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ABSTRACT

Following the recent development of quantum machine learning techniques, the literature has re-
ported several quantum machine learning algorithms for disease detection. This study explores the
application of a hybrid quantum-classical algorithm for classifying region-of-interest time-series
data obtained from resting-state functional magnetic resonance imaging in patients with early-stage
cognitive impairment based on the importance of cognitive decline for dementia or aging. Classical
one-dimensional convolutional layers are used together with quantum convolutional neural networks
in our hybrid algorithm. In the classical simulation, the proposed hybrid algorithms showed higher
balanced accuracies than classical convolutional neural networks under the similar training conditions.
Moreover, a total of nine brain regions (left precentral gyrus, right superior temporal gyrus, left
rolandic operculum, right rolandic operculum, left parahippocampus, right hippocampus, left medial
frontal gyrus, right cerebellum crus, and cerebellar vermis) among 116 brain regions were found
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to be relatively effective brain regions for the classification based on the model performances. The
associations of the selected nine regions with cognitive decline, as found in previous studies, were
additionally validated through seed-based functional connectivity analysis. We confirmed both the im-
provement of model performance with the quantum convolutional neural network and neuroscientific
validities of brain regions from our hybrid quantum-classical model.

Keywords Resting-state functional magnetic resonance imaging · Early mild cognitive impairment · Quantum machine
learning

1 Introduction

Diagnosis of early-stage cognitive impairment is critical for the tracking of patient-candidate groups that can progress
to severe dementia. Previous studies have proposed methodologies for cognitive impairment diagnosis [1, 2, 3]. Related
studies and medical practices have mainly used questionnaire-based methods to detect cognitive decline [4, 5]. In
Startin et al., the authors suggested modified questionnaires for the scaling of Down syndrome (DS) [6]. Although
several methods using questionnaires have been proposed in previous studies, some authors have pointed out their
shortcomings. The response bias of self-report questionnaires in diagnosing Alzheimer’s disease (AD) was shown by
Hill et al. [7]. In their experimental results based on self-reported assessments, the authors found incorrect responses
as well as inconsistencies therein. In addition, Brooks et al. investigated the potential for the misclassification of
mild cognitive impairment (MCI) based on the Wechsler memory scale test and a questionnaire [8]. Furthermore, to
minimize the misdiagnosis of MCI, Nikolai et al. used computational tools to compare traditional criteria for MCI [9].

To address several limitations in methods utilizing the self-report questionnaire, other modalities, including neu-
roimaging, have been used in combination. Among various applicable modalities, a brain resting-state functional MRI
(rs-fMRI) that collected to neural dynamics without any cognitive tasks have been applied for cognitive impairment
detection. Wang et al. validated the utility of the brain rs-fMRI for detecting vascular cognitive impairment [10]. In
addition, the authors compared fMRI responses from MCI-patient groups with those from healthy control groups in a
picture-word pair paradigm to find differences in brain activation between the two groups [11]. Zhang et al. attempted
to distinguish between early-MCI (EMCI) and late MCI groups using a functional brain network from the rs-fMRI [12].
They found clear differences in the frequency bands from selected brain regions based on the MCI stage. Alterations
of the default mode network and the quantification of these network changes were used as a biomarker for cognitive
decline in Parkinson’s disease (PD) in their meta-analysis. Sun et al. reviewed several previous studies on the analysis
of single-channel time-series using electroencephalogram (EEG), magnetoencephalogram (MEG), and fMRI for AD
patients [13]. The authors suggested that a high spatial resolution of fMRI could provide more in-depth information for
AD brain dysfunction than both EEG and MEG.

For multivariable analysis of the collected brain fMRI data, various data-analysis methods, including statistical
modeling or machine learning (ML) algorithms, have been widely utilized. In particular, deep learning (DL) algorithms
that show remarkable performance with many parameters have been widely used for classification or prediction
tasks [14, 15]. Recent studies have also mainly utilized DL algorithms to classify brain fMRI data. Sarraf et al.
introduced convolutional neural network (CNN) based DL models to detect MCI and AD groups [16]. The authors used
preprocessed two-dimensional images from structural and functional MRI to train their model. Furthermore, Abdulaziz
and Khan proposed a DL model-based pipeline for the multi-label classification of rs-fMRI data [17]. In their study, a
total of six labels of brain functional connectivities from each stage of AD patient (i.e., normal, significant memory
concern, EMCI, MCI, late MCI, and AD) were classified. Moreover, high-order functional connectivity, which is
calculated from the post-processing of the brain functional connectivity, is applied to classify the EMCI stage [18]. The
authors demonstrated the effectiveness of post-processed functional connectivity such as high-order and time-varying
connectivity in EMCI diagnosis.

Studies have reported several drawbacks of the DL algorithm. For example, Thompson et al. discussed possible
constraints related to the computational burden of DL models [19]. They pointed out that the scale of model architecture
such as the number of parameters could negatively impact a range of applications. In response to these challenges,
recently, quantum machine learning (QML) has emerged as a novel approach for data analysis, motivated by the compu-
tational advantages of quantum computing. It aims to overcome the limitations inherent in its classical counterparts
[20]. In particular, QML algorithms have made significant strides in classification tasks, showcasing their potential
to outperform classical methods in terms of runtime efficiency, trainability, model capacity, and prediction accuracy
[21, 22, 23, 24]. QML algorithms are also widely utilized for disease detection. Maheshwari et al. applied optimized
quantum support vector machine (OQSVM) and hybrid quantum multi-layer perceptron (HQMLP) to electronic health-
care records (EHR), which is one of the well-known structured datasets in the medical domain for ischemic heart-disease
classification [25]. They achieved higher classification accuracy compared with that achieved using classical SVM
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and MLP. Furthermore, the authors focused on the advantage of QML algorithms in terms of the efficiency of the
computation time. In addition, Garg et al. used quantum support vector machine (QSVM) models to recognize emotions
from EEG signals [26]. Several features including power spectral density (PSD) features were calculated from EEG
signals. The authors found that QSVM models trained using EEG features showed improved classification performance
compared with conventional SVM models. Furthermore, Felefly et al. proposed a quantum neural network-based
detection framework for solitary large-brain metastases and high-grade gliomas, which are difficult to differentiate on
MRI [27]. Among a total of 1,813 features extracted from two-dimensional MRI images, 10 were selected as the most
associated features using the D-Wave quantum annealer. The authors confirmed that a 2-qubit quantum neural network
had algorithm performance comparable to those of dense neural network and extreme gradient boosting as the classical
counterparts. Although various types of data such as EHR, EEG, and structural MRI are being analyzed using QML
algorithms, studies on rs-fMRI datasets pertaining to neurodegenerative patients have been rare. Furthermore, previous
QML studies for time-series analysis have only used extracted features and not the raw time-series data[28, 29].

