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Supervised machine learning models and public surveillance data has been employed for infec-
tious disease forecasting in many settings. These models leverage various data sources capturing
drivers of disease spread, such as climate conditions or human behavior. However, few models have
incorporated the organizational structure of different geographic locations for forecasting. Traveling
waves of seasonal outbreaks have been reported for dengue, influenza, and other infectious diseases,
and many of the drivers of infectious disease dynamics may be shared across different cities, either
due to their geographic or socioeconomic proximity. In this study, we developed a machine learn-
ing model to predict case counts of four infectious diseases across Brazilian cities one week ahead
by incorporating information from related cities. We compared selecting related cities using both
geographic distance and GDP per capita. Incorporating information from geographically proximate
cities improved predictive performance for two of the four diseases, specifically COVID-19 and Zika.
We also discuss the impact on forecasts in the presence of anomalous contagion patterns and the
limitations of the proposed methodology.

I. INTRODUCTION

Data driven models are increasingly used for disease
forecasting given the availability of public health records
and advances in machine learning algorithms and their
applications to epidemiology [1, 2], with Brazil’s Data-
SUS [3] reporting over 50 unique diseases and health
conditions being actively monitored, including multi-
ple endemic diseases and also COVID-19, which had
widespread repercussions in the country and beyond in
recent years.

When employing theoretical procedures, one has the
possibility of understanding the dynamics and properties
of the infectious agents through compartmental models,
such as done analysing the different COVID-19 variants
[4] and Dengue’s serotypes [5], with works also consid-
ering the co-circulation of diseases transmitted by the
Aedes mosquito [6]. However, the main advantage of cur-
rent supervised machine learning approaches over those
approaches lies in their ability to directly infer the rela-
tionship between features of interest without the neces-
sary knowledge of the epidemic’s dynamics to arrive at
reasonable predictions [7].

In terms of computational costs and explainability, de-
cision trees ensembles, such as the Random Forests or
the XGBoost algorithms, often proves to be a reliable
method, specially when the neural networks’ requirement
of data availability is in the tens of thousands of mea-
surements, which could also bias these models towards
over-fitting.
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A range of data sources has been used for forecasting,
including active and passive surveillance records (cases,
hospitalizations, serosurveys) [8], meteorological and en-
vironmental conditions [9], human behavior and internet
searches [10]. The importance of different data sources
varies among infectious diseases.

As a vector-borne disease, dengue cases depend on vec-
tor suitability conditions and human behavior, such as so-
cioeconomic factors affecting vector suitability, mobility,
and susceptibility to infection[11], with Brazil currently
accounting for the most cases reported in Latin America,
with an increase of 13% in these registers when compared
to the past year [12].

COVID-19 on the other hand is a respiratory condition
and thus cases are more closely correlated with measures
of human interactions, such as crowding in public spaces
and traveling, with early lock-downs, mask and latter
vaccination adoption also had significant implications to
its development, with the rate, delays and general adop-
tion of those methods varying significantly between coun-
tries [13, 14].

Concurrently, other endemic infectious diseases also af-
fects the country, such as Zika virus, which was shown
to be linked to Dengue and Chikungunya [15]; and also
Influenza as another influential airborne disease, both
which also amplify the effects of Dengue and COVID-19
on the Brazilian population.

Studying those socioeconomic components as possible
means of understanding the main factors of propagation
could in turn increase the accurateness of predictions
for those diseases, which would likely enable faster re-
sponses to new outbursts, as demonstrated in the case
of malaria forecasting in Guyana [16]. Previous studies
on the spreading of dengue in Brazil shown that geo-
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graphic proximity and hierarchical levels of influence be-
tween cities are impactful in the transmission process,
with highly influential cities with many transport links
having increased odds of an outbreak. [17]. Also, the
readiness for a given country to respond and its vul-
nerability to the effects of epidemic diseases have also
been quantified in terms of several socioeconomic indica-
tors [18, 19]. For this study, the gross domestic product
(GDP) of each municipality will be considered as the cho-
sen indicator of economic growth.

In this work, the aim was to develop and apply a strat-
egy utilizing the underlying information contained in so-
cioeconomic and geographic data from Brazilian cities as
a way to increase the effectiveness of predictions for dis-
eases, while also verifying the impact of this protocol for
intrinsically different conditions. Multiple decision tree
frameworks were employed and analyzed under a criteria
that includes the seasonal näıve baseline, selecting the
best model for each city via cross-validation and then
evaluating on a hold-out test set. Predictions for COVID-
19 notably benefits from this methodology, while Dengue,
Zika and Influenza benefits less from socioeconomic and
geographic associations.

