is a non-trivial function of the two separation, and

requires further analysis both for unitarity and irreducibility.

i. For almost all values of ∆, the representation will be irreducible. For some

range of ∆, it will moreover be positive, giving rise to the complementary

series C∆
ii. For some values of ∆, the representation will be reducible, giving the

exceptional (and discrete) series.

The second case is the more involved one, to which we now specialise. To study

the kernel, we use the index-free notation [88], whereby we contract all free tensorial

indices with null-vectors zi,

G∆,ℓ(x, y; z1, z2) = zµ1

1 . . . zµℓ
1 G∆,ℓ(x, y)µ1...µℓ

ν1...νℓz2,ν1 . . . z2,νℓ

= C∆,ℓ

(
z1 · z2 − 2 z1·(x−y)z2·(x−y)

(x−y)2

)ℓ
(x− y)2∆

= C∆,ℓ

(
z1 · I(x−y) · z2

)ℓ
(x− y)2∆

,

(2.8)

6The operator G∆ is also known as the Knapp-Stein intertwining operator [81], the intertwiner,

and the shadow transform [68, 85–87].
7This convention for the kernel differs from that of [52], in which G∆ =

〈
∆, x

∣∣∆, y
〉
.

8The intersection of the principal series with the real axis, ν = 0, asks for more care. For some

choices of ρ, this point can belong to a reducible intertwiner, and so to a reducible elementary

representation. This does not arise for STT representations, but it happens for spinors. This

reduction simply amounts to quotienting by the null descendants of the differential equation satisfied

by the state. This reducibility is not of an interesting type in general.
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Where Iµν(x−y) is the inversion tensor and the constant C∆,ℓ is a normalisation choice

which will be fixed later on. For generic values of ∆, the intertwining kernel is

invertible. One can pick choices of normalisation for C∆,ℓ to try to make these two

map the inverse of each other. In this work, we take the simpler convention that this

overall constant will be left mostly as is. The reason is to avoid obfuscating when

the harmonic decomposition of the kernel becomes singular.

To investigate positivity and irreducibility, we use a version of the partial wave

analysis, writing the kernel in a form manifesting the covariance under translation,

scaling, and rotations.9 From translation invariance, we rewrite the inner product in

momentum space

⟨ψ1|ψ2⟩ =
∫

ddp

(2π)d
ψ̂1

†
(p) · Ĝ∆,ℓ(p) · ψ̂2(p) , (2.9)

defining the momentum space intertwiner

Ĝ∆,ℓ(p) =

∫
ddx eip·xG∆,ℓ(x, 0)

= C∆,ℓ(z1 · z2)l
ℓ∑

k=0

(
ℓ

k

)(
2z1 · ∂pz2 · ∂p

z1 · z2

)k ∫
ddx

eip·x

(x2)∆+k
.

(2.10)

The last expression can be evaluated using Schwinger integrals leading to the identity∫
ddx

eip·x

(x2)∆
=

2d−2∆
√
π
d
Γ(d

2
−∆)

Γ(∆)
|p|2∆−d , (2.11)

and one can proceeds with the resummations. For convenience, we set the shorthand

h = d/2, ν = ∆ − h, which are standardly used. Using Leibniz rules twice and

reordering the sums, we find

(z1 · z2)ℓ
ℓ∑

m=0

(
ℓ

m

)
Γ(ν − k)

4mΓ(∆ +m)

(
2z1 · ∂pz2 · ∂p

z1 · z2

)m

|p|−2ν+2k

=|p|2∆−d (−2)ℓ ℓ! Γ(ℓ− ν)

Γ(ℓ+∆)

(
z1 · pz2 · p
p · p

)ℓ

P
(h−2,ν−ℓ)
ℓ

(
p · pz1 · z2
z1 · pz2 · p

− 1

)
.

(2.12)

The function P a,b
n (t) is a Jacobi Polynomial. It depends on a single parameter

t =
p · pz1 · z2
z1 · pz2 · p

− 1 =

(
z1 · z2 −

z1 · pz2 · p
p · p

)
p · p

z1 · pz2 · p
, (2.13)

which measures the angle between z1 and z2 in the plane perpendicular to the vector

p. To make this effect transparent, we can without loss of generality consider the

9This is an instance of a systematic procedure. The general idea is to perform a harmonic

decomposition of the intertwiner over the parabolic subgroup ÑAM .
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configuration

p =

(
|p|
0

)
= |p|p̂, z1 =

(
+i

√
z2

z

)
, z2 =

(
−i

√
z2

z

)
, z · z = t

√
z2z2 . (2.14)

This parametrisation is tuned so that z†1 ∼ z2, as happens in the inner product we

consider. We have determined

Ĝ∆,ℓ(p) ≡ |p|2∆−dC∆,ℓ
(−2)ℓπhℓ! Γ(ℓ− ν)

Γ(ℓ+∆)

√
z2z2

ℓ
P

(h−2,ν−ℓ)
ℓ (t) . (2.15)

The kernel now makes the invariance under translation (Ñ), dilation (A), and

rotations (M). Taking out the overall factor of |p| which diagonalises the action of

dilation, the remaining pieces are defined by the value of the intertwiner for given p̂µ

on Sd. It must then be decomposable into irreducible representations of the stabiliser

group of p, which is SO(d − 1). This implies a further decomposition of Ĝ∆,l(z, z)

in a basis of special orthogonal functions associated to the group SO(d− 1), known

as the zonal harmonics. The statements of positivity and of irreducibility are then

statements regarding the harmonic expansion of the intertwining kernel.

Although the topic of harmonic decomposition is well understood and standard,

it is pedagogically worthwhile to review it to setup the logic for when we tackle the

spinor case, which is similar but more intricate. We now take a detour to represen-

tation theory, before continuing on to the construction of the complementary and

exceptional series.

2.2 Mathematical Interlude : Harmonics Polynomials And SO(d)

We have taken a generic function of three vector variables p, z1 and z2, and have

found it can be recast as a scaling piece and a function of the vectors zµ and zµ living

in Rd−1, which are no more null. The resulting homogeneous polynomial in z, z is

an encoding of a specific bi-tensor . Such an object can be decomposed on a basis of

projectors on definite representations [86, 89–92].

An irreducible representations of SO(d − 1) can be represented by polynomials

in the following manner. As any (tensorial) representation lies in the repeated tensor

product of the vector representation, we can identify a representation by specifying

its projector over a space of tensors of a given number m of indices, T (d−1)
m . In this

section, we deal with symmetric traceless tensors, whose projectors satisfy

πmµ1...µm

ν1...νm = πm(µ1...µm)
(ν1...νm) ,

hµiµjπmµ1...µm

ν1...νm = 0 ,

πmµ1...µm

σ1...σmπmσ1...σm

ν1...νm = πmµ1...µm

µ1...µm .

(2.16)

In what follows, we will take all the indices to be perpendicular to p. One can simply

take h to stand in for the induced metric on the orthogonal plane to p, instead of
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the identity matrix. We will denote the inner product with h using the symbol a ◦ b,
a2 = a ◦ a. This projector can be converted into a polynomial, by contracting this

projector with generic complex vectors. Using generic vectors z and z in Cd−1, the

resulting object satisfies the properties

πm(z, z) = zµ1 . . . zµmπmµ1...µm

ν1...νmzν1 . . . zνm ,

πm(λz, ρz) = (λρ)mπm(z, z) ,

∂

∂z
◦ ∂

∂z
πm(z, z) = 0 ,

(2.17)

Which defines π as an homogeneous polynomial, where tracelessness translates into

the projector being a harmonic function.

The upshot is that a given (STT) representation of SO(d − 1) is equivalent to

a given harmonic homogeneous polynomial. These are called spherical harmonics.

The adjective spherical is associated to the homogeneity property, which allows us

to fix π given its value on the sphere. These conditions uniquely define the spherical

harmonics. Start from the ansatz

πm(z, z) = (z2z2)
m
2 f

(
t =

z ◦ z√
z2z2

)
, (2.18)

where f is a polynomial of order m in the variable t, harmonicity translates into a

differential equation for f

(t2 − 1)f ′′(t) + (d− 2)tf ′(t) = l(l + d− 3)f(t), f(t) = c(m)C
h− 3

2
m (t) . (2.19)

Where the factor of d is the dimension of the full-space, matching the rest of this

work, not the p-orthogonal one, and Cm is the m-th Gegenbauer polynomial. We

will sometime use α = h − 3
2
as a shorthand. The normalisation can be fixed by

considering the leading order (z ◦ z)m terms which must be set to one, giving

c(m) =
m!

2m
(
h− 3

2

)
m

, (2.20)

Which then fully defines the spherical harmonics.

Spherical harmonics are adapted to decompose a tensor of SO(d − 1) of fixed

rank into its irreducible components. The problem at hand for us is however slightly

different, it is the decomposition of a tensor of SO(d) into its SO(d− 1) irreducible

pieces. Such a decomposition must encode the branching of representations, and

the associated basis are called the zonal harmonics. Indeed, consider a spherical

harmonic of SO(d) pulled-back to the space Rd−1. The resulting polynomial, al-

though originally traceless, will not be traceless with respect to induced metric. It is
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then reducible, allowing it to be decomposed into a sum of harmonics of SO(d− 1)

associated to spins m ≤ l, multiplied by appropriate trace terms.10

To make this explicit, we introduce an external vector p into the discussion,

and a bigger inner-product ·, such that p · p = 1 and a ◦ b = a · b − a · p b · p.
The vector p encodes the breaking of SO(d) into SO(d − 1). The breaking of the

vector representation gives a breaking of the tensor representation living in its tensor-

product, giving rise to projectors πℓ
m from T (d)

ℓ into STT representations with spin-m

of SO(d− 1), ℓ ≥ m ≥ 0, which are called the zonal projectors. By definition, they

satisfy
πℓ
ℓ µ1...µℓ

ν1...νℓ = πℓ µ1...µℓ

ν1...νℓ ,

pµ1 . . . pµℓ−m+1πℓ
m µ1...µℓ

ν1...νℓ = 0 ,

πℓ
m µ1...µℓ

σ1...σℓπℓ
m′ σ1...σℓ

ν1...νℓ = δm,m′πℓ
m µ1...µℓ

µ1...µℓ ,

(2.21)

and acting on a given spin-ℓ tensor of SO(d), outputs its spin-m symmetric traceless

tensor of SO(d− 1) part.

Using the polynomial encoding, it is straightforward to find an expression for the

zonal harmonics. As previously alluded, these projectors must involve the spherical

harmonics with some “trace term” encoding the non-zero contractions in the p-

direction. We extend the vectors z, z in the p direction such, allowing us to write

objects such as z ·p, while z◦p = 0 still, as the ◦ product is p orthogonal.11 The zonal

harmonics are harmonic functions of the reduced laplacian ∂z ◦∂z, but not of the full
laplacian ∂z · ∂z which includes the p direction. Hence, they must be proportional to

spherical harmonics for SO(d− 1), up to polynomial functions of z · p and z · p. The
following ansatz follows,

πℓ
m(z, z) = aℓ,m(z · p z · p)ℓ−mπm(z, z), ℓ ≥ m ≥ 0 , (2.22)

for some normalisation choice aℓ,m. The normalisation is fixed by requiring that the

harmonics offer a partition of unity on the space of symmetric tensors of SO(d) with

l indices ST (d)
ℓ ,

ℓ∑
m=0

πℓ
m(z, z) = (z · z z · z)ℓ/2 ℓ!

