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Abstract
With the recent success of generative models
in image and text, the evaluation of generative
models has gained a lot of attention. Whereas
most generative models are compared in terms
of scalar values such as Fréchet Inception Dis-
tance (FID) or Inception Score (IS), in the last
years (Sajjadi et al., 2018) proposed a definition
of precision-recall curve to characterize the close-
ness of two distributions. Since then, various
approaches to precision and recall have seen the
light (Kynkäänniemi et al., 2019; Naeem et al.,
2020; Park & Kim, 2023). They center their atten-
tion on the extreme values of precision and recall,
but apart from this fact, their ties are elusive. In
this paper, we unify most of these approaches un-
der the same umbrella, relying on the work of
(Simon et al., 2019). Doing so, we were able
not only to recover entire curves, but also to ex-
pose the sources of the accounted pitfalls of the
concerned metrics. We also provide consistency
results that go well beyond the ones presented in
the corresponding literature. Last, we study the
different behaviors of the curves obtained experi-
mentally.

1. Introduction
In this article, we consider metrics designed to evaluate
the adequacy of a generative model to the distribution it
is assumed to capture. In itself, this problem consists of
evaluating the closeness of the real distribution, hereafter
denoted by P and the generated one, denoted by Q. In an
early period, several scalar metrics were designed such as In-
ception Score (Salimans et al., 2016) and the iconic Fréchet
Inception Distance (Heusel et al., 2017). A rich literature
completes this line of research, pointing at limitations and
extensions or concurrent scalar metrics. Notwithstanding,
one pitfall is shared by any such scalar metric in that they
cannot account separately for two types of failures: namely
for the lack of realism (a.k.a fidelity), and the lack of vari-
ability (diversity). This assessment was first carried out by
(Sajjadi et al., 2018) where the authors developed a trade-off
curve known as the Precision Recall Curve, which charac-
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Figure 1: Right: the PR-curve is the frontier of the shaded
area composed of all admissible PR pairs (β, α). In essence,
these pairs represent the mass of P and Q that one can
recover by selecting a subset of the common support (gray
area on the left). More precisely, by selecting regions of high
likelihood of P , one trades precision (α) in favor of recall
(β). The extreme values β0(P,Q) and α∞(P,Q) embody
the respective masses of the entire common support.

terizes both types of flaws. Each point of the curve has two
components α (a.k.a precision) and β (a.k.a recall) which in
essence represent respectively the mass of P and Q that can
be extracted simultaneously by selecting a subset of their
common support (the formal definition will be clarified later
on). This intuitive description is illustrated in Fig. 1.

The authors of (Sajjadi et al., 2018) give a formal definition
of their curve for general distributions, but they were able
to provide a practical characterization (amenable to empir-
ical evaluation) only in the case of discrete distributions,
and relied on clustering to get an algorithmic evaluation
of the curve. Followup theoretical insights were provided
in (Simon et al., 2019) where an alternate characterization
was exposed which extend to general distributions. More
details will be given later on since it will be central in our
developments. This work was also complemented by a deep
theoretical analysis of the link between this curve and many
other statistical notions in (Siry et al., 2023). In particular,
the authors show that PR curves are in fact equivalent to
Divergence Frontiers, which were developed in (Djolonga
et al., 2020) in an attempt to generalize PR curves.
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Improving upon the improved Precision Recall metric for assessing generative models

In parallel to these theoretical works, a handful of practi-
cal metrics have been developed such as (Kynkäänniemi
et al., 2019; Naeem et al., 2020; Cheema & Urner, 2023;
Khayatkhoei & AbdAlmageed, 2023; Park & Kim, 2023).
All of them point to the shortcomings of earlier attempts
and propose an alternative to improve the concerned aspects.
A few remarks can be made already about most of these
approaches. Starting from (Kynkäänniemi et al., 2019), it
was argued that evaluating the extreme Precision and Recall
was enough in practice, and therefore, instead of extract-
ing a whole curve all of these variants only evaluates two
scalar metrics: namely the extreme precision (denoted by
α∞(P,Q)) and the extreme recall (β0(P,Q)). This choice
may appear justified, but in many cases, the theoretical val-
ues of both metrics reach their saturation level (i.e. 1) even
though the two distributions P and Q differ substantially.
As a result, the metrics do not provide much insight into the
closeness of P and Q.

Besides, the relation between the empirical estimates and the
associated theoretical metrics (i.e. at the population level)
is not always clear. In particular, oftentimes, experimental
behaviors praised by the authors are in fact contradictory
with the expected behavior of the theoretical metrics. A
typical example concerns experiments where P and Q are
both Gaussian distributions but where Q is shifted away
from P . In that case, the theoretical metrics remain constant
whatever the shift, while the empirical estimates appear
to decrease with the magnitude of the shift. The authors
embrace this desirable experimental observation without
recognizing that it arises from the compensatory interac-
tion of two underlying flaws: on the one hand, the two
theoretical metrics are lacking, and on the other hand, their
empirical estimators are not accurate. Instead, we advocate
for extracting entire PR curves since this gives a complete
picture of the disparity between the two distributions, and
for conducting a thorough analysis of the consistency of the
empirical estimator w.r.t to the population level counterparts.
Note that in the literature, consistency is at best studied in
the case P = Q.

