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ON THE EXISTENCE OF APPROXIMATE PROBLEMS

THAT PRESERVE THE TYPE OF A BIFURCATION

POINT OF A NONLINEAR PROBLEM. APPLICATION TO

THE STATIONARY NAVIER-STOKES EQUATIONS

CĂTĂLIN - LIVIU BICHIR

Abstract. We consider a nonlinear problem F (λ, u) = 0 on infinite-
dimensional Banach spaces that correspond to the steady-state bifur-
cation case. In the literature, it is found again a bifurcation point of
the approximate problem Fh(λh, uh) = 0 only in some cases. We prove
that, in every situation, given Fh that approximates F , there exists an
approximate problem Fh(λh, uh)− ̺h = 0 that has a bifurcation point
with the same properties as the bifurcation point of F (λ, u) = 0. First,

we formulate, for a function F̂ defined on general Banach spaces, some
sufficient conditions for the existence of an equation that has a bifur-
cation point of certain type. For the proof of this result, we use some
methods from variational analysis, Graves’ theorem, one of its conse-
quences and the contraction mapping principle for set-valued mappings.
These techniques allow us to prove the existence of a solution with some
desired components that equal zero of an overdetermined extended sys-
tem. We then obtain the existence of a constant (or a function) ̺̂ so

that the equation F̂ (λ, u) − ̺̂ = 0 has a bifurcation point of certain

type. This equation has F̂ (λ, u) = 0 as a perturbation. It is also made
evident a class of maps Cp - equivalent (right equivalent) at the bifur-

cation point to F̂ (λ, u)− ̺̂ at the bifurcation point. Then, for the study
of the approximation of F (λ, u) = 0, we give conditions that relate the
exact and the approximate functions. As an application of the theorem
on general Banach spaces, we formulate conditions in order to obtain
the existence of the approximate equation Fh(λh, uh) − ̺h = 0. For
example, we consider the finite element approximation of stationary
Navier-Stokes equations.

1. Introduction

For a steady-state bifurcation problem on infinite-dimensional Banach
spaces, we study the existence of an approximate problem that has a bifur-
cation point with the same properties as the bifurcation point of the given
nonlinear problem. The problem of bifurcation is present in the analysis of
many mathematical models of phenomena from the physical world. Gen-
erally, these models are formulated with an equation on Banach spaces,
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2 CĂTĂLIN - LIVIU BICHIR

infinite or finite-dimensional. Examples of infinite-dimensional problems
are from fluid mechanics, solid mechanics, elasticity, nonlinear vibrations,
structural analysis, ocean, atmosphere and climate models and so on. As
far as the finite-dimensional problems are concerned, examples are from
medicine (cardiology, neuroscience), biology, chemistry, economy, etc. In
both cases, infinite-dimensional and finite-dimensional, practical compu-
tations are necessary. For this purpose, the infinite-dimensional problem
must be approximated by a finite-dimensional problem using methods such
as finite element method, finite differences method, finite volume method,
spectral methods or wavelets. The first problem is named ”exact”, defined
on exact spaces, by an exact equation and it has exact solutions. The sec-
ond equation is the approximate equation and the related entities are called
”approximate”.

We consider equations that correspond to the steady-state bifurcation
case. We retain the exact equation (1.1) and the hypothesis (1.2) on the
bifurcation point from [18], where Crouzeix and Rappaz study the bifurca-
tion problems and their approximations. Usually, the Liapunov - Schmidt
method is applied and it is obtained that, locally, around the bifurcation
point, the solution set of the equation on Banach spaces is in one-to-one
correspondence with the solution set of the classical bifurcation equation.
The study of the solutions of the classical bifurcation equation, using singu-
larity theory, is performed in [31, 32]. As the authors of [18] specify, their
method, for the exact equation, is equivalent to the Lyapunov-Schmidt
method.

Let W and Z be real Banach spaces. Let m ≥ 1, p ≥ 2. Let F :
R
m ×W → Z be a nonlinear function of class Cp. Consider the equation

in (λ, u) ∈ R
m ×W

(1.1) F (λ, u) = 0 .

Assume that (λ0, u0) is a solution of (1.1) that satisfies the hypothesis
([18]):

DuF (λ0, u0) is a Fredholm operator of W onto Z with index zero ,(1.2)

n ≥ 1 and q ≥ 1 ,

where n = dim Ker(DuF (λ0, u0)) and q = codim Range(DF (λ0, u0)). The
solution (λ0, u0) is called a bifurcation point of problem (1.1). If (λ1, u1) is
a solution of (1.1) and DuF (λ1, u1) is an isomorphism of W onto Z, then
(λ1, u1) is a regular solution (a regular point) of problem (1.1).

Let W̆ , Z̆ be some real Banach spaces and let F̆ : Rm × W̆ → Z̆. If a
solution (λ̆0, ŭ0) of the equation F̆ (λ̆, ŭ) = 0 satisfies hypothesis (1.2), with

the same n and q, we say that (λ̆0, ŭ0) is a bifurcation point of the same
type as (λ0, u0).

The above spacesW and Z are both infinite-dimensional or they are both
finite-dimensional. If they are infinite-dimensional, then equation (1.1) is
approximated by an equation

(1.3) Fh(λh, uh) = 0 ,

where Fh : Rm×Wh → Zh, Wh is a closed subspace ofW and Zh is a closed
subspace of Z. Wh and Zh are both infinite-dimensional spaces or they are
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both finite-dimensional spaces with dim Wh = dim Zh. Usually, (1.3)
is obtained by finite element method or by the other methods mentioned
above [6, 7, 8, 9, 11, 12, 13, 17, 18, 23, 29, 39, 43, 55, 62, 67, 68]. The
theoretical Galerkin method is also taken into account.

A question arises with regard to an approximate equation (1.3):
(Q1) Has the approximate equation (1.3) also a bifurcation point ? In

case that it exists, is this point of the same type as (λ0, u0)?
In case of the simple limit point, the point is generic ([31]) and the

approximate problem has a simple limit point (λ0h, u0h) ([12, 18]).
In case of the simple bifurcation point of the problems on Banach spaces,

it is found again a bifurcation point of the approximate problem only in
some situations. In two particular cases ([13, 14, 18]), which are generic,
bifurcation from the trivial branch and symmetry-breaking bifurcation, a
simple bifurcation point (λ0h, u0h) of the approximate problem exists (nu-
merical bifurcation) and there is a diffeomorphism between the solution set
of the approximate bifurcation equation and a degenerate hyperbola. In
the general case ([3, 13, 14, 18, 52]), in the hyperbolic case, the solution set
of the approximate equation is composed of two branches that do not inter-
sect. This solution set and the solution set of the approximate bifurcation
equation are diffeomorphic to a part of a nondegenerate hyperbola (imper-
fect numerical bifurcation). In the course of their study, Brezzi, Rappaz
and Raviart made evident a perturbed approximate bifurcation equation
(equation (3.21), page 11, [13]) of the approximate bifurcation equation.
The branches of this perturbed equation intersect transversally in a point.
In this general case, Weber [65] propose to calculate an approximation of
the exact solution as a component of the solution of an approximate ade-
quate extended system and then, compute two approximate branches that
intersect in this point. In this way, bifurcation is not destroyed by approx-
imation.

We mention that the terminology, in [18], is the following: simple bi-
furcation points are simple bifurcation points (fold bifurcation and cusp
bifurcation in [13], transcritical in [17], transcritical and pitchfork (subcrit-
ical and supercritical) in [22] and [45]) or double limit points.

We cite, among other references, [17, 25, 28, 31, 33, 45, 63, 66, 69, 70]
for a discussion about the genericity of bifurcation points. For the exact
stationary Navier - Stokes equations, there exist bifurcation points that are
not generic [25, 63]. For the bifurcation of the solutions of the stationary
Navier - Stokes equations, we mention [7, 9, 12, 17, 23, 25, 26, 28, 45, 62,
63, 64, 66, 70]. For the approximate case of these equations, studies are
performed in, e.g., [12, 17].

Referring to the results mentioned above, from [18], concerning imper-
fect numerical bifurcation, and to the theory from [31, 32], Georgescu [27]
interpreted the approximate equation (1.3) as a perturbation of the ex-
act equation (1.1) on different spaces. She also suggested us [27] that
there probably exists a perturbation of (1.3) which has the approximate
bifurcation point that we sought at (1.3) in all the situations given by the
hypothesis (1.2).
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As we have seen, in literature, the above question (Q1) has a positive
answer only in some situations. Moreover, (1.3) cannot be used to study
the qualitative aspects of (1.1). When we use an approximation method,
we expect not only to find some branches of approximate solutions but
also information about the qualitative aspects of the exact equation. On
the other hand, we expect that (1.3) is the perturbation of an approxi-
mate equation that has a bifurcation point, not only of (1.1) (this follows
e.g. from (the interpretation of) [31, 32], from the discussion [27] described
above and from the interpretation of the approximate bifurcation equa-
tion (3.21), page 11, [13]). In order to obtain a positive answer in all the
situations, let us replace the question (Q1) by the following question

(Q2) Does an approximate problem that preserves the type of (λ0, u0)
exist in all the situations given by the hypothesis (1.2)? If this approximate
problem exists, is the given problem (1.3) a perturbation of this one?

We prove an affirmative answer to (Q2). To the best of our knowledge,
this approach and the results we prove are new. We do not discuss if the
exact bifurcation point is generic or not. We prove that if an exact bifurca-
tion point exists, satisfying the hypothesis (1.2), then, for an approximation
method, there exists an approximate equation that has a bifurcation point
with the same properties (hypotheses).

To be specific, given a function Fh that approximates F , we prove that
there exists ̺h such that the equation

(1.4) Fh(λh, uh)− ̺h = 0 ,

has a bifurcation point (λ0h, u0h) of the same type as the bifurcation point
(λ0, u0) of (1.1). ̺h is a constant. The usual approximate equation (1.3)
is a perturbation of the new approximate equation (1.4). The result for
(1.4) is local. Equation (1.4) can be used in order to study the qualitative
aspects of (1.1). Moreover, there exists a class of maps Cp - equivalent (right
equivalent) at (λ0h, u0h) to Fh(λh, uh)−̺h at (λ0h, u0h) and that satisfies the
hypothesis (1.2) in (λ0h, u0h). The problem can be formulated as an inverse
problem: given Fh, there exists ̺h and it must be determined such that
(1.4) has a bifurcation point of the same type as the exact equation (1.1).
(1.4) approximates (1.1). Not every approximate equation of (1.1) has a
bifurcation point. Equation (1.4) is a particular form of (1.3), obtained
by replacing Fh(λh, uh) with Fh(λh, uh) − ̺h. If (1.1) has two bifurcation
points satisfying hypothesis (1.2), it is possible that the corresponding two
̺h are not equal. These results do not contradict the present literature
results.

The equation (1.4) and the conclusion for this are the consequences of the
formulation of two main results that we introduce: (i) Theorem 3.5 about
the equivalence between the properties of a bifurcation point that satisfies
(1.2) and the existence of the solution of an overdetermined extended sys-
tem; (ii) Theorem 5.4 where we formulate some sufficient conditions and we
establish, on general Banach spaces, the existence of an equation that has a
bifurcation point of certain type. The reasoning we use is the following: if
the exact problem (1.1) has a bifurcation point, we construct an adequate
extended system applying the direct implication of the first theorem. This
system is approximated and the proof of the second theorem furnishes an
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extended system that satisfies the hypotheses of the converse implication
of the first theorem. In this way, we obtain (1.4) and the fact that (1.4)
has a bifurcation point of the same type as the bifurcation point of (1.1).
Practically, we use Theorem 5.4. This second theorem is generally valid
and regards not only the approximate equations, but also the exact equa-
tions. Theorem 5.4 is a result in its own right. Theorem 5.4 allows us to
obtain the existence of a bifurcation problem for which a given problem is
a perturbation. Theorem 7.6 and Theorem 7.7 give the affirmative answer
to the question (Q2). We also give some conditions that relate the exact
and the approximate functions in Theorem 7.4. In Corollary 9.1, we obtain
̺ in the form of a function of (λ, u), where ̺ is the corresponding form of
̺h, from (1.4), in the infinite-dimensional case.

In our approach, the numerical analysis and the numerical experiments
must be performed using the inverse problem attached to (1.4) and not, as
usual, using (1.3).

Our results can be applied to the particular case of the exact simple bi-
furcation point of (1.1), in the general case, in the hyperbolic case, studied
in [13, 14, 18], mentioned above. Let us consider (1.1), (1.3) and (1.4) in
this case. We obtain the approximate equation (1.4) that has a (an ap-
proximate) simple bifurcation point in this case. This (1.4) approximates
(1.1). The equation (1.3) used in [13, 14, 18] is impractical in order to
regain the qualitative aspects of (1.1), as we saw above; the equation (1.4)
maintains the qualitative aspects of (1.1). The Liapunov - Schmidt method
or the alternate equivalent method of Crouzeix and Rappaz can be applied
to (1.4) as to (1.1). There results a (classical) (approximate) bifurcation
equation and there is a diffeomorphism between the solution set of this one
and a degenerate hyperbola. The solution set of (1.4) is composed of two
branches that intersect in the simple bifurcation point. The approximate
bifurcation equation from [13, 14, 18] is obtained using mathematical enti-
ties related to (1.1); the (approximate) bifurcation equation for (1.4) can
be constructed using only mathematical entities related to (1.4). We have
three other remarks related to the results from the literature: 1. Recall
the perturbed approximate bifurcation equation whose branches intersect
transversally in a point (equation (3.21), page 11, [13]), mentioned above,
made evident by Brezzi, Rappaz and Raviart. This approximate bifurca-
tion equation is not related to any approximate equation in [13]. We do not
perform a study to answer if the approximate equation (1.4) corresponds to
this perturbed approximate bifurcation equation, but it seems that this is
the case. 2. We can interpret that the approximation of the exact solution
calculated by Weber [65], cited above, is the solution of an approximate
equation of the form (1.4). 3. In each of the generic cases of simple limit
point, bifurcation from the trivial branch and symmetry-breaking bifurca-
tion, in [12, 13, 14, 18], an estimate |λ0h − λ0| is given and it is not proven
that λ0h equals λ0. The bifurcation point (λ0h, u0h) of (1.4) has also this
limitation.

The results can be applied in nonlinear functional analysis (bifurcation
theory, nonlinear Fredholm operators), singularity theory, analysis on man-
ifolds, modelling, hydrodynamic stability and bifurcation, solid mechanics,
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PDEs, other mathematical models where bifurcation is present, infinite-
dimensional and finite-dimensional dynamical systems, numerical methods.

Let us observe that if some numerical algorithms are implemented in
order to determine the bifurcation point of (1.4), then, on a computer, it
is obtained an approximation (λ0ǫ, u0ǫ) of (λ0h, u0h) which is a solution of
an equation of the form of (1.4),

(1.5) Fǫ(λǫ, uǫ)− ̺ǫ = 0 ,

where Fǫ is an approximation of Fh in the computer’s arithmetics.
Under the conditions of the above discussion, the equilibria (stationary)

solutions, at least locally, for an approximate study of an evolution equa-
tion, are given by (1.4) and not by (1.3). In other words, at least locally
(related to equilibria), the approximation of

(1.6)
∂u

∂t
− F (λ, u) = 0

is

(1.7)
∂uh
∂t

− Fh(λh, uh) + ̺h = 0 .

The text is organized as follows.
In our work, we use the method of Crouzeix and Rappaz [18], so we

remind it briefly in Section 2.1.
In literature [7, 8, 16, 17, 18, 30, 33, 34, 35, 37, 38, 40, 41, 42, 44, 47, 48,

50, 52, 53, 56, 57, 58, 65], an extended system is used in order to reduce
a problem that presents a bifurcation to a problem without a bifurcation.
We develop the work on the basis of a connection between the properties
of a bifurcation point of a nonlinear equation on Banach spaces and a
somewhat new extended system (this one is constructed based on a local
Cp - diffeomorphism related to the bifurcation point). Sections 3 and 4 are
devoted to this subject.

In Section 5, we formulate and we prove the main result about the exis-
tence of an equation of form (1.4), on infinite-dimensional Banach spaces,
which has a solution (λ0, u0) that satisfies the hypothesis (1.2). These de-
velopments are based on the methods presented in the monograph [21] of
Dontchev and Rockafellar. Between them, there are the Graves’ theorem,
one of its consequences and the contraction mapping principle for set-valued
mappings. These are reminded in Section 2.2. The results that we obtain
in Section 5 are placed in the formalism of [11, 12, 13, 14, 18, 21, 29] and
of Graves’ theorem [21].

In Section 6, the existence of a class of maps equivalent to Fh(λh, uh)−̺h
is made evident.

In Section 7, the case of the approximate equation is studied. If the
exact problem has a bifurcation point, a theorem that connects the exact
and the approximate problems is formulated. Then, the main result from
Section 5 is formulated for the approximate case.

In Section 8, we relate the exact and the finite element formulations from
[29], for the Dirichlet problem for the stationary Navier-Stokes equations,
to the framework of Section 7.
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In Section 9, a complement to Theorem 5.4 is formulated. Instead of a
constant ̺ in the equation (5.28), we obtain ̺ in the form of a function of
(λ, u).

In Section 10, an intended further research is presented.

2. Preliminaries

2.1. The setting of Crouzeix and Rappaz [18]. Let us retain the equa-
tion (1.1) and the hypothesis (1.2) considered above following the work of
Crouzeix and Rappaz [18]. First, Crouzeix and Rappaz treat the case q = 0
where they reduce a problem that has bifurcation to a problem without bi-
furcation (in Chapter 4, [18]). Second, for the case q ≥ 1, they reduce the
study to the case q = 0 (in Chapter 6, [18]). In this subsection, for the sake
of brevity, we remind these in the inverse order, by modifying the presen-
tation of Crouzeix and Rappaz [18]. The problem without bifurcation is
obtained directly for the reduced problem.

Under the hypothesis that (λ0, u0) is a bifurcation solution satisfying
hypothesis (1.2) (recall that q ≥ 1), Z2 = Range(DF (λ0, u0)) is closed in
Z, DF (λ0, u0) is a Fredholm operator of Rm×W onto Z with index m and
Z = Z1 ⊕ Z2, where Z1 = sp {ā1, . . . , āq} and ā1, . . . , āq are some linearly
independent some linearly independent elements from Z. Let X = R

q+m

× W , Y = R
q+m × Z, f = (f1, . . . , f q) ∈ R

q, f0 = 0 ∈ R
q, x = (f, λ, u),

x0 = (f0, λ0, u0) ∈ X. Crouzeix and Rappaz define the function

(2.1) G : X → Z, G(x) = F (λ, u)−

q∑

i=1

f iāi ,

and they replace the study of (1.1) around (λ0, u0) by the study of the case
Range(DG(x0)) = Z (corresponding to the case q = 0 in Chapter 4, [18])
for the problem

(2.2) G(x) = 0 ,

around the solution x0 of it. For this, they use the remark that (λ, u) is
a solution of (1.1) is equivalent to the fact that x is a solution of (2.2)
satisfying f = 0.
G(x0) = 0 and G(x) = F (λ, u) if f = 0. DG(x)y = DG(f, λ, u)(g, µ,w)

= DF (λ, u)(µ,w)−
∑q

i=1 g
iāi for y = (g, µ,w). dim Ker(DG(x0)) = q+m,

(2.3)
Ker(DG(x0)) = {y = (g, µ,w) ∈ X; g = 0, (µ,w) ∈ Ker(DF (λ0, u0))} .

Range(DG(x0)) = Z and DG(x0) ∈ L(X,Z) is a Fredholm operator with
index q+m. This is equivalent to DuG(0, λ0, u0) is a Fredholm operator of
W onto Z with index zero and Range(DG(x0)) = Z (according to Chapter
4, [18]).

In order to reduce the problem (2.2) to a problem without bifurcation,
Crouzeix and Rappaz justify the introduction of an operator B and the
reduction of the problem of the study of the solutions of (2.2), in a neigh-
borhood of x0, to the study of the solutions of the extended system in
(θ, x) ∈ R

q+m ×X

(2.4) F(θ, x) = 0 ,
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in a neighborhood of its regular solution (0, x0), where

(2.5) F : Rq+m ×X → Y , F(θ, x) =

[
B(x)−B(x0)− θ
G(x)

]
.

The continuous linear operator B ∈ L(X,Rq+m) is introduced such that it
satisfiesKer(DG(x0))∩Ker(B) = {0}. B is an isomorphism ofKer(DG(x0))
onto R

q+m. To choose B is equivalent to choose q + m linear forms χi,
i = 1, . . . , q + m, on X that are linearly independent on Ker(DG(x0)).
By identifying Ker(DG(x0)) to R

q+m, B(x) can be considered the compo-
nent of x ∈ X on Ker(DG(x0)) with respect to the decomposition X =
Ker(DG(x0))⊕Ker(B). The function F is of class Cp.

(2.6) DxF(0, x0)y =

[
B(y)
DG(x0)y

]
.