2ℓ(α + 1
2
)ℓ
C

α+ 1
2

ℓ

(
z · z√
z · z z · z

)
. (2.23)

By specialising to the configuration for which writing z · z = (z · p)2, one can rewrite

this as a decomposition of a function of t into a sum of Gegenbauer polynomial,

10For d = 3, the projectors over SO(3) are a special form of the Gegenbauer polynomial given by

Legendre Polynomials. There, the decomposition into irreducible representations of the subgroup

SO(2) is done by Fourier decomposition and one has −l ≤ m ≤ l instead. For d = 2, the zonal

decomposition is singular since the representations are all one-dimensional.
11We derive the zonal projectors first as functions of Cd × Cd initially, which are then restricted

to live on the subset of null vectors, Kd ×Kd with Kd = {z ∈ Cd | z · z = 0}.
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which can be inverted using an integral identity. The output of this computation is

the normalisation

aℓ,m =

(
ℓ

m

)
2ℓ−m

(
m+ α + 1

2

)
ℓ−m

(2m+ 2α + 1)ℓ−m
. (2.24)

By construction, the zonal harmonics give an orthogonal decomposition of the

set ST ℓ. Any map τ from ST ℓ to itself can then be written as a weighted sum of

zonal harmonics

τ ∈ ST (d)
ℓ ⇒ τ =

ℓ∑
m=0

κm π
ℓ
m . (2.25)

Such a map is positive definite provided κm ≥ 0. If some projectors have negative

coefficient, although it is possible to define a positive map by restricting to a subspace

orthogonal to the faulty projectors, restricting to this subspace defines a covariant

equations of motions [2]. This is not conformally invariant in general. The correct

procedure is to write the most general conformally invariant kernel and then consider

whether it is positive. One is free to restrict to a subspace only if it is invariant.

This can happen if some projectors are absent (simply quotienting by null states),

or if there exists a conformally invariant splitting. The latter must be associated to

a freedom in the choice of the kernel.

2.3 Complementary Series

We have the tools setup to decompose the intertwiner unto the basis of zonal har-

monics. To do so, we consider a specialisation of the previously derived partial wave

expansion. If we pick z · z = 0, we can identify z · p =
√
z ◦ z p · p, and similarly

for z. To pull out the factors corresponding to a given harmonic, one can use the

completeness relation of the Gegenbauer polynomial. To extract the m-th partial

wave we need to perform the integral∫ +1

−1
(1− t2)α−

1
2Cα

m(t)P
(h−2,ν−ℓ)
ℓ (t) dt , (2.26)

which is quite complicated. The tactic we used is to rewrite the Gegenbauer polyno-

mial as a Jacobi Polynomial, and using eq. 7.391.9 of [93]. The result is an expansion

Ĝ∆,ℓ(p) = (p · p)∆−hN∆,ℓ

ℓ∑
m=0

κℓ,m(∆)πℓ
m(z1, z2, p̂) . (2.27)

Rather miraculously, the final result takes a simple and palatable form. It was first

computed in [51], and is given by

N∆,ℓ =
C∆,ℓ(−1)lπh

l!

Γ(h−∆)

Γ(∆− 1)(∆ + ℓ− 1)
, κℓ,m(∆) =

(
∆+m− 1

)
ℓ−m

(∆ +m− 1)ℓ−m
. (2.28)
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The overall constant N∆,ℓ must be fixed by picking a normalisation of the ker-

nel. There is no single choice for this normalisation, instead there are various ones

suitable for different applications, and often authors have used a panoply of them.

As previously mentioned, since the coefficients coming from the Fourier transform

might be singular for some values of the scaling dimension, it seems disingenuous to

try to tune C∆,ℓ to remove all of this prefactor, as it encodes genuine information

and would hide what happens. Instead we take the much simpler perspective that

the only requirement is that the overall factor must be positive (if need be, an overall

minus sign can always be adjusted), making us pick a simple normalisation for the

2pt. function

C∆,ℓ =
1

(−1)ℓπhℓ!
⇒ N∆,ℓ =

Γ(h−∆)

Γ(∆− 1)(∆ + ℓ− 1)
. (2.29)

At regular points, N∆,ℓ is not infinite nor zero, and can fix the overall sign pro-

vided all the Pochhamer symbols have the same sign. This will define the comple-

mentary series representations. The other points are called exceptional, and generate

the associated series.

Consider now the situation where N∆,ℓ is regular. One must require that all the

partial wave coefficients share the same sign, meaning

κm+1

κm
=

∆+m− 1

∆ +m− 1
≥ 0 . (2.30)

The strongest constraint comes from m = 0, which imposes ∆ > 1 and d−1−∆ > 0.

Normalisability is in principle still an issue, which we have to investigate.

For ℓ = 0 there is no such constraint, as there is a single term whose sign can be

tuned by rescaling the intertwiner. The only remaining criteria is normalisability of

the inner product. The argument is particularly clear in the “compact” picture where

one can put the origin and infinity on the same footing [52]. In the non-compact

picture we used up to now, one must check that the asymptotic behaviour of the

wavefunction is normalisable. Instead, one can work with wavefunctions defined on

Ω ∈ Sd, where the scalar intertwiner takes the form

G∆(Ω1,Ω2) =
2∆C∆

(1− Ω1 · Ω2)∆
, (2.31)

Which can be obtained by projecting down an embedding space expression [88,

94] or performing an inverse stereographic projection on the position space inner

product. Clearly, normalisability of the scalar inner-product for given ∆ implies

that of the spinning kernel as well. To know whether this defines a positive function
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over Sd ≡ K, we decompose this bilinear function over the spherical harmonics12

G∆ =
C∆

Γ(∆)

∫ ∞
0

ds

s
(2s)∆e−s+sΩ1·Ω2

= C∆Γ(h−∆)
2dΓ

(
d−1
2

)
4
√
π

∑
l

(d− 1 + 2l)(∆)l

Γ(l +∆)
C

d−1
2

l (Ω1 · Ω2) .
(2.32)

Normalisability translates into the positivity of each of these coefficients, which arises

provided both ∆ and ∆ are positive, i.e. 0 ≤ ∆ ≤ d.

This analysis is clearly valid almost everywhere in ∆, and defines the range

and properties of the complementary series C∆,ℓ. The caveats are the points where

the harmonic decomposition is singular, which defines exceptional points, admitting

other representations.

2.4 Understanding Exceptional Points : Scalars

All representations can be found as subrepresentations of the elementary ones. From

our previous analysis, we have found that the representations are irreducible for

generic ∆, and become unitary in some restricted range. The caveats of our analysis

are the exceptional points, where the representation becomes reducible. Such a

distinguished space arises when, for special values of ∆, the intertwiner develops

a non-trivial kernel, and the Fourier transform or partial wave expansion becomes

singular. This is most easily diagnosed by considering the automorphism generated

by performing the shadow transform forward and back, which is caracterised by a

constant

G∆,l ◦Gd−∆,l = N∆,l , (2.33)

which is inversely-proportional to the Plancherel measure of SO(1, d+1) [68, 69, 81].

It is simply given by N∆,lNd−∆,l. It is, almost everywhere, a regular function of ∆.

It admits poles and zeros at specific integer points, where the isomorphism breaks

down into an exact sequence.13 To understand how to deal with this situation and its

12This harmonics decomposition is different from the previous one. Here, we effectively replaced

the partial-wave decomposition over the subgroup Ñ of translation by a decomposition over the

larger subgroup K = SO(d).
13In what follows, we only care about the zeros/irregularities which occur outside of the comple-

mentary series. There are spurious poles for ∆ = h + n, n ∈ N, due to the kernel (x − y)−2(h+n)

not being conformally invariant [95–97]. For points in the complementary series, we can always

regulate those by taking limits from the interior of the series, but this is not even needed, nor an

issue. At those points, we can use the ultra-local kernel (−□x)
nδd(x− y) instead. For n ≤ h, this

kernel is still the inverse of Gh−n, and the isomorphism is preserved. There is no interesting invari-

ant subspace generated by these points. Outside of the complementary range, we must be more

careful, as there could be cancellation of zero and poles. For odd d, the zero and poles miss each

other by half-steps, and we also find there are no interesting invariant subspaces. For even d and

– 14 –



interpretation, it is useful to consider the case of the scalar operator as an illustrative

example of the general structure. For l = 0, the intertwiner is given by

Ĝ∆(p) =
Γ(h−∆)

Γ(∆)
|p|2∆−d, N∆ =

Γ(h−∆)Γ(∆− h)

Γ(d−∆)Γ(∆)
. (2.34)

F−n

−n

Fd+n

d + n

∆ ∈ R
C∆

0 d

Figure 2: A view of the ∆ ∈ R line for scalars. At the centre, there

is the unitary complementary series. Outside of its limits in red, we

encounter the integer spaced exceptional points.

The Plancherel measure has a pole for ∆ = −n ∈ −N. This is linked to the

original Fourier transform. Indeed, the 2pt. function K−n reduces to a polynomial

in position space, and in momentum space it becomes a derivative of Dirac delta

function

G−n ∝ (x− y)2n → □n
pδ

d(p) , (2.35)

the image of which is the set Im(G−n) ≡ En ⊂ F−n of polynomials of order up

to n. This forms an invariant subspace of F−n. Since this is a finite dimensional

representation and the de Sitter group is not compact, it cannot be unitary except

for the trivial case n = 0 corresponding to the identity. Although very important

in some applications with regards to weight-shifting operators [7, 69, 98, 99], we

will not consider these further. Likewise, the kernel Ker(G−n) ≡ Vn ⊂ Fd+n is also

an invariant subspace. These two spaces are candidate representations, which are

orthogonal under the natural pairing (·, ·), i.e. En ⊥ Vn.

One might wonder whether their complements give other interesting subspaces.

The space Fd+n/Vn is finite dimensional, and made up of functions which are poly-

nomials of degree up to n in p, i.e. this is a finite dimensional space of differential

operators. The map from these differential operators to En is surjective, linear, and

has a trivial kernel ; this makes it a bijective map, making the two spaces isomorphic.

This logic follows through for the other quotient space : Vn can be understood either

as the subspace of states in Fd+n for which the naive inner-product is ill-defined, or

as the equivalence class of states in F−n defined up to polynomials.

n > h however, the points where Gh+n becomes ultra-local coincides with the points where Gh−n

is polynomial and singular, which might cause issue. An explicit computation shows that they still

annihilate each-other, and our discussion can still follow through. Effectively, we can perform the

analysis in dimensional regularisation keeping d as an external parameter.
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This situation can be efficiently encoded in an exact sequence of linear map,

which forms the degenerate form of the shadow transform

F−n Fd+nEn Vn

Gd+n

G−n

ι ι

Figure 3: For exceptional points, the shadow isomorphism breaks

into a series of exact sequences. Two irreducible spaces survives, and

a single one is unitary.