In this study, we classified rs-fMRI datasets collected from healthy control and EMCI patient groups using the
quantum-classical hybrid ML algorithm. The rs-fMRI dataset for the two groups was preprocessed to ROI time-series
to apply it to our algorithms as a one-dimensional time-series, as opposed to the widely used two-dimensional image.
Time-series data on 116 ROIs were compared to examine their relative importance for the detection of EMCI based on
the classification performance. The hybrid algorithm utilized a quantum convolutional neural network (QCNN) on
a segment of the time-series data, while employing a classical convolutional neural network (CNN) without pooling
layers on the remaining portion for local feature extraction and dimensionality reduction. Subsequently, the output
features of these neural networks were combined and fed into a classical neural network to produce the final output. The
QCNN was applied only to a portion of the data to ensure compatibility with Noisy Intermediate-Scale Quantum (NISQ)
computers, which are becoming increasingly accessible [30]. In NISQ computers, the size of quantum circuits that
can be reliably manipulated is limited due to noise and imperfections. This circumstance motivated the development
of quantum-classical hybrid algorithms that rely on compact quantum models. The utilization of QCNN is motivated
by the strengths outlined in the following: First, variational quantum algorithm (VQA) structures of the QCNN are
relatively easy to implement in NISQ devices. Their shallow circuit depths and the utilizing of only nearest neighboring
two qubit gates can offer advantages to the implementation in real quantum hardware with limited connectivity. Second,
the QCNN have small generalization error upper bound by their small number of parameters. Caro et al showed that
the upper bound of the generalization error scales with number of parameters in QML algorithms [31]. Since the
QCNN has small number of parameters (the number of parameters grows as O(log(n)) for n input qubits), it will
have small generalization error upper bound. Third, it is known that the QCNN avoids the barren plateau problem,
which is a vanishing gradient problem that hinders the optimization in QML. [32]. Finally, the QCNN has shown good
performances in classical and quantum tasks in previous studies [33, 34, 35]. Model performances were evaluated in
simulations with several experimental conditions regarding the number of quantum replacements and 116 brain regions.
The proposed model’s performance was validated through comparisons with classical baseline models. Our study has
following strengths:

• We proposed a hybrid quantum-classical ML algorithm with QCNNs and classical CNN to classify ROI
time-series signals from rs-fMRI datasets for healthy and EMCI groups.

• The hybrid algorithm outperformed its classical baseline-model in our simulation results.
• Brain regions that showed larger improvements of the classification performance in the hybrid model have

been validated by previous studies and additional seed-based functional connectivity (SBFC) analysis.

The remainder of this paper is organized as follows: Section 2 introduces the research scheme with descriptions of the
rs-fMRI dataset, hybrid quantum-classical algorithm, baseline model, and evaluation methods for the classification
performance of the algorithms. Section 3 describes the experimental results, including the classification performances
of the algorithms and validation analysis regarding the brain-region selection based on the classification performance.
Section 4 discusses the performance of the proposed hybrid algorithm for EMCI classification and brain regions related
to the highest classification performance in previous studies. The conclusions, strengths, and limitations of this study
are presented in Section 5.

2 Methods

An overview of this study is depicted in Figure 1. The study comprises six main steps: 1) the collection of the rs-fMRI
datasets measured from healthy and EMCI groups; 2) preprocessing the collected rs-fMRI datasets; 3) extracting the
rs-fMRI region-of-interest (ROI) time-series from the preprocessed dataset; 4) training the hybrid quantum-classical and
baseline models using the extracted time-series data; 5) evaluating the classification performances of the trained hybrid
and baseline models; and 6) validating the importance of brain regions in model performances in each ROI condition.
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Figure 1: The research scheme of this study.

2.1 Data source

The rs-fMRI data utilized in our research were sourced from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
which serves as a multi-site longitudinal-data repository [36]. This initiative enables researchers to access publicly
accessible data after obtaining approval, thereby significantly contributing to the advancement of research on AD.
Within this repository, a vast collection of medical images, including MRI and Positron emission tomography (PET)
scans, is available, alongside clinical, genomic, and biomarker data with the detailed five AD stages (i.e., healthy
control, EMCI, MCI, late MCI, and AD). From several internal cohorts in ADNI (ADNI1, ADNI2, ADNIGO, and
ADNI3), our study focused on the initial rs-fMRI images acquired during the medical follow-up of 365 individuals,
encompassing 93 EMCI patients and 272 healthy individuals from all cohorts (male: 180, female: 185 / age: 74.75 ±
7.86 / weight: 75.77 ± 18.36).

2.2 MRI acquisition and preprocessing

In ADNI, all MRI data were obtained on 3T scanners based on the unified scanning protocols (detailed MR protocols
and parameters are reported on: http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/). Because there are some
differences in MR parameter between internal cohorts, rs-fMRI images were selected using the same three protocol
conditions (200 timepoints, TR: 3000ms, and 48 slices). Consequently, the rs-fMRI images in ADNI2, ADNIGO, and
ADNI3 were utilized in this study.

We conducted the preprocessing on all the rs-fMRI images stored in the Digital Imaging and Communications in
Medicine (DICOM) format using the DPABI (toolbox for data processing & analysis for brain imaging) Toolkit [37].
This preprocessing workflow encompassed several important steps: conversion from DICOM to Neuroimaging Informat-
ics Technology Initiative (NIFTI) format, slice-timing correction, realignment, head-motion correction, normalization
to the MNI standard space, smoothing, detrending, and filtering (from 0.01 Hz to 0.1 Hz). Subsequently, we employed
the automatic anatomical labeling (AAL) atlas, which divides the human brain into 116 distinct regions, to extract
time-series data from these regions [38]. Consequently, we obtained 116 ROI time-courses in the rs-fMRI datasets
measured from healthy and EMCI groups.

Using the calculated 116 ROI time-series, we constructed final datasets to train and evaluate the hybrid quantum-
classical and baseline models. The final datasets, D = {(X1, Y1), (X2, Y2), ...(XN−1, YN−1), (XN , YN )}, in-
cluded a collection of pairs, (Xi, Yi), where Xi indicates a univariate time-series with 140 data points (Xi =
[x1, x2, ..., x139, x140]) and Yi represents a class-label vector (Yi = 0 : healthy group and Yi = 1 : EMCI group). The
dimension of the final dataset was (790, 141) (790 represents the number of rows and 141 indicates the number of
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columns). Among the 790 rows in the final dataset, the numbers of rows for the healthy and EMCI groups were 483 and
307, respectively.