II. MATERIALS AND METHODS

A. Data

Weekly cases for the diseases were sourced by the of-
ficial Brazilian government database. Dengue, Zika and
Influenza registers can be found on the System of Infor-
mation on Aggravations and Notifications (Sistema de
Informação de Agravos de Notificação, SINAN ) [3] and
also on the official government panel for COVID-19 data
[20]. As for geographic and economic data, the informa-
tion utilized to generate the correlations between cities
can be found on IBGE platform (Instituto Brasileiro de
Geografia e Estat́ıstica) [21], with data ranging from 2014
to 2020. The latitude, longitude, and GDP per capita of
all available cities in this time frame were considered,
with the geographic distance between municipalities cal-
culated through the euclidean distances between latitude
and longitude, while the yearly GDP data for each city
was treated as time series and similarities were defined
as discussed in Section IIC.

After combining the available cities on DataSUS with
IBGE’s database, and also accounting for all years in the
time range considered for Dengue, Zika and Influenza,
the analysis respectively accounted for 1804, 211 and 274
cities that fit this criteria, while the COVID-19 database
encompass 5565 unique cities: notice that, although with
much larger coverage on Brazilian cities, the endemic dis-
eases have measurements on a greater array of years.
Data was then split into a training set (Dengue: Jan.
2014 - May. 2020; Zika: Jan 2016 - May. 2022 ; COVID-
19: Mar. 2020 - Fev. 2023; Influenza: Jan 2013 - Jul.
2018) and a hold-out test set (Dengue: Jun. 2020 - Dec.

2021; Zika: Jun. 2022 - Dec. 2023 ; COVID-19: Mar.
2023 - Dec. 2023; Influenza: Aug. 2018 - Dec. 2019).
The data was normalized to have the maximum cases
count of one for each trained model.
For the four diseases included in this project, the skew-

ness, mean and standard deviation of data was also in-
cluded on Table I.

TABLE I: Basic statistic description for the weekly
number of cases to the investigated diseases.

Disease Mean Maximum Skewness

Dengue 178± 566 13540 5.3± 1.9

Zika 85± 244 2472 5.3± 2.0

COVID-19 552± 2680 107057 4.5± 2.5

Influenza 18± 51 885 3.8± 1.2

B. Methods

We employed the predictive algorithms Random
Forests and XGBoost for all predictive tasks, where the
training set used 5 delays (or lags) for the disease’s time
series. These two models function as ensembles of deci-
sion trees with intrinsically different methods of achiev-
ing forecasts. In all of them, the trees are generated by
selecting subsets of observations through sampling with
replacement methods, in this work using a random sub-
set of features in each splitting process and selecting the
best fit using Mean Absolute Error (MAE).
Random Forests [22] determine the final result using a

combination of multiple decision trees, being an approach
with few parameters to tune throughout the training pro-
cesses and thus presenting a robustness to over-fitting.
As for the Gradient Boosting Regression method XG-
Boost [23] chosen, the trees are built individually, where
weights are added depending on the performance shown
by that tree to a given example, that is, the ensemble
will be able to account for higher variability in data by
evaluating trees based on the difficulty of prediction for
those examples.
Mean absolute scaled error (MASE) was used to eval-

uate the performance of predictions, due to its inter-
pretability and scale-invariant properties [24].

MASE =
1
J

∑
j |ŷj − yj |

1
T−m

∑T
t=m+1 |yt − yt−m|

, (1)

where the upper term is just the mean average error
(MAE).
MASE’s main advantage is its interpretability, which

is directly linked to the performance of the seasonal näıve
model for a given city, which is defined in the denomina-
tor of Eq. 1. Models with MASE < 1 will outperform
the näıve forecast. Moreover, MASE is scale-invariant,
a known limitation of MAE when comparing multiple
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time series with varying amplitudes, as was observed for
all data and illustrated on Figure 2. It is also symmet-
ric and robust when the predicted value ŷ approaches 0,
which is often the case in epidemiological records. The
algorithm employed will take m to be the same length of
the prediction window for each disease.

In order to evaluate the performance of the im-
plemented models, we began by defining the hyper-
parameters of each model and using an exhaustive search
method over those to define the optimal combination for
the trained models, alongside employing cross-validation
with four splits of the train data in each case. These
parameters are listed in the following table.

TABLE II: Parameters for each regression model. For
both diseases, four splits of the train set were used for

cross-validation.

Algorithm Hyperparameter Values

RF number of trees: [25,50,100,150,200]
maximum tree depth: [2,4,None]

XGBoost number of trees: [25,50,100,150,200]
maximum tree depth: [2,4,None]
learning rate: [0.001, 0.005, 0.01]

It is important to note that the cross-validation model
in this approach selects the best hyperparameters for
each city independently from the rest of the data set,
both for the direct prediction baseline and for the
methodology described in Sec. II C.