Having settled on the study of Vn, this leaves us with a puzzle. Our candidate

representation sits in Ker(G−n), and so we must find a different way to furnish it

with an (unitary) inner product. The procedure to do so is systematic, and relies on

the quotient space realisation. It answers our two questions

1. What is the kernel which defines an invariant inner-product on this irreducible

subspace ? This is done through the limiting kernel procedure. It manifest

irreducibility, but makes unitarity hard to assess.

2. Is this kernel unitary ? This is done by relating the inner-product just defined

to the one induced by the (isomorphic) quotient-space picture.

We start by finding a suitable kernel. The key is to notice that we have more

freedom in choosing the integrand than previously. Under a conformal transforma-

tion, the intertwiner is now allowed to transform in-homogeneously; up to a piece

proportional to G−n. This limiting kernel G̃∆ can be obtained by picking out the

(non-trivial) subleading term in the limit to the exceptional point,

lim
∆→−n

G∆

(∆ + n)

∣∣∣∣
Vn

= lim
∆→−n

∂∆G∆

∣∣
Vn

= G̃−n . (2.36)

This operator transforms inhomogeneously under conformal transformation, but it is

conformally invariant on the subspace Vn [51]. We use it to define an inner product

⟨ψ1|ψ2⟩ =
(
ψ1, G̃−nψ2

)
, ψ1, ψ2 ∈ Vn ,

G̃−n(x; y) ∝ (x− y)2n log
(
µ2(x− y)2

)
.

(2.37)

It is most interesting to note at this point that the natural inner-product is

logarithmic. Naively, this seems to signal a breaking of the de Sitter group, as it

introduces a scale into the system. This is the source of great a many confusions

relating to the discrete/exceptional series. It is then very important to remember

that the module we consider is made up of properly smeared states, for which the
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scale µ is immaterial. Such a 2pt. function was found while trying to impose a

regularisation of the zero mode of a shift-symmetric scalar in de Sitter [74], and is

the generally expected result from a Gupta-Bleuler approach to the quantisation of

such a gauge-symmetric scalar [100, 101]. This scale is immaterial and does not

break in any way the isometry, as is most clear in the quotient space picture which

we will now explain.

It is naturally quite complicated to directly analyse the unitary properties of this

inner product ; but luckily, we do not have to do it like previously. Vn is isomorphic

to the quotient F−n/En. Between these spaces, Gd+n is bijective, and can be inverted.

Since En ⊥ Vn, any ambiguity in this inverse map leaves the inner-product invariant

and can be ignored. Given any choice of inverse map

φ : Vn → F−n , ϕ ◦Gd+n

∣∣
Vn

= 1 , (2.38)

it induces an inner-product on Vn from that of F−n

ψ1, ψ2 ∈ Vn , ⟨ψ1|ψ2⟩ = ⟨φ(ψ1)|φ(ψ2)⟩F−n

=
(
ψ1, φ ◦Gd+n ◦ φ(ψ2)

)
=
(
ψ1, φ(ψ2)

)
.

(2.39)

The question of unitarity is then transferred onto the quotient space, where we can

instead analyse the simpler kernel we have already considered earlier. The limiting

kernel procedure produces precisely a construction of an inverse map φ. This follows

directly by taking the limit of the whole shadow automorphism

lim
∆→−n

Gd−∆ ◦G∆

∆+ n

∣∣∣∣
Vn

= Gd+n ◦ G̃−n
∣∣
Vn

= lim
∆→−n

N∆

(∆ + n)
= Ñ−n , (2.40)

where the other pieces drop out by virtue of being restricted to the kernel of G−n.

With this result in hand, we can properly address unitarity, by looking at F−n/En.

This is non-trivial, since as we have seen, although for we can make the (scalar) 2-pt.

function seemingly positive for any ∆ ∈ R by adjusting the overall coefficient, it is

generally not normalisable for ∆ ≥ d. The representation Vn will only be unitary if

the quotient excises precisely the non-normalisable modes.

To summarise, the space Vn ∈ Fd+n is unitary if Gd+n is unitary once quotiented

by its kernel, and En would be if the analogous statement hold for G−n. The inner

product would then be given by the limiting kernel, whose unitarity is induced from

the quotient space picture. To assess these, it is useful to consider again the compact-

picture form of the kernel, which we had expanded over spherical harmonics

G−n(Ω1,Ω2) ∝
n∑

l=0

(−1)l
(d− 1 + 2l)(n− l + 1)l

Γ(l + d+ n)
C

d−1
2

l (Ω1 · Ω2) ,

Gd+n(Ω1,Ω2) ∝
∞∑

l=n+1

(d− 1 + 2l)(n− l + 1)l
Γ(l + d+ n)

C
d−1
2

l (Ω1 · Ω2) .

(2.41)
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We find that G−n only contains harmonics with l ≤ n and alternating signs, while

the higher ones decouple. The finite-dimensional space of surviving harmonics, En, is
non-unitary as it should be. The space Vn is identified with functions on the sphere

with harmonics l > n. The expression for Gd+n shows the converse, that the first

n modes decouple, and that the remaining modes appear with positive coefficients,

showing it defines a unitary normalisable inner-product.

Through the relatively intricate construction outlined, we have constructed the

scalar exceptional series representations Vn, n ∈ N. These representations are some-

times called “exceptional type I” representations [52], to distinguish them from their

spinning cousins. We have shown how this module has a logarithmic inner product,

which does not induce any issue since the states which are actually part of the repre-

sentations are those restricted to the physicality conditon ; effectively smearing them.

The physicality condition acts like the Gupta-Bleuler quantisation procedure, where

one considers a bigger hilbert-space containing unphysical states as well, and one

restrict to a physical slice. The seemingly growing modes, associated to polynomial

states, are pure gauge, as a consequence of the group-theoretic construction.

2.5 Spinning Exceptional Series

Armed with the understanding of the scalar case, we can turn to the more intricate

question of generic ℓ. The spectral function will have poles for ∆ = d− 1+ k, k ∈ N
again, but the situation is more involved. Indeed, we must differentiate the case

0 ≤ t < ℓ, for which G1−t,ℓ is not polynomial but still missing projectors, to those

with k = ℓ + n, 0 ≤ n where, as in the scalar case, G1−ℓ−n,ℓ is a pure polynomial.

This is illustrated in the following figure

F1−t,ℓ

1 − ℓ

F1−ℓ−n,ℓ Fd−1+t,ℓ

d − 1 + ℓ

Fd−1+ℓ+n,ℓ

∆ ∈ R

C∆,ℓ

1 d − 1

Figure 4: A view of the ∆ ∈ R line for tensors. Beyond the com-

plementary series, there are two regions: those lying at integer point

point below and above ℓ.

Let us concentrate first on the points at d − 1 + ℓ + n, and their cousins at

1−ℓ−n. The scalar discussion is mimicked here, in that we can define the space Eℓ,n =

Im(G1−(ℓ+n),ℓ) ⊂ F1−(ℓ+n),ℓ, which is finite dimensional and non-unitary. Likewise,

we can define the kernel of this map, Vℓ,n, and the two spaces are orthogonal. It is

useful to look at the structure of these spaces somewhat more. A generic element of

Eℓ,n is a polynomial annihilated by some finite order differential operator, conversely

any element of Vℓ,n must have at least a certain number of derivatives associated to
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it. Exploiting these ideas, these spaces can be written in the form

Eℓ,n =
{
Polynomials p(x) ∈ F1−(ℓ+n),ℓ | (z · ∂x)np = 0

}
,

Vℓ,n =
{
f(x) ∈ Fd−1+(ℓ+n),ℓ | ∃g ∈ Fd−1+ℓ,ℓ+n , (Dz · ∂x)ng = f

}
.

(2.42)

In the first definition, the use of the polarisation z is simply to allow the most

general tensor differential equation that annihilates the polynomial. In the second,

we use the Todorov operator14 which releases indices of tensors in the index-free

notation, and allowed the elements of Vℓ,n to be the most generic tensorial-function

which will be in the kernel. The functional space in which the prefunction g lives can

be read up from the scaling and rotational properties of the field and the number of

derivatives. In this perspective, we see it is interesting to introduce the two (dual)

weight-shifting operators [51]

d = z · ∂x, d = Dz · ∂x . (2.43)

These differential operators are intertwiners, operators that relates together dif-

ferent representations. In our case, we see they connect the space with integers shifts

below and above ℓ.

With this in mind, we can consider the doublet of spaces F1−t,ℓ and Fd−1+t,ℓ, 0 ≤
t < ℓ. The map G1−t,ℓ is singular as the projectors with 0 ≤ m ≤ t disappear. This

allows us to define the invariant subspaces Uℓ,t = Ker(G1−t,ℓ) and Ṽℓ,t = Im(G1−t,ℓ).

The space Uℓ,t is analogous to Eℓ,n, in that it is annihilated by some finite order

differential operator, which ensures it propagates no helicity above t, but it is infinite

dimensional since its element are not polynomials; it is potentially unitary.

F1−(ℓ+n),ℓ F(d−1)+ℓ+n,ℓ

F1−ℓ,ℓ+n F(d−1)+ℓ,ℓ+n

Eℓ,n Vℓ,n

󰁨Vℓ+n,ℓ Uℓ+n,ℓ

G(d−1)+ℓ+n,ℓ

G1−(ℓ+n),ℓ

ι ι

ι ι

G(d−1)+ℓ,ℓ+n

G1−ℓ,ℓ+n

dn d
n

Figure 5: The quartet diagram of [51], where each directed sequence

is exact. It follows there are four potentially interesting irreducible

subspaces. A single one is (generically) unitary.

14The Todorov operator is an interior derivative to the set Kd of null complex vectors. It is used

to free indices which have been contracted with polarisation vectors while ensuring tracelessness of

the resulting tensor. See [51, 88, 89].
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These new spaces are not totally unrelated to the previous ones however, since

weight-shifting operators connects them together. These relations are encoded in a

diagram of exact sequences given in fig. 5. For convenience, we have summarised

the main rules regarding the interpretation of this type of diagrams in appendix B.

Although it looks quite daunting, these simply express some redundancy in the spaces

we defined, showing relations in the different invariant subspaces. Most notably, these

imply Vℓ,n is isomorphic to Ṽℓ+n,ℓ, making the latter redundant.15 This can be seen

through the rewriting of the quartet given in fig. 6.

F1−(ℓ+n),ℓ

Eℓ,n

F(d−1)+ℓ,ℓ+n

Uℓ+n,ℓ

Vℓ,n

󰁨Vℓ+n,ℓ

G(d−1)+ℓ+n,ℓ

G1−ℓ,ℓ+n

dn

d
n

Figure 6: The images of dn and d
n
are Ṽℓ+n,ℓ and Vℓ,n, so they are

surjective maps. Taking the quotient, we can make them injective as

well. It follows that Vℓ,n and Ṽℓ+n,ℓ are isomorphic.

This brings us down to two candidates representations, Vℓ,n which corresponds

to the outer points, and Uℓ,t which corresponds to the inner points. For each of

these spaces, we can repeat the limiting kernel construction, finding a logarithmic

correlator. Unitarity is assessed by recognising that the limiting kernel is an inverse

of the map from the quotients. The question then reduces to whether the quotient

spaces have positive and normalisable inner products.