2.3 Hybrid quantum-classical classification model

2.3.1 Model architecture

The hybrid quantum-classical model for the detection of EMCI was devised as follows. As the classical parts, we
utilized one-dimensional CNN (1D CNN). This model was chosen based on the reported latent feature extraction
performance of these algorithms from time-series data in previous studies. Among the various time-series data, the
utility of 1D CNN for feature extraction from bio-signals such as electrocardiogram (ECG) or EEG was investigated.
Jang et al. applied 1D CNN layer architecture in an autoencoder model to extract latent features from actigraphy signal
datasets in a denoising task [39]. Furthermore, kang et al. conducted a photoplethysmogram (PPG) and galvanic skin
response (GSR) signal classification analysis with 1D CNN models [40]. They found that the 1D CNN model showed
improved classification performances using the limited computing resource and short input signals. From previous
studies that showed the applicability of 1D CNN to the bio-signal classification, we determined that the classical parts
in the hybrid model were set by the 1D CNN model structure. For the quantum part of the hybrid model, the QCNN
proposed by Hur et al. was utilized to investigate the effects of integrating quantum computing techniques with the 1D
CNN model [41]. The QCNN was selected because it has been shown to outperform its classical counterparts in the
few-parameter regime [41, 33, 34]. To test the change of the hybrid model performance with increasing number of
QCNNs, we designed the small QCNN with four qubits in our hybrid model.

Based on the aforementioned previous studies, our model architecture included the QCNN and classical 1D con-
volutional layers to evaluate influences of the quantum algorithm about model performance in the classification of
fMRI time-series. In the two consecutive parts of our hybrid classification model (i.e., convolutional layer for the
latent feature extraction and fully connected layer for the final classification), the classical 1D convolutional layers
and QCNN, including quantum convolutional and quantum pooling layers, were used together in the convolutional
layer. Therefore, the ROI signal was split into two parts for the QCNN and classical 1D convolutional layers. The latent
features extracted from the classical 1D convolutional layers and measurement results (two probability values for 0 and
1) from the QCNN were concatenated as a single vector and applied to classify the two class labels in the classical fully
connected layers.

In the QCNN of the hybrid model, the partial classical data in the ROI time-series were encoded to amplitudes of
four qubits of the QCNN. The amplitude encoding applied in this study is among the general approaches to encoding
classical data into a quantum state by normalizing classical input data as probability amplitudes of a quantum state. The
formula for this encoding scheme is as follows:

Uϕ(x) : x ∈ RN → |ϕ(x)⟩ = 1

∥x∥

N∑
i=1

xi |i⟩ (1)

where Uϕ(x) : x ∈ RN → |ϕ(x)⟩ indicate a unitary transformation (a quantum feature map) to make Uϕ(x) |0⟩⊗n
=

|ϕ(x)⟩ from the initial state |0⟩⊗n of n qubits. x in the above formula represents the classical input sample (x =
(x1, ..., xN )T ) with dimension N = 2n and |i⟩ is the ith computational basis state in an n-qubit quantum state |ϕ(x)⟩.
Therefore, sixteen classical data embedded to amplitudes of four qubits (i.e., 24 = 16).

In the quantum convolutional layer, the two-qubit PQC that represented the parameterization of an SU(4) gate with
fifteen trainable parameters was applied [42, 43]. The PQC for the quantum convolutional layer is depicted in (a) of
Figure 2. In the quantum pooling layer, the approach is built upon two-qubit controlled rotation gates with two trainable
parameters. The applied PQC in the quantum pooling layer are shown in (b) of Figure 2. In two PQCs depicted in
Figure 2, Ri(θ) denotes a rotation gate around the i axis of the Bloch sphere by an angle θ and U3(θ, ϕ, λ) indicates an
arbitrary single qubit gate ( U3(θ, ϕ, λ) = Rz(ϕ)Rx(−π/2)Rz(θ)Rx(π/2)Rz(λ) ).

The remaining classical data in the ROI time-series were processed by classical 1D convolutional layers (total 140
data points - 16 data points for the single QCNN = 124 data points for the classical 1D convolutional layer). To compare
model performances with varying numbers of the QCNN in the hybrid model, three different conditions for the number
of QCNNs were tested (single, two, and four QCNNs). For the hybrid model with two QCNNs, 108 data points were
applied as input data to the classic 1D convolutional layer (total 140 data points - 32 data points for two QCNNs =
108 classical data points to the classic 1D convolutional layer). Additionally, for the four QCNNs, 76 data points
were processed by the classic 1D convolution layer (140 data points in total - 64 data points for the four QCNNs = 76
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Figure 2: The parameterized quantum circuit (PQC) used in the QCNN (the PQC a indicates the PQC for the quantum
convolutional layer and the PQC b represents the PQC for the quantum pooling layer).

data points for the classic 1D convolution layer). An example of the hybrid-model architecture with a single QCNN
is depicted in Figure 3. Detailed descriptions of the remaining conditions, namely hybrid models with two and four
QCNNs, can be found in Appendices A and B. In addition, the details of the proposed hybrid model with a single
QCNN are listed in Table 1.

2.3.2 Simulation of hybrid quantum-classical model

Due to the difficulty of accessing real quantum hardware, we performed simulations on classical hardware to validate
the classification performance of our hybrid quantum-classical algorithms under ideal conditions. We simulated the
hybrid models and compared the performances with that of the classical 1D CNN model as a baseline model. The
baseline model had a similar structure to that of the proposed hybrid quantum-classical algorithms. The baseline
model’s architectures are listed in Table 2. We also calculated the number of parameters in the hybrid and baseline
models to compare model performances corresponding the number of parameters. The number of trainable parameters
in each model condition is shown in Table 3.

Moreover, the same training and evaluation conditions were used for the hybrid and baseline models. To optimize the
trainable parameters of the hybrid and baseline models in the classification task, the cross-entropy loss function was
applied. The optimizer for model training, batch size, the number of epochs, and learning rate was randomly selected
(Adam optimizer, learning rate : 0.0001, and batch size : 1). Furthermore, class weight was used to reflect the imbalance
of the rs-fMRI dataset in model training. All the models were validated in the 5-fold cross-validation with an 8:2 ratio
of training to test datasets to evaluate the model performance based on all data. Additionally, because we need to
consider true positive, true negative, false positive, and false negative together in the evaluation of disease classification
model, balanced accuracy was applied in our study as an evaluation index to reflect the classification results including
both the correctly classified and incorrectly classified samples. The formula for balanced accuracy is as follows:

Balanced accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(2)
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2.4 Additional analysis : seed-based functional connectivitiy (SBFC)

Following the comparisons of the classification performance between the hybrid and baseline models, we examined
which brain region condition showed a larger difference in performance in the hybrid models than the baseline model.
To examine the importance of the selected brain regions in the distinction between the two groups (healthy and EMCI
groups), we additionally conducted SBFC analysis of selected brain regions.