The data was filtered to exclude cities with anomalies,
defined as cases outside the expected distribution in the
training with z-score z > 4 observed on the hold-out test
set of each disease (see Sec. II A). Despite all diseases
displaying non-normal distribution of cases, according to
the mean skewness on Table I, the second moment of
these distributions can still present an informed criteria
according to Chebyshev’s inequality, where at least 94%
of data would have σ = 4 distance from the mean. As
a deviation measurement, the implications to forecasting
on cities with patterns that would not be seen by the
models will be discussed in Sec. IV. Table III and Fig. 1
describes the precision of the evaluated regression models
for time series with and without anomalies present.

C. Feature Engineering

The main objective of this study was to evaluate the
predictive performance of different approaches for select-
ing features from related cities. We compared the base-
line model described above to models that incorporate
features from cities with correlated time series, defined
below.

1. Geographic proximity between cities, with the eu-
clidean distances being calculated from IBGE’s
data described in Sec. IIA. This allows one to

generate a network of municipalities using only dis-
tances as the connection criteria, that is, the closest
city to a given target will be part of its neighbor-
hood;

2. Optimal match distance calculated through the use
of Dynamic Time Warping [25] for both yearly
GDP data for each city from the IBGE database
(see Sec. II A), and the diseases’ time series. Ap-
plying this algorithm to the latter data is done as a
way to compare the patterns of contagions between
cities, generating a non-informed baseline for the
other two (geographic distances and GDP) selec-
tion criteria.

To quantify the optimal match distances for diseases
cases and GDP data, dynamic time warping is employed
as a method to evaluate which of the time series will have
the minimum traversal cost to a given target. Defin-
ing such traversals as T = ((i1, j1), ..., (it, jt)), with
i1 = j1, it = n, jt = m for each time step k ∈ 1, ..., t− 1,
the algorithm will then minimize the function:

t∑
k=1

d (pik , qjk) , (2)

where pik and qjk are points in the curves P = (p1, ..., pn)
and Q = (q1, ..., qm) that are being analyzed. The opti-
mal match will be denoted as DTW(P,Q). Notice that
Eq. 2 requires a choice of distance metric d(., .), which
in this work was taken to be the Euclidean metric, where
d(x, y) = ||x− y||p.
For all methods, new features made from the time se-

ries of cities that fulfilled the criteria above were added
to the training sets, using up to the top three cities’ time
series with optimal, or minimal, distances with respect
to a given target.

III. RESULTS

To first generate a baseline, the selection of optimal
hyperparameters for each individual city was performed
with two regression models: Random Forests and XG-
Boost. The resulting best model on this validation stage
was then evaluated on the test set slice of the city being
studied. Table III show the average MASE performance
of this approach for all cities.
As shown in Table III, for Dengue and Zika the Ran-

dom Forest algorithm performed best both in cities dis-
playing anomalies or those without then in the test set;
while for COVID-19 and Influenza data, XGBoost was
the best overall model for cities. Nonetheless, excluding
Zika, applying the models for the dataset that included
anomalous cities significantly reduced the observed accu-
racy of the prediction.
The results shown in Figs. 1 used the best regression

models from the baseline, respectively Random Forests
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TABLE III: MASE performance on the train and
hold-out test set of each regression framework for both

diseases.

z < 4 z ⩾ 4
Disease Algorithm Train Test Train Test

Dengue Random Forests 0.697 0.552 0.694 1.148
XGBoost 0.871 0.586 0.857 1.228

Zika Random Forests 1.100 0.604 1.040 1.044
XGBoost 1.287 0.703 1.199 1.134

COVID-19 Random Forests 0.605 0.362 0.605 0.423
XGBoost 0.643 0.508 0.643 0.566

Influenza Random Forests 0.798 1.070 0.786 1.274
XGBoost 0.866 1.061 0.847 1.277

for Dengue, Zika and COVID-19, and XGBoost for In-
fluenza, along with the expanded train sets generated
through the methodology described in Sec. II C for the
three different association criteria. The parameter op-
timization and cross-validation were executed indepen-
dently from the baseline selection.

When considering the augmentation of the training set
with the proposed methodology, simulations performed
for Dengue and Influenza cases do not display consider-
able benefits of increasing the features past the initial five
lags from the target time series, given that all results are
within the uncertainty range and are comparable to the
baseline performance, shown in Figures 1a, 1b, 1d.