Consider first the space Vℓ,n. Its norm is induced from Gd−1+ℓ+n,ℓ, quotiented

by its finite dimensional kernel. Through the harmonic decomposition we previously

computed, we find

Gd−1+ℓ+n,ℓ ∝
ℓ∑

m=0

(−1)ℓ−m
(n+ 1)ℓ−m

(d− 1 + ℓ+ n)ℓ−m
πℓ
m . (2.44)

All the modes up to ℓ survive, but with alternating coefficients.16 This map is not

positive, and so the representation Vℓ,n is not unitary, except for ℓ = 0 where it

reduces to Vn.

15The reader might wonder what is the goal of this analysis, instead of directly analysing the

unitarity of the map G1−t,ℓ which induces the inner product on Ṽℓ,t. The issue is that the harmonic

decomposition of G1−t,ℓ is quite unwieldy : its first t+1 components diverge with positive residue,

while the remaining ones are positive. Once we quotient out the modes in Uℓ,t, we are restricted to

the diverging modes. Circumventing this difficulty is certainly welcome.
16This might seem counterintuitive, since we previously claimed that this map should have a
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For the space Uℓ,t, we have to look at Gd−1+t,ℓ instead. Only the partial waves

with helicities t < m ≤ l survive, and they all appear with positive coefficient

Gd−1+t,ℓ ∝
ℓ∑

m=t+1

(ℓ− 1− t)!

(m− 1− t)!(d− 1 + ℓ+ t)ℓ−m
πℓ
m . (2.45)

The inner product is then positive, but it remains to check whether it is finite over

our representation. Proofs can be found in [51, 52]. As a quick argument, one can

note that the asymptotic behaviour of the spinning wave functions is not worse than

the scalar ones, which were normalisable at these exceptional points as seen from the

compact picture.

The representation Uℓ,t, t = 0, 1, . . . ℓ − 1 is a depth-r, r = (ℓ − t) partially-

conserved tensor representation, since it contains a tensor field which is annihilated

by taking r divergences. It is sometimes called “Exceptional type II” representation,

or spinning exceptional series.

3 Story of Fermi : Rarita-Schwinger And Higher

We have seen how to construct bosonic representations by considering the positivity

of a partial wave decomposition of the intertwining kernel. In this section, we gen-

eralise this to fields which transform as tensor-spinors. This requires us to redevelop

some less common machinery, related to Clifford Analysis.

Once this setup is done, we are in a position to make our first result, showing that

there are no complementary or exceptional series representation for tensor-spinors.

Beautifully, this boils down to a simple fact, that (γ · p)2 = p · p > 0, and so

eigenvalue comes in pairs. Since the harmonic decomposition used is only valid for

d > 3, lower-dimensional cases require a more specific formalism. We relegate the

case d = 2, 3 to the next section. There, we find that there exist unitary exceptional

spinor representations for d = 3 only.

3.1 Statement of The Problem

The goal is now to extend our range of representations by picking states to transform

under the subgroup M under representation ρ of the Spin(d) group. The most

straightforward generalisation of the symmetric traceless tensor is the symmetric-

tensor spinor with ℓ indices, the bulk counterpart of which are generalised Rarita-

Schwinger fields. We will call such objects higher-spinors or spinor-tensors.

non-trivial kernel. The point is that the kernel is located not in the intrinsic spin, but in the orbital

spin. To make it manifest, one would have to repeat our discussion but in the compact-picture,

doing the harmonic analysis over Sd, as we did for the scalar. This is however not particularly

enlightening, since the explicit position space form of the reciprocal maps makes the presence of

the kernel completely transparent already.
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In more details, we considers the wavefunctions ψµ1...µℓ

∆ (x) transforming as pri-

maries with scaling dimension ∆ which are spinor-valued. One can again define an

index-free formalism. For irreducibility, we impose

δµiµj
ψµ1...µℓ

∆ = 0

γµi
ψµ1...µℓ

∆ = 0

ψ
(µ1...µℓ)
∆ = ψµ1...µℓ

∆

ψ∆(x, z) = zµ1 . . . zµℓ
ψµ1...µℓ

∆

(3.1)

The task of constructing an inner product reduces again to that of finding a confor-

mally covariant 2pt. functions for fields of this type,

⟨ψ1|ψ2⟩ =
∫

ddx ddy ψ1(x) · G∆,ℓ(x, y) · ψ2(y) , (3.2)

where G∆ is now Clifford valued. Since we are working with euclidean spinors, the

Dirac conjugate is simply given by taking the hermetian conjugate.

As is always the case, there exists a principal series of UIR with ∆ = d
2
+ iν,

as the L2 inner product is unitary and irreducible.17 The bulk interpretation of the

scaling dimension is slightly different for fermions, as the quantisation of massive

fermions yields ∆ = d
2
+ im, with m the renormalised, Lagrangian mass of the field,

which must be real for a real lagrangian [24, 59, 72]. This in itself is not enough

to discard more exotic representations, since they could ultimately be realised in

non-Lagrangian scenarios.

To investigate the potential complementary or exceptional series, we need to pick

∆ ∈ R and look at the non-trivial 2pt. function of spinor-tensors. These can be built

using standard CFT techniques [70, 71, 102],

G∆,ℓ(x, y) = C∆,ℓ+ 1
2

(
z1 · I(x−y) · z2

)ℓ−1
(x− y)2∆+1

(
γ · (x− y)

(
z1 · I(x−y) · z2

)
+

ℓ

d− 3 + 2ℓ
γ · z1γ · (x− y)γ · z2

)
.

(3.3)

As before Iµν(x−y) is the inversion tensor appearing in the 2pt. function of vector fields.

The first term is mandated from conformal symmetry, while the second one is simply

a subtraction to ensure γ-tracelessness.

This kernel is already much more intricate than its bosonic counterpart. Before

delving into the Fourier transform and subsequent partial wave decomposition, let

us gain some intuition for what the fermionic nature of the field implies. Consider

ℓ = 0, i.e. the Dirac spinor. In momentum space, the kernel reduces to

Ĝ∆,0(p) = p2∆−dC∆, 1
2

4h−∆πhΓ(h−∆− 1
2
)

2Γ(∆ + 1
2
)

γ · p̂

= p2∆−dC∆, 1
2

4h−∆πhΓ(h−∆− 1
2
)

2Γ(∆ + 1
2
)

(P+ − P−) .

(3.4)

17Strictly speaking, the intersection with the real axis is reducible [47, 51], which does not happen

for bosons. This is simply due to the quotient of the null descendant induced by the Dirac equation,

as we comment on later.
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This expression does not form a positive definite inner product. The issue with

complementary series spinor is glaring : the matrix γ · p̂ possesses two eigenvalues,

+1 and −1, hence once decomposed over projectors γ · p̂ Pη = ηPη, it always gives

rise to an indefinite inner product on the representation.

The only way out is to kill the projection, by imposing γ ·p ψ = 0. This translates

into a covariant equation of motion for the wavefunctions [2], restricting us to a short-

multiplet, which enforces it to be a free massless Dirac field. This field lives at the

bottom of the principal series, for ν = m = 0. Clearly, this fields possesses null

descendant, which must simply be quotiented out quite trivially.

In what follows, we will show that this is precisely what happens for higher-

spinors as well. For d > 3, we will find the only possible way out is to restrict to

wave functions satisfying γ · p ψ = 0. However these are precisely the free fields

satisfying the Dirac equation and for which ∆ = d
2
, that sits on the tail of the

principal series.

To make this statement concrete, we must proceed with the construction of the

harmonic decomposition. As we did previously, we need to compute the momentum

space kernel. It follows from the bosonic kernel by taking one further derivative

and shifting the weight. Luckily, one does not actually need the explicit expression,

simply the schematic expression,

Ĝ∆,ℓ ≈ (p · p)∆−h (γ · p̂ . . .+ γ · p̂ γµνzµzν . . .+ γ · z . . .+ γ · z . . .) (3.5)

With z and z the polarisations projected in the orthogonal plane to p̂. Each term

can be written in term of some differential operator acting on Jacobi polynomials,

but their precise form is in the end, not needed.

The crucial matter is clearly, how to decompose an object such as eq. (3.5) into

projectors; into irreducible pieces with respect to the stabiliser group Spin(d − 1).

The conceptual issue is that one must define the spinorial equivalent of the harmonics,

which is not as well known as the bosonic analog. This is the goal of the next section.

3.2 Intermezzo : Clifford Harmonics And Spin(d)

We have seen how the harmonic decomposition story goes for bosonic representations

in much details. The logic has been setup to do the same for fermions. We identify

representations by their projectors. The technicality arises in that there is a family

of four type of projectors to consider to have a full partition of unity on the space of

spinor-tensors.

We are interested in performing a harmonic decomposition of an object which

transforms as a symmetric tensor taking value not in the field of real or complex

numbers as previously, but in the Spinor representation. We will consider vector

indices in SO(d− 1), and the associated projector Π must take value in the Clifford

algebra Cℓd−1. We first look at the irreducible pieces. The central issue one has
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to face is that such irreducible representations are of two types, the
[
m+ 1

2

]
irreps,

which we call traceless, and
[
m− 1

2

]
pieces, which is conceptually similar to a zonal

component already, and that we call traceful. The first one is γ-traceless, while the

second one is a pure-gamma trace, and is fixed by requiring that the sum of the

two give a partition of the tensors of spin m. All of this is simply the projector

reformulation of the well known factors from the study of the tensor product of

spinor and vector representations of SO(d− 1). We thus define the projector

Πm
±µ1...µm

ν1...νm = Πm
± (µ1...µm)

(ν1...νm) ,

δµiµjΠm
±µ1...µm

ν1...νm = 0 .
(3.6)

Consider then the generic
[
m+ 1

2

]
“traceless” case, with Πm

+ , which satisfies

γµiΠm
+µ1...µm

ν1...νm = 0 . (3.7)

Meanwhile, the − “traceful” projector will not be annihilated by the contraction, and

it will come together with Πm
+ to completely span the space of symmetric-traceless-

spinor. This translate into the requirement that the traceless and traceful parts sum

into the tensorial projectors,18

πm
µ1...µm

ν1...νm = Πm
+µ1...µm

ν1...νm +Πm
−µ1...µm

ν1...νm . (3.8)

As we did in the bosonic case, these projectors can be encoded as a (matrix

valued)-polynomial by contracting its indices with polarisations. The projectors

satisfy the properties

Πm
± (z, z) = zµ1 . . . zµmΠm

±µ1...µm

ν1...νmzν1 . . . zνm ,

Πm
± (λz, ρz) = (λρ)mΠm

± (z, z) ,

∂

∂z
◦ ∂

∂z
Πm
± (z, z) = 0 ,

γ ◦ ∂

∂z
Πm

+ (z, z) = 0 .

(3.9)

The first three conditions are unchanged from before. The fourth condition is a

stronger requirement than the third one, and implies it.19 We will refer to such func-

tion as Clifford harmonics. They tell us that a given representation of the spinor-

tensor, specified through its projector, is equivalent to a homogeneous Clifford poly-

nomial. Such objects we call Clifford spherical harmonics. This construction forms

the Spin(d) analogue of our construction of the SO(d) representations.