Since Ker(DxF(0, x0)) = {0} and Range(DxF(0, x0)) = Y , there results
that DxF(0, x0) is an isomorphism of X onto Y . Implicit functions theorem
leads to

Lemma 2.1. (Lemma 4.1 and Lemma 6.1, [18]). Under the above hypothe-
ses, there exists a neighborhood V of 0 in R

q+m, a neighborhood U of x0 in
X and a unique Cp - mapping x : θ ∈ V → x(θ) = (f(θ), λ(θ), u(θ)) ∈ U

satisfying: a) G(x(θ)) = 0, θ = B(f(θ)− f0, λ(θ)− λ0, u(θ)− u0), ∀θ ∈ V;
b) x(0) = x0; c) (θ, x(θ)) is a regular point of (2.4), ∀θ ∈ V; d) if y =
(g, µ, v) ∈ U is such that G(y) = 0, then g = f(θ), µ = λ(θ), v = u(θ), with
θ = B(g − f0, µ− λ0, v − u0).

Equation f(θ) = 0 is the bifurcation equation of problem (1.1) ([18]).
Crouzeix and Rappaz specify that their method is equivalent to the Lyapunov-
Schmidt method. They call ”classical” the bifurcation equation related to
the Lyapunov-Schmidt method.

For the case q ≥ 1, Crouzeix and Rappaz use B reduced to R
m ×W ,

B ∈ L(Rm × W,Rq+m). In the above presentation and in Lemma 2.1,
we maintain the operator B ∈ L(X,Rq+m) corresponding to the case in
Chapter 4, [18].

The problem (2.4), in the case q = 0, is also formulated in a different
context in [21]. Related to the study of a linear Fredholm operator and of
the system DxF(0, x)y − [θ′, 0]T = 0, where x and θ′ ∈ R

q+m are fixed, the
use of an operator similar to B (from [18]) and of some elements similar to
ā1, . . . , āq (from [18]) is found in [6, 7, 8, 21, 34, 35, 41, 44].

Given two normed (linear) spaces E and F , L(E,F ) is the space of all
continuous linear mappings (operators) K : E → F . An isomorphism of
E onto F is a linear, continuous and bijective mapping K : E → F whose
inverse K−1 is continuous [6, 18, 21, 24, 29, 36, 59, 60, 61].

Lemma 2.2. (The hypotheses of a formulation of the inverse function
theorem, Theorem I.2.2, [14] and a partial result from the proof of this one).

For v ∈ X and the function Ĝ : X → Z of class Cp, p ≥ 1, we assume

that DĜ(v) ∈ L(X,Z) is an isomorphism and that β satisfies 2γL
Ĝ
(β) ≤

1, with γ = γ̃(Ĝ, v,X,Z) and LĜ(β) = L̃(Ĝ, v, x, β,X,Z), where we use

the notations (2.11) and (2.12) below. Then, for any z ∈ intB β
2γ

(Ĝ(v)),
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the equation Ĝ(x) = z has a unique solution x in Bβ1
(v), where β1 =

2γ‖Ĝ(v) − z‖Z ≤ β.

2.2. Contraction mapping principle for set-valued mappings and
Graves’ theorem [21]. Let us present the following mathematical entities
as they are introduced in the monograph [21] of Dontchev and Rockafellar.

Let (X, ρ) be a metric space. For the sets C and D in X and x ∈ C,
d(x,C) = infx′∈C ρ(x, x

′), e(C,D) = supx∈C d(x,D),
with the convention e(∅,D) = 0 when D 6= ∅ and e(∅,D) = ∞ otherwise.
ρ(x, y) = ‖x− y‖ if (X, ‖ · ‖) is a normed space.
Let X, Y be Banach spaces. Let F : X ⇒ Y be a set-valued mapping,

that is, for x ∈ X, F assigns a set F (x) that contains one or more elements
of Y or it is empty. The graph of F is the set gph F = {(x, y) ∈ X×Y |y ∈
F (x)}. The domain of F is the set dom F = {x|F (x) 6= ∅}. The range
of F is the set rge F = {y|y ∈ F (x) for some x}. A set-valued mapping
F : X ⇒ Y has an inverse F−1 : Y ⇒ X, F−1(y) = { x | y ∈ F (x) }. Let
us retain that x ∈ F−1(y) ⇔ y ∈ F (x).

Let A ∈ L(X,Y ) be a surjective mapping. A consequence of Theorem
5A.1 (Banach open mapping theorem), page 253, [21], is the existence of a
κ > 0 such that d(0, A−1(y)) ≤ κ‖y‖, for all y. The regularity modulus is
defined by

(2.7) reg A = sup
‖y‖≤1

d(0, A−1(y)) ,

reg A < ∞. For a Banach space X with norm ‖ · ‖X, let Ba(s̃) = {s ∈
X; ‖s̃ − s‖X ≤ a} be the closed ball with center s̃ and radius a.

Theorem 2.3. (Contraction mapping principle for set-valued mappings,
Theorem 5E.2, page 284, [21]) Let (X, ρ) be a complete metric space, and
consider a set-valued mapping T : X ⇒ X and a point x̄ ∈ X. Suppose that
there exist scalars a > 0 and λ ∈ (0, 1) such that the set gphT ∩ (Ba(x̄) ×
Ba(x̄)) is closed and

I. d(x̄, T (x̄)) < a(1− λ);
II. e(T (u) ∩ Ba(x̄), T (v)) ≤ λρ(u, v) for all u, v ∈ Ba(x̄).
Then, T has a fixed point in Ba(x̄); that is, there exists x ∈ Ba(x̄) such

that x ∈ T (x).

Theorem 2.4. (Graves, Theorem 5D.2, page 276, [21]) Let X and Y be
Banach spaces. Consider a function f : X → Y and a point x̄ ∈ int domf
and let f be continuous in Bε(x̄) for some ε > 0. Let A ∈ L(X,Y ) be
surjective and let κ ≥ reg A. Suppose there is a nonnegative µ such that
κµ < 1 and

(2.8) ‖f(x)− f(x′)−A(x− x′)‖ ≤ µ‖x− x′‖ whenever x, x′ ∈ Bε(x̄) .

Then, in terms of ȳ = f(x̄) and c = κ−1−µ, if y is such that ‖y− ȳ‖ ≤ cε,
then the equation y = f(x) has a solution x ∈ Bε(x̄).

Corollary 2.5. (A consequence of Graves’ theorem, pages 277-278, [21])
Let (2.8) hold for x, x′ ∈ Bε(x̄) and choose a positive τ < ε. Then, there
is a neighborhood U of x̄ such that Bτ (x) ⊂ Bε(x̄) for all x ∈ U . Make U



10 CĂTĂLIN - LIVIU BICHIR

smaller if necessary so that ‖f(x)− f(x̄)‖ < cτ for x ∈ U . Pick x ∈ U and
a neighborhood V of ȳ such that ‖y − f(x)‖ ≤ cτ for y ∈ V . Then,

(2.9) d(x, f−1(y)) ≤
κ

1− κµ
‖y − f(x)‖ for (x, y) ∈ U × V .

This is the metric regularity property of the function f at x̄ for ȳ.

If for every µ > 0 there exists ε > 0 such that (2.8) holds for every x, x′

∈ Bε(x̄), then A is, by definition ([20], [21]), the strict derivative of f at x̄,
A = Df(x̄).

Theorem 2.6. (Theorem 1.3, [20]) Let X and Y be Banach spaces, let x̄
∈ X and let f : X → Y be a function which is strictly differentiable at x̄
(see the definition at page 31, [21]). Suppose that Df(x̄) is onto. Then,
there exist a neighborhood W of x̄ and a constant c > 0 such that for every
x ∈W and τ > 0 with Bτ (x) ⊂ W ,

(2.10) Bcτ (f(x)) ⊂ f(Bτ (x)) .

Let us consider the notations γ and L(ε) from [14, 18, 29] in the following
way:

(2.11) γ̃(f, x̄,X, Y ) = ‖Df(x̄)−1‖L(Y,X) ,

(2.12) L̃(f, x̄, x, ε,X, Y ) = sup
x∈Bε(x̄)

‖Df(x̄)−Df(x)‖L(X,Y ) .

3. The main theorem on the extended systems considered in

the work

We formulate a theorem for the equivalence between the properties of
the bifurcation point (λ0, u0) of (1.1), satisfying hypothesis (1.2), and the
existence of the solution of an (overdetermined) extended system. This
Section and Section 4 are devoted to this subject.

Let us consider θ = 0 in equation (2.4) and conclude that we can intro-
duce an equation based on the value B(x0). Let us denote

(3.1) θ∗ = B(x0) .

It follows that the equation

B(x)− θ∗ = 0 ,(3.2)

G(x) = 0

has an unique solution x = x0 = (f0, λ0, u0).
There results the existence of a θ∗ ∈ R

q+m such that we can consider
equation (3.2) on its own and we can formulate questions about the exis-
tence, the uniqueness and the properties of the solution (λ0, u0) of (1.1).
Since our results are results of existence, it is not necessary to know (to
have explicitely) the value of θ∗. In the sequel, we use (3.1) in two respects:
1) Given B and x0, θ∗ results from (3.1). 2) Given B and θ∗, x0 is a solution
of (3.1).

Take some fixed θ0 ∈ R
q+m. Consider p ≥ 2. Let us introduce the

function

(3.3) Ψ : X → Y, Ψ(x) =

[
B(x)− θ0
G(x)

]
,
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and the equation in x ∈ X

(3.4) Ψ(x) = 0 .

We have Ψ(x0) = F(0, x0) and DΨ(x0) = DxF(0, x0), where DΨ(x)x =
[B(x),DG(x)x]T and [·]T denotes the transpose of the row vector [·].

As DG(x0) is associated to the Fredholm operator DF (λ0, u0), let us
introduce a function H, of class Cp−1, associated to DuF (λ0, u0). The
space Z4 = Range(DuF (λ0, u0)) is closed in Z, Z = Z3 ⊕ Z4, where Z3 =
sp {b̄1, . . . , b̄n} and b̄1, . . . , b̄n are some linearly independent elements from
Z. Let ∆ = R

n ×W , Σ = R
n × Z, e = (e1, . . . , en) ∈ R

n, z = (e, v) ∈ ∆.
Define the function H by

(3.5) H : Rm ×W ×∆ → Z, H(λ, u, z) = DuF (λ, u)v −
n∑

k=1

ek b̄k .

(3.6) Ker(H(λ0, u0, ·)) = {z = (e, v) ∈ ∆; e = 0, v ∈ Ker(DuF (λ0, u0))} .

It follows that dim Ker(H(λ0, u0, ·)) = n, Range(H(λ0, u0, ·)) = Z and
H(λ0, u0, ·) ∈ L(∆, Z) is a Fredholm operator with index n. We have
DH(λ, u, z)(λ, u, z) =D(λ,u)(DuF (λ, u)v)(λ, u) +DuF (λ, u)v −

∑n
k=1 e

kb̄k.

Consider an operator B̄, similar toB, B̄ ∈ L(∆,Rn) such thatKer(H(λ0, u0, ·))∩
Ker(B̄) = {0}. B̄ is an isomorphism of Ker(H(λ0, u0, ·)) onto R

n and the
decomposition ∆ = Ker(H(λ0, u0, ·)) ⊕ Ker(Bn) holds. To choose B̄ is
equivalent to choose n linear forms χ̄k, k = 1, . . . , n, on ∆ that are linearly
independent on Ker(H(λ0, u0, ·)).

Define the functions ΦG(x, ·) : X → Y and ΦH(x, ·) : ∆ → Σ by

ΦG(x, y) =

[
B(y)
DG(x)y

]
and ΦH(x, z) =

[
B̄(z)
H(λ, u, z)

]
.

We have ΦG(x, y) = DΨ(x)y and

DΦG(x, y)(x, y) =

[
B(y)

D2F (λ, u)((µ,w), (λ, u)) +DG(x)y

]
,

DΦH(x, z)(x, z) =

[
B̄(z)
D(λ,u)(DuF (λ, u)v)(λ, u) +H(λ, u, z)

]
.

We remember that X = R
q+m ×W , Y = R

q+m × Z, f = (f1, . . . , f q) ∈
R
q, f0 = 0 ∈ R

q, x = (f, λ, u), x0 = (f0, λ0, u0) ∈ X.
Related toDF (λ0, u0), we denote g = (g1, . . . , gq), gi = (g1i , . . . , g

q
i ) ∈ R

q,
g0 = 0, gi,0 = 0 ∈ R

q and y = (g, µ,w), y0 = (g0, µ0, w0), yi = (gi, µi, wi),
yi,0 = (gi,0, µi,0, wi,0) ∈ X, i = 1, . . . , q +m.

Related to DuF (λ0, u0), we denote ek = (e1k, . . . , e
n
k) ∈ R

n, ek,0 = 0 ∈
R
n and zk = (ek, vk), zk,0 = (ek,0, vk,0) ∈ ∆, k = 1, . . . , n.
We also denote Γ = X1+q+m×∆n, Σ = (Rq+m×Z)1+q+m×(Rn×Z)n and

s = (x, y1, . . . , yq+m, z1, . . . , zn), s0 = (x0, y1,0, . . . , yq+m,0, z1,0, . . . , zn,0) ∈
Γ.

On the product space Y0 =
∏N

=1 Y, we use the norm ‖ · ‖(1), ‖κ0‖(1) =

‖κ0‖Y =
∑N

=1 ‖κ‖Y , where Y is a normed space with norm ‖ · ‖Y , for

 = 1, . . . , N , and κ0 = (κ1, . . . , κN ) ∈ Y . We write ‖ · ‖ instead of ‖ · ‖E
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or ‖ · ‖L(E,F ) when the spaces E and F are clear. Let IN be the identity

operator on R
N , N ≥ 1. Let IW be the identity operator on W .

δij is the Kronecker delta and δNk = {δk1, . . . , δkk, . . . , δkN}, for 1 ≤ k ≤
N , but {δN1 , . . ., δNN } can be any fixed basis of RN .

For the solution x0 of (3.2), a basis of Ker(DF (λ0, u0)) and a basis of
Ker(DuF (λ0, u0)) can be determined by the solution s0 of (3.8) (where θ0
= θ∗) below.

Together with θ0, let us consider some elements ā1, . . . , āq, b̄1, . . . , b̄n ∈
Z. Having in mind the local Cp - diffeomorphism Ψ at x0, let us introduce
the function S : Γ → Σ ([5]),

(3.7) S(s) =




Ψ(x)

B(yi)− δq+m
i

DG(x)yi
B̄(zk)− δnk
H(λ, u, zk)




or S(s) =




Ψ(x)

ΦG(x, yi)−

[
δq+m
i
0

]

ΦH(x, zk)−

[
δnk
0

]



,

for all i = 1, . . . , q +m, k = 1, . . . , n, with the following convention (in the
left formulation of S(s)) that we use throughout the paper: the second and
the third rows (components) are taken q +m times, for all the values of i,
and the fourth and the fifth rows (components) are taken n times, for all
the values of k. Consider the extended system in s

(3.8) S(s) = 0 .

In (3.8), x is determined by equation Ψ(x) = 0 and the rest of components
of s are determined by the rest of the equations.

Remark 3.1. Let us observe thatDG(f, λ, u)(g, µ,w) =DG(f ′, λ, u)(g, µ,w)
for f 6= f ′.

We have

(3.9) DS(s)s =




B(x)
DG(x)x
B(yi)

D2F (λ, u)((µi, wi), (λ, u)) +DG(x)yi
B̄(zk)
D(λ,u)(DuF (λ, u)vk)(λ, u) +H(λ, u, zk)



,

i = 1, . . . , q +m, k = 1, . . . , n.
Let us define the function Φ : X × Γ → Σ,

(3.10) Φ(x, φ′) =




ΦG(x, y
′)

ΦG(x, y
′
i)

ΦH(x, z′k)


 ,

for all i = 1, . . . , q+m, k = 1, . . . , n, where φ′ = (y′, y′1, . . . , y
′
q+m, z

′
1, . . . , z

′
n).
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We have

(3.11) DΦ(x, φ′)(x, φ
′
) =




B(y′)

D2F (λ, u)((µ′, w′), (λ, u)) +DG(x)y′

B(y′i)

D2F (λ, u)((µ′i, w
′
i), (λ, u)) +DG(x)y′i

B̄(z′k)

D(λ,u)(DuF (λ, u)v
′
k)(λ, u) +H(λ, u, z′k)



,

Remark 3.2. Related to the solution (λ0, u0) of (1.1), to a basis ofKer(DF (λ0, u0))
and to a basis of Ker(DuF (λ0, u0)), let us observe that the following state-
ments i) and ii) must be equivalent:

i) θ0 = θ∗ from (3.1), gi = 0, ek = 0, i = 1, . . . , q +m, k = 1, . . . , n.
ii) There exists θ0 ∈ R

q+m such that f = 0, gi = 0, ek = 0, i = 1, . . . , q+
m, k = 1, . . . , n.

Lemma 3.3. Let s ∈ Γ. The following statements i) and ii) are equivalent:
i) DΨ(x) is an isomorphism of X onto Y , DS(s) is an isomorphism of

Γ onto Σ
ii) ΦG(x, ·) is an isomorphism of X onto Y , ΦH(x, ·) is an isomorphism

of ∆ onto Σ.

Proof. For the implication (i) ⇒ (ii), we mentions the followings remarks:
ΦG(x, ·) = DΨ(x). Let us take the last component of DS(s) and obtain
that ΦH(x, ·) is bijective from the study of the equation in z

ΦH(x, z) = [ς ′, ς ′′]T − [0,D(λ,u)(DuF (λ, u)vn)(λ, u)]
T
,

for (ς ′, ς ′′) ∈ Y and (λ, u) fixed in R
m ×W .

�

Lemma 3.4. Let the assumptions (i) or (ii) of Lemma 3.3 hold. Then,
Φ(x, ·) is an isomorphism of Γ onto Σ.

We study the case q ≥ 1. The results can be transferred, easily, to the
case q = 0. We formulate, now, the main theorem on the extended systems
considered above.

Theorem 3.5. Let F , n ≥ 1, q ≥ 1, ā1, . . . , āq, b̄1, . . . , b̄n ∈ Z\{0} and
G, H defined above. Let B = (χ1, . . . , χq+m) ∈ L(X,Rq+m) and B̄ =
(χ̄1, . . . , χ̄n) ∈ L(∆,Rn), where χ1, . . ., χq+m are (q +m) nonzero linear
forms on X and χ̄1, . . ., χ̄n are n nonzero linear forms on ∆. The following
statements (i) and (ii) are equivalent

(i) Let (1.1). (λ0, u0) is a solution of (1.1). Hypothesis (1.2) holds for
(λ0, u0). Z = Z1 ⊕ Z2 with ā1, . . . , āq linearly independent. Z = Z3 ⊕ Z4

with b̄1, . . . , b̄n linearly independent. x0 is the unique solution of (2.2). B
and B̄ are such that

(3.12) Ker(DG(x0)) ∩Ker(B) = {0} ,

(3.13) Ker(H(λ0, u0, ·)) ∩Ker(B̄) = {0} .

where these kernels are given by (2.3) and (3.6). We have

(3.14) θ0 = B(x0) ∈ R
q+m.
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(ii) Fix θ0 ∈ R
q+m, a basis {δq+m

i }i=1,...,q+m of Rq+m and a basis {δnk }k=1,...,n

of Rn. Consider Ψ and (3.4) together with S and (3.8). We have:
(a) The system (3.8) has the solution s0 = (x0, y1,0, . . . , yq+m,0, z1,0,

. . . , zn,0), where x0 = (f0, λ0, u0), yi,0 = (gi,0, µi,0, wi,0), zk,0 = (ek,0, vk,0),
f0 = 0, gi,0 = 0, ek,0 = 0, i = 1, . . . , q+m, k = 1, . . . , n and the component
x0 of s0 is the solution of (3.4).

(b) DΨ(x0) is an isomorphism of X onto Y ; DS(s0) is an isomorphism
of Γ onto Σ.

Corollary 3.6. Theorem 3.5 remains true if we replace B by a nonlinear
BN in the definition (3.3) of Ψ.

Proof. We first use Lemma 4.1 (i) and (ii) below. Then, we observe that,
under the assumptions of the statement (ii) (b), we obtain that ΦG(x, ·) is
an isomorphism of X onto Y as in the proof of Lemma 3.3.

�

Remark 3.7. Since we have f0 = 0, gi,0 = 0 (i = 1, . . . , q +m) and ek,0 = 0
(k = 1, . . . , n), it follows that the results of Theorem 3.5 do not depend on
the choice of ā1, . . . , āq, b̄1, . . . , b̄n.

Remark 3.8. The results of Theorem 3.5 do not depend on the choice of B
= (χ1, . . . , χq+m) and B̄ = (χ̄1, . . . , χ̄n).

Corollary 3.9. Theorem 3.5 ii) a) is equivalent to the following formula-
tion: s0 is a solution of the overdetermined system

(3.15) S(s) = 0 , f = 0 , gi = 0 , ek = 0 , i = 1, . . . , q +m, k = 1, . . . , n .