In fact, we make the following contributions. First, we
show that most previous fidelity (resp. diversity) met-
rics can be interpreted as estimators of α∞(P,Q) (resp.
β0(P,Q)) thanks to the binary classification point of view
developed in (Simon et al., 2019). As a result, we show
that they can be extended into complete curves in quite nat-
ural ways. Besides, concurrent approaches differ merely
by their underlying hypothesis class (that is the family of
classifiers). For instance, the Improved Precision-Recall
(IPR) of (Kynkäänniemi et al., 2019) relates to kernel den-
sity estimators with adaptive bandwidth, while coverage
(Naeem et al., 2020) (and its precision counterpart obtained
by swapping the role of P and Q (Khayatkhoei & AbdAl-

mageed, 2023)) relates to knn classification1. Observed
under this lens, any idiosyncrasy of the emerging hypothesis
class (or its usage) stands out and can be readily amended.
In particular, one common pitfall transpires: namely the
absence of data split between training samples (used to fit
the classifier) and test samples (used to evaluate precision or
recall). This introduces a negative bias in the estimators as
well as correlations that make the analysis of the estimator
consistency unnecessarily challenging. On the contrary, by
using split, which is standard practice, the bias of the estima-
tors is trivially positive and consistency can be studied using
standard techniques. We actually provide such a result for
the curve associated with coverage (which goes beyond the
P = Q case considered originally in (Naeem et al., 2020)).
We conduct experiments on toy examples similar to those
promoted in previous works to re-assess the pros and cons
of the PR curve estimator variants (with and without fixes).
Our conclusion in this regard is that our extension to cover-
age has better results than the other extensions. While iPR is
sensitive to outliers and is less efficient than our other exten-
sions with the original setting, we provide amendments that
correct this behavior, namely setting the value of neighbors
k in kNN classifier to grow with the number of data points.
With our extended metrics, we also provide some illustra-
tions of the known cases where a generative model either
creates, drops, or re-weights modes. Precision and recall
curves allow to finely represent those three simultaneous
behaviors at once.

2. Recap on the relevant literature
Let Ω a measurable space, and denoting Mp(Ω) the set
of distributions over Ω, let P,Q ∈ Mp(Ω) (e.g. real and
generated distribution).

2.1. The gist on the original PR curve notion

First the PR set between P and Q is defined as the set
PRD(P,Q) of non negative couples (α, β) such that, ∃µ ∈
Mp(Ω) verifying both P ≥ βµ and Q ≥ αµ. In a nutshell,
the two conditions translate the fact that the ”probe” distri-
bution µ can simultaneously “extract” some mass β from
P and α from Q. Note that the PR set is included within
[0, 1]2 and it is a cone, meaning that ∀(α, β) ∈ PRD(P,Q)
and 0 ≤ γ ≤ 1 then (γα, γβ) ∈ PRD(P,Q). As a result,
this set is characterized by its (upper-right) Pareto frontier
denoted by ∂PRD(P,Q) which can be parameterized as
∂PRD(P,Q) = {(αλ, βλ), λ ∈ R̄+} with

αλ = (λP ∧Q)(ω)

βλ = αλ

λ

(1)

1On the contrary we will not pursue the same endeavor for (Park
& Kim, 2023) since their metric does not bear any reminiscence to
classical non-parametric classification literature.
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where ∧ is the minimum operator between two measures
(see (Simon et al., 2019) for details).

This whole curve captures both extreme precision and recall
values corresponding to α∞ and β0 which play a central
role in the later literature starting from (Kynkäänniemi et al.,
2019). In addition, it also describes how similarly the mass
is distributed within the common support of P and Q (see
(Siry et al., 2023) for details). Interestingly, this curve can
be also characterized in a dual way, based on a specific two-
sample classification problem (Simon et al., 2019). In short,
for a sample Z = UX + (1 − U)Y ∼ 1

2 (P + Q) (that is
U is coin flip, X ∼ P and Y ∼ Q), the task consists in
predicting whether U = 1 (i.e. Z = X ∼ P ). Then,

αλ(P,Q) = min
f∈F

{λ · fpr(f) + fnr(f)}

βλ(P,Q) = min
f∈F

{
fpr(f) +

fnr(f)

λ

} (2)

where the hypothesis class F is composed of all binary
classifiers on Ω, and fnr(f) (resp. fpr(f)) represents the
false negative (resp. positive) rate of the classifier f , that is
to say the probability that a sample Y ∼ Q was classified
as a sample from P (resp. vice versa). More precisely,

fpr(f) =

∫
1− fdP and fnr(f) =

∫
fdQ (3)

2.2. Re-assessing extreme precision-recall values

In the literature, the accepted expression of the extreme pre-
cision is α∞(P,Q) := limλ→∞ αλ(P,Q) = Q(supp(P )).
In fact, this identity is flimsy and requires to be amended
mainly because the support of a distribution is defined up to
null sets for that distribution. In the incriminated identity,
the issue stems from the fact that adding a P -null set can
change the Q-mass of the set, and therefore the right-hand
side is not well characterized. Let us clarify a few notions.

Definition 2.1 (support and co-support). Let A be a mea-
surable subset of Ω. We say that A is a

• support of P , denoted2 A = supp(P ), iff P (Ac) = 0.

• co-support of P and Q denoted A = cosupp(P,Q)
iff ( (P ∧ Q)(Ac) = 0 and ∀B ⊂ A, P (B) = 0 ⇔
Q(B) = 0)

As the reader may notice, the second notion is characterized
up to sets that are simultaneously P and Q null. More
precisely, we have the following result.

Proposition 2.2. Let P,Q two distributions. Then all co-
supports of P and Q have the same Q-mass and

α∞(P,Q) = Q(cosupp(P,Q))

2This is a slight abuse of notations.