18This type of equation is known in the Clifford analysis literature as a Fischer decomposition

[103, 104]. It encodes that harmonics for spinors form a refinement of spherical harmonics.
19In the Clifford analysis literature, see for example [104–108], this null-Dirac condition is called

(left) monogenicity. Clifford analysis is concerned with the study of monogenic functions. The term

monogenic stems from the equation being a single derivative constraint. The theory of monogenics

generalises the study of harmonics, while offering parallels to the theory of holomorphic functions.
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From basic properties of Clifford algebra, we know the projector Πm can be

expanded on a basis,

Πm(z, z) = Π0
m + γµΠ1

m,µ + γµνΠ2
m,µν , (3.10)

where each of the Πk
m are referred to as subprojectors, and are valued in the identity

element of the Clifford algebra. The subprojectors must be totally antisymmetric

homogeneous polynomial of degree m in the variables z and z. This implies directly

that the expansion in subprojectors truncate at second order in the Clifford algebra.

Remark on the dimension dependence: We will pick γµ ∈ Cℓd but still take µ

to live in d− 1 dimensions, since we ultimately want to work with zonal harmonics.

As is often the case regarding spinors, care must be given to the number of dimension

one works in. If the dimension is odd or even, the chiral matrix can be incorporated

as follows

• If d = 2k, γ⋆ could be accommodated by multiplying by 1±γ⋆
2

.

• If d = 2k + 1, we can identify γ · p with the γ⋆ of Cℓd−1.

For low enough dimension, the algebra degenerates and one cannot separate the zonal

decomposition and the decomposition onto definite γ · p eigenvectors

• For d = 3, the Pauli matrices satisfy γµν = ϵµνγ3, and we can without loss of

generality pick γ · p = γ3.

• For d = 2, there is the exceptional simplification whereby γµν = 0, and the

algebra fully degenerates to level one.

Back to the projectors. Using the scaling and Lorentz properties of Π, we can

write ansätze for the subprojectors,

Π0
m = (z2z2)

m
2 f0(t) ,

Π1
m,µ = (z2z2)

m
2

(
zµ√
z2
f(t) +

zµ√
z2
g(t)

)
,

Π2
m,µν = (zµzν − zνzµ)(z

2z2)
m−1

2 f2(t) .

(3.11)

Let us investigate the traceless projector. This gives the differential equation

/∂zΠm = 0 = ∂µΠ1
µ + γµ

(
∂µΠ

0 + 2∂νΠ2
νµ

)
+ γµν∂µΠ

1
ν , (3.12)

which translates into a set of coupled differential equations for the functions f0, f2, f

and g

0 = (d+m− 2)f −
(
t2 − 1

)
g′ +mtg , 0 = f ′ + tg′ −mg ,

0 = 2
(
t2 − 1

)
f ′2 + 2(m− 1)tf2 − tf ′0 +mf0 , 0 = 2(d+m− 3)f2 + f ′0 .

(3.13)
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The last equation can be inputted back into the third one to give a second order

differential system for f0, which turns out to be the m-th Gegenbauer Polynomial

defining equation again,

f0(t) =
2α +m

2(α +m)
c(m)C

α
m(t) , f2(t) = −

αc(m)

4α +m
Cα+1

m−1(t) . (3.14)

This however, does not fix the f and g functions, and this is actually a feature of the

problem at hand. We postpone this issue slightly; let us require that the projector

be traceless from the right as well, which gives the same set of equation but with

the role of f and g interchanged. One can check that the resulting equations are not

compatible with each others, setting Π1 = 0.

Taking a step back, these results make sense when considering the normalisation

of the projectors. If z2 = 0 = z2, we must reduce to an expression which looks like

(z ◦ z)m minus the γ-traces, which can be computed using the Todorov operator.

Going through this exercise, we find the normalisation condition

(z ◦ z)m−1
(
z ◦ z − m

d− 3 + 2m
γ ◦ zγ ◦ z

)
=
d− 3 +m

d− 3 + 2m
(z ◦ z)m−1 (z ◦ z −mγµνz

µzν) .

(3.15)

Clearly, the projector for the m + 1
2
spin component, will have no solitary γµ term.

The previous solution for f0 satisfies precisely this normalisation.

Now, armed with insights, we can look back at the previous construction and

understand the general structure faster. Indeed

Πm
++ =

(
1− 1

2(α +m)
z ◦ γγ ◦ ∂

)
πm

= πm

(
1− 1

2(α +m)

←
∂ ◦ γγ ◦ z

)
,

(3.16)

is γ-traceless on both sides by construction, and satisfies all the properties of a

Clifford harmonic. Moreover, this expression makes it easy to show that

Πm
++(z, ∂)Π

m
++(z, z) =

(
1− 1

2(α +m)
z ◦ γγ ◦ ∂

)2

πm(z, ∂)πm(z, z)

= Πm
++(z, z) ,

(3.17)

making it a good projector. An explicit computation shows it to be identical to the

one given previously. In this form however, the generalisation to find the traceful

projector, and the zonal Clifford harmonics is trivial,

Πℓ,m
++ =

(
1− 1

2(α +m)
z ◦ γγ ◦ ∂

)
πℓ
m ,

Πℓ,m−1
−− =

(
z ◦ γγ ◦ ∂
2(α +m)

)
πℓ
m .

(3.18)
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These projectors enjoys the following expected properties, that follow from those of

the gamma matrices and zonal harmonics

Πℓ,m
αα (z, ∂)Π

ℓ,m′

ββ (z, z) = δm,m′δαβΠ
ℓ,m
αα (z, z) ,

ℓ∑
m=0

Πℓ,m
++(z, z) + Πℓ,m

−−(z, z) = (z · z z · z)ℓ/2 ℓ!

2ℓ(α + 1
2
)ℓ
C

α+ 1
2

ℓ

(
z · z√
z · z z · z

)
.
(3.19)

For later convenience, we defined the traceful projector with a shift in the indices,

so that Πℓ,ℓ
−− = 0, and Πℓ,−1

−− = 0 of course. In this convention, it always picks the

component with spin [m+ 1/2], and there is a single component with spin
[
ℓ+ 1

2

]
.

The definitions are chosen so that both Πℓ,m
±± projects out a component which has

spin
[
m+ 1

2

]
out of the reduction of [ℓ]⊗

[
1
2

]
.

There is yet another expression for Πl,m
++ which is useful in derivations. Since

the Dirac operator squares to the Laplacian, we can sandwich the zonal harmonics

with appropriate factors to retrieve the projector just given. Through an explicit

computation one finds

Πl,m
++ =

(2α + l +m+ 1)(2α + l +m+ 2)γµγν

4(l + 1)(2α + 2l + 1)(α +m+ 1)2
∂

∂zµ
∂

∂zν
πl+1,m+1(z, z) (3.20)

The projectors just obtained are certainly an allowed solution to the defining

equations, but it does not fully solve our problem. In principle, the f and g functions

can be non-zero, for a projector which is traceless on one side, traceful in the other.

This arises from the group-theoretical fact that in the harmonic decomposition of[
1
2
⊗ j
]spin(d−1)

there are multiple factors of the same representation
[
m+ 1

2

]
and[

(m+ 1)− 1
2

]
which arise from the ++ or −− sector. Since there are two projectors

picking out the same group representations, there is an ambiguity in their action.

This implies the existence of a map that transforms one into the other. This is

provided by the two interpolating projectors Πl,m
+− and Πl,m

−+, which involve the non-

trivial f and g factors, and a single γ-matrix.

Directly solving the equations for f and g is hard to interpret, as the interpolating

projectors are only relevant in the zonal expansion. It is more efficient to consider

building them as differential operators acting on the zonal spherical harmonics. A

satisfying solution is found to be given by

Πl,m
+− =

√
2α + l +m+ 1

l −m

z · p
2(α +m+ 1)

γ ◦ ∂πl,m+1 ,

Πl,m
−+ = πl,m+1γ ◦

←
∂

z · p
2(α +m+ 1)

√
2α + l +m+ 1

l −m
.

(3.21)

Note that by our previous definitions, Πl,l
±,∓ = 0, as there is only a single way to

pick out a spin
[
l + 1

2

]
component out of the reduction of [l] ⊗

[
1
2

]
. One can derive
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straightforwardly the full set of identities encoding the algebra of these projectors

Πl,m
αβ (z, ∂)Π

l,m′

σλ (z, z) = δm,m′δβσΠ
l,m
αλ (z, z) , (3.22)

and we note that these operators can further be dressed by multiplying by appropriate

factors of the projector P± = 1±·p
2

over definite eigenvalue of γ · p.

3.3 No Complementary Nor Exceptional Fermions For d > 3

From the form of the different projectors and given the schematic form of the kernel

in eq. (3.5), one can see how the harmonic decomposition proceeds,

ψ · Ĝ∆,ℓ · ψ ∝
ℓ∑

m=0

ψ
(
γ · p

(
aℓ,mΠ

ℓ,m
++ + dℓ,mΠ

ℓ,m
−−

)
+ bℓ,mΠ

ℓ,m
+− + cℓ,mΠ

ℓ,m
−+

)
ψ

=
ℓ∑

m=0

∑
η=±

(
ψΠℓ,m

+−Pη ψΠ
ℓ,m
−−Pη

)(−aℓ,mη bℓ,m
cℓ,m dℓ,mη

)(
PηΠ

ℓ,m
−+ψ

PηΠ
ℓ,m
−−ψ

)

=
ℓ∑

m=0

∑
η=±

Ψℓ,m,ηMℓ,m,ηΨℓ,m,η .

(3.23)

This is the analog of the bosonic harmonic decomposition in eq. (2.27). Positive-

definiteness is now a matrix constraint, which requires that all the Mℓ,m,η matrices

have eigenvalues all of the same sign. This is a stringent requirement, which is much

harder to satisfy than the equivalent bosonic statement. In fact, this is really an

impossible requirement, independently of the exact form of each of the coefficients

aℓ,m, bℓ,m, cℓ,m, dℓ,m.

Consider the m = ℓ contribution,∑
η

Ψℓ,ℓ,ηMℓ,ℓ,ηΨℓ,ℓ,η =
∑
η=±

η
(
aℓ,ℓψΠ

ℓ
++Pηψ

)
. (3.24)

These two contributions from the leading l + 1/2 representation degenerate into

single block, which always comes in a pair with opposite signs. This means the

inner product is always indefinite. There is no constraint with can be put on the

field which would make the inner product sign definite, hence there is no salvaging

the complementary series. This argument repeats identically for all helicities. Since

each 2 × 2 matrices appears in pairs with identical determinant but opposite trace,

it must be that the eigenvalue flip sign with η. This traces back simply to the sign

indefiniteness of γ · p, as in the scalar case.

We have shown in general that there are no complementary series spinors. Could

there be exceptional ones ? If one could separate out the modes with opposite

norms, yes. This is not possible in general dimension however, precisely because of

the form of the decomposition : since the eigenvalues of Mℓ,m,η for given ℓ,m and
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are independent of η apart from an overall sign, singular-points cannot select out

modes with definite signs. To be able to single them out would imply an invariant

equation of the form γ · ∂ψ = (. . .)ψ, which is not conformally invariant except for

the vanishing case. This reduces back to the “massless” spinors, with ∆ = d
2
.