Corollary 3.10. In the case q = 0, we replace G by F in the definition
(3.7) of S and (3.15) is reduced to

B(λ, u)− θ0 = 0 ,

F (λ, u) = 0 ,

B(µi, wi)− δmi = 0 ,

DF (λ, u)(µi, wi) = 0 ,(3.16)

B̄(zk)− δnk = 0 ,

H(λ, u, zk) = 0 ,

ek = 0 , k = 1, . . . , n .

Let us remark that the study of a nonlinear Fredholm operator F̂ can
be reduced to the study of the equation (1.1) satisfying hypothesis (1.2).

Let Û be an open set, Û ⊆ W , and F̂ : Û → Z. Let us fix û0 ∈ Û and let

ζ̂0 = F̂ (û0). Then, the equation

(3.17) F̂ (û)− ζ̂0 = 0

has the solution û0 that satisfies the hypothesis:

DF̂ (û0) is a Fredholm operator of W onto Z with index m,(3.18)

dim Ker(DF̂ (û0)) = q +m.

For instance, we can choose û0 such that dim Ker(DF̂ (û0)) = max.
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4. Proof of the main theorem on the extended systems,

Theorem 3.5

4.1. Some properties of the extended systems associated to DuF (λ, u)
and DF (λ, u). Throughout this Section, let us consider the hypotheses of
Theorem 3.5.

Lemma 4.1. The statements (i) and (ii) are equivalent, and the same is
true for (iii) and (iv).

(i) x is the unique solution of (2.2) and θ0 = B(x) ∈ R
q+m.

(ii) Let θ0 be a fixed element in R
q+m. Let us consider Ψ and (3.4). x

is a solution of (3.4). DΨ(x) is an isomorphism of X onto Y .
(iii) Assume (i). DG(x) is a Fredholm operator with index q + m,

Range(DG(x)) = Z and Ker(DG(x)) ∩Ker(B) = {0}.
(iv) Assume (ii). ΦG(x, ·) is an isomorphism of X onto Y .
The lemma remains true if we replace B by a nonlinear BN in the defi-

nition (3.3) of Ψ and we keep B in the definition of ΦG(x, ·).

Proof. These results are obtained by replacing x0 with x in the formulation
of problem (2.4) as it is introduced by Crouzeix and Rappaz in [18].

�

Remark 4.2. We formulate only the results for DF (λ, u) since those for
DuF (λ, u) are similar.

Corollary 4.3. Under the conditions of Lemma 4.1 (iv), we have:

(4.1) dim Ker(DG(x)) = q +m.

(4.2) B is an isomorphism of Ker(DG(x)) onto R
q+m ,

(4.3) χ1, . . . , χq+m are linearly independent on Ker(DG(x)) .

(4.4) X = Ker(DG(x)) ⊕Ker(B) ,

Proof. Let us prove (4.1). Consider the elements (δq+m
i , 0) ∈ Y , i =

1, . . . , q+m. Since ΦG(x, ·) is an isomorphism of X onto Y , it follows that

there exist x1, . . . , xq+m ∈ X such that ΦG(x, xi) = (δq+m
i , 0), so B(xi) =

δq+m
i (otherwise said, χj(xi) = δij) and DG(x)xi = 0. We have xi 6= 0 since
ΦG(x, xi) = (0, 0) otherwise. Suppose that there exist βi ∈ R, i = 1, . . . , q+

m, where βi 6= 0 for at least one i, such that
∑q+m

i=1 βixi = 0. For every j,

j = 1, . . . , q +m, we obtain 0 = χj(0) = χj(
∑q+m

i=1 βixi) =
∑q+m

i=1 βiχj(xi)
= βjχj(xj) = βj . So our supposition is false. Hence {x1, . . . , xq+m} is a lin-
early independent subset of Ker(DG(x)). So dim Ker(DG(x)) ≥ q +m.
Suppose that dim Ker(DG(x)) > q + m. Then, we have another ele-
ment x′, x′ 6= 0, such that x1, . . . , xq+m, x′ are linearly independent and
DG(x)x′ = 0. Let ς ′ = B(x′). Suppose that ς ′ = 0. Since ΦG(x, ·) is
an isomorphism of X onto Y , there results that x′ = 0, so it remains
ς ′ 6= 0. Since ς ′ ∈ R

q+m, there exist βi ∈ R, i = 1, . . . , q + m, such that
ς ′ =

∑q+m
i=1 βiδ

q+m
i . We have (ς ′, 0) =

∑q+m
i=1 βi(δ

q+m
i , 0), βi ∈ R. We ob-

tain ΦG(x, (x
′ −

∑q+m
i=1 βixi)) = (ς ′, 0) −

∑q+m
i=1 βi(δ

q+m
i , 0) = 0. ΦG(x, ·)

is an isomorphism of X onto Y so Ker(ΦG(x, ·) = {0}. It follows that
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x′ −
∑q+m

i=1 βixi = 0 which contradicts the supposition that x1, . . . , xq+m,
x′ are linearly independent. It remains (4.1).

From (4.1), it follows that B is an isomorphism of Ker(DG(x)) onto
R
q+m.
It follows that χ1, . . ., χq+m are linearly independent on Ker(DG(x)).
Let us define X1 = Ker(DG(x)) ⊕ Ker(B). Suppose that there exists

x ∈ X and x /∈ X1. Let (ς ′, ς ′′) = ΦG(x, x) (∗), where ς ′ ∈ R
q+m and ς ′′

∈ Z. Since ΦG(x, ·) is an isomorphism of X onto Y , there results that, for
(ς ′, 0) ∈ Y , there exists x′ ∈ X such that ΦG(x, x

′) = (ς ′, 0) and, for (0, ς ′′)
∈ Y , there exists x′′ ∈ X such that ΦG(x, x

′′) = (0, ς ′′). We obtain that x′

∈ Ker(DG(x)) and x′′ ∈ Ker(B), so ξ = x′ + x′′ ∈ X1, and ΦG(x, ξ) =
(ς ′, ς ′′). So we obtain two solutions x, ξ, x 6= ξ, for (∗). This contradicts
the uniqueness of x in (∗). It remains (4.4).

�

Lemma 4.4. Under the hypotheses and the conclusions of Lemma 4.1 (iii)
or (iv), we have:

(i) y ∈ Ker(DG(x)), y 6= 0, if and only if ∃ θq+m 6= 0 such that B(y) =
θq+m and DG(x)y = 0.

(ii) Let q+m = dim Ker(DG(x)). Then, y1, . . ., yq+m ∈ Ker(DG(x)),

yi 6= 0, i = 1, . . . , q +m, form a basis for Ker(DG(x)) if and only if ∃ θ̂1,

. . ., θ̂q+m, θ̂i 6= 0, i = 1, . . . , q+m, which form a basis for R
q+m, such that

B(yi) = θ̂i and DG(x)yi = 0.

Proof. ΦG(x, ·) is an isomorphism of X onto Y .
�

Lemma 4.5. Replacing ΦG(x, ·) by ΦH(x, ·) in Lemma 4.1 (iii) and (iv),
Corollary 4.3, Lemma 4.4, we obtain similar results related to H(λ, u, ·)
and B̄ instead of DG(x) and B.

4.2. The properties of kernel of DF (λ0, u0) and of DuF (λ0, u0). Let
us replace x by x0 = (0, λ0, u0) and yi by yi,0 = (0, µi,0, wi,0) in Subsection
4.1.

Lemma 4.6. Under the hypotheses of Theorem 3.5 (ii), we have:

(4.5) A basis of Ker(DG(x0)) is {(0, µ1,0, w1,0), . . . , (0, µq+m,0, wq+m,0)} ,

(4.6) Ker(DG(x0)) = {(f, λ, u) ∈ X; f = 0, (λ, u) ∈ Ker(DF (λ0, u0))} ,

(4.7) A basis of Ker(DF (λ0, u0)) is {(µ1,0, w1,0), . . . , (µq+m,0, wq+m,0)} ,

(4.8) dim Ker(DF (λ0, u0)) = q +m,

(4.9) A basis of Ker(H(λ0, u0, ·)) is {(0, v1,0), . . . , (0, vn,0)} ,

(4.10) Ker(H(λ0, u0, ·)) = {(e, v) ∈ ∆; e = 0, v ∈ Ker(DuF (λ0, u0))} ,

(4.11) A basis of Ker(DuF (λ0, u0)) is {v1,0, . . . , vn,0} ,

(4.12) dim Ker(DuF (λ0, u0)) = n ,

χ1, . . ., χq+m are linearly independent on Ker(DG(x0)),
χ̄1, . . ., χ̄n are linearly independent on Ker(H(λ0, u0, ·)).
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Proof. Observe that yi,0 = (0, µi,0, wi,0), where (µi,0, wi,0) ∈Ker(DF (λ0, u0)).
ΦG(x0, ·) is an isomorphism of X onto Y , so we have (4.1) and (4.2).

Hence, we obtain (4.5) and (4.6).
There results that the set {(µ1,0, w1,0), . . ., (µq+m,0, wq+m,0)} is a linearly

independent subset ofKer(DF (λ0, u0)). Suppose that dim Ker(DF (λ0, u0))
> q+m. So there exists (µ′, w′) ∈ Ker(DF (λ0, u0)), (µ

′, w′) 6= 0, such that
{(µ1,0, w1,0), . . ., (µq+m,0, wq+m,0), (µ

′, w′)} is a linearly independent subset
ofKer(DF (λ0, u0)). Hence (0, µ

′, w′) ∈Ker(DG(x0)), so dim Ker(DG(x0)) >
q +m, which contradicts (4.1). It remains that (4.7) and (4.8) are true.

�

4.3. The decompositions of space Z.

Lemma 4.7. Under the hypotheses of Theorem 3.5 (ii), the elements ā1,
. . ., āq form a linearly independent set and the elements b̄1, . . . , b̄n form a
linearly independent set.

Proof. Suppose that ā1, . . ., āq form a linearly dependent set, therefore
there exists f ′ = ((f ′)1, . . . , (f ′)q) ∈ R

q, f ′ 6= 0 and
∑q

i=1(f
′)iāi = 0.

Then, for an element (µ,w) ∈ Ker(DF (λ0, u0)), we have (f ′, µ, w) ∈
Ker(DG(x0)), with f

′ 6= 0. This is a contradiction. �

Lemma 4.8. Under the hypotheses of Theorem 3.5 (ii), we have:

(4.13) Z = Z1 ⊕Range(DF (λ0, u0)) .

(4.14) Z = Z3 ⊕Range(DuF (λ0, u0)) .

Proof. We haveDG(x0)y = DF (λ0, u0)(µ,w)−
∑q

i=1 g
iāi, where−

∑q
i=1 g

iāi ∈
Z1, gi ∈ R, i = 1, . . . , q. So
(4.15)
Range(DG(x0)) = {z ∈ Z; z = z1 + z2, z1 ∈ Z1, z2 ∈ Range(DF (λ0, u0))} .

Let us prove that

(4.16) Z1 ∩Range(DF (λ0, u0)) = {0} .

Suppose that (4.16) is not true, so there exists a ∈ Z, a 6= 0, such that a ∈
Z1 and a ∈ Range(DF (λ0, u0)). So there exits g = (g1, . . . , gq) ∈ R

q and
(λ, u) ∈ R

m×W such that a =
∑q

i=1 g
iāi and a = DF (λ0, u0)(λ, u). It fol-

lows that DF (λ0, u0)(λ, u) −
∑q

i=1 g
iāi = 0, i.e. (g, λ, u) ∈ Ker(DG(x0)).

From (4.6), there results that g = 0, so a = 0. This contradicts the suppo-
sition that a 6= 0, hence (4.16).

From (4.15) and (4.16), it follows that

(4.17) Range(DG(x0)) = Z1 ⊕Range(DF (λ0, u0)) .

Since ΦG(x0, ·) is an isomorphism of X onto Y , it follows follows that
Range(ΦG(x0, ·)) = Y , therefore

(4.18) Range(DG(x0)) = Z .

From (4.18) and (4.17), there results (4.13).
�
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Lemma 4.9. Under the hypotheses of Theorem 3.5 (ii), we have:

(4.19) codim Z2 = q , Z2 is closed in Z ,

(4.20) codim Z4 = n , Z4 is closed in Z .

Proof. From (4.13) and Lemma 4.7, we have codim Z2 = dim Z1 = q. We
obtain (4.19).

�

4.4. Properties of the Fréchet derivatives and the consequences
on the qualitative aspects.

Lemma 4.10. Under the hypotheses of Theorem 3.5 (ii), we have:
(a) DF (λ0, u0) is a Fredholm operator of Rm ×W onto Z with index m;
(b) DuF (λ0, u0) is a Fredholm operator of W onto Z with index zero.

Proof. The proof follows from (4.8), (4.19) and (4.12), (4.20).
�

4.5. The proof of implication (i) ⇒ (ii) of Theorem 3.5. From the
implications (i) ⇒ (ii) and (iii) ⇒ (iv) of Lemma 4.1 and from Remark
4.2, we deduce that x0 is a solution of (3.4), ΦG(x0, ·) is an isomorphism
of X onto Y and ΦH(x0, ·) is an isomorphism of ∆ onto Σ. From (3.8), we

have the equations ΦG(x0, yi,0)− [δq+m
i , 0]T = 0, ΦH(x0, zk,0)− [δnk , 0]

T = 0.
From (3.12), (3.13), (2.3) and (3.6), we deduce gi,0 = 0, ek,0 = 0. The proof
is complete by applying Lemma 3.3.

4.6. The proof of implication (ii) ⇒ (i) of Theorem 3.5. The proof
follows from the implications (ii) ⇒ (i) and (iv) ⇒ (iii) of Lemma 4.1 where
x is x0, from Remark 4.2, from Corollary 4.3 with x is x0, from Lemma 4.4
to Lemma 4.10.

5. The main result on the existence of a bifurcation problem

5.1. Introduction. We formulate some sufficient conditions for the exis-
tence of an equation which has a bifurcation point that satisfies the hy-
pothesis (1.2). We also obtain the existence of a bifurcation problem for
which a given problem is a perturbation.

In the sequel, in Sections 5 - 10, we keep the notations from the preceding
sections, but we do not consider the equations they define. Equations
(1.1), (2.2) and (3.8), hypothesis (1.2) and Theorem 3.5 will be related to
a function S0 obtained as a perturbation of S. Let us fix these:

Let W and Z be real Banach spaces. They are both infinite-dimensional
spaces or they are both finite-dimensional spaces with dim W = dim Z.
Let m ≥ 1, p ≥ 2. Let F : Rm ×W → Z be a nonlinear function of class
Cp. Let q ≥ 1, n ≥ 1, ā1, . . . , āq, b̄1, . . . , b̄n ∈ Z\{0}. Let us consider G,
H defined in (2.1), (3.5) and B ∈ L(X,Rq+m), B̄ ∈ L(∆,Rn). Let us take

some points s̃0, φ̃
′
0 ∈ Γ. Let S and Φ be the functions defined in (3.7), for

some θ0 ∈ R
q+m, and (3.10), respectively.

Let us construct the function S from (3.7), assuming the existence of the
elements that allow this construction. We seek a function S0 of the same
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form (3.7) such that the equation S0(s) = 0 has a solution s0 and both S0
and s0 satisfy the statement (ii) of Theorem 3.5.

We started with the following analysis. For the function S from (3.7),

consider a point s̃0 of the form of s0, that is, f̃0 = 0, g̃i,0 = 0, ẽk,0 = 0.
Assume that DS(s̃0) is an isomorphism of Γ onto Σ. Under an additional
hypothesis, according to Theorem 3.1 [18], Theorem IV.3.1 [29] and The-
orem I.2.1 [14], equation S(s) = 0 (that is, (3.8)) has a solution s in a
neighborhood of s̃0. We are interested in the case that the solution s is of
the form of s0 from Theorem 3.5 (ii) (a). Let ˜̺0 = S(s̃0). Applying the

inverse function theorem, S is a local Cp-diffeomorphism at s̃0 from Ũ onto

Ṽ, where Ũ is a neighborhood of s̃0 and Ṽ is a neighborhood of ˜̺0. Let us
take Φ defined in (3.10). Φ(x, ·) is an isomorphism of Γ onto Σ for x from

some neighborhood of x̃0. For each s ∈ Ũ, we can consider the equation in
φ′ ∈ Γ,

(5.1) S(s)− Φ(x, φ′) = 0 .

Let us consider now this equation for (s, φ′) ∈ Ũ× Γ. Let us observe that
the form of the left hand side of (5.1) can be compared, especially the rows
that correspond to ΦG(x, yi) and ΦH(x, zk), with the form of the function
S(s) defined in (3.7). We then ask if there exists a solution (s, φ′) of (5.1)
which allows us to find the function S0 and the solution s0.

We obtain the function S0 as a perturbation of S. The main result is in
Theorem 5.4.

The idea of the proof came when we read the proofs of Theorem 6C.1
and Theorem 6D.1, from [21]. Here, some mappings G[21] and g[21] are
constructed and, under adequate hypotheses, the existence of a solution of
the equation g[21](x) ∈ G[21](x) is proved (using the contraction mapping
principle for set-valued mappings, Theorem 5E.2 [21]). For the formulation
of the results and of the proofs, we also take into account Graves’ theorem
5D.2 [21] together with one of its consequences and the techniques from the
proofs of Theorem 3.1 [18], Theorem IV.3.1 [29] and Theorem I.2.1 [14].

The analysis of (5.1) and the [21] method mentioned above lead us to the
construction of the mappings G(s, φ′) and Q(s, φ′) from (5.7) and (5.8). The
aim of this construction is that equation Q(s, φ′) ∈ G(s, φ′) and a solution
(s̄, φ̄′) of this one generate a function S0 of the form (3.7) and a solution
s0, with f0 = 0, gi,0 = 0, ek,0 = 0, i = 1, . . . , q + m, k = 1, . . . , n, of
the equation S0(s) = 0. S0 and s0 satisfy the statements (a) and (b) of
Theorem 3.5 (ii).

We obtain

(5.2) S(s0)− Φ(x0, φ
′
0) ∋ 0 ,

that is, (s0, φ
′
0) is a solution of the equation

(5.3) S(s)−Φ(x, φ′) ∋ 0 .

This is equation (5.26). Relation (5.2) allows us to get S0 and s0. Corol-
lary 5.10 tells us that equation S0(s) = 0 provides a bifurcation problem
F (λ, u)− ̺ = 0 for which the given problem (1.1) is a perturbation.
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5.2. The definition of the mappings G(s, φ′) and Q(s, φ′). - The points

s̃0 and φ̃′0
We denote s̃0 = (x̃0, ỹi,0, z̃k,0) and φ̃

′
0 = (ỹ′0, ỹ

′
i,0, z̃

′
k,0) ∈ Γ.

s̃0 = (x̃0, ỹ1,0, . . . , ỹq+m,0, z̃1,0, . . . , z̃n,0), φ̃
′
0 = (ỹ′0, ỹ

′
1,0, . . . , ỹ

′
q+m,0, z̃

′
1,0, . . . , z̃

′
n,0).

x̃0 = (f̃0, λ̃0, ũ0), ỹi,0 = (g̃i,0, µ̃i,0, w̃i,0), z̃k,0 = (ẽk,0, ṽk,0),
ỹ′0 = (g̃′0, µ̃

′
0, w̃

′
0), ỹ

′
i,0 = (g̃′i,0, µ̃

′
i,0, w̃

′
i,0), z̃

′
k,0 = (ẽ′k,0, ṽ

′
k,0)

and f̃0 = 0, g̃i,0 = 0, ẽk,0 = 0, ỹ′0 = 0, φ̃′0 = 0, i = 1, . . . , q+m, k = 1, . . . , n.

Let us take the value θ̃0 = B(x̃0) ∈ R
q+m for θ0 in the definition (3.3) of

Ψ and in the definition (3.7) of S. Let Φ be defined by (3.10).
Let us denote

ξ(g′, g′i, e
′
k) = φ̃′0 + ((g′, 0, 0), (g′1 , 0, 0), . . . , (g

′
q+m, 0, 0), (e

′
1 , 0, 0), . . . , (e

′
n, 0, 0)),

that is, ξ(g′, g′i, e
′
k) is φ̃

′
0 where g̃′0, g̃

′
i,0, ẽ

′
k,0 are replaced by g̃′0+ g

′, g̃′i,0+ g
′
i,

ẽ′k,0 + e′k respectively. We have

(5.4) Φ(x, ξ(g′, g′i, e
′
k)) =




B(g′, 0, 0)
−
∑q

ı=1(g
′)ıāı

B(g′i, 0, 0)
−
∑q

ℓ=1(g
′
i)
ℓāℓ

B̄(e′k, 0)
−
∑n

=1(e
′
k)

b̄



.

- The mappings G and Q

Let us fix a real α, 0 < α < 1, α 6= 1
2 .

Let us define

(5.5) HS(s) = S(s̃0) +DS(s̃0)(s− s̃0) ,

(5.6) HΦ(x, φ
′) = Φ(x̃0, φ̃

′
0) +DΦ(x̃0, φ̃

′
0)((x, φ

′)− (x̃0, φ̃
′
0)) .

HS is a strict first-order approximation of S at s̃0.