Functional connectivity analysis in the seed-based approach requires seed regions with ROI time-series [44, 45]. The
time-series is extracted from the seed region and the connectivity is then computed by temporally correlating seed
time-series with the time-series of all other brain regions. From this analysis, we wanted to compare connectivity maps
from the two groups with the same seeds based on the statistical tests. In addition, we assumed that if the differences
in connectivity maps were in most brain regions with the same seed, the selected seed region was the main region to
distinguish the two groups.

Figure 3: Hybrid model architecture example with a single QCNN
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Table 1: The hybrid quantum-classical model architecture with a single QCNN

Model structure
Input Channel Kernel Output vectors
Dimension
(H × W × D)

Input /
Output

Kernel size /
Stride

Dimension
(H × W × D)

Input (1, 1, 140)

Partial input1 (1, 1, 16)

Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1, 1, 2)

Partial input2 (1, 1, 124)

Classical 1D Conv. layer1 (1, 1, 124) 1 / 8 30 / 2 (1, 8, 48)
Classical 1D Conv. layer2 (1, 8, 48) 8 / 16 20 / 2 (1, 16, 15)
Classical 1D Conv. layer3 (1, 16, 15) 16 / 32 10 / 2 (1, 32, 3)
Dropout 1D

Concatenate outputs
from quantum and classical Conv layers (1, 1, 98)

Classical fully connected layer1 (1, 1, 98) (1, 1, 18)
Classical fully connected layer2 (1, 1, 18) (1, 1, 9)
Classical fully connected layer3 (1, 1, 9) (1, 1, 2)

Output (1, 2)

2.5 Tools

Hybrid quantum-classical and baseline algorithm codes were written by the Pennylane and Pytorch (Pennylane,
version 0.25.1 ; Pytorch, version 1.7.1). Data preprocessing and visualization were built and operationalized using
Python (version 3.7.1; scikit-learn, version 2.4.1).

3 Results

3.1 Classification performance in the hybrid and baseline models

To investigate the algorithm performance in the proposed hybrid quantum-classical models, we compared averaged
balanced-accuracy values calculated from the hybrid and baseline models with the 5-fold cross-validation in the
experimental conditions. In most experimental conditions with the 116 ROI time-series, the hybrid models showed
higher classification performances than the baseline models (averaged balanced accuracy of the baseline model: 0.523;
averaged balanced accuracy of the hybrid model with the single QCNN: 0.562; averaged balanced accuracy of the
hybrid model with two QCNNs : 0.575; and averaged balanced accuracy of the hybrid model with four QCNNs :
0.581).

Moreover, in additional conditions pertaining to the number of QCNNs in the hybrid models, higher averaged
balanced-accuracy values were found when using more QCNNs (averaged balanced accuracy of hybrid model with
single QCNN : 0.562; averaged balanced accuracy of hybrid model with two QCNNs : 0.575; and averaged balanced
accuracy of hybrid model with four QCNNs : 0.581). Furthermore, All differences between model conditions are
statistically significant (p-value <0.05). Detailed averaged balanced accuracies and normalized differences of balanced
accuracy in the baseline and hybrid models with 116 experimental conditions are listed in Tables 4 and 5. The
performance changes of the hybrid model according to the number of parameters are summarized in Figure 4. Statistical
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Table 2: Model architecture of the baseline model (classical CNN)

Model structure
Input Channel Kernel Output vectors
Dimension
(H × W × D)

Input/
Output

Kernel size/
Stride

Dimension
(H × W × D)

Input (1, 1, 140)
Classical 1D Conv. layer1 (1, 1, 140) 1 / 8 30 / 2 (1, 8, 56)
Classical 1D Conv. layer2 (1, 8, 56) 8 / 16 20 / 2 (1, 16, 19)
Classical 1D Conv. layer3 (1, 16, 19) 16 / 32 10 / 2 (1, 32, 5)
Dropout 1D
Classical fully connected layer1 (1, 1, 160) (1, 1, 18)
Classical fully connected layer2 (1, 1, 18) (1, 1, 9)
Classical fully connected layer3 (1, 1, 9) (1, 1, 2)
Output (1, 2)

test (independent two-sample t-test) results to validate statistical significance between model conditions are listed in
Appendix C.

3.2 Comparisons of model performances in 116 brain regions

We evaluated the hybrid-model performances in a classical simulation based on comparisons with the baseline
model using a quantitative indicator (averaged balanced accuracy). In addition, the hybrid-model performance must be
investigated in terms of a qualitative evaluation (i.e., a function of the selected brain regions). To find ROI time-course
conditions with the largest differences from the baseline model, three performance-difference categories of the baseline
and hybrid models (hybrid with the single QCNN – baseline; hybrid with two QCNNs – baseline; and hybrid with four
QCNNs - baseline) were averaged and normalized to single values. Based on the summarized single-difference values,
9 ROIs with the largest performance differences between the baseline and hybrid models (ROI 1, 84, 18, 17, 39, 38, 23,
92, and 110) were selected. We validated the selected 9 ROIs following interpretations for brain regions reported in
previous studies. The selected 9 ROIs, with related information, are listed in Table 6.

3.3 SBFC with selected ROIs

Based on the aforementioned 9 ROIs, we additionally analyzed the importance of the selected brain regions in
the distinction between healthy and EMCI groups. To investigate the centrality of the selected 9 brain regions in
group comparisons, 9 brain regions were set as a seed in SBFC analysis. We compared brain regions with statistical
significance in the difference between the two groups’ connectivity maps from the independent two-sample t-test. From
the SBFC analysis results, statistically significant differences in connectivity maps were found in many regions. The
different brain regions with statistically significant differences (t-statistics > 2.0 and p-value < 0.05) in the SBFC maps
are depicted in Figures 5 and 6.

Furthermore, brain regions can categorize into five higher categories (frontal lobe, temporal lobe, occipital lobe,
parietal lobe, and posterior fossa) than the detailed 116 ROIs that were applied in this study as criteria. Therefore, to
investigate which brain-region category among the 5 higher categories included the connections found, the connections
between the brain regions in the SBFC results with 9 seed regions were summarized into a single circos plot. It was
confirmed that brain regions belonging to the frontal lobe were selected the most as regions with the highest connectivity.
The summarized connections based on the SBFC results are depicted in Figure 7.