Proof. (Sketch) First, if A,A′ are two co-supports. Then
Q(A) = Q(A ∩ A′) = Q(A′). Indeed, if Q(A) ≥ Q(A ∩
A′) then letting B = A \A′ ⊂ A and Q(B) > 0. Yet B ⊂
A′c so that P (B) ≤ P (A′c) = 0 yielding a contradiction.

Second, let us exhibit a co-support C that verifies Q(C) =
α∞. In (Simon et al., 2019), it is shown that Eq. 2 can
be restated as α∞ = minA s.t. P (Ac)=0 Q(A). Let A∗ one
of the minimizers. Without further care, A∗ should be
merely a particular support of P but could still not be a
co-support. We therefore need to filter out any part of the
space that charges P but not Q (which will make it a co-
support without affecting its Q-mass). To do so, we consider
C = A∗ \ ∩λ>0{λP > Q}. First, the monotone conver-
gence theorem implies that Q(C) = Q(A∗) = α∞.

It remains to show that C is indeed a co-support. Notice
that P ∧ Q(Cc) = (P ∧ Q)(A∗c⋃∩λ>0{λP > Q}) ≤
P (A∗c) + Q(∩λ>0{λP > Q}) = 0 (because of the con-
straint on A∗ for the first summand, and by the monotone
convergence theorem again for the other summand).

Besides let B ⊂ C ⊂ (∩λ>0{λP > Q})c = ∪λ>0{λP ≤
Q} so that Q(B) = 0 =⇒ P (B) = 0. Conversely,
if P (B) = 0 let us show that Q(B) = 0. To do so let
us reason by contradiction, by assuming that Q(B) > 0.
Then A = A∗ \ B verifies the constraint P (A) = 0 and
Q(A) = Q(A∗) − Q(B) (because B ⊂ C ⊂ A∗). Then
Q(A) < Q(A∗) would contradict the definition of A∗.

This first result will bring some understanding on a key
difference between the approach of IPR and the one of cov-
erage: the former being linked to the erroneous formula
Q(supp(P )) while the latter relates more to the correct one
(as will be seen in the next section). Yet, there are a few
caveats that apply even to the correct version of α∞. First,
it is important to realize that this metric is impacted by
the tails of P and Q even if they decrease very fast. An
illuminating example is the following P = N (0, 1) and
Q = N (µ, 1). Whatever the value of µ (be it extremely
large), it remains that P and Q have full co-support and
therefore α∞(P,Q) = 1. The first negative impact of this
observation is that α∞ and β0 provide a very weak char-
acterization of the relation between P and Q. The second
negative impact concerns the estimation of α∞: namely, the
tails of P and Q are elusive based on empirical samples,
making this extreme precision the most challenging to eval-
uate. Both of these observations have gone unnoticed by
the previous approaches starting from (Kynkäänniemi et al.,
2019) as they purposely focused on the extreme values. In
addition to those two arguments, we would like to highlight
that estimating the mass of a support is not a standard topic
in machine learning. As a result, taking a binary classifica-
tion standpoint as in (Simon et al., 2019) will bring much
more useful hindsight to design estimators correctly.
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2.3. Improved PR metric and follow-up works

In this section, we describe a few published metrics related
to extreme precision and recall.3 Henceforth, we assume
that one disposes of a finite set X of examples from P and
others in Y sampled from Q.

IPR Proposed in (Kynkäänniemi et al., 2019), the Im-
proved Precision Recall metric is given by

α̂iPR
∞ :=

1

#Y
∑
y∈Y

1∃x∈X ,y∈BX
kNN (x) (4)

where X and Y are the observed samples from P and Q
respectively, and BX

kNN (x) represents the kNN ball around
x computed within the set X . This value can be interpreted
as the empirical estimate of Q(supp(P )) where samples
from Y are used to estimate the Q probability, and those
from X are used to estimate the support of P as the union
of kNN balls.

Coverage First proposed as an estimate of β0 in (Naeem
et al., 2020), it was also adapted to α∞ in (Khayatkhoei &
AbdAlmageed, 2023).

α̂cov
∞ :=

1

#Y
∑
y∈Y

1∃x∈X ,x∈BY
kNN (y) (5)

Note that compared to Eq. (4), the condition y ∈ BX
kNN (x)

is merely replaced by x ∈ BY
kNN (y). The samples x are

naturally in regions of positive P -mass, so that this estimate
has an interpretation in terms of Q(cosupp(P,Q)) : sam-
ples from Y are again used to estimate empirical probability
w.r.t Q but they are also used to estimate the support of
Q (again as the union of kNN balls associated to Y) and
samples from X are obviously within the support of P .

EAS (Khayatkhoei & AbdAlmageed, 2023) propose to
combine both previous estimates by taking their minimum

α̂eas
∞ := min(α̂iPR

∞ , α̂cov
∞ ) (6)

PRC Proposed in (Cheema & Urner, 2023) Precision Re-
call Cover is an extension of coverage:

α̂PRC
∞ =

1

#Y
∑
y∈Y

1#{x∈X/x∈BY
kNN (y)}≥k′ (7)

where k′ ∈ N∗ is an additional hyper-parameter: setting
k′ = 1 makes this estimator identical to cov.

3We will focus on the estimate of α∞(P,Q) because swapping
the role of P and Q entails the extreme recall β0.