HΦ is a strict first-order approximation of Φ at (x̃0, φ̃
′
0).

G : Γ× Γ → Σ,

G(s, φ′) =
1

2
S(s)−

1

2
Φ(x, φ′) +

1

2
HS(s)−

1

2
HΦ(x, φ

′)(5.7)

−(1− α)Φ(x̃0, ξ(f, gi, ek)) + (1− α)Φ(x̃0, ξ(g
′, g′i, e

′
k)) .

Q : Γ× Γ → Σ,

Q(s, φ′) = −
1

2
S(s) +

1

2
Φ(x, φ′) +

1

2
HS(s)−

1

2
HΦ(x, φ

′)(5.8)

+αΦ(x̃0, ξ(f, gi, ek))− αΦ(x̃0, ξ(g
′, g′i, e

′
k)) .

Observe that we have

Φ(x, ξ(f, gi, ek))−Φ(x, ξ(g′, g′i, e
′
k)) = Φ(x̃0, ξ(f, gi, ek))−Φ(x̃0, ξ(g

′, g′i, e
′
k)) ,

(5.9) G(s̃0, φ̃
′
0) = S(s̃0) , Q(s̃0, φ̃

′
0) = 0 .

Lemma 5.1. G is surjective.
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Proof. Using (5.7) and (5.16), we have

G(s̃0, φ
′) = S(s̃0)− Φ(x̃0, φ

′) + (1− α)Φ(x̃0, ξ(g
′, g′i, e

′
k)) .

From Lemma 3.4, we have that Φ(x̃0, ·) is an isomorphism of Γ onto Σ.
Hence ∀ ζ ∈ Σ, ∃ (s̃0, φ

′) ∈ Γ×Γ such that G(s̃0, φ
′) = ζ and G is surjective.

�

We use the surjectivity of G in the Proof of Theorem 5.4, Subsection 5.5.
We mention that we can skip this condition since we work with set-valued
mappings; for details for the methodology, see [21].

- The operator A = A

(5.10) A = DG(s̃0, φ̃
′
0) .

We write A(α) when it is necessary to consider α as a variable.

DG(s, φ′)(s, φ
′
) =

1

2
DS(s)s−

1

2
DΦ(x, φ′)(x, φ

′
)−

1

2
DΦ(x̃0, φ̃

′
0)(x, φ

′
)(5.11)

+
1

2
DS(s̃0)s− (1− α)Φ(x̃0, ξ(f , gi, ek)) + (1− α)Φ(x̃0, ξ(g

′, g′i, e
′
k)) .

A(s, y′) = DS(s̃0)s−DΦ(x̃0, φ̃
′
0)(x, φ

′
)(5.12)

−(1− α)Φ(x̃0, ξ(f , gi, ek)) + (1− α)Φ(x̃0, ξ(g
′, g′i, e

′
k)) ,

where

(5.13) DS(s̃0)s =




B(x)
DG(x̃0)x
B(yi)

D2F (λ̃0, ũ0)((µ̃i,0, w̃i,0), (λ, u)) +DG(x̃0)yi
B̄(zk)

D(λ,u)(DuF (λ̃0, ũ0)ṽk,0)(λ, u) +H(λ̃0, ũ0, zk)



,

and
(5.14)

DΦ(x̃0, φ̃
′
0)(x, φ

′
) =




B(y′)

D2F (λ̃0, ũ0)((µ̃
′
0, w̃

′
0), (λ, u)) +DG(x̃0)y

′

B(y′i)

D2F (λ̃0, ũ0)((µ̃
′
i,0, w̃

′
i,0), (λ, u)) +DG(x̃0)y

′
i

B̄(z′k)

D(λ,u)(DuF (λ̃0, ũ0)ṽ
′
k,0)(λ, u) +H(λ̃0, ũ0, z

′
k)




,

for all i = 1, . . . , q+m, k = 1, . . . , n. We haveD2F (λ̃0, ũ0)((µ̃
′
0, w̃

′
0), (λ, u)) =

0, D2F (λ̃0, ũ0)((µ̃
′
i,0, w̃

′
i,0), (λ, u)) = 0, D(λ,u)(DuF (λ̃0, ũ0)ṽ

′
k,0)(λ, u) = 0.

- Condition A = A is surjective By fixing y′, the condition is verified
immediately.

- The definitions of regA, κ and γ
regA is defined as in (2.7). We take κ= regA. Define γΨ = γ̃(Ψ, x̃0,X, Y ),

γ = γS = γ̃(S, s̃0,Γ,Σ), γS0
= γ̃(S0, s̃0,Γ,Σ), where we use (2.11). Observe

that γ do not depend on α.
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Lemma 5.2.

(5.15) κ ≤ γ .

Proof. We have φ̃′0 = 0. (5.14) gives

(5.16) Φ(x̃0, φ
′
) = DΦ(x̃0, φ̃

′
0)(x, φ

′
) ,

and we replace DΦ(x̃0, φ̃
′
0)(x, φ

′
) by Φ(x̃0, φ

′
) in the expression (5.12) of A.

We denote

(5.17) DSα(s̃0)s = DS(s̃0)s− (1− α)Φ(x̃0, ξ(f , gi, ek)) ,

(5.18) Φα(x̃0, φ
′
) = Φ(x̃0, φ

′
)− (1− α)Φ(x̃0, ξ(g

′, g′i, e
′
k)) .

Hence

(5.19) A(s, y′) = DSα(s̃0)s− Φα(x̃0, φ
′
) .

For y ∈ Σ, we have the sets Ey, E
0
y such that

Ey =A−1(y) = (DSα(s̃0)−Φα(x̃0, ·))
−1(y) = {(s, φ

′
)|DSα(s̃0)s−Φα(x̃0, φ

′
) =

y} ⊇ {(s, φ
′
)|DSα(s̃0)s = y, φ

′
= 0} = {(s, φ

′
)|s = DSα(s̃0)

−1(y), φ
′
= 0}

= E0
y.

(5.20) regA = sup
‖y‖≤1

d(0,A−1(y)) = sup
‖y‖≤1

d(0,Ey)

≤ sup
‖y‖≤1

d(0,E0
y) = sup

‖y‖≤1
d(0, {s|s = DSα(s̃0)

−1(y)})

= sup
‖y‖≤1

‖DSα(s̃0)
−1(y)‖ = ‖DS(s̃0)

−1‖L(Σ,Γ) .

�

- The definition of µ = L(ε)

We denote G̃3(s, φ
′) = 1

2S(s)−
1
2Φ(x, φ

′).

DG̃3(s, φ
′)(s, φ

′
) = 1

2DS(s)s−
1
2DΦ(x, φ′)(x, φ

′
)

ψ1((s, φ
′), (s, φ

′
))

=
‖G̃3(s, φ

′)− G̃3(s, φ
′
)−DG̃3(s̃0, φ̃

′
0)((s, φ

′)− (s, φ
′
))‖

=
‖
∫ 1
0 [DG̃3((s, φ

′
)+ t((s, φ′)− (s, φ

′
)))−DG̃3(s̃0, φ̃

′
0)] · ((s, φ

′)− (s, φ
′
))dt‖,

where we use some standard techniques from [14, 18, 29, 49].

ψ2((s, φ
′), (s, φ

′
)) =∑q

ı=1 |f
ı−f

ı
|‖āı‖ +

∑q+m
i=1

∑q
ℓ=1 |g

ℓ
i−g

ℓ
i |‖āℓ‖ +

∑n
k=1

∑n
=1 |e


k−e


k|‖b̄‖

+
∑q

ı=1 |(g
′)ı−(g′)ı|‖āı‖+

∑q+m
i=1

∑q
ℓ=1 |(g

′
i)
ℓ−(g′i)

ℓ|‖āℓ‖+
∑n

k=1

∑n
=1 |(e

′
k)

−

(e′k)
|‖b̄‖.

Take µ = L(ε) = L̃(G, (s̃0, φ̃
′
0), (s, φ

′), ε,Γ × Γ,Σ), where we use (2.12).

We obtain µ = L(ε) = L̃(G̃3, (s̃0, φ̃
′
0), (s, φ

′), ε,Γ× Γ,Σ).

Define LΨ(ε) = L̃(Ψ, x̃0, x, ε,X, Y ), LS(ε) = L̃(S, s̃0, s, ε,Γ,Σ) and LS0
(ε)

= L̃(S0, s̃0, s, ε,Γ,Σ). We have

(5.21) LS(ε) = sup
(s,φ′)∈Bε(s̃0,φ̃′

0
), φ′=0

‖DS(s̃0)−DS(s)‖L(Γ,Σ) .
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Lemma 5.3.

(5.22)
1

2
LS(ε) ≤ L(ε) .

Proof. See Appendix A. Let us use (A.1). We have φ̃′0 = 0. Take φ′ = 0.
We have

1

2
‖DS(s̃0)−DS(s)‖

= sup
‖(s,φ

′

)‖≤1, φ
′

=0

‖DG(s̃0, φ̃
′
0)(s, φ

′
)−DG(s, 0)(s, φ

′
)‖

≤ sup
‖(s,φ

′

)‖≤1

‖DG(s̃0, φ̃
′
0)(s, φ

′
)−DG(s, 0)(s, φ

′
)‖

= ‖DG(s̃0, φ̃
′
0)−DG(s, 0)‖ .

1

2
LS(ε) ≤ sup

(s,φ′)∈Bε(s̃0,φ̃′

0
), φ′=0

‖DG(s̃0, φ̃
′
0)−DG(s, 0)‖L(Γ×Γ,Σ)

≤ sup
(s,φ′)∈Bε(s̃0,φ̃′

0
)

‖DG(s̃0, φ̃
′
0)−DG(s, φ′)‖L(Γ×Γ,Σ) = µ = L(ε) .

�

5.3. The theorem on the existence of a bifurcation problem.

Theorem 5.4. Let W and Z be real Banach spaces. They are both infinite-
dimensional spaces or they are both finite-dimensional spaces with dim W
= dim Z. Let m ≥ 1, p ≥ 2. Let F : R

m × W → Z be a nonlinear
function of class Cp. Let q ≥ 1, n ≥ 1, ā1, . . . , āq, b̄1, . . . , b̄n ∈ Z\{0}.
Let us consider G, H defined in (2.1), (3.5) and B ∈ L(X,Rq+m), B̄ ∈

L(∆,Rn). Let us take the points s̃0 and φ̃′0 introduced above. Let S and Φ

be the functions defined in (3.7), where θ0 is replaced by θ̃0 = B(x̃0), and
(3.10), respectively. Let us consider the above definitions (5.7) and (5.8)
of G and Q and the related entities.

Assume that for some ε and α, ε > 0 and 0 < α < 1, α 6= 1
2 , α arbitrarily

small, we have

(5.23) 2κL(ε) + 2καâ < 1 ,

where κ ≥ regA and â = max{ ‖ā1‖, . . . , ‖āq‖, ‖b̄1‖, . . . , ‖b̄n‖ }.

Let c = κ−1 − L(ε) and M > ‖DG(s̃0, φ̃
′
0)‖L(Γ×Γ,Σ).

Then, there exist positive constants a∗ and b∗ = ca∗ such that

(5.24) d((s, φ′),G−1(ζ)) ≤
κ

1− κµ
‖ζ − G(s, φ′)‖ ,

for ((s, φ′), ζ) ∈ Ba∗(s̃0, φ̃
′
0) × Bb∗(G(s̃0, φ̃

′
0)).

Let δ = ‖G(s̃0, φ̃
′
0)‖Σ = ‖S(s̃0)‖Σ. Assume

(5.25) δ <
1

2
ca∗ .

Assume that DΨ(x̃0) is an isomorphism of X onto Y and DS(s̃0) is an
isomorphism of Γ onto Σ.
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Then, there exists a solution (ŝ0, φ̂
′
0) ∈ Ba∗(s̃0, φ̃

′
0) of the equation

(5.26) S(s)−Φ(x, φ′) ∋ 0 ,

where ŝ0 = (x̂0, ŷ1,0, . . . , ŷq+m,0, ẑ1,0, . . . , ẑn,0),

x̂0 = (f̂0, λ̂0, û0), ŷi,0 = (ĝi,0, µ̂i,0, ŵi,0), ẑk,0 = (êk,0, v̂k,0),

f̂0 = 0, ĝi,0 = 0, êk,0 = 0, i = 1, . . . , q +m, k = 1, . . . , n.

φ̂′0 = (ŷ′0, ŷ
′
1,0, . . . , ŷ

′
q+m,0, ẑ

′
1,0, . . . , ẑ

′
n,0),

ŷ′0 = (ĝ′0, µ̂
′
0, ŵ

′
0), ŷ

′
i,0 = (ĝ′i,0, µ̂

′
i,0, ŵ

′
i,0), ẑ

′
k,0 = (ê′k,0, v̂

′
k,0)

and ĝ′0 = 0, ĝ′i,0 = 0, ê′k,0 = 0, i = 1, . . . , q +m, k = 1, . . . , n.

Let s0 = (x0, y1,0, . . . , yq+m,0, z1,0, . . . , zn,0) with (f0, λ0, u0) = x0 = x̂0,
yi,0 = ŷi,0 − ŷ′i,0, zk,0 = ẑk,0 − ẑ′k,0 and i = 1, . . . , q +m, k = 1, . . . , n. s0 ∈

Ba∗(s̃0).
Let us fix x̂0 and ŷ′0 (whose existence is demonstrated) in ΦG(x, y

′) from

the first line of Φ(x, φ′) in (5.26). Let us take θ0 = θ̃0 + B(ŷ′0) and ̺ =

DF (λ̂0, û0)(µ̂
′
0, ŵ

′
0) and consider them as constants. Let us denote by S0

the function S from (3.7) formulated for this θ0 and for F (λ, u)−̺ instead
of F (λ, u).

Then, s0 is the solution of the equation

(5.27) S0(s) = 0 .

Equation (5.27) is of the form of equation (3.8).
Then, the component (λ0, u0) of s0 is a solution of the equation

(5.28) F (λ, u) − ̺ = 0 ,

(λ0, u0) ∈ Ba∗(λ̃0, ũ0).
Let us replace κ by γ in (5.23) and, instead of (5.23), consider

(5.29) 2γL(ε) + 2καâ < 1 .

Then, s0 is the unique solution of the equation (5.27) in Ba(s̃0) for every
a ≥ a∗ that satisfies γLS(a) < 1. The system (5.27) and its solution s0
verify the assertions (a) and (b) of the statement (ii) of Theorem 3.5.

Then, the component (λ0, u0) of s0 is the unique solution of the equation
(5.28) that satisfies hypothesis (1.2) and the rest of the hypotheses of the

statement (i) of Theorem 3.5 in Ba(λ̃0, ũ0) for every a ≥ a∗ that satisfies
γLS(a) < 1. The solution (λ0, u0) is a bifurcation point of problem (5.28).

We have

(5.30) ‖̺‖ ≤
a∗

2γ
+ ‖S(s̃0)‖ < (

1

γ
−

1

2
L(ε))a∗ ,

(5.31) ‖̺‖ ≤ (‖DF (λ̃0, ũ0)‖+ LF (a
∗))a∗ ,

(5.32) ‖s0 − r‖Γ ≤ [γ/(1− γLS(a)] · ‖S0(r)‖Σ ,∀r ∈ Ba(s̃0) .

The proof of Theorem 5.4 is given after some remarks.
The following conditions (5.33) and (5.34) do not depend on α.

Corollary 5.5. (i) Let α0 be an arbitrarily fixed positive number, 0 < α0 <
0.1. Let us take

κ = sup
0<α≤α0

regA(α) , M > sup
0<α≤α0

‖DG(s̃0, ỹ
′
0)‖ = sup

0<α≤α0

‖A(α)‖ .
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Instead of (5.23), we can assume that for some ε, ε > 0, we have

(5.33) 2κL(ε) < 1 .

(ii) Instead of (5.23), we can assume that for some ε, ε > 0, we have

(5.34) 2γL(ε) < 1 .

Proof. Let us observe that L(ε) do not depend on α. We have (5.33). There
exists 0 < α < α0 (0 < α < 1, α 6= 1

2), such that (5.23) holds.
�

5.4. Preliminaries related to the metric regularity property. We
now formulate some estimates of the radii of some balls included in the
neighborhoods U and V from Corollary 2.5 related to the metric regularity
property of the function f at x̄ for ȳ.

Lemma 5.6. Let us retain the hypotheses of Graves’ theorem 2.4.
Let ã be such that 0 < ã < ε and intBã(x̄) is the maximal (for the

inclusion) open ball, with center x̄ and radius ã, contained in U .
Let a be fixed close to ã, 0 < a < ã.
Let us fix b, 0 < b ≤ cτ .
Let us take a∗ = min{a, bc} and b∗ = ca∗. We denote U∗ = Ba∗(x̄), V

∗

= Bb∗(f(x̄)).
The relation (2.9) holds for all (x, y) ∈ U∗ × V ∗.

Proof. From the definition of U , we deduce that U ⊂ Bε(x̄), so 0 < ã < ε.
From the definition of V , there results that we can choose V of the form

Bcτ (f(x̄)), intBcτ (f(x)) or Bb(f(x)), with 0 < b < cτ .
The value b

c is taken related to the conclusion of Graves’ theorem (Theo-
rem 2.4), to the relation (2.10) in Theorem 2.6 and to linear openess ([21]).

For any U∗ and V ∗ such that U∗ ⊆ U , V ∗ ⊆ V , we have (2.9) for (x, y)
∈ U∗ × V ∗.

�

Consider L(ε) as in [14, 18, 29] but with another radius.

Lemma 5.7. Let us retain the hypotheses of Graves’ theorem 2.4. Take µ

= L(ε) = L̃(f, x̄, x, ε,X, Y ) (where we use (2.12)). Let M > ‖Df(x̄)‖. Let
us consider the neighborhoods U and V from Corollary 2.5.

(i) Relation (2.9) is satisfied for any (x, y) ∈ Ba(x̄)× V , where Ba(x̄) ⊂
U and V ⊇ Bb(ȳ), with a ≥ a∗ > a∗h and b ≥ b∗ > b∗h. 0 < a < ε. τ , a∗,
b∗ are given by

(5.35) τ <
L(ε) +M

L(ε) +M + c
· ε ,

(We can impose even ≤ because of the increase with M .)

(5.36) a∗U =
cτ

L(ε) +M
, b∗V = cτ ,

(5.37) a∗ = min{a∗U ,
b∗V
c
} , b∗ = ca∗ .
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(ii) Assume that 2κL(ε) < 1. Relation (2.9) holds for any (x, y) ∈
Ba∗

h
(x̄)× V , where Ba∗

h
(x̄) ⊂ U and V = Bb∗

h
(ȳ). τ , a∗h, b

∗
h are given by

(5.38) τ <
1 + 2κM

2 + 2κM
· ε ,

(5.39) a∗U =
τ

1 + 2κM
, b∗V =

τ

2κ
< cτ ,

(5.40) a∗h = min{a∗U , κb
∗
V } , b∗h = ca∗h .

Proof. Proof of (i)
We consider b∗V from (5.36) and V = Bb∗

V
(ȳ). We seek a∗U such that

‖f(x) − f(x̄)‖ ≤ ‖f(x) − f(x̄) − Df(x̄)(x − x̄)‖ + ‖Df(x̄)(x − x̄)‖ ≤
L(ε)‖x − x̄‖ + ‖Df(x̄)‖‖x − x̄‖ ≤ (L(ε) + ‖Df(x̄)‖)a∗U ≤ (L(ε) +M)a∗U
and we impose the condition for a∗U

(5.41) (L(ε) +M)a∗U ≤ cτ .

We take a∗U from (5.36). We have Ba∗
U
(x̄) ⊂ U .

We must verify the condition Bτ (x) ⊂ Bε(x̄) for all x ∈ U .
If U = Ba∗

U
(x̄), we have: let x′ ∈ Bτ (x). ‖x

′ − x̄‖ ≤ ‖x′ − x‖ + ‖x− x̄‖
≤ τ + a∗U = τ + cτ

L(ε)+M < ε. So the condition (5.35) for τ .

Instead of a∗U and Ba∗
U
(x̄), let us consider the value

b∗V
c and B b∗

V
c

(x̄) related

to the conclusion of Graves’ theorem (Theorem 2.4), to the relation (2.10)
in Theorem 2.6 and to linear openess ([21]).

We take a∗ from (5.37). We have Ba∗(x̄) ⊂ U .

If a∗ =
b∗
V

c , it is not necessary to modify τ from (5.35).
From the definition of U , we deduce that U ⊂ Bε(x̄), so 0 < a∗ < ε.
Linear openness gives us Bb∗(ȳ) = [f(x̄)+ca∗intB]∩V (see also Theorem

2.6). Hence (5.37) for b∗.
Proof of (ii)
We have 2κL(ε) < 1, so

(5.42) c =
1− κL(ε)

κ
>

1− 1
2

κ
=

1

2κ
.

or 1
c < 2κ. We also have κ < 1

c ([21]).
We also consider the following estimates:
Using (5.36), we take b∗V from (5.39). We take V = Bb∗

V
(ȳ).