9
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Figure 4: The classification performance and the number of parameter changes of the hybrid model with the number of
the QCNN (blue line with circles: the averaged balanced accuracy / red line with diamonds: the number of parameters).

Figure 5: The different brain regions with statistically significant differences in the SBFC maps between healthy and
early-MCI groups (seed : ROI 1, 84, 18, 17, 39, and 38).
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Table 3: The number of trainable parameters in the hybrid and baseline models

No. Model conditions # of parameters
1 Baseline model 11,605

2
Hybrid model cond. 1

(single quantum convolutional neural network)
9,983

3
Hybrid model cond. 2

(two quantum convolutional neural networks)
8,901

4
Hybrid model cond. 3

(four quantum convolutional neural networks)
4,177

Figure 6: The different brain regions with statistically significant differences in the SBFC maps between healthy and
early-MCI groups (seed : ROI 23, 92 , and 110).
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Figure 7: Summarized connections from the SBFC results with 9 seed regions

Frontal LobeOccipital Lobe

Parietal Lobe

Posterior Fossa

Temporal Lobe
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Table 4: Averaged balanced accuracy from the hybrid quantum-classical and baseline models trained by time-series
from ROI 1 to 59.

ROI Baseline
model

Hybrid
Cond.1

Hybrid
Cond.2

Hybrid
Cond.3

Normalized
difference 1

(Hybrid1 - baseline)

Normalized
difference 2

(Hybrid2 - baseline)

Normalized
difference 3

(Hybrid3 - baseline)

1 0.510 0.591 0.632 0.615 0.918 0.977 1.000
2 0.526 0.617 0.570 0.619 0.983 0.459 0.914
3 0.530 0.489 0.552 0.573 0.108 0.320 0.584
4 0.558 0.587 0.592 0.601 0.580 0.399 0.589
5 0.512 0.600 0.508 0.529 0.967 0.148 0.411
6 0.517 0.501 0.594 0.585 0.276 0.676 0.752
7 0.537 0.536 0.511 0.515 0.373 0.000 0.151
8 0.497 0.530 0.525 0.522 0.598 0.357 0.465
9 0.524 0.530 0.578 0.576 0.420 0.526 0.643

10 0.542 0.565 0.565 0.575 0.538 0.325 0.519
11 0.522 0.521 0.572 0.584 0.374 0.500 0.710
12 0.546 0.553 0.587 0.585 0.431 0.444 0.559
13 0.530 0.544 0.590 0.570 0.480 0.567 0.565
14 0.512 0.560 0.567 0.578 0.705 0.534 0.741
15 0.513 0.561 0.587 0.570 0.705 0.659 0.676
16 0.521 0.535 0.567 0.596 0.477 0.473 0.799
17 0.486 0.549 0.597 0.577 0.797 0.898 0.902
18 0.504 0.578 0.630 0.569 0.871 1.000 0.732
19 0.528 0.582 0.502 0.501 0.741 0.003 0.123
20 0.497 0.497 0.552 0.569 0.380 0.536 0.780
21 0.522 0.545 0.550 0.595 0.535 0.359 0.782
22 0.519 0.538 0.579 0.613 0.509 0.567 0.925
23 0.502 0.568 0.585 0.596 0.823 0.722 0.923
24 0.499 0.551 0.530 0.547 0.723 0.373 0.617
25 0.522 0.491 0.569 0.527 0.175 0.484 0.331
26 0.542 0.484 0.522 0.543 0.000 0.043 0.303
27 0.504 0.472 0.536 0.545 0.173 0.382 0.570
28 0.502 0.525 0.598 0.573 0.532 0.803 0.772
29 0.540 0.560 0.602 0.594 0.517 0.578 0.658
30 0.536 0.555 0.598 0.613 0.510 0.577 0.810
31 0.528 0.566 0.571 0.547 0.634 0.455 0.423
32 0.515 0.504 0.551 0.547 0.308 0.411 0.509
33 0.513 0.538 0.597 0.591 0.548 0.722 0.813
34 0.506 0.577 0.588 0.579 0.854 0.709 0.779
35 0.510 0.561 0.579 0.551 0.718 0.625 0.571
36 0.524 0.550 0.587 0.585 0.552 0.583 0.700
37 0.512 0.559 0.596 0.579 0.695 0.726 0.741
38 0.545 0.615 0.632 0.638 0.847 0.744 0.918
39 0.511 0.602 0.600 0.595 0.982 0.753 0.852
40 0.555 0.594 0.580 0.624 0.642 0.338 0.757
41 0.540 0.574 0.565 0.559 0.605 0.339 0.421
42 0.537 0.549 0.583 0.603 0.461 0.476 0.735
43 0.517 0.558 0.564 0.583 0.655 0.482 0.740
44 0.535 0.564 0.583 0.583 0.574 0.491 0.621
45 0.512 0.568 0.602 0.587 0.753 0.768 0.796
46 0.550 0.591 0.578 0.567 0.652 0.354 0.412
47 0.514 0.554 0.578 0.570 0.645 0.588 0.667
48 0.536 0.573 0.615 0.616 0.624 0.686 0.828
49 0.542 0.594 0.574 0.615 0.723 0.383 0.783
50 0.529 0.588 0.594 0.607 0.775 0.599 0.819
51 0.509 0.587 0.568 0.598 0.900 0.559 0.890
52 0.545 0.573 0.591 0.572 0.568 0.474 0.475
53 0.539 0.571 0.568 0.591 0.594 0.360 0.642
54 0.526 0.574 0.601 0.623 0.705 0.666 0.944
55 0.511 0.578 0.579 0.580 0.827 0.619 0.759
56 0.540 0.582 0.576 0.568 0.658 0.410 0.483
57 0.536 0.585 0.528 0.491 0.711 0.122 0.000
58 0.505 0.516 0.569 0.565 0.459 0.597 0.704
59 0.553 0.557 0.565 0.546 0.412 0.254 0.252

13



Choi et al., 2023 A PREPRINT

Table 5: Averaged balanced accuracy from the hybrid quantum-classical and baseline models trained by time-series
from ROI 60 to 116.