PPR Last, Probabilistic Precision Recall was proposed in
(Park & Kim, 2023):

α̂PPR
∞ :=

1

#Y
∑
y∈Y

(
1−

∏
x∈X

τ(∥y − x∥)

)
(8)

where τ(d) = max(0, 1 − d
R ) is a fixed bandwidth tent

kernel.

3. Re-interpretation and improvements
In this section, we start by re-interpreting the iPR and cov
estimators in terms of the dual theoretical expression in (2),
and then build upon this new insight to both extend the PR
estimates as entire trade-off curves, as well as propose new
variants. Note that, in order to give a more complete picture
of the state-of-the-art, we have presented three alternative
metrics, namely EAS, PRC and PPR. Note however,
that they all work in a similar fashion to IPR and coverage.
Therefore, for the sake of clarity, we will only deal with
either iPR or cov, for the remainder of the paper.

3.1. Classification interpretation

One may notice that every estimators mentioned in the pre-
vious section reads as

α̂M
∞ = f̂nr(fM

∞ )

where f̂nr is the empirical FNR, M is a reference to
the metric approach (e.g. iPR) and fM

∞ is a classi-
fier specific to the approach. In particular, one has
f iPR
∞ (z) = 1#{x∈X/y∈BkNN (x)}≥1 and f cov

∞ (z) =
1#{x∈X/x∈BkNN (y)}≥1.

In both cases, by design f̂pr(fM
∞ ) = 0 because the classifier

is equal to 1 on training samples from X . This is reminiscent
of the form of αλ in Eq. 2 when λ → ∞:

α∞ = min
f∈F s.t. fpr(f)=0

fnr(f)

In fact, one can analyze each approach M , as a mere empir-
ical version of that equation, under a restricted hypothesis
class, namely:

FM = {fM
γ /γ ∈ [0,+∞]}

Note that obviously, the hypothesis class cannot be unequiv-
ocally determined by fM

∞ . Yet, we shall see that natural
families emerge for both iPR and cov. Let us describe
them now.

IPR In that case, we set

f iPR
γ (z) = 1γ#{x∈X/z∈BX

kNN (x)}≥#{y∈Y/z∈BY
kNN (y)}

4
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Note that this classifier is a Kernel Density Estimator (KDE)
of the form

f iPR
γ (z) = 1 p̂(z)

q̂(z)
≥ 1

γ

where p̂(z) ∝
∑

x∈X 1BX
kNN (x)(z) and similarly for q̂(z).

It is therefore a KDE classifier with adaptive bandwidth.

Coverage Here we can set

f cov
γ (z) = 1γ#{x∈X/x∈BY

kNN (z)}≥#{y∈Y/y∈BX
kNN (z)}

This resembles to a classical kNN classifier up to a minor
difference: it is more standard to use the same kNN structure
for both classes, that is BX∪Y

kNN rather than using a separate
one per class. Interestingly, one can verify that the condition
∃x ∈ X s.t. x ∈ BY

kNN (y) is in fact equivalent4 to ∃x ∈
X s.t. x ∈ BX∪Y

kNN (y). Therefore, we may as well choose

fknn
γ (z) = 1γ#{x∈X/x∈BX∪Y

kNN (z)}≥#{y∈Y/y∈BX∪Y
kNN (z)}

to build the hypothesis class of cov.

Note on symmetry For symmetry reasons between pre-
cision and recall, we use the previous definitions of fM

γ

for γ ≥ 1 and favor a strict inequality over a loose one for
γ < 1.

3.2. Extension and improvements

At this stage, it is quite easy to extend the extreme precision
and recall estimators into entire curves. It suffices to use
Empirical Risk Minimizer approach over the hypothesis
class FM for the risk arising in Eq. 2. That gives us:

α̂M
λ = min

γ
λf̂pr(fM

γ ) + f̂nr(fM
γ ) (9)

Splitting The first improvement that calls upon us is to
merely split the samples in two: one part used for fitting
the classifier X T ∪ YT and one part used for evaluation
X V ∪ YV . In that case, the law of large numbers applies
which is crucial for the consistency of α̂M

λ .

Note however that because of splitting, it is possible that
none of the classifier fM

γ ensures a null FPR. As a result, it is
possible that α̂M

λ > 1. As a remedy, we always complement
FM with the trivial classifiers f ≡ 1 and f ≡ 0 that predict
either P or Q uniformly.

Hyper-parameter k In addition to the introduction of
splitting, we consider modifying either the hyper-parameter

4One direction is trivial since BX∪Y
kNN (y) ⊂ BY

kNN (y), the
other requires a bit more reasoning: assuming ∃x ∈ BY

kNN (y)
one may consider in particular the x closest to y and conclude that
it belongs to BX∪Y

kNN (y).

k for each approach. Concerning k, in the kNN literature
(see e.g. (Devroye et al., 2013)), it is known that as the
number of samples n gets bigger, k can also increase but
at smaller rate (this will be a key element to ensure the
consistency of the kNN estimator in Thm 3.1). We therefore
consider for each approach, setting k =

√
n in place of

k = 4 similarly to previous works.

Bandwidth Besides, considering iPR, we have seen that
it corresponds to an adaptive bandwidth Kernel Density Es-
timator (with a constant kernel). This design choice results
in having bigger bandwidth around samples located at low
density regions. It is responsible for the high sensibility to
outliers that was pointed out in several followup works. We
therefore consider as a simple alternative, a fixed bandwidth
KDE that we will refer to as a Parzen classifier. In that case,

fparzen
γ (z) = 1 p̂(z)

q̂(z)
≥ 1

γ

with p̂(z) ∝
∑

x∈X 1∥x−z∥≤ρX ) and similarly for q̂. In
comparison to iPR the bandwidth ρX is computed as the
average knn radius5 over the dataset X (and similarly for
ρY ) instead of using a specific bandwidth per sample.