An alternative understanding of this impossible splitting of modes with opposite

helicities can be gathered by thinking of special conformal transformations. Consider

the Dirac spinor, under special conformal transformation it behaves like a two-level

system (the positive and negative helicities), and the rotational part ∼ γµν mixes

them together. This features persist for higher-spinor, where the opposite modes,

which are simply related to the two helicities of the Dirac spinor tensor-product with

the tensor modes, mix together under special conformal transformation.

In conclusion, we have shown that there are no unitary complementary or ex-

ceptional spinor-tensor representations for d > 3. The caveats of our discussion is

that our harmonic decomposition degenerates for low-dimensions. Indeed, the Clif-

ford algebra contracts down as we reduce the dimension, and the structure γµν in

the harmonic projectors start to interact with γ · p, mixing together l,m and η.

Hence, it is only for d = 1, 2, 3 that one can hope to find exceptional spinorial rep-

resentations, beyond the one encoded by fields satisfying the Dirac equation. These

lower-dimensional discussions are the topic of the next section.

4 Peculiarities of Lower Dimensions

We have found from our general analysis that in d > 3 spinors must reside in the

principal series. The goal of this section is to perform the analogue of the discussion

of sec. 2 to the lower-dimensional cases d = 3, 2 not captured by sec. 3. This anal-

ysis is quite general, since it can covers both fermionic and bosonic representations

simultaneously.

4.1 Kernel in d = 3

The highest dimension where our spinorial harmonic decomposition breaks down is

d = 3. The projectors over definite γ · p eigenvalue is no longer independent from

the projectors Π±±. To properly assess this case, we return to a formalism which is

more dimension-specific.

A general rotational representation ρ of Spin(3) is given by the spin-j repre-

sentation [j], with j ∈ 1
2
N. This representation corresponds to states or fields

Oα1...αj
= O(α1...α2j), sitting in the irreducible component of the tensor product of

2j spinors [70, 71]. The fundamental spinor representation is isomorphic to C2, and

the gamma matrices can be taken to be the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)
. (4.1)
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We define index-free fields by contracting them with commuting polarisation

spinors sα, and sα. The Kernel must then reduce to the unique conformally invariant

2pt. function of these fields

G∆,j(x, y) =
〈
Oj(x, s1)Oj(y, s2)

〉
= C∆,j

(i s1σ · (x− y)s2)
2j

(x− y)2∆+2j
, (4.2)

Clearly, the polarisation of the correlator is encoded in the vector zµ = s1σµs2. Note

that this vector is generically complex but not null. We can now look at the harmonic

decomposition, the first step of which is to perform the Fourier transform

Ĝ∆,j(p) =
4h−∆−jC∆,jπ

hΓ(h−∆− j)

Γ(∆ + j)
(−z · ∂p)2j(p · p)∆+j−h . (4.3)

The rightmost element can be related to an analytically continued Gegenbauer poly-

nomial

(−z · ∂p)2j(p · p)−α =
dj

dϵj
(
p · p− 2ϵz · p+ ϵ2z · z

)−α
= (2j)!(p · p)−α

(
z · z
p · p

)j

Cα
2j

(
t =

z · p
√
z · zp · p

)
.

(4.4)

the variable t encodes the angle between the exchanged momenta and the spino-

rial polarisations,

z · p = √
p · p z · z cos(θ) = √

p · p z · z t . (4.5)

Since its index is negative, this Gegenbauer should properly be defined as a

special hypergeometric function. With α = h−∆− j, and h = 3
2
. For simplicity, we

now set ∆ = h+ ν, giving

Cα
2j(t) =

(−2ν − 2j)2j
(2j)!

2F1

(
−2j,−2ν;

1

2
− ν − j;

1− t

2

)
. (4.6)

4.2 Harmonic Decomposition And d = 3 Complementary Series

To perform the harmonic decomposition, we will take a slightly different root as

before, and use think of it more in term of an Hilbert space rather than a de-

composition over special functions. Our states transform in (rotational) irreducible

representations [j] of Spin(3), which is made of the span of the states |j,m⟩, 2j ∈ N,
m = −j,−j + 1, . . . , j, following [67, 109]. These states are realised as the sym-

metrised tensor product of the fundamental, spin-1
2
irreducible representation. The

stabiliser group of a given vector pµ in Spin(3) is given by a Spin(2) subgroup, which

irreducible representation [m] is (complex) one-dimensional and transforms under ro-

tation by angle ϕ as |m⟩ → eimϕ |m⟩. The branching rule from Spin(3) → Spin(2)

is very simply

Res
Spin(3)
Spin(2)[j] =

j∑
m=−j

[m] . (4.7)
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By picking the basis of the fundamental representation to be the γ ·p eigenvectors
basis, this the branching rules become trivial, as each the states |j,m⟩ directly encode

the branching. Said otherwise, we can pick our basis choice so that each basis

element transforms irreducibly under the stabiliser group. This means, to perform

the harmonic decomposition, we simply have to look at the decomposition of the

kernel over the finite dimensional basis.20

We can be more explicit now. We will label the basis states of the spinor repre-

sentation
∣∣1
2
,±1

2

〉
= |↑ / ↓⟩, which we take to be eigenstates of σ ·p. The polarisation

spinor sα then specifies a definite orientation of the spinors

s = ξ↑ |↑⟩+ ξ↓ |↓⟩ . (4.8)

Products of spinor polarisation define states living in the tensor product. The

link to the irreducible spin-j representations state is obtained through

|↑⟩j+m |↓⟩j−m = ij+m

(
2j

j +m

)− 1
2

|j,m⟩ . (4.9)

Naturally, in this basis we have an equivalence between a certain collection of

polarisation component and a projector

s1As2 =

(
2j

j +m

)
ξ
j−m
1,↓ ξ

j+m

1,↑

Aj,m︷ ︸︸ ︷
⟨j,m|A |j,m⟩ ξj−m2,↓ ξj+m

2,↑ ,

A = Aj,m |j,m⟩ ⟨j,m| .

(4.10)

Which means that we can clear out our expressions, by “freeing” the indices, replacing

the components of the polarisation spinor by projectors. Effectively, we take our

previous expressions, evaluate them for the specific decomposition (4.8), and replace

ξ1,aξ2,b → |a⟩ ⟨b| , (4.11)

and we will understand expressions with multiplications of these kets to act with the

tensor product, i.e. (|a⟩ ⟨b|)2 = |a⟩2 ⟨b|2. More prosaically, the kets |↑ / ↓⟩ are to be

viewed as shorthand for specific functions of the polarisation spinors with definite

transformation properties.

Our goal is now to expand the kernel in term of projectors over the orthonormal

basis vectors |j,m⟩. An explicit computation gives

√
z · z = |↑⟩ ⟨↑|+ |↓⟩ ⟨↓| , z · p = |↑⟩ ⟨↑| − |↓⟩ ⟨↓| . (4.12)

20One is free to chose some other decomposition procedure, for example Fourier series. This

specific decomposition is simply the most physical one and makes the action of conformal symmetry

the clearest.
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The first result follows from a Fierz identity. We then use an hypergeometric identity

to rewrite

Ĝ∆,j(p) =C∆,j
πh(−1)2j4j−νΓ(j − ν)

Γ(∆ + j)
(p · p)ν(|↓⟩ ⟨↓|)2j

× 2F1

(
−2j,

1 + 2ν − 2j

2
; 1 + 2ν − 2j; 1 +

|↑⟩ ⟨↑|
|↓⟩ ⟨↓|

)
=(p · p)νN∆,j

j∑
m=−j

κj,m(∆) |j,m⟩ ⟨j,m| .

(4.13)

The harmonic coefficients can be extracted out of the (j +m)-th term in the series

expansion of the function on the second line

1

(j +m)!

(
2j

j +m

)−1
dj+m

dxj+m 2F1

(
−2j,

1 + 2ν − 2j

2
; 1 + 2ν − 2j; 1 + x

)
, (4.14)

Which can be simplified as

κj,m(∆) = (−1)j−m
Γ (∆ +m− 1) Γ (∆−m− 1)

Γ (∆ + j − 1) Γ (∆− j − 1)
,

N∆,j = C∆,j
4π(∆− 1)Γ(2− 2∆)

∆ + j − 1
sin(π(∆ + j)) .

(4.15)

These match the result found in [68, 109] using recursion relation, up to some global

phase different due to the signature. These coefficients satisfy the relations

κj,m(∆)κj,m(d−∆) = 1 , (4.16)

Which imply the shadow transform indeed generates an automorphism, away from

exceptional points.

With these tools set, we can discuss whether the kernel G∆,j defines a unitary

inner product.

Normalisability : The general discussion of the scalar case in sec. 2 still applies,

as it was dimension agnostic. The harmonic decomposition is positive provided

0 < ∆ < d. Beyond this, some modes can become non-normalisable and must be

checked case by case, as in the scalar-exceptional series.

Bosonic Representations : We set j ∈ N⋆. The harmonic coefficients must not

switch signs for different values of m, which can be checked by requiring

0 ≤ κj,m+1

κj,m
=

∆+m− 1

∆ +m− 1
. (4.17)

The strongest bound comes from m = 0, and gives 1 < ∆ < d− 1, as previously.

The kernel is irregular and admits unitary irreducible exceptional series representa-

tions for ∆ = −n, n ∈ N for j = 0, and ∆ = −t, 0 ≤ t < j. Again, this reduces to

the general discussion of 2.
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Fermionic Representation : We have j ∈ 1
2
+ N⋆ and m is an half-integer. The

previous argument can be reproduced, and the strongest bound comes m = −1
2

which imposes ∆ = ∆ = 3
2
, the tip of the principal series. In fact, opposite m have

contributions with identical norms but opposite signs

κl,m
κl,−m

= (−1)2m , (4.18)

meaning there is no room for complementary series fermions. This is really another

avatar of the higher-dimensional pairing of eigenvalues. Given this situation, it is

extremely surprising that one can construct unitary extraordinary fermionic repre-

sentation. The procedure to do so, which we investigate in the next section, hinges

on a decoupling of the modes with opposite m at the exceptional points.

4.3 Harmonic Gap And d = 3 Exceptional Series

The harmonic decomposition we have computed has the interesting feature that for

specific values of the scaling dimension, ∆ = d−1+j−r = 2+j−r with r = 1, . . . ⌊j⌋,
the middle modes with m ≤ j− r decouple, creating an harmonic gap. The opposite

happens for the conjugate dimensions ∆ = 1 − j + r. With this gap, the modes

with positive and negative m become isolated, which allows us to split up the inner

product

G2+j−r,j → G+
2+j−r,j ⊕G−2+j−r,j . (4.19)

That this is a conformally invariant separation, is counter-intuitive : we have

written the most general 2-point function and obtained a sum over both positive and

negative helicities. In fact, one can check that under a special conformal transforma-

tion, the modes with different values of m mix together into their nearest neighbors.