The relation (5.41) gives
‖f(x) − f(x̄)‖ ≤ ‖f(x) − f(x̄) − Df(x̄)(x − x̄)‖ + ‖Df(x̄)(x − x̄)‖ ≤

L(ε)‖x − x̄‖ + ‖Df(x̄)‖‖x − x̄‖ ≤ (L(ε) + ‖Df(x̄)‖)a∗U ≤ (L(ε) +M)a∗U
and we impose the condition for a∗U

(5.43) (L(ε) +M)a∗U < (
1

2κ
+M)a∗U ≤

τ

2κ
< cτ .

We take a∗U from (5.39). We have Ba∗
U
(x̄) ⊂ U .

If U = Ba∗
U
(x̄), we have: using (5.39), we obtain τ from (5.38).

We have κ < 1
c . In order to avoid the dependence on the index ”h” in

Theorem 7.7, we take κ instead of 1
c . More precisely, we take κb∗V instead

of
b∗
V

c . κb∗V do not depend on ”h”. κb∗V <
b∗
V

c .
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We take a∗h from (5.40). We have Ba∗
h
(x̄) ⊂ U .

If a∗h = κb∗V , it is not necessary to modify τ from (5.38).
Linear openness ([21]) gives us Bb∗

h
(ȳ) = [f(x̄) + ca∗hintB] ∩ V (see also

Theorem 2.6). Hence (5.40) for b∗h.
�

Lemma 5.8. In Theorems 5.4, 7.6 and 7.7, we can consider τ , a∗ and
b∗ from the general case as in Lemmas 5.6 and 5.7 by replacing f by G.
In Theorem 7.7, as in Lemma 5.7 (ii), ε, τ and a∗h do not depend on the
parameter h (they are constants).

5.5. Proof of Theorem 5.4. Let us observe first that (5.23) is equivalent
to

(5.44)
1

c
(
1

2
L(ε) + αâ) <

1

2
.

Since G is surjective (see Lemma 5.1), G−1 is a set-valued mapping, so
we can apply the framework of Subsection 2.2.

- (i) The verification of the assumptions of Graves’ theorem 2.4
In Theorem 2.4, in Corollary 2.5, in Lemma 5.6 and in Lemma 5.7, let

us replace X, Y , f , x, x̄, y, ȳ = f(x̄), ε, A, κ, µ, c, τ , U , V , d(·, ·), ‖ · ‖

by Γ× Γ, Σ, G, (s, φ′), (s̃0, φ̃
′
0), ζ, ζ̃0 = G(s̃0, φ̃

′
0), ε, A, κ, L(ε), c, τ , U , V ,

d(·, ·), ‖ · ‖, respectively.
Here and in Lemmas 5.6, 5.7, we use the same notations M , τ , a∗, b∗.
- Condition A = A is surjective is verified above.
- Condition κ ≥ reg A is verified since we take κ = regA.

- Let us introduce µ = L(ε) = L̃(G, (s̃0, φ̃
′
0), (s, φ

′), ε,Γ × Γ,Σ).
- Condition κµ < 1 results from (5.23).
- Let us verify condition (2.8) of Graves’ theorem 2.4.
We have
‖G(s, φ′)− G(s, φ

′
)−A((s, φ′)− (s, φ

′
))‖ = ψ1((s, φ

′), (s, φ
′
)).

As in the proofs of Theorem 3.1 [18], Theorem IV.3.1 [29] and Theorem
I.2.1 [14], we obtain:

G(s, φ′)− G(s, φ
′
)−A((s, φ′)− (s, φ

′
))

=∫ 1
0 [DG((s, φ

′
) + t((s, φ′)− (s, φ

′
)))−DG(s̃0, φ̃

′
0)] · ((s, φ

′)− (s, φ
′
))dt

Relation (5.45) holds with µ = L(ε) = L̃(G, (s̃0, φ̃
′
0), (s, φ

′), ε,Γ × Γ,Σ).

(5.45) ‖G(s, φ′)− G(s, φ
′
)−A((s, φ′)− (s, φ

′
))‖ ≤ L(ε)‖(s, φ′)− (s, φ

′
)‖ .

(G is strictly differentiable at (s̃0, φ̃
′
0) (see definition, pages 31 and 275,

[21])).
Then, the conclusions and the consequences of Graves’ theorem 2.4 hold

for G and (s̃0, φ̃
′
0).

- (ii) The formulation of the consequence of Graves’ theorem,
Corollary 2.5

Let us take a positive τ < ε. From Corollary 2.5 for G, there results

that there exist a neighborhood U of (s̃0, φ̃
′
0) and a neighborhood V of

G(s̃0, φ̃
′
0) such that (i) Bτ (s, φ

′) ⊂ Bε(s̃0, φ̃
′
0) for all (s, φ

′) ∈ U and ‖G(s, φ′)

− G(s̃0, φ̃
′
0)‖ < cτ for (s, φ′) ∈ U , (ii) ‖ζ − G(s, φ′)‖ ≤ cτ for ζ ∈ V , where



28 CĂTĂLIN - LIVIU BICHIR

(s, φ′) ∈ U , (iii) G is the metrically regular at (s̃0, φ̃
′
0) for G(s̃0, φ̃

′
0) with

constant κ
1−κµ , that is,

(5.46) d((s, φ′),G−1(ζ)) ≤
κ

1− κµ
‖ζ − G(s, φ′)‖ ,

for ((s, φ′), ζ) ∈ U × V .
We can consider τ , a∗ and b∗ from the general case as in Lemma 5.6

or from the formulas in Lemma 5.7 for G. Hence, we have (5.46). The
following discussion is true for every choice.

In order to fix a choice, we use Lemma 5.7 (i). Ba∗(s̃0, φ̃
′
0)⊂ U , Bb∗(G(s̃0, φ̃

′
0))

⊆ V .
- (iii) The imposition of some conditions

In order to have Q(s, φ′) ∈ Bb∗(G(s̃0, φ̃
′
0)), for (s, φ′) ∈ Ba∗(s̃0, φ̃

′
0), we

impose the following two conditions (5.47) and (5.49).

We first assure that 0 ∈ Bb∗(G(s̃0, φ̃
′
0)) and ‖0 − G(s̃0, φ̃

′
0)‖ <

b∗

2 by im-
posing

(5.47) δ <
1

2
· b∗ ,

in other words, the assumption (5.25) (since b∗ = ca∗).

For (s, φ′) ∈ Ba∗(s̃0, φ̃
′
0), we have

‖Q(s, φ′)‖ ≤ ψ1((s, φ
′), (s̃0, φ̃

′
0)) + αψ2((s, φ

′), (s̃0, φ̃
′
0))(5.48)

≤ (
1

2
L(a∗) + αâ)‖(s̃0, φ̃

′
0)− (s, φ′)‖ .

Let us impose the condition

(5.49) ‖Q(s, φ′)‖ <
1

2
· b∗ , ∀(s, φ′) ∈ Ba∗(s̃0, φ̃

′
0) .

If a∗

b∗ (
1
2L(a

∗) + αâ) < 1
2 , then we have (5.49). We have b∗ = ca∗ and

L(a∗) ≤ L(ε). There results that if (5.44) is satisfied, that is, if λ < 1
2 is

satisfied, where λ is defined below, in (5.54), then we have (5.49).

Let z ∈ B b∗

2

(0). Then, ‖z − G(s̃0, φ̃
′
0)‖ ≤ ‖z − 0‖ + ‖0− G(s̃0, φ̃

′
0)‖ ≤ b∗

2

+ ‖G(s̃0, φ̃
′
0)‖ <

b∗

2 + b∗

2 = b∗, so z ∈ intBb∗(G(s̃0, φ̃
′
0)).

Taking condition (5.49) and replacing z = Q(s, φ′), the previous relation
leads us to

(5.50) ‖Q(s, φ′)− G(s̃0, φ̃
′
0)‖ < b∗ ,

for (s, φ′) ∈ Ba∗(s̃0, φ̃
′
0). In other words, Q(s, φ′) ∈ Bb∗(G(s̃0, φ̃

′
0)), for (s, φ

′)

∈ Ba∗(s̃0, φ̃
′
0).

Then, (5.46) holds for ((s, φ′), ζ)∈ Ba∗(s̃0, φ̃
′
0) × Bb∗(G(s̃0, φ̃

′
0)).

We obtain, by replacing ζ = Q(s̄, φ̄′) in (5.46),

(5.51) d((s, φ′),G−1(Q(s̄, φ̄′)) ≤
κ

1− κµ
‖Q(s̄, φ̄′)− G(s, φ′)‖ ,

for (s, φ′), (s̄, φ̄′) ∈ Ba∗(s̃0, φ̃
′
0).

- (iv) The definition of the mapping T0 for the contraction map-
ping principle for set-valued mappings

Let us define the mappings:
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ζ ∈ Bb∗(G(s̃0, φ̃
′
0)), Θ : ζ 7→ G−1(ζ),

(s, φ′) ∈ Ba∗(s̃0, φ̃
′
0), T0 : (s, φ

′) 7→ Θ(Q(s, φ′)).
Observe that dom G−1 = Σ, where we use Lemma 5.1. We extend the

definition of these mappings to the spaces Γ and Σ.
T0 : Γ× Γ ⇒ Γ× Γ, T0 : (s, φ

′) 7→ G−1(Q(s, φ′)).
- (v) The verification of the assumptions of the contraction

mapping principle for set-valued mappings, Theorem 2.3
In Theorem 2.3, let us replace X, ρ, T , x, x̄, a, λ, d(·, ·), e(·, ·), u, v by

Γ× Γ, ρ, T0, (s, φ
′), (s̃0, φ̃

′
0), a

∗, λ, d(·, ·), e(·, ·), (s, φ′), (s, φ
′
) respectively.

- The verification of the condition gphT0∩(Ba∗(s̃0, φ̃
′
0)×Ba∗(s̃0, φ̃

′
0))

is closed
For brevity, only for this verification, we keep some notations from the

general case from Subsection 2.2. So, instead of a∗, (s, φ′), (s̃0, φ̃
′
0), ζ, Γ×Γ,

Σ, we keep a, x, x̄, y, X, Y respectively. Let us verify that gphT0∩(Ba(x̄)×
Ba(x̄)) is closed.

The graph of the continuous mapping G, gph G = {(x, y) ∈ X × Y |y =
G(x)} = {(x, y) ∈ X × Y |y ∈ G(x)} is closed in X × Y . Here, we identify
the function G : X → Y with the set-valued mapping G : X ⇒ Y such that
G is single-valued at every point of dom G.

G−1(y) = {x ∈ X|y ∈ G(x)}.
gph G−1 = {(y, x) ∈ Y ×X|(x, y) ∈ gph G}.
Hence the graph of G−1, gph G−1, is closed in Y ×X.
Range(Q) = Y .
gph Q = {(x, y) ∈ X × Y |y = Q(x)}.
gph G−1 = {(y, x) ∈ Range(Q)×X|y ∈ G(x)}.
gph G−1 = {(y, x) ∈ Range(Q)×X|(x′, y) ∈ gph Q, y ∈ G(x)}.
gph G−1(Q(·)) = {(x′, x) ∈ X ×X|(x′, y) ∈ gph Q, y ∈ G(x)}.
Proof of gphT0 ∩ (Ba(x̄)× Ba(x̄)) is closed
We prove using sequences for the formulation
gph G−1(Q(·)) = {(x′, x) ∈ X ×X|y = Q(x′), y ∈ G(x)}.
Let (x′ℓ, xℓ) ∈ gph G−1(Q(·)), (x′ℓ, xℓ) → (x′, x) as ℓ→ ∞, (x′, x) ∈ X×X.
Define yℓ = Q(x′ℓ). From (x′ℓ, xℓ) ∈ gph G−1(Q(·)), we have yℓ ∈ G(xℓ).
Since Q is continuous, x′ℓ → x′ implies yℓ → Q(x′), so (yℓ, xℓ) → (Q(x′), x)

as ℓ → ∞.
yℓ ∈ G(xℓ) implies that (xℓ, yℓ) ∈ gph G. Since gph G is closed in X × Y ,

there results that (x,Q(x′)) ∈ gph G so Q(x′) ∈ G(x).
Let y = Q(x′). We have y ∈ G(x). Hence (x′, x) ∈ gph G−1(Q(·)) and

gph G−1(Q(·)) is closed in X ×X.
We now take the intersection with Ba(x̄)× Ba(x̄).
There results that gphT0 ∩ (Ba(x̄) × Ba(x̄)) is closed, that is, gphT0 ∩

(Ba∗(s̃0, φ̃
′
0)× Ba∗(s̃0, φ̃

′
0)) is closed.

- An estimate for d((s̃0, φ̃
′
0), T0(s̃0, φ̃

′
0)) from the condition I of

Theorem 2.3
Using (5.51), we have d((s̃0, φ̃

′
0), T0(s̃0, φ̃

′
0)) = d((s̃0, φ̃

′
0),G

−1(Q(s̃0, φ̃
′
0)))

≤ κ
1−κµ‖Q(s̃0, φ̃

′
0)− G(s̃0, φ̃

′
0)‖ = κ

1−κµ‖S(s̃0)‖ = κ
1−κµδ = 1

c δ.

- An estimate for e(T0(s, φ
′) ∩ Ba∗(s̃0, φ̃

′
0), T0(s, φ

′
)) from the con-

dition II of Theorem 2.3
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We obtain

(5.52) ‖Q(s, φ′)− Q(s, φ
′
)‖ ≤ ψ1((s, φ

′), (s, φ
′
)) + αψ2((s, φ

′), (s, φ
′
)) .

We have the equivalence (ŝ, φ̂′) ∈ G−1(Q(s, φ′)) ∩ Ba∗(s̃0, φ̃
′
0) ⇔

Q(s, φ′) ∈ G(ŝ, φ̂′) and (ŝ, φ̂′) ∈ Ba∗(s̃0, φ̃
′
0). We remember that Q is a

function and κ
1−κµ = 1

c .

Using (5.51), we have e(T0(s, φ
′) ∩ Ba∗(s̃0, φ̃

′
0), T0(s, φ

′
))

≤ sup{d((ŝ, φ̂′), T0(s, φ
′
))|(ŝ, φ̂′) ∈ T0(s, φ

′) ∩ Ba∗(s̃0, φ̃
′
0)}

= sup{d((ŝ, φ̂′),G−1(Q(s, φ
′
)))|(ŝ, φ̂′) ∈ G−1(Q(s, φ′)) ∩ Ba∗(s̃0, φ̃

′
0)}

≤ sup{ κ
1−κµ‖Q(s, φ

′
)− G(ŝ, φ̂′)‖ | (ŝ, φ̂′) ∈ G−1(Q(s, φ′)) ∩ Ba∗(s̃0, φ̃

′
0)}

≤ sup{ κ
1−κµ‖Q(s, φ

′
)− G(ŝ, φ̂′)‖ | Q(s, φ′) ∈ G(ŝ, φ̂′), (ŝ, φ̂′) ∈ Ba∗(s̃0, φ̃

′
0)}

= κ
1−κµ‖Q(s, φ

′
)− Q(s, φ′)‖ ≤ κ

1−κµ(
1
2L(ε) + αâ)‖(s, φ

′
)− (s, φ′)‖,

for all (s, φ′), (s, φ
′
) ∈ Ba∗(s̃0, φ̃

′
0).

- (vi) The formulation of some conditions related to conditions
I and II from Theorem 2.3

Condition II from Theorem 2.3 leads to

(5.53)
1

c
(
1

2
L(ε) + αâ) ≤ λ .

We take λ = 1
c (

1
2L(ε) + αâ). From (5.44), we have 0 < λ < 1

2 . Hence,

(5.54) λ =
1

c
(
1

2
L(ε) + αâ) <

1

2
.

Condition I from Theorem 2.3 leads to

(5.55)
1

c
δ < a∗(1− λ) or δ < ca∗(1− λ) .

We have b∗ = ca∗ from (5.37) and 1
2 < 1 − λ. Taking into account

conditions (5.47) and (5.55), we impose

(5.56) δ < min{ca∗(1− λ),
1

2
b∗} =

1

2
b∗ =

1

2
ca∗ ,

that is, assumption (5.25).
With λ given by (5.54), conditions I and II, from Theorem 2.3, are veri-

fied.
- (vii) The formulation of the conclusion of the contraction

mapping principle for set-valued mappings
The assumptions of Theorem 2.3 are verified, hence T0 has a fixed point

in Ba∗(s̃0, φ̃
′
0); that is, there exists (s̄, φ̄′) ∈ Ba∗(s̃0, φ̃

′
0) such that (s̄, φ̄′) ∈

T0(s̄, φ̄
′).

(s̄, φ̄′) ∈ T0(s̄, φ̄
′) ⇔ (s̄, φ̄′) ∈ G−1(Q(s̄, φ̄′))

⇔ Q(s̄, φ̄′) ∈ G(s̄, φ̄′) ⇔ G(s̄, φ̄′)− Q(s̄, φ̄′) ∋ 0 ⇔

(5.57) S(s̄)− Φ(x̄, φ̄′)− Φ(x̃0, ξ(f̄ , ḡi, ēk)) + Φ(x̃0, ξ(ḡ
′, ḡ′i, ē

′
k)) ∋ 0 ,

⇔

(5.58) S(ŝ0)− Φ(x̂0, φ̂
′
0) ∋ 0 ,
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that is, (ŝ0, φ̂
′
0) is a solution of the equation (5.26), where

ŝ0 = (x̂0, ŷ1,0, . . . , ŷq+m,0, ẑ1,0, . . . , ẑn,0), φ̂
′
0 = (ŷ′0, ŷ

′
1,0, . . . , ŷ

′
q+m,0, ẑ

′
1,0, . . . , ẑ

′
n,0)

and x̂0 = (f̂0, λ̂0, û0) = (0, λ̄, ū), ŷi,0 = (ĝi,0, µ̂i,0, ŵi,0) = (0, µ̄i, w̄i), ẑk,0 =
(êk,0, v̂k,0) = (0, v̄k), ŷ

′
0 = (ĝ′0, µ̂

′
0, ŵ

′
0) = (0, µ̄′, w̄′), ŷ′i,0 = (ĝ′i,0, µ̂

′
i,0, ŵ

′
i,0) =

(0, µ̄′i, w̄
′
i), ẑ

′
k,0 = (ê′k,0, v̂

′
k,0) = (0, v̄′k), for i = 1, . . . , q +m, k = 1, . . . , n.

It also results (ŝ0, φ̂
′
0) ∈ Ba∗(s̃0, φ̃

′
0). Indeed, we have:

‖(s̃0, φ̃
′
0)− (ŝ0, φ̂

′
0)‖ ≤ ‖(s̃0, φ̃

′
0)− (ŝ0, φ̂

′
0)‖ + ‖f̃0− f̄‖ +

∑q+m
i=1 ‖g̃i,0− ḡi‖

+
∑n

k=1 ‖ẽk,0 − ēk‖ + ‖g̃′0 − ḡ′‖ +
∑q+m

i=1 ‖g̃′i,0 − ḡ′i‖ +
∑n

k=1 ‖ẽ
′
k,0 − ē′k‖ =

‖(s̃0, φ̃
′
0)− (s̄, φ̄′)‖ ≤ a∗.

(5.58) becomes

(5.59)




B(x̂0)− θ̃0 −B(ŷ′0)
G(x̂0)−DG(x̂0)ŷ

′
0

B(ŷi,0 − ŷ′i,0)− δq+m
i

DG(x̂0)(ŷi,0 − ŷ′i,0)

B̄(ẑk,0 − ẑ′k,0)− δnk
H(λ0, u0, (ẑk,0 − ẑ′k,0))




∋ 0 .

Let us fix x̂0 and ŷ′0 in ΦG(x, y
′) from the first line of Φ(x, φ′) in (5.26).

Let us take θ0 = θ̃0 + B(ŷ′0) and ̺ = DF (λ̂0, û0)(µ̂
′
0, ŵ

′
0). S0 denotes the

function S from (3.7) formulated for this θ0 and for F (·, ·) − ̺ instead of
F . Let us use Remark 9.3.

Then, (5.59) gives

(5.60)




B(x̂0)− θ0
G(x̂0)− ̺

B(ŷi,0 − ŷ′i,0)− δq+m
i

D(G(x̂0)− ̺)(ŷi,0 − ŷ′i,0)

B̄(ẑk,0 − ẑ′k,0)− δnk
H̄(̺, λ0, u0, (ẑk,0 − ẑ′k,0))



= 0 ,

where H̄ is H for F (·, ·) − ̺ instead of F (·, ·),

H̄ : Z × R
m ×W ×∆ → Z, H̄(̺, λ, u, z) = Du(F (λ, u) − ̺)v −

n∑

k=1

ek b̄k .

Let s0 = (x0, y1,0, . . . , yq+m,0, z1,0, . . . , zn,0) with x0 = x̂0, yi,0 = ŷi,0−ŷ
′
i,0,

zk,0 = ẑk,0 − ẑ′k,0 and i = 1, . . . , q +m, k = 1, . . . , n.

Relation (5.60) means that s0 is a solution of the system (5.27) verifying
the assertion (a) of the statement (ii) of Theorem 3.5.