3.3. Consistency analysis

The iPR approach is known to be biased in general, since
when P = Q, it does lead to an estimate of α∞ that can be
far from the true value of 1. Indeed in such case, even when
considering n = #X = #Y → ∞, limn→∞ E[α̂iPR

∞ ] can
be much smaller than 1 (see the Gaussian case in (Naeem
et al., 2020)). On the contrary, Naeem et al. (2020) shows
that when P = Q, coverage is consistent. By symmetry so
is α̂cov

∞ .

We extend the above-mentioned consistency result to the
entire PR curve associated to our kNN approach and in the
general case of two distributions P and Q.

Theorem 3.1. Let λ ∈ R̄+, k ≥ 3 and n = #X = #Y .
Letting k → ∞ and k

n → 0, and denoting

Γ∗
λ = argmin

γ
lim

k→∞,
k
n→0

E[λfpr(fkNN
λ ) + fnr(fkNN

λ )]

Then

1. λ ∈ Γ∗
λ

2. E[α̂kNN
λ ] → αλ assuming that data split was used.

Proof (sketch). The proof is provided in Appendix A and
is similar to the standard Bayes consistency results of the

5This choice for the bandwidth is inspired by (Park & Kim,
2023) although the Parzen variant differs from their PPR estima-
tor which does not resemble any standard classifier.
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Figure 2: Comparing two shifted Gaussians. The Ground-Truth PR curve ( - -GT) is compared to empirical estimates
from various NN-classifiers: –IPR, –KNN, –PARZEN, and –COVERAGE. Here P ∼ N (0, Id) and Q ∼ N (µ1d, Id) with
d = 64 dimensions and µ = 1√

d
≈ .12 or µ = 3√

d
≈ .38. n = 10K points are sampled using k = 4 or k =

√
n for NN

comparison, with or without dataset validation/train split. (Curves are averaged over 10 random samples, see Appendix).

kNN classifier (see e.g. (Devroye et al., 2013)[chap 5& 6]).
It is merely adapted to the fact that the risk is class weighted
i.e. Rλ(f) = λfpr(f) + fnr(f) instead of the classical one
R(f) = 1

2 (fpr(f) + fnr(f)).

4. Experiments
In this section, we reissue a few experiments on toy datasets
that were proposed in the literature. In all settings, for the
different estimators under scrutiny, we use n = 10K sam-
ples. In each experiment, the distributions P and Q are
known analytically and the ground-truth PR curve can be
estimated easily because the Bayes classifier is the likeli-
hood ratio classifier (Simon et al., 2019) f∗

λ(z) = 1 dQ
dP (z)≤λ.

To obtain high accuracy ground-truth curves we resort to a
large sample (nGT = 100K) and estimate

α̂GT
λ = λf̂pr(f∗

λ) + f̂nr(f∗
λ)

Based on this PR curve, we can either evaluate the quality of
an estimator visually, or use a scalar indicator to summarize
the quality of the estimator. In particular, we propose to
use the Jaccard index (a.k.a IoU) between the ground-truth
curve and the estimator under review. This index is always
smaller than 1 and the larger the better.

4.1. Gaussian shifts

Inspired by recent experiments made in the literature, we
consider the case where P and Q are two Gaussian dis-
tributions with an increasing shift. In order to match the
published experiments, we generate 10K data points from
each Gaussian distribution, in R64. Even though the num-
ber of sampled points is quite high, we decide to run the
experiments 100 times to have robust interpretations of the
metrics. What interests us here is the behavior of the of

the estimated curves in comparison to the ground-truth. In
particular, unlike (Kynkäänniemi et al., 2019; Naeem et al.,
2020; Park & Kim, 2023) we reaffirm that the extreme val-
ues of the curves should be equal to 1 as the supports of the
two Gaussians are always the same.

We run the experiments on 5 different methods, using 4 dif-
ferent shifts for the fake Gaussian. We present the resulting
curves for only two shifts in Fig. 2 and condense the com-
plete experiment results in Appendix in Table 1. In these
settings, the standard deviation for each experiment is lower
than 10−2. Whereas the maximum values for the PR curves
are always at 1, the curves themselves show the lack of in-
formation to compare the two distributions. While methods
from the literature, the number of nearest neighbors k used
in the manifold estimations is set to 3 ((Kynkäänniemi et al.,
2019)) and to 5 ((Naeem et al., 2020)), we first set k = 4
then, motivated by 3.1, we set k =

√
n. We observe that

the yielded results are more convincing with k =
√
n, and

that the difference between the split and no split scenarios is
marginal. As we have theoretical guarantees in the case with
split, we decided to keep the combination split and k =

√
n

for the following experiments (complementary results are
presented in the appendix).