For the kernel written in the form (4.13), conformal invariance is equivalent to im-

posing invariance under Kµ, giving a recursion relation [68]

(∆ +m− 2)κj,m = (∆−m− 1)κj,m−1 , (4.20)

that is solved by our previous solution.21 What changes now, is that for the excep-

tional points, the harmonic gap opens up, isolating the two sets of modes. Hence,

for this specific choice of dimensions, one can write a kernel improved by contact

21In higher dimension we have seen that the up and down helicities mix together under special

conformal transformation. This is the same thing happening here, the difference is that in higher

dimension the harmonic decomposition could factor out the projection along p ·γ, and it acted as an

overall factor. In d = 3 meanwhile, this interacts with the rest of the helicities label, since Kµ mixes

one of the 2j spinor substates with its opposite helicities, and overall this relates states which differ

by m + 1,m and m − 1. The specific coefficients are then not even needed to understand that the

harmonic gap decouples the two sectors. It is really the structure of the harmonic decomposition

which changed with respect to higher dimensions.
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and improvement terms, whose harmonic decomposition only contains only one set

of modes.

For concreteness, consider the fully-conserved (bosonic or fermionic) field, i.e.

∆ = j + 1, r = 1. The modes m = ±j are totally isolated and do not mix under

conformal transformations. One can write out a conformally covariant kernel which

picks them out,

Ĝ±j+1,j(p) = (p · p)j−
1
2Nj+1,j ⟨j,±j|j,±j⟩ ,

G±j+1,j(x, y) =
(i s1σ · (x− y)s2)

2j

2 (x− y)4j+2 ± π2(s1s2)(i s1σ · ∂xs2)2j−1

(2i)2j(2j − 1)!
δ3(x− y) .

(4.21)

Expressions for generic r can be found case by case by an inverse Fourier transform.

They take the form of a sum of terms sprinkling in factors of s1s2 and delta-functions.

These improvement terms appear with an overall sign which picks out the positive or

negative helicities. This feature, unique to d = 3, has implications for both bosonic

and fermionic representations.

Bosonic representations : The analysis carried out in sec. 2 still applies, and

the representation Uℓ,t is unitary and can be identified with the one extracted out

of the previous discussion under the identification t = ℓ − r. This representation is

however not irreducible anymore, since it has a conformally invariant subspace made

up of the positive and negative helicities. These two subspaces are conjugate under

reflections

Uj,t −→
d=3

U+
j,t ⊕ U−j,t . (4.22)

The two “chiral” representations, U±ℓ,t, are the unitary irreducible representa-

tions relevant for 3-dimensional partially conserved tensors or depth j − t. These

representations happen to be discrete series, meaning their group element are square

integrable [51]. In a parity invariant theory, one will obtain both of these represen-

tations in pairs and the relevant inner-product will possess no improvement terms.

Fermionic representation : As we have seen, the fermions are plagued by oppo-

site mode having opposite signs. For the exceptional points at ∆ = d − 1 + j + k,

k ∈ N, there is no harmonic gap and this problem persist. Even worse, one finds

that modes on both sides alternate in signs. The only hope is for the previously

mentioned representations with ∆ = d−1+ j− r. There, because of the gap, we can
consistently flip the sign of the kernel for the positive and negative helicity modes

so that both give rise to positive inner product : G+
2+j−r,j and −G−2+j−r,j are both

positive-definite, and both give rise a different representation U±j,t, which are a conju-

gate under reflections. Their sum is a positive, conformally invariant inner-product

on the fermionic representation, in which only the improvement terms survive . It

is furthermore clear that such a representation breaks parity explicitly. This was
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evident already in the treatment of [59–61] which had found a positive inner-product

over the basis of mode functions which involved γ⋆.
22 These representations are the

exceptional partially-conserved higher-spinors with depth ⌊j − r⌋.

4.4 The Complex Plane And d = 2

We now investigate the case of d = 2. In what follows, h will be a generic complex

weight and not d/2 = 1. Famously, the spin-group is isomorphic to the Möbius group

Spin(3, 1) ≃ SL(2,C) [42, 43, 110, 111] . Owing to the decomposition SL(2,C) ∼
SL(2,R)×SL(2,R), we work with states and wavefunctions in complex coordinates,

with no holomorphicity assumptions. These are totally equivalent to complex states

and wavefunctions of 2-real variables under the identification

(x, y) → z = x+ iy . (4.23)

Induced representations are those which transform with weight (h, h) under the

SL(2,R)× SL(2,R) subgroup, which is manifest in the (z, z) coordinates [112],

L0

∣∣h, h; 0〉 = h
∣∣h, h; 0〉 , L0

∣∣h;h, 0〉 = h
∣∣h, h; 0〉 ,

L−
∣∣h, h〉 = 0 , L−

∣∣h, h; 0〉 = 0 ,
(4.24)

and the states at generic coordinate (z, z) is constructed through∣∣h, h; z〉 = ezL++zL+
∣∣h, h; 0〉 . (4.25)

Having specified the transformation laws, we can define the smeared states [111]. We

pick as a measure over the complex number the usual Lebesgue measure over R2∫
C
d2z =

i

2

∫
C
dz ∧ dz =

∫
R2

dRe(z) d Im(z) . (4.26)

This measure is invariant under z ↔ z, as is clear from writing it in the real

parametrisation. This complex-space realisation can be slightly cumbersome at

times, because one must be careful about how complex-conjugation act on the func-

tion versus the coordinates. For us, complex conjugation will always act on the

function, leaving the coordinates unchanged. Everything is now setup to define our

smeared states

|ψ⟩ =
∫
C
d2z ψ(z)

∣∣z;h, h〉 . (4.27)

By going back to the real coordinates, we have the identification h+h = ∆ and h−h =

m. Single-valuedness implies 2m ∈ N. Such a state or wavefunction transforms in

22From a d = 3 perspective, it is not very surprising that (exceptional) fermions break parity.

For example, the mass term for a free d = 3 fermion breaks parity as well.
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the (one-dimensional) representation [m] of the Spin(2) ≡ U(1) subgroup. Finally,

in the complex variables, the asymptotic condition on the wavefunctions becomes

lim
|z|→∞

ψh,h(z, z) ≈ zh−1zh−1 . (4.28)

These requirements define the elementary representation F2−∆,m appropriate to

Spin(3, 1). We equip this space with an inner product

⟨f1|f2⟩ =
∫
C2

d2x d2y f1(x)f2(y)Gh,h(x, y) , (4.29)

that is sesquilinear and hermetian. The kernel can be identified as the 2pt. function

of quasi-primaries fields in an Euclidean 2D CFT

Gh,h(x, y) =
i2mCh,h

(x− y)2h(x− y)2h
, (4.30)

Which under simultaneous complex conjugation and exchange x↔ y is left invariant.

This ensures that ⟨f1|f2⟩† = ⟨f2|f1⟩.
To check for unitarity, we must decompose this kernel over a distinguished basis.

We can again rewrite the inner product in Fourier space, using the complex-version

of the Fourier transform

f̂(p) =

∫
C
d2z ezp−zp f(z) , f(z) =

∫
C

d2p

π2
epz−pz f̂(p) ,

δ2(z) =

∫
C

d2p

π2
epz−pz ,

(
f̂(p)

)†
=

∫
C
d2z ezp−zp f †(z) = f̂ †(−p) .

(4.31)

These types of relations and transform are sometimes called Wigner-Weyl transform,

and are used in Quantum optics in the study of coherent states, see for example [113].

The inner product becomes

⟨f1|f2⟩ =
∫
C

d2p

π2

(
f̂1(p)

)†
f̂2(p) Ĝ1−h,1−h(p) . (4.32)

Having set up these conventions, we go forward with the Fourier transform,

Ĝ(p) = i2mCh,h

∫ ∞
0

dr

r2∆−1

∫ 2π

0

dφ e2i|p|rcos(φ−arg(p))−2imφ . (4.33)

The exponential can be rewritten as an infinite sum of Bessel functions,

Ĝh,h(p) = i2mCh,h

∞∑
n=−∞

(
−ie−i arg(p)

)n ∫ ∞
0

dr
Jn(2|p|r)
r2∆−1

∫ 2π

0

dϕ

(2π)2
ei(n−2m)ϕ

= p2h−1 p2h−1
Ch,h

2π

Γ (1 +m−∆)

Γ (m+∆)
.

(4.34)
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This kernel as quite a simple form, since we obtain two overall p2∆−d with ∆ ∼
h, h and d ∼ 1, as we would expect for a 1-dimensional Fourier transform of an

SL(2,R) 2pt. function. This kernel is normalisable for 0 < ∆ < 2, as it is expected

from the scalar analysis. To investigate the positivity, let us pick ⟨f |f⟩, which is real,

and expand the f̂(p) in Fourier modes over the argument of p

⟨f |f⟩ ∝
∑
n,k

∫ ∞
0

dr r2∆−1
∫ π

−π
dϕ ei(n−k−2m)ϕ fn(r)f

†
k(r)

=
∑
n

∫ ∞
0

dr r2∆−1Re
(
fn(r)f

†
n+2m(r)

)
.

(4.35)

This final sum is not over positive numbers, except if m = 0. This implies that

it is impossible to generate non-trivial spinning exceptional representations, since

those would always have negative norm sectors. This can be understood differently,

by noting that the subspace Uℓ,t is zero-dimensional, hence we are only left with

non-unitary invariant subspaces at exceptional points.

We have established that the unitary irreducible representations are the prin-

cipal series P1+iν,m, and the scalar complementary series C∆, for ∆ ∈ [0, 2]. We

can consistently restrict ourselves to this half of the segment since the other half is

equivalent under the shadow transform.

It is very reasonable at this point to wonder about the exceptional represen-

tations, which were so important in other dimensions. They turn out not to be

new representations in d = 2. First, consider representations with non-zero spin

m, they clearly suffer from the same non-positivity as the complementary spinning

representation, and so are ruled out. Consider now the scalar exceptional series, as

constructed in sec. 2.4. The previous logic does go through unchanged, and one

can build these representations, but they are redundant with the spinning principal

series.23 The reasoning is summarised in fig. 7, which we now spell out.

0 Vm P1,m 0
∂m+1

Figure 7: In 2D, the scalar exceptional representation is isomorphic

to the tip of the spinning principal series.

Consider the inner product for F−m,0, m ∈ N, which gives non-zero norm to the

23This is actually a feature which also appears in higher dimensions. One can replace an ex-

ceptional representation by a principal series one with more involved spin structure. Exceptional

representation are defined as equivalence classes, i.e. they have a gauge symmetry. From a field

perspective, the logic is to build an invariant field-strength that picks out a given equivalence class.

See comments in [51].
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states isomorphic to Vm. It is generated by the kernel

G1+m
2
,1+m

2
∝ 1

(x− y)1+m(x− y)1+m
⇝ (−∂x∂x)1+mδ2(x− y) (4.36)

which is effectively ultra-local because of Cauchy’s theorem.24 The inner product of

f1, f2 ∈ Vm ∈ F−m,0 is then

⟨f1|f2⟩ =
∫

d2z
(
∂m+1f1(z)

)†
∂m+1f2(z) =

(
∂m+1f1, ∂

m+1f2
)
, (4.37)

where ∂ and ∂ play the role of d and d in higher dimension as weight-shifting operators

taking us from one representation to another. Since they increase the weight h,

respectively h, by 1, we find that ∂m+1f ∈ P1,1+m. Since all of Vm is outside of the

kernel of G1+m
2
,1+m

2
by construction, this concludes showing the equivalence between

the representations.