ROI Baseline
model

Hybrid
Cond.1

Hybrid
Cond.2

Hybrid
Cond.3

Normalized
difference 1

(Hybrid1 - baseline)

Normalized
difference 2

(Hybrid2 - baseline)

Normalized
difference 3

(Hybrid3 - baseline)

60 0.501 0.558 0.599 0.572 0.761 0.817 0.767
61 0.536 0.574 0.578 0.550 0.631 0.446 0.385
62 0.526 0.567 0.563 0.576 0.658 0.417 0.635
63 0.540 0.585 0.521 0.539 0.681 0.051 0.293
64 0.519 0.538 0.583 0.563 0.510 0.595 0.596
65 0.537 0.579 0.557 0.580 0.658 0.303 0.585
66 0.505 0.581 0.566 0.573 0.887 0.573 0.750
67 0.518 0.592 0.596 0.588 0.871 0.685 0.761
68 0.537 0.584 0.569 0.581 0.691 0.382 0.586
69 0.510 0.583 0.557 0.587 0.865 0.478 0.809
70 0.524 0.544 0.569 0.572 0.515 0.470 0.617
71 0.516 0.567 0.594 0.586 0.717 0.685 0.765
72 0.537 0.593 0.603 0.571 0.758 0.605 0.525
73 0.568 0.582 0.550 0.543 0.475 0.056 0.127
74 0.515 0.578 0.538 0.580 0.796 0.319 0.730
75 0.522 0.570 0.570 0.581 0.702 0.491 0.692
76 0.523 0.591 0.582 0.608 0.838 0.561 0.867
77 0.531 0.574 0.566 0.608 0.669 0.400 0.807
78 0.527 0.571 0.553 0.575 0.672 0.340 0.619
79 0.522 0.583 0.570 0.578 0.791 0.488 0.673
80 0.528 0.579 0.596 0.585 0.722 0.618 0.678
81 0.525 0.589 0.570 0.576 0.808 0.472 0.642
82 0.504 0.567 0.557 0.594 0.799 0.520 0.897
83 0.511 0.566 0.585 0.599 0.747 0.661 0.884
84 0.499 0.591 0.596 0.590 1.000 0.809 0.910
85 0.522 0.595 0.584 0.588 0.869 0.583 0.739
86 0.518 0.569 0.561 0.594 0.719 0.450 0.800
87 0.535 0.570 0.552 0.567 0.614 0.280 0.507
88 0.523 0.580 0.609 0.603 0.762 0.735 0.829
89 0.531 0.594 0.595 0.598 0.798 0.594 0.744
90 0.532 0.610 0.546 0.613 0.897 0.260 0.834
91 0.531 0.598 0.580 0.612 0.830 0.497 0.843
92 0.521 0.590 0.592 0.620 0.841 0.641 0.959
93 0.533 0.576 0.509 0.526 0.669 0.016 0.248
94 0.523 0.563 0.563 0.597 0.650 0.438 0.793
95 0.532 0.565 0.575 0.614 0.599 0.455 0.846
96 0.509 0.571 0.568 0.583 0.789 0.557 0.790
97 0.523 0.551 0.571 0.604 0.569 0.490 0.835
98 0.520 0.571 0.582 0.587 0.726 0.582 0.750
99 0.538 0.586 0.555 0.587 0.701 0.289 0.625
100 0.528 0.571 0.582 0.598 0.669 0.529 0.763
101 0.527 0.545 0.575 0.592 0.502 0.486 0.729
102 0.498 0.528 0.587 0.578 0.582 0.762 0.837
103 0.514 0.549 0.570 0.586 0.615 0.540 0.777
104 0.509 0.538 0.573 0.587 0.580 0.599 0.823
105 0.518 0.528 0.575 0.563 0.447 0.546 0.599
106 0.501 0.539 0.567 0.586 0.632 0.602 0.862
107 0.521 0.562 0.572 0.578 0.650 0.504 0.677
108 0.529 0.561 0.571 0.595 0.593 0.448 0.735
109 0.519 0.550 0.578 0.583 0.588 0.562 0.721
110 0.493 0.536 0.589 0.592 0.667 0.808 0.957
111 0.515 0.539 0.621 0.612 0.541 0.867 0.940
112 0.535 0.560 0.598 0.591 0.547 0.587 0.674
113 0.544 0.573 0.584 0.605 0.576 0.435 0.703
114 0.518 0.548 0.590 0.557 0.581 0.646 0.561
115 0.507 0.540 0.577 0.591 0.599 0.633 0.856
116 0.512 0.551 0.593 0.597 0.639 0.709 0.868
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Table 6: Selected top 9 ROIs by averaged performance differences between the baseline and hybrid models.

Rank Brain region
(abbreviation)

Brain region
(full name)

Average of
Norm. diff

ROI
No.

1 Precentral_L Precentral gyrus 0.965 1
2 Templ_Pole_Sup_R Temporal pole: superior temporal gyrus 0.906 84
3 Rolandic_Oper_R Rolandic operculum 0.868 18
4 Rolandic_Oper_L Rolandic operculum 0.866 17
5 ParaHippo_L Parahippocampus 0.862 39
6 Hippocampus_R Hippocampus 0.836 38
7 Frontl_Sup_Medl_L Medial frontal gyrus 0.823 23
8 Cerebelm_Crus1_R Cerebelm crus 0.814 92
9 Vermis_3 Cerebellar Vermis 0.810 110
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4 Discussion

In summary, we proposed a hybrid quantum-classical algorithm to classify patients’ early-stage cognitive impairment
based on rs-fMRI time-series datasets. Rs-fMRI datasets collected from healthy and EMCI groups in the ADNI dataset
were analyzed. After preprocessing the datasets, raw rs-fMRI time-series were applied as input data to the proposed
hybrid model. A total of 116 time-series on 116 brain regions were used to evaluate the hybrid model’s performance. In
the hybrid model, both classical 1D convolutional layers and the QCNN was applied. To investigate the influences of
the QCNN in terms of the model’s performance, the baseline model’s performances were compared under the same
experimental conditions. Based on the model performance for each brain region, we examined the relative importance
of brain region in this classification task. Furthermore, confirmed brain regions that were associated with higher
classification performance were additionally validated through SBFC analysis. From this study, the following three
main perspectives to interpret our experimental results are found: first, input data type from the rs-fMRI datasets;
second, the proposed hybrid model’s architecture. Third, the brain region comparison from the model performance. We
discuss these points as follows:

First, in the case of the input dataset for algorithm evaluation, most previous studies that analyzed fMRI datasets
using ML models were based on post-processed datasets such as connectivity matrices or feature vectors from the
connectivity matrix [45, 46]. In addition, to model fMRI time-series signals measured from task-based research (task
fMRI), Huang et al. applied raw time-series datasets to classical convolutional autoencoder models [47]. They examined
the application of raw time-course signals from fMRI to detect AD. Among possible approaches regarding the type
of fMRI datasets, we selected the raw ROI time-course dataset as the model input. This is because examining the
usabilities of raw fMRI time-series signals with improved classification performance on the hybrid approach with
QCNN can facilitate dataset post-processing for further studies using fMRI datasets.