4.2. Gaussian mixture models

In (Luzi et al., 2023) the authors advocate that Inception
features are better approximated by Gaussian Mixtures than
pure Gaussians. Besides this scenario allows to illustrate
the phenomenon of mode dropping (mode present in P but
not in Q), mode creation (mode present in Q but not in
P ), and mode reweighing (shared modes between P and
Q weighted differently) as illustrated in Fig. 3a. In our toy
experiment, we sample points from two GMM in dimension
d = 64, n = 1K samples, splitting is applied, and k =

√
n

6
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(a) Left: Gaussian Mixture Models P and Q showing mode dropping (only in P ), mode
inventing (only Q), and mode re-weighting (in both but distributed differently). Right: Ex-
pected coarse shape of the PR-curve (solid black). Note that due to the infinite tails of the
Gaussian modes, the vertical and horizontal transitions are theoretically smooth and reach 1
(dashed curve).
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(b) Comparing two Gaussian mix-
tures. 3a. The Ground-Truth PR curve
( - -GT) is compared to empirical esti-
mates from various NN-classifiers: –IPR,
–KNN, –PARZEN, and –COVERAGE.

(see Fig. 3b). The two GMM P and Q are set as follows:
P ∼

∑
ℓ pℓ N (µℓ1d, Id) and Q ∼

∑
ℓ qℓ N (µk1d, Id) with

d = 64 dimensions and µℓ ∈ {0,−5, 3, 5}. However, P and
Q have different weights (pℓ and qℓ) pℓ ∈ {0.3, 0.2, 0.5, 0}
qℓ ∈ {0, 0.5, 0.2, 0.3}. kNN, parzen and coverage perform
very well with respect to the ground-truth, while IPR over-
estimates the PR-curve and especially fails at catching the
re-weighting transition.

4.3. Outliers

One of the main contributions of (Naeem et al., 2020) over
(Kynkäänniemi et al., 2019) was its robustness to outliers.
We here investigate how outliers affect our PRD curves. To
do so, we simply once again define the P and Q distribu-
tions as two shifted Gaussians. Similarly to experiments
in literature, we then add a single outlier xoutlier to the real
distribution P such that xoutlier = 4. All the cases are consid-
ered in appendix, yet the observations are simple: as already
reported in the aforementioned works, we observe that iPR
classifier is indeed affected by such a perturbation for low
k-NN comparison (k = 4) and without split. This sensitivity
is especially strong near the extreme values. We also notice
that this effect is easily mitigated when using a larger set
k =

√
n. On the other hand, other PRD curves based on

more robust classifiers (Parzen, Coverage and kNN) are not
affected by the outlier as expected.

4.4. Impact of the ambient dimension

It is customary in the evaluation of generative models to first
feed both target and generated data through a deep classifier
feature space. In the protocol for computing FID, the authors
use InceptionV3 where the feature space has a dimension
of 2048, and use 10K samples for both real and generated
data. We now test our metrics in the same Gaussian shifting
setting, with samples in R2048. The experiment result is
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Figure 4: PR curves in high dimension Same experiment
as in Fig. 2 (50% split, n = 10K, k =

√
n) with d = 2048

dimensions and µ ∈ { 1√
d
, 2√

d
}.

shown in Fig. 4. While we used k =
√
n, the results show

a much larger overestimation than in the R64 setting. This
illustrates the well-known curse of dimensionality.

4.5. Variability study

Additional experiments in appendix (Fig. 8) scrutinize the
impact of the size sample n on the variability of the eval-
uation curves. They empirically illustrate the consistency
of the proposed method based on robust classifiers when in-
creasing (Thm 3.1). Empirically, using 10K points reduces
sufficiently the variability to make comparison between
curves reliable, which is in line with the standard usage for
generative model evaluation (Heusel et al., 2017; Sajjadi
et al., 2018).
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5. Discussion and perspectives
5.1. Distilling the curve with two scalar metrics

Practitioners may enjoy summarizing the PR curve with
two metrics reflecting respectively precision and recall. In
other words, one would be willing to trade exhaustiveness
for conciseness. This may be particularly useful to ease
comparison between models. In that prospect, we have seen
that extreme precision and recall are yet far from ideal. We
therefore discuss two alternatives and comment on them in a
scenario combining mode dropping/invention/re-weighting
(e.g. Fig. 3a).

F-scores Proposed by (Sajjadi et al., 2018), the Fb score
is defined as:

Fb = max
λ∈[0,+∞]

1 + b2

b2

αλ
+ 1

βλ

.

When b → ∞, Fb ↗ α∞ and respectively when b → 0
Fb ↘ β0, so that (Sajjadi et al., 2018) proposed to consider
Fb and F1/b with a large value of b (namely b = 8). Al-
though this aspect was not discussed in their original work,
one can understand that these metrics will not be sensitive
to rapidly decaying infinite tails. However, observe that the
score Fb is a weighted harmonic mean that is computed from
a single (optimal) point of the PR curve, which can vary
dramatically without affecting the metric. As a consequence,
when b is large, Fb and F1/b will mainly capture pure mode
dropping/invention and remain superficially indicative of
mode re-weighting.

PR median As another alternative, one may consider
(αλ̄, βλ̄) where λ̄ is set so that the line α = λ̄β cuts the
region under the PR curve into two sub-parts of equal areas.
In the case of pure mode dropping and mode inventions,
αλ̄ = α∞ and βλ̄ = β0. On the contrary, when infinite
tails create quick transitions to α∞ = 1 like in Fig. 3a,
then (alike Fb) αλ̄ < 1 will be but mildly impacted by
rapid-decay tails. As opposed to Fb, the value of αλ̄ will be
largely affected by the presence of a transition due to mode
re-weighting (violet transition in Fig. 3a). As a result, these
metrics may be preferred when one would like to account for
mode re-weighting in addition to mode dropping/invention.

An empirical assessment on the pros and cons of both al-
ternatives would be a valuable endeavor. In particular, one
could study the behavior of the said metrics with respect
to hyperparameters of state-of-the-art generative models.
One can for instance consider, the truncation procedure for
GANs, or the guidance scale factor for diffusion models.
This empirical study is left as future work.