It also results s0 ∈ Ba∗(s̃0). Indeed, we have:

‖s0 − s̃0‖ = ‖x̂0 − x̃0‖ +
∑q+m

i=1 ‖(ŷi,0 − ŷ′i,0) − ỹi,0‖ +
∑n

k=1 ‖(ẑk,0 −

ẑ′k,0) − z̃k,0‖ ≤ ‖x̂0 − x̃0‖ +
∑q+m

i=1 ‖ŷi,0 − ỹi,0‖ +
∑n

k=1 ‖ẑk,0 − z̃k,0‖ +
∑q+m

i=1 ‖ŷ′i,0 − ỹ′i,0‖ +
∑n

k=1 ‖ẑ
′
k,0 − z̃′k,0‖ ≤ ‖(ŝ0, φ̂

′
0)− (s̃0, φ̃

′
0)‖ ≤ a∗.

- (viii) The existence of some isomorphisms
We have γS0

= γ , LS(ε) = LS0
(ε). DS0(s̃0) = DS(s̃0) is an isomorphism

of Γ onto Σ. We have κ ≤ γ and 1
2LS(ε) ≤ L(ε). Then,

γLS(a
∗) ≤ 2γ 1

2LS(ε) ≤ 2γL(ε) < 1.
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LS(a
∗) < 1

γ , so DS0(s0) = DS(s0) is an isomorphism of Γ onto Σ.

γΨ ≤ γ (this is verified using the definition), LΨ(a
∗) ≤ LS(a

∗).
γΨLΨ(a

∗) ≤ γLS(a
∗) < 1, hence DΨ0(x0) = DΨ(x0) is an isomorphism

of X onto Y .
The system (5.27) and its solution s0 verify the assertion (b) of the

statement (ii) of Theorem 3.5.
As in the proofs of Theorem 3.1 [18], Theorem IV.3.1 [29] and Theorem

I.2.1 [14], it follows that s0 is the unique solution of the equation (5.27) in
Ba(s̃0) for every a ≥ a∗ that satisfies γLS(a) < 1.

We now use Theorem 3.5. Then, the component (λ0, u0) of s0 is a solution
of the equation (5.28) that satisfies hypothesis (1.2) and the rest of the

hypotheses of the statement (i) of Theorem 3.5 in Ba(λ̃0, ũ0).

Assume that there exist two different such solutions in Ba(λ̃0, ũ0). Then,
equation (5.27) has two different solutions in Ba(s̃0). This contradicts the
uniqueness of s0 in Ba(s̃0). Then, (λ0, u0) is the unique solution of the
equation (5.28) that satisfies hypothesis (1.2) and the rest of the hypotheses

of the statement (i) of Theorem 3.5 in Ba(λ̃0, ũ0) for every a ≥ a∗ that
satisfies γLS(a) < 1.

- (ix) Some estimates
We have 2γLS0

(a∗) ≤ 1 and DS0(s̃0) is an isomorphism of Γ onto Σ.
Then, the hypotheses of Lemma 2.2 are satisfied in our situation. We get:
for any ζ ∈ intB a∗

2γ

(S0(s̃0)), the equation S0(s) = ζ has a unique solution

s in Ba1(s̃0), where a1 = 2γ‖S0(s̃0)− ζ‖ ≤ a∗.
For our proof, we take ζ = 0. We obtain 2γ‖S0(s̃0)‖ ≤ a∗. We have

‖̺‖ = ‖S0(s̃0) − S(s̃0)‖ ≤ ‖S0(s̃0)‖ + ‖S(s̃0)‖ ≤ ‖S0(s̃0)‖ + ‖S(s̃0)‖ ≤
a∗

2γ + ‖S(s̃0)‖. Hence, (5.30) holds. We also use (5.25) and a∗

2γ + 1
2ca

∗ =

( 1γ − 1
2L(ε))a

∗.

We also have ‖̺‖ = ‖DF (λ̂0, û0)(µ̂′0, ŵ
′
0)‖ ≤ (‖DF (λ̃0, ũ0)‖ + LF (a

∗))a∗.
Then, we have (5.31).

Relation (5.32) is obtained as in the proofs of Theorem 3.1 [18], Theorem
IV.3.1 [29] and Theorem I.2.1 [14].

5.6. Some consequences.

Corollary 5.9. Theorem 5.4 holds for those a∗ and b∗ given by Lemma 5.6,

under the conditions that (5.50) is verified, that is, ‖Q(s, φ′)−G(s̃0, φ̃
′
0)‖ <

b∗, for (s, φ′) ∈ Ba∗(s̃0, φ̃
′
0), and it is satisfied condition I from Theorem

2.3, that is, (5.55) or 1
c δ < a∗(1 − λ), with λ given by (5.54) or λ =

1
c (

1
2L(ε) + αâ) < 1

2 .

Corollary 5.10. Assume that (λ̃0, ũ0) belongs to a solution branch of equa-

tion (1.1). (λ̃0, ũ0) can be a regular or a nonregular solution. Assume the
hypotheses of Theorem 5.4. Ψ(x̃0) = 0 in δ. If ̺ 6= 0, then, the given
problem (1.1) is a perturbation of the bifurcation problem (5.28). If ̺ = 0,
then, the bifurcation point (λ0, u0) belongs to the solution branch of equation
(1.1).

Proof. Equation (5.27) provides a bifurcation problem (5.28) for which the
given problem (1.1) is a perturbation.
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Corollary 5.11. ̺ = 0 if and only if (µ̂′0, ŵ
′
0) =

∑q+m
i=1 βi ((µ̂i,0, ŵi,0) −

(µ̂′i,0, ŵ
′
i,0)), βi ∈ R.

5.7. The plan of the study for the next sections. In Section 9, we
investigate the formulation of S0 from (5.27) using the function F (λ, u) −
DF (λ, u)(µ̂′0, ŵ

′
0) (where (µ̂

′
0, ŵ

′
0) is fixed) instead of the function F (λ, u)−

DF (λ̂0, û0)(µ̂
′
0, ŵ

′
0) (where (λ̂0, û0) and (µ̂′0, ŵ

′
0) are fixed and ̺=DF (λ̂0, û0)(µ̂

′
0, ŵ

′
0)

= constant).

In Sections 6 - 8, for simplicity, we study only the case ̺=DF (λ̂0, û0)(µ̂
′
0, ŵ

′
0)

= constant from Theorem 5.4.

6. The existence of a class of equivalent maps

We prove that there exists a class (family) of maps Cp - equivalent (right
equivalent) at (λ0, u0) to F (·) − ̺ at (λ0, u0) and that satisfies hypothesis
(1.2) in (λ0, u0).

We use the definition of equivalence of maps from [70, 71]. The following
discussion has the references [2, 15, 31, 32, 33, 41, 42, 66, 70, 71].

Consider the equation (5.28).
Let ϕ0 be a local Cp - diffeomorphism from some open neighborhood

U(λ0, u0) = U1(λ0) × U2(u0) of (λ0, u0) in R
m×W onto some open neigh-

borhood Û(λ̂0, û0) = Û1(λ̂0) × Û2(û0) of (λ̂0, û0) = (λ0, u0) in R
m ×W of

the form (λ̂, û) = ϕ0(λ, u) = (Λ(λ), ϕ∗(λ, u)), Λ(λ) ∈ R
m, ϕ∗(λ, u) ∈ W ,

satisfying the following assumptions: ϕ0(λ0, u0) = (λ̂0, û0), Duϕ∗(λ0, u0) is
bijective.

Let Π be a local Cp - diffeomorphism from some open neighborhood

U3(0) of 0 in R
q onto some open neighborhood Û3(0) of 0 in R

q. Π(0) = 0.
Let Π̄ be a local Cp - diffeomorphism from some open neighborhood

U4(0) of 0 in R
n onto some open neighborhood Û4(0) of 0 in R

n. Π̄(0) = 0.

(λ̂, û) = ϕ0(λ, u) = (Λ(λ), ϕ∗(λ, u)), (λ, u) = ϕ−1
0 (λ̂, û).

f̂ = Π(f), f = Π−1(f̂) = ((Π−1)1(f̂), . . . , (Π
−1)q(f̂)).

ê = Π̄(e), e = Π̄−1(ê) = ((Π̄−1)1(ê), . . . , (Π̄
−1)n(ê)).

Let ϕ be the local Cp - diffeomorphism from U3(0) × U1(λ0) × U2(u0)

onto Û3(0) × Û1(λ̂0) × Û2(û0) given by ϕ(f, λ, u) = (Π(f), ϕ0(λ, u)).

(f̂ , λ̂, û) = ϕ(f, λ, u) = (Π(f), ϕ0(λ, u)) = (Π(f),Λ(λ), ϕ∗(λ, u)).

(f, λ, u) = ϕ−1(f̂ , λ̂, û) = (Π−1(f̂), ϕ−1
0 (λ̂, û))

D(ϕ−1
0 )(λ̂, û) = Dϕ0(λ, u)

−1, where (λ̂, û) = ϕ0(λ, u), for all (λ, u) in a
small neighborhood of (λ0, u0).

D(Π−1)(f̂) = DΠ(f)−1, where f̂ = Π(f), for all f in a small neighbor-
hood of 0.
D(Π̄−1)(ê) = DΠ̄(e)−1, where ê = Π̄(e), for all e in a small neighborhood

of 0.
D(ϕ−1)(f̂ , λ̂, û) = Dϕ(f, λ, u)−1, where (f̂ , λ̂, û) = ϕ(f, λ, u), for all

(f, λ, u) in a small neighborhood of (0, λ0, u0).
When we write (λ, u) ∈ U1(λ0) × U2(u0), without ”∀”, related to a

relation, we understand that (λ, u) is in the maximal neighborhood (related
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to inclusion) contained in U1(λ0) × U2(u0) such that that relation holds
and so on.

Let us retain F (λ, u)− ̺ from (5.28).
Using the definition for Cp equivalence (right equivalence) of maps on

open subsets of Banach spaces, from [70, 71], related to [2, 15, 31, 32, 33,

41, 42, 66], let us consider a map F̂ : Rm ×W → Z, of class Cp, defined
locally by

(6.1) F̂ (λ̂, û) = F (ϕ−1
0 (λ̂, û))− ̺ , (λ̂, û) ∈ Û1(λ̂0)× Û2(û0) ,

so F̂ (ϕ0(λ, u)) = F (λ, u)− ̺, (λ, u) ∈ U1(λ0) × U2(u0),

(6.2) F̂ (ϕ0(λ, u)) = F (λ, u) − ̺ , (λ, u) ∈ U1(λ0)×U2(u0) ,

that is, F̂ is Cp - equivalent (right equivalent) at (λ̂0, û0) to F−̺ at (λ0, u0).

We have F̂ (ϕ0(λ0, u0)) = F̂ (λ0, u0) = 0 so (λ̂0, û0) is the solution of

(6.3) F̂ (λ̂, û) = 0 ,

Let us prove that F̂ satisfies hypothesis (1.2) in (λ0, u0).

Let us consider a map Ĝ : Rq×R
m×W → Z, of class Cp, defined locally,

for (f̂ , λ̂, û) ∈ Û3(0)× Û(λ̂0, û0), by

(6.4) Ĝ(f̂ , λ̂, û) = F (ϕ−1
0 (λ̂, û))− ̺−

q∑

i=1

(Π−1)i(f̂)āi ,

or Ĝ(ϕ(f, λ, u)) = G(f, λ, u)−̺, (f, λ, u) ∈ U3(0) × U(λ0, u0), that is, G−̺

is Cp - equivalent (right equivalent) at (0, λ0, u0) to Ĝ at (0, λ̂0, û0).

We have Ĝ(f̂ , λ̂, û) = G(ϕ−1(f̂ , λ̂, û))− ̺ = G(Π−1(f̂), ϕ−1
0 (λ̂, û))− ̺ =

F (ϕ−1
0 (λ̂, û))−

∑q
i=1(Π

−1)i(f̂)āi − ̺ = F̂ (λ̂, û)−
∑q

i=1(Π
−1)i(f̂)āi.

Let us introduce some new notations.
(ĝ, µ̂, ŵ) = Dϕ(f, λ, u)(g, µ,w) = (DΠ(f)g,Dϕ0(λ, u)(µ,w)).
(g, µ,w) = Dϕ(f, λ, u)−1(ĝ, µ̂, ŵ) = (DΠ(f)−1ĝ, Dϕ0(λ, u)

−1(µ̂, ŵ)).

DΠ(f)g = ĝ, g = DΠ(f)−1ĝ, with DΠ(f)−1ĝ =D(Π−1)(f̂)ĝ if f̂ = Π(f),
for all f in a small neighborhood of 0.
Dϕ0(λ, u)(µ,w) = (DΛ(λ)µ,Dϕ∗(λ, u)(µ,w)) = (µ̂, ŵ)
(ĝi, µ̂i, ŵi) = Dϕ(f, λ, u)(gi, µi, wi).
(0, µ̂i,0, ŵi,0) =Dϕ(0, λ0, u0)(0, µi,0, wi,0) = (DΠ(0)0,Dϕ0(λ0, u0)(µi,0, wi,0))

= (0,DΛ(λ0)µi,0,Dϕ∗(λ0, u0)(µi,0, wi,0)).
(µi,0, wi,0) = Dϕ0(λ0, u0)

−1(µ̂i,0, ŵi,0), 0 = DΠ(0)−10.
v̂ = Duϕ∗(λ, u)v, v̂k = Duϕ∗(λ, u)vk, v̂k,0 = Duϕ∗(λ0, u0)vk,0, vk,0 =

Duϕ∗(λ0, u0)
−1v̂k,0, ek = D(Π̄−1)(0)êk, 0 = DΠ̄(0)−10.

We have
D(G(f, λ, u)−̺)(g, µ,w) =DĜ(ϕ(f, λ, u))Dϕ(f, λ, u)(g, µ,w) =DĜ(f̂ , λ̂, û)(ĝ, µ̂, ŵ)

= DF̂ (λ̂, û)(µ̂, ŵ) −
∑q

i=1D(Π−1)i(f̂)ĝāi
D(F (λ, u)− ̺)(µ,w) = DF̂ (ϕ0(λ, u))Dϕ0(λ, u)(µ,w) = DF̂ (λ̂, û)(µ̂, ŵ).

Du(F (λ, u)−̺)v =DuF̂ (ϕ0(λ, u))v =DuF̂ (Λ(λ), ϕ∗(λ, u))v =Dϕ∗
F̂ (ϕ0(λ, u))Duϕ∗(λ, u)v

= Dϕ∗
F̂ (λ̂, û)v̂ = DûF̂ (λ̂, û)v̂.
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Let us consider a map Ĥ : Rm ×W × ∆ → Z, of class Cp−1, defined

locally, for (ê, v̂) ∈ Û4(0)× Û2(û0), by

(6.5) Ĥ(λ̂, û, (ê, v̂)) = Dϕ∗
F̂ (λ̂, û)v̂ −

n∑

k=1

D(Π̄−1)k(0)êb̄k .

We have

B(Π−1(f̂), ϕ−1
0 (λ̂, û))− θ0 = B(f, λ, u)− θ0

Ĝ(f̂ , λ̂, û) = G(f, λ, u) − ̺

B(DΠ(f)−1ĝi,Dϕ0(λ, u)
−1(µ̂i, ŵi))− δq+m

i = B(gi, µi, wi)− δq+m
i

DĜ(f̂ , λ̂, û)(ĝi, µ̂i, ŵi) = D(G(f, λ, u) − ̺)(gi, µi, wi)

B̄(D(Π̄−1)(0)êk,Duϕ∗(λ0, u0)
−1v̂k)− δnk = B̄(ek, vk)− δnk

Ĥ(λ̂, û, (êk, v̂k)) = H(λ, u, (ek , vk))

(6.6)

Let us define

B̂N (f , λ, u) = B(Π−1(f), ϕ−1
0 (λ, u))

B̂(g, µ,w) = B(DΠ(0)−1g,Dϕ0(λ0, u0)
−1(µ,w))

̂̄B(e, v) = B̄(D(Π̄−1)(0)e,Duϕ∗(λ0, u0)
−1v)

(6.7)

and

(6.8)

Ŝ : Γ → Σ, Ŝ(s) =




B̂N (f , λ, u)− θ0
Ĝ(f , λ, u)

B̂(gi, µi, wi)− δq+m
i

DĜ(f , λ, u)(gi, µi, wi)
̂̄B(ek, vk)− δnk
Ĥ(λ, u, (ek, vk))




,
i = 1, . . . , q +m,
k = 1, . . . , n ,

Let s0 = (x0, y1,0, . . . , yq+m,0, z1,0, . . . , zn,0), x0 = (f0, λ0, u0) = (0, λ̂0, û0),
yi,0 = (gi,0, µi,0, wi,0) = (0, µ̂i,0, ŵi,0), zk,0 = (ek,0, vk,0) = (0, v̂k,0), i =
1, . . . , q +m, k = 1, . . . , n.

From (6.6), we obtain

(6.9) Ŝ(s0) = S(s0) = 0 .

Theorem 6.1. There exists a class of maps Cp - equivalent (right equiv-
alent) at (λ0, u0) to F (·) − ̺ at (λ0, u0) and that satisfies hypothesis (1.2)
in (λ0, u0).

Proof. There exists a local Cp - diffeomorphism ϕ0, as defined above, such

that (6.2) takes place. We now apply Corollary 3.6 for the equation Ŝ(s)

= 0 and for its solution s0. Hence, F̂ satisfies hypothesis (1.2) in (λ0, u0).

Taking all the local Cp - diffeomorphism of the form of ϕ0, F̂ becomes
a representative of a class of maps Cp - equivalent (right equivalent) at
(λ0, u0) to F (·)−̺ at (λ0, u0) and that satisfies hypothesis (1.2) in (λ0, u0).

�
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7. Bifurcation of the solutions of approximate equations

In this Section, under the hypothesis that the exact problem has a bi-
furcation point, we study the existence of an equation, defined on closed
subspaces of the given spaces, which has a bifurcation point that approxi-
mates the exact one and has the same type as this one.

7.1. Approximate spaces and functions. Let us consider a closed sub-
space Wh of W and a closed subspace Zh of Z. The spaces Wh and Zh

are both finite-dimensional spaces, with dim Wh = dim Zh, or they are
both infinite-dimensional spaces. Let Fh ∈ Cp(Rm × Wh, Zh) be an ap-
proximation of the function F that defines equation (1.1). h is a positive
parameter.

The mathematical entities are the same in the exact case and in the
approximate case, depending on the Banach spaces only. This is why, in
the approximate case, we maintain the notations from the exact case and
adjoin an index h. The entities W , Z, F , (λ, u), X, Y , x, x0 = (f0, λ0, u0),
x̃0, ..., from the infinite-dimensional case, becomeWh, Zh, Fh, (λh, uh), Xh,
Yh, xh, x0h = (f0h, λ0h, u0h), x̃0h, ..., respectively, in the approximate case.

Let πWh : W →Wh and πZh ∈ L(Z,Zh) be two operators. As a conclusion
of the conditions used to relate the exact spaces and the approximate spaces
in the literature [6, 7, 8, 9, 11, 12, 13, 17, 18, 23, 29, 39, 43, 55, 62, 67, 68],
we assume that πZh has the following property

(7.1) ‖ā− πZh ā‖Z ≤ C‖ā‖Z , ∀ā ∈ Z, where C < 1 .

Let āih = πZh āi, i = 1, . . . , q, b̄kh = πZh b̄k, k = 1, . . . , n, Z1,h = sp {ā1h, . . . , āqh},
Z3,h = sp {b̄1h, . . . , b̄nh}. Let IN be the identity operator on R

N , N ≥ 1,

and f̃h = Iqf , g̃h = Iqg ∈ R
q, ẽh = Ine ∈ R

n, λ̃h = Imλ, µ̃h = Imµ ∈ R
m,

ũh = πWh u, w̃h = πWh w, ṽh = πWh v ∈ Wh. Since f0 = 0, gi,0 = 0, ek,0 = 0,

we take f̃0h = 0, g̃i,0,h = 0, ẽk,0,h = 0.

Lemma 7.1. (i) For every ā ∈ Z, ā 6= 0, we have πZh ā 6= 0. (ii) Assume
that the elements ā1, . . ., āk ∈ Z form a linearly independent set. Then,
the elements ā1h, . . . , ākh ∈ Zh form a linearly independent set.

Proof. (i) If there exists ā 6= 0 such that πZh ā = 0, then we deduce from
(7.1) that 1 ≤ C. This contradicts the condition C < 1.

(ii) Suppose that ā1h, . . ., āqh form a linearly dependent set, therefore
there exists f ′ = ((f ′)1, . . . , (f ′)q) ∈ R

q, f ′ 6= 0 and
∑q

i=1(f
′)iāih = 0.