Second, associated with the use of raw time-series, we confirmed higher averaged balanced-accuracy values from our
hybrid models than those obtained in the baseline models. Moreover, the hybrid models’ classification performance
showed gradual improvements when the number of QCNN was increased (single-, two-, and four-QCNN conditions).
Furthermore, we found that the number of trainable parameters in the hybrid models decreased relative to that in the
baseline models. The baseline model included 11,065 parameters. Meanwhile, the hybrid models with the QCNN
included 9,983 (single QCNN), 8,901 (two QCNNs), and 4,177 (four QCNNs) parameters. Based on our experimental
results, we found that the hybrid algorithm’s classification performances can be improved based on the application of
the QCNN along with the classical 1D convolutional layers.

Third, for the hybrid model structure with the QCNN, many studies have reported hybrid algorithms with sequential
compositions of the PQC and classical DL algorithms. For example, Lockwood and Si investigated the performance of
hybrid quantum-classical reinforcement learning algorithms in Atari game as a testbed [48]. Their hybrid algorithms
included QCNNs and classical double deep Q learning (DDQN) algorithms repeated in a single data flow. In addition,
Houssein et al. applied quantum convolutional layers consisted of PQCs in hybrid models to predict COVID-19 from
chest X-ray images [49]. These quantum convolutional layers was utilized to extract information from two-dimensional
X-ray images. The output of quantum convolutional layers was sequentially inputted to classical neural networks.
Unlike previous studies, we attempted a non-sequential arrangement of the QCNN and the classical CNN in our hybrid
models. In this arrangement, partial informations in splited raw rs-fMRI signals were processed by the QCNN and
classical 1D convolutional layers in the classical CNN model. The outputs from each QCNN and classical CNN were
concatenated to single vectors as an input vector for classical fully connected layers. From our experiments, we checked
that applications of the QCNN and classical CNN with a non-sequential composition in the hybrid model can improve
the model performance in the time-series classification task.

Fourth, a recurrent neural network (RNN) structure has been widely utilized for temporal-data analysis. We conducted
the additional experiment to verify the classification performance of the hybrid model with other baseline models with
a classical long short-term memory (LSTM) algorithm. The baseline model including the classical LSTM algorithm
showed the lower averaged balanced accuracy values than the baseline model which we originally applied in this work.
From this result, we additionally confirmed the model performance improvement in our hybrid model from two different
baseline models. Detailed experimental results are listed in Appendix D.

Finally, regarding the differences in model performance between the 116 brain ROI conditions, nine ROI conditions
that showed the highest averaged balanced accuracy were selected. We considered that the selected nine ROIs had
higher relative importance for the classification between EMCI and AD than other ROIs. Moreover, the importance of
each ROI was compared with that in previous studies. For the selected nine ROIs, the association of the precentral
gyrus (Precentral_L / ROI 1) and hippocampus (Hippocampus_R / ROI 38 and ParaHippo_L / ROI 39) in functional
connectivity on cognitive decline was confirmed by Han et al [50]. In addition, based on our experimental results,
we reconfirmed the correlation between the superior temporal gyrus (Templ_Pole_Sup_R / ROI 84) and MCI in
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patients found in previous studies in fMRI research[51]. Furthermore, the relationships that were previously found
between cognitive decline and the rolandic operculum (Rolandic_Oper_L, R / ROI 17, 18) and medial frontal gyrus
(Frontl_Sup_Medl_L / ROI 23) were identical to those found in our study [52, 53]. Furthermore, brain regions in the
cerebellum have received attention as related regions for cognitive impairment in recent studies [54, 55]. We found
that cerebellum crus 1 (Cerebelm_Crus1_R / ROI 92) and cerebellar vermis (Vermis_3 / ROI 110) were important in
detecting EMCI, as found in previous studies.

To validate the selected nine ROIs, we additionally conducted an SBFC analysis based on the selected ROIs as seed
regions. Brain regions that showed a statistically significant difference between the two groups’ connectivity maps
were organized to examine the influences of seed regions on the classification. Most of the brain regions in the 116
ROIs were found in the SBFC results. The frontal lobe region, which has already been proved to play a major role in
cognitive impairment, was also identified in the summarized result [56, 57]. We concluded that these selected regions
from our hybrid models played central roles in the classification.

5 Conclusion

In this study, we proposed hybrid quantum-classical ML algorithms for the classification of ROI time-series datasets
from healthy and EMCI groups. Our research scheme found improved classification performances in hybrid models
with fewer parameters than baseline models. From our experimental results, we found that the hybrid model with a
higher number of the QCNN achieved higher classification performance than the classical CNN model (baseline model).
Moreover, a total of nine ROI conditions that showed the largest differences between the hybrid and baseline models’
performances were selected from 116 ROI conditions. We validated that the selected nine ROIs were associated with
cognitive decline among patient groups with cognitive impairment, as reported in previous studies. The selected nine
ROIs were used as seed regions for an SBFC analysis to additionally confirm whether they were the main regions for
the classification.

Our study has several strengths in various aspects. First, we proposed hybrid quantum-classical algorithms with
the QCNN and classical CNN together. Second, our model showed higher classification performance with raw fMRI
time-series signals from rs-fMRI datasets as input data without any additional post-process such as a connectivity
matrix. Third, we validated that some ROI signals that showed a larger improvement in algorithm performance were
related to those reported in previous studies. However, there are some limitations. First, only rs-fMRI time-series signal
datasets were applied in this study. Therefore, various other dataset modalities (e.g., structural MRI or demographic
variables) should be adopted to improve model performance. Second, the proposed hybrid quantum-classical algorithms
were only examined by numerical simulations. To evaluate the robustness of our hybrid algorithm on the NISQ device,
we need to examine the performance of the proposed algorithms using real quantum hardware. We plan to include other
modalities in analysis and test our algorithm on real quantum hardware in future studies with same research theme.
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Appendix A Example of the hybrid quantum-classical models with two and four QCNNs.

Figure A.1: The hybrid-model architecture example with two QCNNs.
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Figure A.2: The hybrid-model architecture example with four QCNNs.
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Appendix B Model architectures in the hybrid quantum-classical models with two and four
QCNNs.