One can re-understand this construction in light of the usual CFT formalism

for the 2D free boson. The free boson ϕ has ∆ = 0, which correspond to m = 0.

Its correlation functions are logarithmic, as predicted by the fact that it sits in an

exceptional representation and is invariant under constant shifts ϕ→ ϕ+ c. One can

however construct a primary operator ∂ϕ which is shift-invariant, and which sits in

the principal series representation with ∆ = 1. The output of this discussion is that

for euclidean conformal field theories, one has more unitary representations of this

type to consider, which are generalisations of this construction with more derivatives.

5 Discussion

We have shown how to construct a few families of generic unitary irreducible repre-

sentations of the de Sitter group, the symmetric traceless tensor and tensor-sinors.

This extends the current literature, giving a novel account of these representations,

which are most relevant to the study of fermionic operators in expanding space. The

two important outputs of this work are the following. First, our discussion of excep-

tional representations stresses the great departure from the usual rules of conformal

field theories as encountered in Lorentzian signature. Exceptional representations

have logarithmic correlators, which far from breaking de Sitter isometries, are man-

dated by them. Second, we have shown and explained the structure of fermionic

representations. We explained why spinor fields only exist in the principal series, ex-

cept in d = 3, which allows remarkably for the existence of partially-massless unitary

representations because. This boils down to the fact that the spinor representation

24This can be seen as an instance of the general non-conformality previously discussed, for which

the proper conformally invariant 2pt. function with scaling ∆ = d
2 + k is the ultra-local one like

here.
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possesses a pair of opposite helicities for the general case, and to a degeneracy of the

Clifford algebra in d = 3 for the exceptional one.

The question of the field theoretic realisation of these unitary representations

remains an open problem, specifically given the naive complex-valued Lagrangian

description of massless higher spinors [55, 59, 62]. This is part of a broader problem

regarding exceptional representations in de Sitter. The question for d = 1 discrete

series scalars has only recently been resolved [74]. There is moreover evidence for

an analogue of Weinberg-Witten theorem [114] for partially-massless tensors [18],

hinting at a rich structure to be explored in the future.

As already acknowledged in the introduction, there are plenty of future directions

to be pursued. Notably, given the construction of fermionic representations given, it

would be extremely useful to use it to extend our knowledge of multi-particle states in

de Sitter following [66, 78]. For example, it would be very interesting to see whether

the tensor-product of principal series spinor overlaps with bosonic exceptional rep-

resentations, and whether the tensor-product of bosons and fermions can overlap

with the exceptional spinors in dS4. These considerations are essential to the full

development of the bootstrap approach to cosmological correlators [20]. A related

issue is the study of the characters, [77, 115] and their link with quasinormal modes

[116–121]. This would help gain more understanding of fermionic contributions to

the path integral in de Sitter in generic dimensions, [121–124], which hopefully would

then build further into the investigation of the properties of the cosmological horizon

and the dynamic in the static-patch [34, 125–128].
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A Discrete Versus Exceptional And Parity of d

The unitary representation split between representations which are regular (principal

and complementary series), on which the shadow transform defines an isomorphism,

and the exceptional series. The exceptional representations have many interesting
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features : their inner product is logarithmic, naively breaking the isometries, their

Hilbert space has a quotient structure, they are non-trivially unitary, etc. The anal-

ysis of the unitary representations we performed is fully general, and include as a

sub-case the relevant discrete series representations.

The discrete series form a subset of the exceptional representations, for which

the group-element are square integrable over the group manifold [51, 115, 129]. More

concretely, for g ∈ G = SO(1, d+ 1), and ψ transforming in some representation R,

define g ◦ ψ = R(g)[ψ]. R(g) is a functional which is the realisation of g on the

representation R. Such a representation is said to be discrete if∫
G

|⟨ψ1, R(g)ψ2⟩|2dg =
|⟨ψ1, ψ1⟩ ⟨ψ2, ψ2⟩|2

dR
, dR > 0 . (A.1)

Where dg is the Haar measure over the group G. Peeling back the complexity, picking

an orthonormal basis of the representation we see this is simply the statement that

the group-average norm of any elements of the representation matrices are equal,

proportional to the identity, and finite. dR is called the formal dimension of the

representation. For most representations of non-compact Lie groups, this integral

diverge, and there is no such non-zero dR.

This normalisability, is highly dimensionally dependant, and totally unrelated

to the normalisability requirement for the element of the unitary representations.

This gives rise to a peculiar picture which can offer a different lighting on some

of the results of this work. We would like to stress however, that the fact that a

given exceptional representation is discrete does not seem to bring special properties

outside of concerns regarding group-averaging.

To understand the pattern of the discrete series, one must (re)-consider the size

of the group-factors. The general statement is due to Harish-Chandra [129], and is

that discrete series representations exist when the maximal compact subgroup has

the same rank as the group. Our representations are constructed in the the non-

compact picture from the factors (A,M), with M = SO(d). let us call HG the

Cartan subalgebra of a group G. Our induced representations are then constructed

of the full Cartan A⊕HM , which is non-compact and has dimension 1 + dim(HM).

The non-compactness of the Cartan translates into the generic non-normalisability

of the group elements over the group manifold.

Consider now the compact picture, where one uses the Iwasawa decomposition

KAN , with K = SO(d + 1). If d = 2k, there are the Lie-algebra identifications

M ≡ Dk and K ≡ Ck, and both have the same rank, and the non-compact Cartan

subalgebra has dimension k+1. However, if d = 2k+1, thenM ≡ CK andK ≡ Dk+1.

Then, the Cartan has dimension k + 1, and it can be picked to be the compact HK .
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This gives rise to integrable representations, which are the discrete series.

SO(2k) = Dk ,

SO(2k + 1) = Bk .

(A.2)

These group theoretical considerations explain the pattern, though it is far re-

moved from the more physical intertwining kernel perspective, which is what actually

builds up the representation. From the point of view of the Hilbert space construc-

tion, nothing drastic happens from one dimension to the next. Take for example

the spinning exceptional series Uℓ,t. For d = 3, these happen to break in two pieces,

which are discrete series. This is also the case for the scalar exceptional series Vn

for d = 1. None of the interesting physical properties of these representations is

due to the discreteness per se, since these features survive, unchanged, in arbitrary

dimensions.

Part of the features of fermionic representations can be understood through this

lense. The partially massless tensor-spinors, the would-be fermionic equivalents of

Uℓ,t, are non-unitary in all dimensions, except when they fall in the discrete series

and this only happens in d = 3. In d = 1, a similar process occurs for the fermionic

equivalents of Vn [52, 79]. The fact that these representations are not unitary for

other dimension is however much better understood as a feature of inner-product on

the representation, rather than some rather global, topological statement regarding

the representation of group elements.

B Reminder About Exact Sequences

In this work, we sometimes encounter exact sequences of a particular type, where

all spaces are vector spaces and all the maps are linear. These are all split exact

sequences. For convenience, we here collect some of the basic properties we use

throughout.

An exact sequence is a diagram where spaces are connected by series of map

with definite properties, as summarised in fig. 8.

A B C
f1 f2

Figure 8: Typical exact sequence, with Im(f1) = Ker(f2). In this

work, all maps will be linear, between vector spaces, making these

split sequences.

In complicated diagrams, the rules are that going two steps gives zero. If the

endpoints are empty sets, then the maps have further properties, illustrated in fig. 9
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0 A B
f1

(a) f1 is injective.

A B 0
f2

(b) f2 is surjective.

0 A B 0
f3

(c) f3 is a bijective map which defines an isomorphism A ≃ B.

Figure 9: Examples of properties encoded in exact sequences. We

usually omit the leftmost 0 for injective maps. In particular, for

A ⊂ B, we only write the inclusion map ι from A to B.
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[93] I.S. Gradshtĕın and D. Zwillinger, Table of integrals, series, and products, Elsevier,

Academic Press is an imprint of Elsevier, Amsterdam ; Boston, eighth edition ed.

(2015).

[94] S. Weinberg, Six-dimensional Methods for Four-dimensional Conformal Field

Theories, Physical Review D 82 (2010) 045031.

[95] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance

in momentum space, JHEP 03 (2014) 111 [1304.7760].

[96] A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT:

renormalisation, beta functions and anomalies, JHEP 03 (2016) 066 [1510.08442].

[97] A. Bzowski, P. McFadden and K. Skenderis, Renormalised CFT 3-point functions

of scalars, currents and stress tensors, JHEP 11 (2018) 159 [1805.12100].

[98] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Blocks,

JHEP 11 (2011) 154 [1109.6321].

[99] M.S. Costa and T. Hansen, AdS Weight Shifting Operators, JHEP 09 (2018) 040

[1805.01492].

[100] J. Bros, H. Epstein and U. Moschella, Scalar tachyons in the de Sitter universe,

Lett. Math. Phys. 93 (2010) 203 [1003.1396].

[101] H. Epstein and U. Moschella, de Sitter tachyons and related topics, Commun.

Math. Phys. 336 (2015) 381 [1403.3319].

[102] H. Isono, On conformal correlators and blocks with spinors in general dimensions,

Phys. Rev. D 96 (2017) 065011 [1706.02835].

[103] P. Van Lancker, F. Sommen and D. Constales, Models for irreducible

representations of Spin(m), Advances in Applied Clifford Algebras 11 (2001) 271.

[104] V. Dietrich, K. Habetha and G. Jank, eds., Clifford Algebras and Their Application

– 47 –

https://doi.org/10.1007/JHEP04(2014)146
https://doi.org/10.1007/JHEP04(2014)146
https://doi.org/10.1007/JHEP11(2011)071
https://doi.org/10.1063/1.523383
https://doi.org/10.1063/1.523383
https://doi.org/10.1016/S0550-3213(01)00013-X
https://doi.org/10.1007/JHEP02(2015)151
https://arxiv.org/abs/1411.7351
https://doi.org/10.1103/PhysRevD.82.045031
https://doi.org/10.1007/JHEP03(2014)111
https://arxiv.org/abs/1304.7760
https://doi.org/10.1007/JHEP03(2016)066
https://arxiv.org/abs/1510.08442
https://doi.org/10.1007/JHEP11(2018)159
https://arxiv.org/abs/1805.12100
https://doi.org/10.1007/JHEP11(2011)154
https://arxiv.org/abs/1109.6321
https://doi.org/10.1007/JHEP09(2018)040
https://arxiv.org/abs/1805.01492
https://doi.org/10.1007/s11005-010-0406-4
https://arxiv.org/abs/1003.1396
https://doi.org/10.1007/s00220-015-2308-x
https://doi.org/10.1007/s00220-015-2308-x
https://arxiv.org/abs/1403.3319
https://doi.org/10.1103/PhysRevD.96.065011
https://arxiv.org/abs/1706.02835
https://doi.org/10.1007/BF03042223


in Mathematical Physics: Aachen 1996, Springer Netherlands, Dordrecht (1998),

10.1007/978-94-011-5036-1.
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