Then,
∑q

i=1(f
′)iāi 6= 0. This contradicts the condition (i) since πZh (

∑q
i=1(f

′)iāi)
=

∑q
i=1(f

′)iāih = 0.
�

Introduce the function of class Cp,

Gh : Xh → Zh, Gh(xh) = Fh(λh, uh)−

q∑

i=1

f ihāih ,

and the function of class Cp−1,

Hh : Rm ×Wh ×∆h → Zh, Hh(λh, uh, zh) = DuFh(λh, uh)vh −
n∑

k=1

ekhb̄kh .
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Introduce two operators Bh, Bh ∈ L(Xh,R
q+m) and B̄h ∈ L(∆h,R

n)

that approximate the operators B and B̄, respectively. θ̃0h = Bh(x̃0h) and

(7.2) Ψh : Xh → Yh, Ψh(xh) =

[
Bh(xh)− θ̃0h
Gh(xh)

]
.

We have DΨh(xh)yh = [Bh(yh),DGh(xh)yh]
T . We also define

(7.3) ΦG,h(xh, ·) : Xh → Yh, ΦG,h(xh, yh) = [Bh(yh),DGh(xh)yh]
T ,

(7.4) ΦH,h(xh, ·) : ∆h → Σh, ΦH,h(xh, zh) = [B̄h(zh),Hh(λh, uh, zh)]
T .

Remark 7.2. In [18], the approximate equations are constructed on the
same spaces as the exact equation and the exact operator B is maintained
in the approximate case.

7.2. Some sufficient conditions for ΦG,h(x̃0h, ·) and ΦH,h(x̃0h, ·) to be
isomorphisms. Assume the following hypotheses:

(7.5) there exists an isomorphism J of W onto Z such that J(Wh) = Zh ,

there exists η1 > 0 such that, for every xh ∈ Xh, we have(7.6)

‖Bxh −Bhxh‖Rq+m ≤ η1‖xh‖Xh
,

there exists η2 > 0 such that, for every (λh, uh) ∈ R
m ×Wh, we have(7.7)

‖πZhDF (λ0, u0)(λh, uh)−DFh(λ̃0h, ũ0h)(λh, uh)‖Zh
≤ η2‖(λh, uh)‖Rm×Wh

,

there exists η3 > 0 such that, for every zh ∈ ∆h, we have(7.8)

‖B̄zh − B̄hzh‖Rn ≤ η3‖zh‖∆h
,

there exists η4 > 0 such that, for every vh ∈Wh, we have(7.9)

‖πZhDuF (λ0, u0)vh −DuFh(λ̃0h, ũ0h)vh‖Zh
≤ η4‖vh‖Wh

.

Lemma 7.3. ([60]) Let E, F be two Banach spaces and let T, S ∈ L(E,F ).
If the operator T is bijective and ‖T−1‖L(F,E)‖T − S‖L(E,F ) < 1, then the

operator S is bijective and ‖S−1‖L(F,E) ≤ (1 − q)−1 ‖T−1‖L(F,E), ∀q ∈ R

that satisfies ‖T−1‖L(F,E)‖T − S‖L(E,F ) ≤ q < 1.

The following Theorem 7.4 and its proof are the adaptation, to our con-
ditions, of Theorem XIV.1.1 and of its proof from [43].

Let us denote qG,1 =C(‖DF (λ0, u0)‖L(Rm×W,Z) +
∑q

i=1 ‖āi‖Z + ‖J‖L(W,Z)),

qG,2 = η1 + η2 +C‖J‖L(W,Z), qG = qG,h = (qG,1 + qG,2) ‖ΦG(x0, ·)
−1‖L(Y,X),

qH,1 = C(‖DuF (λ0, u0)‖L(W,Z) +
∑n

k=1 ‖b̄
k‖Z + ‖J‖L(W,Z)), qH,2 = η3 +

η4 +C‖J‖L(W,Z), qH = qH,h = (qH,1 + qH,2) ‖ΦH(x0, ·)
−1‖L(Σ,∆).

Theorem 7.4. (i) Suppose that Hypotheses (1.2), (7.1), (7.5) - (7.7) hold.
If

(7.10) qG = qG,h = (qG,1 + qG,2)‖ΦG(x0, ·)
−1‖L(Y,X) < 1 ,

then ΦG,h(x̃0h, ·) is an isomorphism of Xh onto Yh and

(7.11) ‖ΦG,h(x̃0h, ·)
−1‖L(Yh,Xh) ≤ (1− qG)

−1‖ΦG(x0, ·)
−1‖L(Y,X) .
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(ii) Suppose that Hypotheses (1.2), (7.1), (7.5), (7.8), (7.9) hold. If

(7.12) qH = qH,h = (qH,1 + qH,2)‖ΦH(x0, ·)
−1‖L(Σ,∆) < 1 ,

then ΦH,h(x̃0h, ·) is an isomorphism of ∆h onto Σh and

(7.13) ‖ΦH,h(x̃0h, ·)
−1‖L(Σh,∆h) ≤ (1− qH)−1‖ΦH(x0, ·)

−1‖L(Σ,∆) .

Proof. Since (1.2) holds, from the discussion on (2.6), as in [18], we have
that ΦG(x0, ·) is an isomorphism of X onto Y . From Theorem 3.5(ii) and
Lemma 3.3, ΦH(x0, ·) is an isomorphism of ∆ onto Σ.

(i) Define Ĵ : X → Y , Ĵx = [Iq+m(f, λ), Ju]T . From the hypothesis (7.5),

there results that Ĵ is an isomorphism of X onto Y such that Ĵ(Xh) = Yh.

Let Jh be the restriction of J to Wh and let Ĵh be the restriction of Ĵ to
Xh, Ĵhx = [Iq+m|Xh

(f, λ), Jhu]
T . We have Jh(Wh) = Zh and Ĵh(Xh) = Yh.

Let Πh = (Iq+m, π
Z
h ) ∈ L(Y, Yh).

Let T = (TB , TG), T̃ = (T̃B , T̃G) ∈ L(X,Y ) and T̃h = (T̃h,B , T̃h,G), Th

= (Th,B , Th,G) ∈ L(Xh, Yh) defined by

T = ΦG(x0, ·) = Ĵ+ (ΦG(x0, ·)− Ĵ) ,(7.14)

T̃ = Ĵ+Πh(ΦG(x0, ·) − Ĵ) ,

T̃h = Ĵh +Πh(ΦG(x0, ·)− Ĵh) ,

Th = ΦG,h(x̃0h, ·) = Ĵh + (ΦG,h(x̃0h, ·)− Ĵh) .

Define the first component of the operators T, T̃, T̃h, Th:
TBx = Bx = Iq+m(f, λ) + (Bx − Iq+m(f, λ)),

T̃Bx = Iq+m(f, λ) + Iq+m(Bx − Iq+m(f, λ)),

T̃h,Bx = Iq+m(f, λ) + Iq+m(Bx − Iq+m(f, λ)),
Th,Bx = Bhx = Iq+m(f, λ) + (Bhx − Iq+m(f, λ)).

Define the second component of the operators T, T̃, T̃h, Th:
TGx = DG(x0)x = Ju + (DF (λ0, u0)(λ, u) −

∑q
i=1 f

iāi − Ju),

T̃Gx = Ju + πZhDF (λ0, u0)(λ, u) − πZh (
∑q

i=1 f
iāi) − πZh Ju,

T̃h,Gx = Jhu + πZhDF (λ0, u0)(λ, u) −
∑q

i=1 f
iāih − πZh Jhu,

Th,Gx = DGh(x̃0h)x = Jhu + (DFh(λ̃0h, ũ0h)(λ, u) −
∑q

i=1 f
iāih − Jhu),

where πZh (
∑q

i=1 f
iāi) =

∑q
i=1 f

iπZh āi =
∑q

i=1 f
iāih.

Let x̄ ∈ X. We denote LG,0x̄ = DF (λ0, u0)(λ̄, ū) −
∑q

i=1 f̄
iāi − Jū. We

have, using (7.1), that ‖(T − T̃)x̄‖Y ≤ ‖(IZ − πZh )LG,0x̄‖Z ≤ C‖LG,0x̄‖Z .
Using (7.10), there results

(7.15) ‖T − T̃‖L(X,Y ) = sup
x∈X,‖x‖X≤1

‖(T − T̃)x‖Y ≤ qG,1 < ‖T−1‖−1
L(Y,X) .

Applying Lemma 7.3, since T = ΦG(x0, ·) is an isomorphism of X onto Y ,

there results that T̃ is an isomorphism of X onto Y and

(7.16) ‖T̃−1‖L(Y,X) ≤ (1− qG,1‖T
−1‖L(Y,X))

−1‖T−1‖L(Y,X) .

If x′h = T̃−1ζh, then T̃x′h = ζh or Ĵx′h + Πh(ΦG(x0, x
′
h) − Ĵx′h) = ζh or

Ĵx′h = ζh − Πh(ΦG(x0, x
′
h) − Ĵx′h), where ζh ∈ Yh and Πh(ΦG(x0, x

′
h) −

Ĵx′h) ∈ Yh. So x′h = Ĵ−1(ζh − Πh(ΦG(x0, x
′
h) − Ĵx′h)) ∈ Xh, since Ĵ(Xh)
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= Yh. There results that the operator T̃ has the property that if ζh ∈ Yh,

then T̃−1ζh ∈ Xh.

Let us consider the operator T̃h. We have: ∀ xh ∈ Xh, T̃hxh = T̃xh. It

follows that the operator T̃h has a continuous inverse that coincides with

T̃−1 on Yh and

(7.17) ‖T̃−1
h ‖L(Yh,Xh) ≤ ‖T̃−1‖L(Y,X) .

It follows that T̃h is an isomorphism of Xh onto Yh.

Let xh be an arbitrary element in Xh. We have ‖(T̃h − Th)xh‖Yh
=

‖(B|Xh
−Bh)xh‖Rq+m + ‖[πZhDF (λ0, u0)−DFh(λ̃0h, ũ0h)](λh, uh) + (IZ −

πZh )Jhuh‖Zh
. Using (7.1), (7.6) and (7.7), there results

(7.18) ‖T̃h − Th‖L(Xh,Yh) = sup
xh∈Xh,‖xh‖Xh

≤1
‖(T̃h − Th)xh‖Yh

≤ qG,2 .

We have ‖T̃−1
h ‖L(Yh,Xh)‖T̃h−Th‖L(Xh ,Yh) ≤ qG,2‖T̃

−1
h ‖L(Yh,Xh) ≤ qG,2‖T̃

−1‖L(Y,X)

≤ r < 1, where r = (1 − qG,1‖T
−1‖L(Y,X))

−1qG,2‖T
−1‖L(Y,X), using (7.17),

(7.16) and (7.10). Applying Lemma 7.3, since T̃h is an isomorphism of Xh

onto Yh, it follows that Th = ΦG,h(x̃0h, ·) is an isomorphism of Xh onto Yh
and

‖T−1
h ‖L(Yh,Xh) ≤ (1− r)−1‖T̃−1

h ‖L(Yh,Xh) ,

whence, using (7.17) and (7.16), we deduce

‖T−1
h ‖L(Yh,Xh) ≤ [1− (qG,1 + qG,2)‖ΦG(x0, ·)

−1‖L(Y,X)]
−1‖T−1‖L(Y,X) ,

so (7.11).
�

Corollary 7.5. Let us adjoin the index h to C and ηk in order to indicate
the dependence on h. Assume that

(7.19) lim
h→0

Ch = 0 , lim
h→0

ηk,h = 0 , k = 1, 2, 3, 4 .

Then, there exists a real h0 > 0 such that for all h, h ≤ h0, qG,h < 1 and
qH,h < 1.

7.3. Existence of an approximate bifurcation problem.

Theorem 7.6. Assume that the exact problem (1.1) has a bifurcation point
(λ0, u0) that satisfies hypothesis (1.2). Assume that, for some fixed h, the
hypotheses of Theorem 7.4 and of Theorem 5.4 for the approximate case
are satisfied. Then, there exists an approximate equation (7.20),

(7.20) Fh(λh, uh)− ̺h = 0 ,

which is of the form of (5.28). The solution (λ0h, u0h) of (7.20) has the
same type as the solution (λ0, u0) of equation (1.1). (λ0h, u0h) satisfies the
hypothesis (1.2). The radii a∗h and b∗h depend on h. Theorem 6.1 holds,
that is, there exists a class of maps Cp - equivalent (right equivalent) at

(λ̂0h, û0h) = (λ0h, u0h) to Fh(·) − ̺h at (λ0h, u0h) and that satisfies the

hypothesis (1.2) in (λ̂0h, û0h) = (λ0h, u0h).
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Proof. The construction related to (λ0, u0), from [18], presented in Section
2, and the construction from Section 3 lead to the statement (i) of Theorem
3.5 and, then, equivalently, to the statement (ii) of Theorem 3.5.

Using Lemma 3.3, there results that ΦG(x0, ·) = DΨ(x) is an isomor-
phism of X onto Y , ΦH(x0, ·) is an isomorphism of ∆ onto Σ.

Using Theorem 7.4 and Lemma 3.3, we obtain that DΨh(x̃0h) is an
isomorphism of Xh onto Yh and DSh(s̃0,h) is an isomorphism of Γh onto
Σh.

We now apply Theorem 5.4 for the case of the approximate formulation.
�

In the following Theorem, we formulate conditions similar to those from
Theorem IV.3.2, page 304, and Theorem IV.3.7, page 312, [29], and Corol-
lary 3.1, page 52, [18].

Theorem 7.7. Assume that the exact problem has a bifurcation point that
satisfies the statement (i) of Theorem 3.5. Assume the hypotheses of Corol-
lary 7.5. Let α be an arbitrarily small fixed positive number, 0 < α < 1,
α 6= 1

2 . Let h0 be the real from Corollary 7.5. Consider, for each h, h ≤ h0,
the mappings Gh and Qh given by (5.7) and (5.8).

For all h ≤ h0, we take κh = regAh and Mh > ‖DGh(s̃0,h, φ̃
′
0,h)‖. Let

Lh(ε) = L̃(Gh, (s̃0,h, φ̃
′
0,h), (sh, φ

′
h), ε,Γh×Γh,Σh), where we use (2.12). De-

fine κ = suph≤h0
κh, ch = 1−κLh(ε)

κ , â = suph≤h0
max{ ‖a1h‖, . . . , ‖aqh‖,

‖b1h‖, . . . , ‖bnh‖ }, M = suph≤h0
Mh and δh = ‖Gh(s̃0,h, ỹ

′
0h)‖.

Assume that

(7.21) lim
h→0

δh = 0 ,

(7.22) lim
β→0

( sup
h≤h0

Lh(β)) = 0 .

Assume that DΨh(x̃0h) is an isomorphism of Xh onto Yh and DSh(s̃0,h)
is an isomorphism of Γh onto Σh.

Then, there exists h1 > 0, h1 ≤ h0, such that ∀h ≤ h1, Theorem 5.4
and Theorem 7.6 are applied with ε, τ and a∗ = a∗h that do not depend on
h (they are constants). The reals τ , a∗, b∗ and the condition (5.25) from
Theorem 5.4 are given by τ , a∗h, b

∗
h, from (5.38) - (5.40) for Gh, and (7.23)

respectively,

(7.23) δh ≤
1

2
·
1

2κ
· a∗h <

1

2
· b∗h , ∀h ≤ h1 .

Let s0h be the solution of the equation (5.27) written in this case for a
fixed index h. We have

(7.24) ‖(λ0, u0)−(λ0h, u0h)‖ ≤ C0‖s0‖+[γh/(1−γhLSh
(a)]·‖S0,h(s̃0,h)‖Σh

,

where S0,h is S0 in the approximate case. C0 results using (7.1) for ‖s0 −
s̃0,h‖ ≤ C0‖s0‖.

Proof of Theorem 7.7

Proof. (7.22) implies that we can take an ε > 0 such that

(7.25) 2κLh(ε) + 2καâ < 1 , ∀h ≤ h0 ,
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that is, (5.23), ∀h ≤ h0.
Remark that ε do not depend on h (for h ≤ h0).
For each ch, we have (5.42).
(7.21) assures that condition (5.25) is satisfied. Then, we apply Theorem

5.4.
We use (5.38) - (5.40) from Lemma 5.7 (ii) applied to Gh. ε, τ and a∗h

do not depend on h (they are constants).
Let us remark that, for condition I from Theorem 2.3, using (5.42), we

propose that

(7.26)
1

ch
δh < 2κδh ≤

1

2
a∗ < a∗(1− λh) .

From (7.26), for condition I, we impose (7.23).
We have
‖(λ0, u0)−(λ0h, u0h)‖ ≤ ‖s0−s0h‖ ≤ ‖s0− s̃0,h‖ + ‖s̃0,h−s0h‖ ≤ C0‖s0‖

+ ‖s̃0,h − s0h‖. We use (5.32). We obtain (7.24).
�

Lemma 7.8. Let δh = ‖Gh(s̃0,h, ỹ
′
0h)‖ = ‖Sh(s̃0,h)‖Σh

. If Ψh(x̃0h) = 0 in
δh, then, (7.21) is equivalent to the following conditions, for i = 1, . . . , q +
m, k = 1, . . . , n,

lim
h→0

(ΦG,h(x̃0h, ỹi,0,h)−[δq+m
i , 0]T ) = 0 , lim

h→0
(ΦH,h(x̃0h, z̃k,0,h)−[δnk , 0]

T ) = 0 ,

Corollary 7.9. qh = q, nh = n, where the index ”h” indicates the approx-
imate case.

Proof. q +m and n are fixed by B and B̄.
�

Corollary 5.10 gives:

Corollary 7.10. Assume that (λ̃0h, ũ0h) belongs to a solution branch of

equation (1.3). (λ̃0, ũ0) can be a regular or a nonregular solution. Assume
the hypotheses of Theorem 7.6 or of Theorem 7.7. Ψh(x̃0h) = 0 in δh. If
̺h 6= 0, then, the given problem (1.3) is a perturbation of the bifurcation
problem (7.20) (or of (1.4)). If ̺h = 0, then, the bifurcation point (λ0h, u0h)
belongs to the solution branch of equation (1.3).

Remark 7.11. We proved that there exists an approximate bifurcation prob-
lem (7.20) (or (1.4)) that preserves the type of the bifurcation point of (1.1).
The given problem (1.3) is a perturbation of (7.20) (or (1.4)) (when ‖̺h‖
is small enough.).

8. The Dirichlet problem for the stationary Navier-Stokes

equations

In the particular case of the stationary Navier-Stokes equations, we main-
tain the position from Section 1, where we state that we do not discuss if
the exact bifurcation point is generic or not. As a consequence of the results
from Section 7, in a certain configuration, if the model of a stationary flow
has a generic or an ungeneric bifurcation point, then there exists (at least)
one approximate equation that has a bifurcation point of the same type as
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the exact model. The hypothesis of the existence of an ungeneric bifurca-
tion point cannot be excluded, see [25, 45, 63]. For example, we do not
exclude transcritical bifurcation and nonsymmetric pitchfork bifurcation
from our discussion. If they exit, then they are regained in the approxi-
mate case by some perturbed approximate equation of the form (7.20) (or
(1.4)). For this discussion, other references are mentioned in Section 1.

Here, we show a modality to place the Dirichlet problem for the station-
ary Navier-Stokes equations in the framework of the preceding sections.

8.1. The setting from [29]. In order to apply the results for the case of
the Dirichlet problem for the stationary Navier-Stokes equations, formu-
lated in primitive variables, approximated by finite element method (with
discontinuous pressure), we use the setting of this problem from Section
IV.4.1, [29], in the framework of Section IV.3.3, [29]. We only indicate the
connection to the problem from Section IV.4.1, [29].

Let Ω be a bounded and connected open subset of RN (N = 2, 3) with
a Lipschitz - continuous boundary ∂Ω. In the sequel, u is the velocity, p
is the kinematic pressure and ν is the kinematic viscosity. We take N =
2, 3, X = H1

0 (Ω)
N × L2

0(Ω), Y = H−1(Ω)N . λ = 1/ν > 0. λ is the
bifurcation parameter, u = (u1, . . . , uN ) ∈ H1

0 (Ω)
N , x = (x1, . . . , xN ) ∈ Ω.

Let TS ∈ L(Y,X) be the Stokes operator that associates to f ∈ Y the solution
(u, p) = TSf of the homogeneous Stokes problem,

−△u+ grad p = f in Ω ,

div u = 0 in Ω ,(8.1)

u = 0 on ∂Ω .

The functions F and G, from Sections IV.3.1 and IV.4.1, [29], are FNS and
GNS , where FNS : (0,∞)×X → X, FNS(λ, v) = v+TSGNS(λ, v), andGNS :

(0,∞)×X → Y, GNS(λ, v) = λ·(
∑N

j=1 vj(∂v/∂xj)−f) for v = (v, q). GNS is
of class C∞ and has bounded derivatives of all order on all bounded subsets
of X. For (u, p), (u, p), (u, p) ∈ X, we have D(u,p)GNS(λ,u, p)(u, p) = λ ·∑N

j=1(uj(∂u/∂xj) + uj(∂u/∂xj)), D
2
(u,p)(u,p)GNS(λ,u, p)((u, p), (u, p)) =

λ ·
∑N

j=1(uj(∂u/∂xj) + uj(∂u/∂xj)).