Table B1: Model architecture in the hybrid quantum-classical model with two QCNNs

Model structure
Input Channel Kernel Output vectors
Dimension
(H × W × D)

Input /
Output

Kenel size /
Stride

Dimension
(H × W × D)

Input (1, 1, 140)
Partial input1 (1, 1, 16)
Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1, 1, 2)
Partial input2 (1, 1, 16)
Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1, 1, 2)
Partial input3 (1, 1, 108)
Classical 1D Conv. layer1 (1, 1, 108) 1 / 8 30 / 2 (1, 8, 40)
Classical 1D Conv. layer2 (1, 8, 40) 8 / 16 20 / 2 (1, 16, 11)
Classical 1D Conv. layer3 (1, 16, 11) 16 / 32 10 / 2 (1, 32, 1)
Concatenate outputs
from quantum and classical Conv layers

(1, 1, 36)

Classical fully connected layer1 (1, 1, 36) (1, 1, 18)
Classical fully connected layer2 (1, 1, 18) (1, 1, 9)
Classical fully connected layer3 (1, 1, 9) (1, 1, 2)
Output (1, 2)
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Table B2: Model architecture in the hybrid quantum-classical model with four QCNNs

Model structure
Input Channel Kernel Output vectors
Dimension
(HxWxD)

Input /
Output

Kenel size /
Stride

Dimension
(HxWxD)

Input (1, 1, 140)
Partial input1 (1, 1, 16)
Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1, 1, 2)
Partial input2 (1, 1, 16)
Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1, 1, 2)
Partial input3 (1, 1, 16)
Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1, 1, 2)
Partial input4 (1, 1, 16)
Quantum Conv. layer1 (1, 1, 16)
Quantum Pooling layer1
Quantum Conv. layer2
Quantum Pooling layer2 (1 ,1 ,2)
Partial input5 (1, 1, 56)
Classical 1D Conv. layer1 (1, 1, 56) 1 / 8 30 / 2 (1, 8, 24)
Classical 1D Conv. layer2 (1, 8, 24) 8 / 16 20 / 2 (1, 16, 3)
Concatenate outputs
from quantum and classical Conv layers

(1, 1, 56)

Classical fully connected layer1 (1, 1, 56) (1, 1, 18)
Classical fully connected layer2 (1, 1, 18) (1, 1, 9)
Classical fully connected layer3 (1, 1, 9) (1, 1, 2)
Output (1, 2)
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Appendix C Statistical test results for classification performances between hybrid
quantum-classical and baseline models.

Table C1: t-test results for differences between the hybrid and the baseline models.

Baseline model
Hybrid model 1

(with single quantum part)
Mean 0.5228 0.562
Variance 0.0002 0.0008
Observations 116 116
Pearson Correlation 0.313536158
Hypothesized Mean Difference 0
df 115
t Stat -15.64308714
P(T<=t) one-tail 1.50E-30
t Critical one-tail 1.65821177
P(T<=t) two-tail 2.99E-30
t Critical two-tail 1.980807476

Baseline model
Hybrid model 2

(with two quantum parts)
Mean 0.5228 0.5745
Variance 0.0002 0.0006
Observations 116 116
Pearson Correlation -0.084718363
Hypothesized Mean Difference 0
df 115
t Stat -18.6588469
P(T<=t) one-tail 6.94E-37
t Critical one-tail 1.65821177
P(T<=t) two-tail 1.39E-36
t Critical two-tail 1.980807476

Baseline model
Hybrid model 3

(with four quantum parts)
Mean 0.5228 0.5806
Variance 0.0002 0.0007
Observations 116 116
Pearson Correlation 0.029713522
Hypothesized Mean Difference 0
df 115
t Stat -21.21479802
P(T<=t) one-tail 7.29E-42
t Critical one-tail 1.65821177
P(T<=t) two-tail 1.46E-41
t Critical two-tail 1.980807476
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Table C2: t-test results for differences between three model conditions in the hybrid model.

Hybrid model 1
(with single quantum part)

Hybrid model 2
(with two quantum parts)

Mean 0.562 0.5745
Variance 0.0008 0.0006
Observations 116 116
Pearson Correlation 0.163658677
Hypothesized Mean Difference 0
df 115
t Stat -3.962273896
P(T<=t) one-tail 6.46E-05
t Critical one-tail 1.65821177
P(T<=t) two-tail 1.29E-04
t Critical two-tail 1.980807476

Hybrid model 1
(with single quantum part)

Hybrid model 3
(with four quantum parts)

Mean 0.562 0.5806
Variance 0.0008 0.0007
Observations 116 116
Pearson Correlation 0.302224092
Hypothesized Mean Difference 0
df 115
t Stat -6.341725888
P(T<=t) one-tail 2.31E-09
t Critical one-tail 1.65821177
P(T<=t) two-tail 4.62E-09
t Critical two-tail 1.980807476

Hybrid model 2
(with two quantum parts)

Hybrid model 3
(with four quantum parts)

Mean 0.5745 0.5806
Variance 0.0006 0.0007
Observations 116 116
Pearson Correlation 0.638690571
Hypothesized Mean Difference 0
df 115
t Stat -3.085865669
P(T<=t) one-tail 0.001
t Critical one-tail 1.65821177
P(T<=t) two-tail 0.003
t Critical two-tail 1.980807476
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Appendix D The classification performance of the baseline model with the Long shot-term
memory (LSTM) structure

To investigate the classification performance of the baseline model including the recurrent neural network (RNN)
structure, we conducted additional experiments on the new baseline model with the single LSTM layer. The model
architecture of the new baseline model is depicted in Figure D.1. The new baseline model has 13,002 trainable
parameters, which is similar to the number of trainable parameters in the original baseline model (11,605 parameters)
used in this study (Table D1). All experimental conditions remain the same (0.0001 learning rate, cross-entropy loss
function with class weight, single batch, and 100 epochs). An independent two-sample t-test was performed to compare
the classification performance between the new and the original baseline models. The results showed similar averaged
balanced-accuracy values (Table D2).

Figure D.1: The baseline model architecture with the single LSTM layer.
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Table D1: The number of trainable parameters in the baseline model with the LSTM layer and baseline model that was
used in this study.

No. Model conditions # of parameters
1 Baseline model 11,605

2
Baseline model

with the single LSTM layer
13,002

Table D2: t-test results of the classification performance between the baseline model with the single LSTM layer and
the baseline model that was used in this study.

Baseline model
(with the single LSTM layer)

Baseline model
(original)

Mean 0.5184 0.5227
Variance 0.0003 0.0002

Observations 116 116
t Stat -2.116

P(T<=t) one-tail 0.0183
t Critical one-tail 1.658
P(T<=t) two-tail 0.0365
t Critical two-tail 1.981
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