5.2. More in-depth convergence analysis

In Theorem 3.1, we have demonstrated that the kNN esti-
mator is universally consistent. The proof is adapted from
standard Bayes consistency results on kNN classifiers. Char-
acterizing the quality of other estimators based on standard
classification schemes (e.g. Kernel Discriminant Analysis)
could also be considered. Besides, characterizing, rates of
convergence under regularity assumptions for P and Q is
also an appealing avenue. This is left as future work, but
we refer the reader to (Devroye et al., 2013) and to (Györfi
& Weiss, 2021) for a recent overviews of useful results.
In a more practical perspective, one may wish to choose
optimally the hyper-parameters of the different estimators.
In our work we have considered the following heuristics
k =

√
n for the kNN estimator and a fixed bandwidth ρX

computed based on the average kNN radius for the Parzen
classifier. A large literature does exist around those topics,
see for example (Ghosh & Chaudhuri, 2004) and (Döring
et al., 2018) for kNN and (Ghosh, 2006) for optimal band-
width. It is also possible to resort to cross-validation for
setting these hyper-parameters.

6. Conclusion
In this work, we have given a new perspective on recent
metrics used to evaluate extreme precision and recall of gen-
erative models. Doing so we have obtained two by-products.
First, we have presented a systematic way to extend the
extreme values to obtain complete PR curves. Second, we
built upon standard literature in non-parametric classifica-
tion to improve the original approaches. In particular, we
have provided a consistency result for the kNN PR-curve
variant as well as several practical improvements over the
original iPR and coverage metrics. We have also studied the
empirical behavior of the obtained variants in the light of
several toy datasets experiments.

Our main messages are the following. First, computing non
extreme PR values is crucial because of essential issues in
the extreme values which are related to their sensitivity to
the distribution tails. Then, the curves themselves allow to
describe more finely how the masses of the two distributions
under comparison differ on their modes. This is useful in
practice in order to tackle the case where a model generates
data from the target support but with re-weighted masses.
On the experimental side, it emerges that coverage is indeed
better suited than iPR. Both approaches can be improved
by adapting the number of neighbors k with respect to the
number of available samples. If employing a data split is
theoretically appealing, its empirical impact is less marked
since the negative bias resulting from the lack of split can
sometimes advantageously compensate the positive bias
caused by the restricted hypothesis class. However, this
benefit is not consistent over all experiments.
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A. Proof of Theorem 3.1: consistency
Proof. To establish the proof, we need only show that
Rλ(f

kNN
λ ) → αλ as k → ∞ and k

n → 0. This will ef-
fectively imply both items in the theorem since αλ is the
associated Bayes risk (Simon et al., 2019). To establish
this limit, the first step is to show that for fixed k then
limn→∞ Rλ(f

kNN
γ ) is equal to

2λE[η(Z)P{Binom(k, η(Z)) < k
γ+1 |Z}]+

2E[(1− η(Z))P{Binom(k, η(Z)) > k
γ+1 |Z}]

(10)

where Z = UX + (1 − U)Y with X ∼ P , Y ∼ Q and
U is a fair coin random variable so that Z ∼ P+Q

2 and
η(Z) := P(U = 1|Z) = dP

d(P+Q) (Z) (respectively 1 −
η(Z) := P(U = 0|Z) = dQ

d(P+Q) (Z)). The demonstration
of Eq. (10) follows the same argument as in (Devroye et al.,
2013)[Thm. 5.2] (up to the occurrence of λ and γ weights)
and is not repeated here for the sake of conciseness.

Now, taking γ = λ we want to show that the previous
expression tends to αλ which for the recall equals (λP ∧
Q)(Ω) or expressed otherwise as 2E[λη(Z) ∧ (1− η(Z))].

Eq. (10) can be reformulated as limn→∞ Rλ(f
kNN
λ ) =

2E[µλ(η(Z))] with

µλ(p) =λpP{Binom(k, p) < k
λ+1}

+ (1− p)P{Binom(k, p > k
λ+1}

(11)

So that it suffices to show that ∀p ∈ [0, 1], µλ(p) → λp ∧
(1− p).

Let’s proceed by cases, starting by considering λp < (1−p)
which is also equivalent to p < 1

λ+1 . In that case we
need to show that 2µλ(p) → λp. Denoting qλ(p) =
P{Binom(k, p) > k

λ+1}, we have

µλ(p) =λp(1− qλ(p)) + (1− p)qλ(p)

=λp+ qλ(p)(1− (λ+ 1)p)
(12)

Using Hoeffding’s inequality (i.e. ∀t >
0,P{Binom(k, p) − kp > t} ≤ exp(−2kt2) and
obtain

qλ(p) =P{Binom(k, p)− kp > k( 1
λ+1 − p)}

≤ exp
(
−2k( 1

λ+1 − p)2
) (13)

Note that the assumption p < 1
λ+1 is crucial to apply Ho-

effding’s inequality (because t needs to be positive). The
right hand side converges to 0 as k → ∞ because by as-
sumption p ̸= 1

λ+1 .

The case where λp > (1− p) (or p > 1
λ+1 ) is similar and is

left to the reader. In that case, we obtain µλ(p) → (1− p).
There remains the case of equality, that is λp = 1−p = 1

λ+1 .
In that case, even without taking the limit, one can check
that µλ(p) = λp, which concludes the proof.