Let us fix λ. (u, p) is a solution of the homogeneous Navier-Stokes prob-
lem if and only if u = (u, λp) is a solution of FNS(λ, u) = 0 ([29]).

Let h be a positive parameter tending to zero. For each h, let Γh and

Eh be two finite-dimensional spaces such thatΓh ⊂ H1(Ω)
N
, Eh ⊂ L2(Ω)

and assume that Eh contains the constant functions.
Let Γ0h = Γh ∩H

1
0 (Ω)

N , Mh = Eh ∩ L
2
0(Ω), Xh = Γ0h × Mh. Assume:

(a) There exists an operator rh ∈ L([H2(Ω) ∩ H1
0 (Ω)]

N ,Γ0h) and an
integer ℓ such that

(8.2) ‖v− rhv‖1,Ω ≤ Cr · h
m · ‖v‖m+1,Ω, ∀v ∈ Hm+1(Ω)N , 1 ≤ m ≤ ℓ .

(b) There exists an operator sh ∈ L(L2(Ω), Eh) such that

(8.3) ‖q − shq‖0,Ω ≤ Cs · h
m · ‖q‖m,Ω, ∀q ∈ Hm(Ω), 0 ≤ m ≤ ℓ .

These assumptions (a) and (b) together with the the uniform inf-sup con-
dition are the hypotheses H1, H2 and H3 for the approximation from [29].
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Equation FNS(λ, u) = 0 is approximated by FNS,h(λ, uh) = 0 ([29]), uh =
(uh, λph), where FNS,h : R×Xh → Xh, FNS,h(λ, uh) = uh+TS,hGNS(λ, uh)
and TS,h ∈ L(Y,Xh) is the approximate Stokes operator that associates to
f ∈ Y the solution (uh, ph) = TS,hf of the finite element method approxima-
tion of problem (8.1) ([29]),

(graduh, gradwh)− (ph, divwh) = 〈f,wh〉, ∀wh ∈ Γ0h ,(8.4)

(div uh, µh) = 0, ∀µh ∈ Mh .(8.5)

According to Theorem II.1.8, page 125, and to the proof of Theorem
IV.4.1, page 317, [29], we have:

(8.6) lim
h→0

‖(TS − TS,h)f‖X = 0 , ∀ f ∈ Y .

According to the proof of Theorem IV.4.1, page 317, [29], we have:

(8.7)

N∑

j=1

(uj(∂u/∂xj) + uj(∂u/∂xj)) ∈ L
3/2(Ω)N ,

where u, u ∈ H1
0 (Ω)

N , and, for Z = L3/2(Ω)N ⊂ Y,

(8.8) lim
h→0

‖TS − TS,h‖L(Z,X) = 0 .

8.2. The supplementary variabile q. Let us write the homogeneous
Navier-Stokes problem as a problem of the form (1.1). λ is variable. We
introduce a new variable q = λp and we write the problem from [29] in the
following form

p− λ−1q = 0 ,(8.9)

(u, q) + TSGNS(λ,u, p) = 0 ,

or

p+ T̃SG̃NS(λ, q) = 0 ,(8.10)

(u, q) + TSGNS(λ,u, p) = 0 ,

where T∗(p, f) =

[
T̃Sp
TSf

]
=

[
I1p
TSf

]
,

G∗(λ, p,u, q) =

[
−λ−1q
GNS(λ,u, p)

]
=

[
G̃NS(λ, q)
GNS(λ,u, p)

]
.

I1, I2 are the identity operators on L2
0(Ω), H

1
0 (Ω)

N respectively.
T−1
∗ (āi) are linearly independent if and only if āi are linearly independent.

We denote W = L2
0(Ω) × H1

0 (Ω)
N × L2

0(Ω). Let F∗ : (0,∞) × W → W,
F∗(λ, p,u, q) = (p,u, q)+T∗G∗(λ, p,u, q). (λ,u, q) = (λ,u, λp) is a solution
of FNS(λ,u, q) = 0 is equivalent to say that (λ, p,u, q) is a solution of the
following problem

(8.11) F∗(λ, p,u, q) = 0 .

F∗ is approximated by F∗,h : (0,∞) × Wh → Wh, F∗,h(λ, p,u, q) =
(p,u, q) + T∗,hG∗(λ, p,u, q), Wh = Mh × Γ0h × Mh.
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8.3. The verification of the hypotheses of Theorem 7.4. Let us re-
place F , Rm ×W , Z, (λ, u), (λ0, u0), in problem (1.1) and in hypothesis
(1.2), by F∗, R × W, W, (λ, p,u, q), (λ0, p0,u0, q0) respectively. We say
that we study problem (8.11) under hypothesis (1.2) and we want to prove
that the results of Theorem 7.4 hold for the approximation (??) of (8.11).
For this, it suffices to verify hypotheses (7.1), (7.5) - (7.9).

Let πWh = πZh = πWh = (sh, rh, sh) and I = (I1, I2, I1). We take

(8.12) λ̃0h = λ0 , p̃0h = shp0 , ũ0h = rhu0 , q̃0h = shq0 .

We have λ̃0h = λ0. We denote σ0 = (λ0, p0,u0), σ̃0h = (λ̃0h, p̃0h, ũ0h),

σNS
0 = (λ0,u0, p0), σ̃

NS
0h = (λ̃0h, ũ0h, p̃0h).

Let us first verify (7.9). We have

there exists η4 > 0 such that, for every vh ∈Wh, we have(8.13)

‖πZhDuF (λ0, u0)vh −DuFh(λ̃0h, ũ0h)vh‖Zh

= ‖πWh D(p,u,q)F∗(σ0, q0)(p,u, q)−D(p,u,q)F∗,h(σ̃0h, q̃0h)(p,u, q)‖Wh

≤ ‖(πWh − I)(p,u, q)‖Wh

+‖πWh

[
T̃SDqG̃NS(λ0, q0)q
TSD(u,p)GNS(σ

NS
0 )(u, p)

]
−

[
˜TS,hDqG̃NS(λ̃0h, q̃0h)q

TS,hD(u,p)GNS(σ̃
NS
0h )(u, p)

]
‖Wh

= ‖(πWh − I)(p,u, q)‖Wh

+‖(rh, sh)TSD(u,p)GNS(σ
NS
0 )(u, p)− TS,hD(u,p)GNS(σ̃

NS
0h )(u, p)‖Xh

≤ ‖(πWh − I)(p,u, q)‖Wh

+‖((rh, sh)− (I2, I1))TSD(u,p)GNS(σ
NS
0 )(u, p)‖Xh

+‖(TS − TS,h)D(u,p)GNS(σ
NS
0 )(u, p)‖Xh

+‖TS,h(D(u,p)GNS(σ
NS
0 )(u, p)−D(u,p)GNS(σ̃

NS
0h )(u, p))‖Xh

≤ η4‖(p,u, q)‖Wh
= η4‖vh‖Wh

,

where η4 is obtained using (8.12), (8.2), (8.3), (8.7) si (8.8).
Let us verify (7.7). We have

there exists η2 > 0 such that, for every (λh, uh) ∈ R
m ×Wh, we have(8.14)

‖πZhDF (λ0, u0)(λh, uh)−DFh(λ̃0h, ũ0h)(λh, uh)‖Zh

= ‖πWh DF∗(σ0, q0)(λ, p,u, q)−DF∗,h(σ̃0h, q̃0h)(λ, p,u, q)‖Wh

≤ ‖πWh

[
T̃SDλG̃NS(λ0, q0)λ
TSDλGNS(σ

NS
0 )λ

]
−

[
˜TS,hDλG̃NS(λ̃0h, q̃0h)λ

TS,hDλGNS(σ̃
NS
0h )λ

]
‖Wh

+‖πWh D(p,u,q)F∗(σ0, q0)(p,u, q)−D(p,u,q)F∗,h(σ̃0h, q̃0h)(p,u, q)‖Wh

= ‖shT̃SDλG̃NS(λ0, q0)λ− ˜TS,hDλG̃NS(λ̃0h, q̃0h)λ‖Mh

+‖(rh, sh)TSGNS(λ,u0, p0)− TS,hGNS(λ, ũ0h, p̃0h)‖Xh

+‖πWh D(p,u,q)F∗(σ0, q0)(p,u, q)−D(p,u,q)F∗,h(σ̃0h, q̃0h)(p,u, q)‖Wh

≤ ‖((rh, sh)− (I2, I1))TSGNS(λ,u0, p0))‖Xh

+‖(TS−TS,h)GNS(λ,u0, p0)‖Xh
+‖TS,h(GNS(λ,u0, p0)−GNS(λ, ũ0h, p̃0h))‖Xh

+‖πWh D(p,u,q)F∗(σ0, q0)(p,u, q)−D(p,u,q)F∗,h(σ̃0h, q̃0h)(p,u, q)‖Wh

≤ η2‖(λ, p,u, q)‖R×Wh
= η2‖(λh, uh)‖Rm×Wh

,
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where η2 is obtained using (8.13), (8.12), (8.2), (8.3) and (8.6) for f =
GNS(1,u0, p0).

Equation (8.11) has the form of equation (1.1). Assume that (8.11)
satisfies the hypotheses of Theorem 7.6. Then the corresponding equation
(7.20), with ̺h = (˜̺h, ̺h, ̺̂h), is
(8.15) F∗,h(λh, ph,uh, qh)− ̺h = 0 ,

or

(8.16) (ph,uh, qh) + T∗,hG∗(λh, ph,uh, qh)− (˜̺h, ̺h, ̺̂h) = 0 ,

or

ph − λ−1
h qh = ˜̺h ,(8.17)

(grad (uh − ̺h), gradwh)− ((qh − ̺̂h), divwh)(8.18)

= λh〈f−
N∑

j=1

uh,j
∂uh

∂xj
,wh〉, ∀wh ∈ Γ0h ,

(div (uh − ̺h), µh) = 0, ∀µh ∈ Mh .(8.19)

With the same settings, the framework of Section 10.2.3 (and also of
Section 10.2.2, rewritten for spectral Galerkin approximations), from [55],
allows the approximate Stokes operator TS,h to be constructed using spec-
tral methods.

9. A complement to Theorem 5.4

In this section, we investigate if we can fix only ŷ′0 in (5.26), in Theorem
5.4.

Let F : Rm ×W → Z be a nonlinear function of class Cp. Let (µ′, w′) ∈
R
m ×W . Let us define

F̃ : Rm ×W → Z, F̃ (λ, u) = F (λ, u)−DF (λ, u)(µ′, w′) ,

and G̃ : X → Z, H̃ : Rm ×W ×∆ → Z, Ψ̃ : X → Y , where G̃, H̃, Ψ̃ are

obtained by replacing F by F̃ in the definitions of G, H, Ψ respectively.

Let us define S̃ : Γ → Σ, S̃(s) = S(s), and Φ̃ : Γ× Γ → Σ,

Φ̃(s, φ′) = Φ(s, φ′) +




[
0
0

]

[
0
D2F (λ, u)((µ′, w′), ((µi, wi)− (µ′i, w

′
i)))

]

[
0
Du(DF (λ, u)(µ

′, w′))(vk − v′k)

]



,

for all i = 1, . . . , q +m, k = 1, . . . , n.
In the definitions from Subsections 5.1 and 5.2, let us replace F , G, H,

Ψ, S, Φ by F̃ , G̃, H̃, Ψ̃, S̃, Φ̃ respectively.

Corollary 9.1. Assume the hypotheses of Theorem 5.4 where we replace

F , G, H, S, Φ by F̃ , G̃, H̃, Ψ̃, S̃, Φ̃ respectively. Then (5.26) becomes

(9.1) S̃(s0)− Φ̃(s0, φ
′
0) ∋ 0 ,
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Let us fix ŷ′0 (whose existence is demonstrated) in (9.1). Let us take θ0
= θ̃0 +B(ŷ′0). Let us define

(9.2) F̃0 : R
m ×W → Z, F̃0(λ, u) = F (λ, u) −DF (λ, u)(µ̂′0, ŵ

′
0) ,

and G̃0 : X → Z, H̃0 : R
m × W × ∆ → Z, Ψ̃0 : X → Y , where G̃0,

H̃0, Ψ̃0 are obtained by replacing F by F̃0 in the definitions of G, H, Ψ

respectively. Let S̃0 : Γ → Σ be S where we replace F by F̃0 in (3.7) and
we use θ0 defined above.

Then, s0 is the solution of the equation

(9.3) S̃0(s) = 0 .

Equation (9.3) is of the form of equation (3.8).
Then, the component (λ0, u0) of s0 is a solution of the equation

(9.4) F (λ, u) −DF (λ, u)(µ̂′0, ŵ
′
0) = 0 ,

(λ0, u0) ∈ Ba∗(λ̃0, ũ0).

Assume that DΨ̃0(x̃0) is an isomorphism of X onto Y and DS̃0(s̃0) is
an isomorphism of Γ onto Σ. Under some other additional conditions like
in Theorem 5.4, we have:

Then, s0 is the unique solution of the equation (9.3) in some Ba(s̃0) with
a ≥ a∗. The system (9.3) and its solution s0 verify the assertions (a) and
(b) of the statement (ii) of Theorem 3.5.

Then, the component (λ0, u0) of s0 is the unique solution of the equation
(9.4) that satisfies hypothesis (1.2) and the rest of the hypotheses of the

statement (i) of Theorem 3.5 in some Ba(λ̃0, ũ0) with a ≥ a∗. The solution
(λ0, u0) is a bifurcation point of problem (9.4).

Proof. The proof of Theorem 5.4 remains valid. We only mention that
(5.57) has the formulation

S̃(s̄)− Φ̃(x̄, φ̄′)− Φ̃(x̃0, ξ(f̄ , ḡi, ēk)) + Φ̃(x̃0, ξ(ḡ
′, ḡ′i, ē

′
k)) ∋ 0 ,

⇔



B(0, λ̄, ū)− θ̃0 −B(0, µ̄′, w̄′)
F (λ̄, ū)−DF (λ̄, ū)(µ̄′, w̄′)

B((0, µ̄i, w̄i)− (0, µ̄′i, w̄
′
i))− δq+m

i
D(F (λ̄, ū)−DF (λ̄, ū)(µ̄′, w̄′))((µ̄i, w̄i)− (µ̄′i, w̄

′
i)))

B̄((0, v̄k)− (0, v̄′k))− δnk
Du(F (λ, u) −DF (λ̄, ū)(µ̄′, w̄′))(v̄k − v̄′k)



∋ 0 ,

�

Lemma 9.2. Assume that DS(s̃0) is an isomorphism of Γ onto Σ. If

(9.5) γ‖DS(s̃0)−DS̃0(s̃0)‖L(Γ,Σ) < 1 ,

then DS̃0(s̃0) is an isomorphism of Γ onto Σ.

Proof. This results from Lemma 3.1 [18], Theorem 6A.1 [21] and Lemma
IV.3.3 [29].

�
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Remark 9.3. Instead of a constant ̺ in the equation (5.28), we have ob-
tained ̺ in the form of a function ̺(λ, u) =DF (λ, u)(µ̂′0, ŵ

′
0) in the equation

(9.4).

10. Future Work

We have formulated some sufficient conditions for the existence of an
approximate equation (7.20) that has a bifurcation point of the same type
as the bifurcation point of a given exact equation (1.1).

In a further research that will continue the present one, we have the
following purposes:

(i) to prove that, given a function F and an approximation Fh for this,
under some conditions, if there exists ̺h (which is zero or nonzero) so that
the equation

(10.1) Fh(λh, uh)− ̺h = 0

has a bifurcation point, then there exists ̺ such that the equation

(10.2) F (λ, u)− ̺ = 0

has a bifurcation point of the same type as the bifurcation point of (10.1).
This idea is inspired by a result from [43] where Kantorovich and Akilov
prove that, given the linear operators that define an exact equation and
an approximate equation, under certain hypotheses, if the approximate
operator is an isomorphism, then the exact operator is an isomorphism.

(ii) to formulate some algorithms so that, by studying the approximate
equation

(10.3) Fh(λh, uh) = 0 ,

to decide if there exists ̺h such that the equation (10.1) has a bifurcation
point, to determine ̺h (only if this is necessary) and to determine the type
of the bifurcation point of (10.1) and hence of (10.2). In the study for (ii),
we will extend the methods introduced in [5].

In this way, we can reduce the study of the qualitative aspects of a
bifurcation problem on infinite-dimensional Banach spaces to the study
of an approximate problem. Finally, the study can be performed on a
computer.

Appendix A. A formulation of DG(s̃0, φ̃
′
0)(s, φ

′
)−DG(s, φ′)(s, φ

′
)

(A.1) Υ(s̃0, φ̃
′
0, s, φ

′, s, φ
′
) = DG(s̃0, φ̃

′
0)(s, φ

′
)−DG(s, φ′)(s, φ

′
)

=
1

2
DS(s̃0)s−

1

2
DΦ(x̃0, φ̃

′
0)(x, φ

′
)−(1−α)Φ(x̃0, ξ(f , gi, ek))+(1−α)Φ(x̃0, ξ(g

′, g′i, e
′
k))

−
1

2
DS(s)s+

1

2
DΦ(x, φ′)(x, φ

′
)+(1−α)Φ(x̃0, ξ(f , gi, ek))−(1−α)Φ(x̃0, ξ(g

′, g′i, e
′
k))

=
1

2
(DS(s̃0)s−DS(s)s)

−
1

2
(DΦ(x̃0, φ̃

′
0)(x, φ

′
)−DΦ(x, φ′)(x, φ

′
))

−(1− α)Φ(x̃0, ξ(f , gi, ek)) + (1− α)Φ(x̃0, ξ(g
′, g′i, e

′
k))
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+(1− α)Φ(x̃0, ξ(f , gi, ek))− (1− α)Φ(x̃0, ξ(g
′, g′i, e

′
k)) .

Υ(s̃0, φ̃
′
0, s, φ

′, s, φ
′
) =

1

2
(




B(x)
DG(x̃0)x
B(yi)

D2F (λ̃0, ũ0)((µ̃i,0, w̃i,0), (λ, u)) +DG(x̃0)yi
B̄(zk)

D(λ,u)(DuF (λ̃0, ũ0)ṽk,0)(λ, u) +H(λ̃0, ũ0, zk)




−




B(x)
DG(x)x
B(yi)

D2F (λ, u)((µi, wi), (λ, u)) +DG(x)yi
B̄(zk)

D(λ,u)(DuF (λ, u)vk)(λ, u) +H(λ, u, zk)



)

−
1

2
(




B(y′)

D2F (λ̃0, ũ0)((µ̃
′
0, w̃

′
0), (λ, u)) +DG(x̃0)y

′

B(y′i)

D2F (λ̃0, ũ0)((µ̃
′
i,0, w̃

′
i,0), (λ, u)) +DG(x̃0)y

′
i +A

B̄(z′k)

D(λ,u)(DuF (λ̃0, ũ0)ṽ
′
k,0)(λ, u) +H(λ̃0, ũ0, z

′
k) +B




−




B(y′)

D2F (λ, u)((µ′, w′), (λ, u)) +DG(x)y′

B(y′i)
D2F (λ, u)((µ′i, w

′
i), (λ, u)) +DG(x)y′i + C

B̄(z′k)

D(λ,u)(DuF (λ, u)v
′
k)(λ, u) +H(λ, u, z′k) +D



) .
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les phénomènes successifs de bifurcation, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 5, 1
(1978), 29-63.

[26] A. Georgescu, Hydrodynamic Stability Theory, Kluwer, Dordrecht, 1985.
[27] A. Georgescu, C.-L. Bichir, Master - disciple discussions on Navier - Stokes equa-

tions, hydrodynamic stability theory, bifurcation theory and extended systems, 1997-
2002.

[28] A. Georgescu, M. Moroianu, I. Oprea, Bifurcation Theory. Principles and Applica-
tions, Applied and Industrial Mathematics Series, 1, University of Piteşti, 1999 (in
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1980, Birkhäuser, Basel, 1980.

[52] Moore, G., The numerical treatment of non-trivial bifurcation points, Numer. Funct.
Anal. Optim., 2 (1980), 441-472.

[53] G. Moore, A. Spence, The calculation of turning points of nonlinear equations, SIAM
J. Numer. Anal., 17 (1980), 567-576.

[54] I. Moret, The approximation of generalized turning points by Krylov subspace meth-
ods, Numer. Math., 68 (1994), 241-353.

[55] A.Quarteroni, A.Valli, Numerical Approximation of Partial Differential Equations,
Springer, Berlin, 2008.

[56] R. Seydel, Numerical computation of branch points in ordinary differential equations,
Numer. Math., 32 (1979), 51-68.

[57] R. Seydel, Numerical computation of branch points in nonlinear equations, Numer.
Math., 33 (1979), 339-352.

http://www.researchgate.net/publication/


ON THE EXISTENCE ... 51

[58] R. Seydel, Nonlinear Computation, invited lecture and paper presented at the Dis-
tinguished Plenary Lecture session on Nonlinear Science in the 21st Century, 4th
IEEE International Workshops on Cellular Neural Networks and Applications, and
Nonlinear Dynamics of Electronic Systems, Sevilla, June, 26, 1996.
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