B. Additional experimental results
Computation of PR curves The computation PR curves
involves the computation of false positive rate (fpr) and false
negative rate (fnr) for various classifiers fM

γ parameterized
by γ. In experiments, we consider random samples X and
Y from distributions P and Q with n = |X | = |Y|.

f̂nr(fγ) =
1

n

∑
y∈Y

fγ(y)

and
f̂pr(fγ) =

1

n

∑
x∈X

1− fγ(x)

Precision α̂λ, and recall β̂λ = 1
λαλ are computed using

Eq. (9), where parameters λ = atan(θ) and γ are both
uniformly sampled with θ ∈ (0, π

2 ).
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Figure 5: Illustration of the impact of splitting for P = Q.
The setting is the same as Fig. 2 for a translation of µ = 0
between two Gaussian in dimension d = 64 (curves are aver-
aged over 3 random samples). The Ground-Truth PR curve
( - -GT) is compared to empirical estimates from various
NN-classifiers: –IPR, –KNN, –PARZEN, and –COVERAGE.
Top reports results without splitting : as reported in the lit-
erature, estimated extremal precision and recall values are
not equal to 1, contrary to the ground-truth. Bottom curves,
obtained with a 50% splits, are very close to the ideal curve.

Splitting All experiments involving data splitting into train-
ing and validation sets (X T&YT and X V &YV ) are 50%:
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curves computed in this setting therefore rely on n
2 data

points.

Figure 5 provides a visual illustration of the practical impact
of splitting the dataset into separate training and validation
sets to assess precision-recall curves. We consider same
experimental setting as in section 4.1 and Figure 2 with
µ = 0, in such a way that P = Q. In this specific case, the
precision is equal to 1 for all recall.

Gaussians shifts Table. 1 complements section 4.1 and
Figure 2 by comparing various estimated PR curves with
respect to the ground-truth, using average IoU scores.

shift µ IPR KNN PARZEN COVERAGE

w
ith

50
%

sp
lit

k
=

4

0.12 0.69 0.71 0.72 0.73
0.21 0.42 0.49 0.49 0.55
0.29 0.24 0.38 0.34 0.48
0.38 0.13 0.33 0.24 0.48

k
=

√
n 0.12 0.81 0.87 0.84 0.92

0.21 0.69 0.84 0.78 0.90
0.29 0.65 0.84 0.75 0.90
0.38 0.63 0.84 0.75 0.93

w
ith

ou
ts

pl
it

k
=

4

0.12 0.43 0.7 0.62 0.76
0.21 0.55 0.81 0.68 0.84
0.29 0.62 0.79 0.68 0.77
0.38 0.55 0.61 0.62 0.63

k
=

√
n 0.12 0.91 0.93 0.94 0.96

0.21 0.88 0.93 0.92 0.97
0.29 0.84 0.92 0.90 0.95
0.38 0.83 0.91 0.90 0.96

Table 1: Mean IoU scores for shifting Gaussians. Standard
deviations are < 10−2 with n = 10K.

Gaussian Mixture comparison Fig. 6 complements section
4.2 and Figure 3b with additional curves for different setting
(w/ and w/o splitting, k = 4 or k = 100).

Outlier Fig. 7 complements section 4.3. It shows the impact
of having a single outlier (a data-point out of n = 10K) in
one of the samples. Here only the sample X from P is
polluted, thus mainly affecting precision.

Variability Fig. 8 complements Section 4.5 about variability.
Average curves are obtained by computing the empirical
mean of N = 100 PR curves obtained different random
n-samples (with n = 104), i.e.

(ᾱ(λ), β̄(λ)) =
1

n

n∑
i=1

(αi(λ), βi(λ))

Deviation from average curves are materialized with two
curves

(αδ(λ), βδ(λ)) = (ᾱ(λ), β̄(λ)) + δ(λ)

for δ = ±σ with empirical estimator

σ2(λ) =
1

n

n∑
i=1

(
(αi(λ)− ᾱ(λ))2, (βi(λ)− β̄(λ))2

)
.
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Figure 6: Comparing two Gaussian mixtures. This figure complements Fig. 3b. The Ground-Truth PR curve ( - -GT) is
compared to empirical estimates from various NN-classifiers: –IPR, –KNN, –PARZEN, and –COVERAGE. Here P and
Q are two GMMs sharing the same modes (centered at µk): P ∼

∑
ℓ pℓN (µℓ1d, Id) and Q ∼∼

∑
ℓ qℓN (µk1d, Id) with

d = 64 dimensions and µℓ ∈ {0,−5, 3, 5}. However, P and Q have different weights (pℓ and qℓ) pℓ ∈ {0.3, 0.2, 0.5, 0}
qℓ ∈ {0, 0.5, 0.2, 0.3}. n = 1k points are sampled and split in half between validation and train, and k =

√
n.
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Figure 7: Measuring the impact of an outlier. On the
left, the setting is the same as Fig. 2 for a translation of
µ = 3/

√
d between two Gaussian in dimension d = 64

(without splitting nor averaging). On the right, a single
outlier (x = 4) is added to the sample of P . As reported
in the literature, this affects the iPR classifier, yet the PR
curves are barely affected by such a perturbation.
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Figure 8: Influence of sample size n. The setting is the
same as Fig. 2 for a translation of µ = .21 between two
Gaussian in dimension d = 64 (with splitting and k =√
n). Solid (respectively transparent) curves correspond to

the empirical average (resp. deviations) of 100 PR curves
computed from random samples. (see the text for more
details).
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