COVID-19 and Zika predictions including such fea-
tures shown in Fig. 1c, on the other hand, notably in-
creases the regression effectiveness, and more evidently
for the hold-out test set for the pandemic, with geograph-
ical associations resulting in the best performance for
both cases. Overall, aside from Influenza, all results with-
out including anomalies in the test set displayed higher
accuracy than the seasonal näıve model.

Fig. 2 illustrates the forecasts, and also the mentioned
advantages of using MASE as a evaluation metric instead
of MAE, as discussed in Section II B, for selected munic-
ipalities using the best models for each disease according
to the results of Fig. 1.

IV. DISCUSSION

The main proposal of this method is to verify the po-
tential of including variables that are known to be linked
to a given disease’s spread dynamic, thus not only cre-
ating predictions that are robust to reporting fluctua-
tions, but also identifying “signaling cities” and help un-
derstand the wave-like patterns of disease transmission
across Brazil. The positive outcome of including dis-
ease’s data from geographically close cities for Zika and
COVID-19 can be interpreted as a reflection of such pat-
terns, indicating that regional-level health policies also

FIG. 1: MASE performance using varying number of
features on the training set, with the amount

represented by the numbers associated with the bar
colors, for all investigated diseases. Brighter colors

indicate the use of the dataset without anomalous cities
(z < 4).

(a) Dengue forecasts using Random Forests.

(b) Zika forecasts using Random Forests.

(c) COVID-19 forecasts using Random Forests.

(d) Influenza (pre-COVID-19) forecasts using
XGBoost.
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FIG. 2: Example predictions for three sample cities for both diseases, using the geographic distances as the
aggregation method on the train set and including three new features from associated cities. From left to right:

Dengue, Zika, COVID-19 and Influenza cases. None of these time series contain anomalous patterns in the hold-out
test set. MAE and MASE results are presented for the test set.
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(h) Influenza on Niterói,
RJ. MAE: 1.66, MASE:

1.55.
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(i) Dengue on Braśılia, SP.
MAE: 67.2, MASE: 0.89.
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MAE: 1.90, MASE: 0.43.
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(l) Influenza on Braśılia,
SP. MAE: 11.98, MASE:

2.84.

can be effective in the containment of those outbreaks.
It is important to also note the limitations of this study.

The official reports on dengue, for example, could be in-
stead a mislabel of Zika or Chikungunya, that shares
some symptoms with Dengue, as shown by [15]. Fur-
thermore, the predictions for Dengue and Influenza were
not substantially enhanced through this method, which
could imply that the variables selected are less impactful
for these endemic diseases, or the trends included in the
correlated time series does not contain information that
can positively influence the model.

As for the use of GDP as the selection criteria for the
training set, none of the considered diseases benefited sig-
nificantly from including this metric. This implies that
other, more specific measurements of social and economic
aspects should be used instead. Chan et al. [18] demon-
strated the effectiveness of using health and infrastruc-
ture indicators to the prediction of outbreaks in multiple
countries, including Brazil.

Moreover, most common regression models, including
decision trees, learn from seasonal patterns and trends,
and as such would not be able to predict significant devi-
ations from the training data should such pattern emerge
in future measurements, as demonstrated by the notable
difference in evaluating the performance on target series
within or without the z-score threshold.

V. CONCLUSIONS

In this work, the predictive performance of machine
learning models that incorporate information from re-
lated cities was evaluated by comparing three methods
for selecting related cities, through similarity in geogra-
phy, GDP and seasonal patterns in the data. We imple-
mented these methods for four different diseases in Brazil.
COVID-19 and Zika predictions improved when enrich-
ing the training data with features from geographically
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proximate cities, while dengue and influenza forecasts did
not benefit significantly from the same procedure. More-
over, forecasting is improved when applying the models
for data that does not include unseen variations on the
test set, with better performance than baseline in those
cases. These results suggest that predictive models in-
corporating information from related cities can help in-
fectious disease forecasts and create more robust early
warning systems for public health departments.

Expansions of this work could be done in multiple
ways. First, data describing the travel flux between cities
could help clarify the association of distances with the
spreading of diseases, and consequently the impact ob-
served of the use of this property in the prediction of
COVID-19. Moreover, other indicators could be applied
to this methodology, such as the Gini coefficient, the ex-
istence and investment levels in public health measures
and sanitary services along with their coverage in a given
city, hospitalization and mortality rates of the disease un-
der study, and also other structural indicators, such as
communications networks. It also could be useful to con-
sider climate variables, specially for diseases transmitted
through non-human vectors, as done in [26].

An alternative method that could be used to reduce
the influence of outliers in the modeling process would
be to use a cellwise robust filtering task, where it would
flag cells in the data matrix as outlying and down-weight
the influence of outliers, such as proposed on [27]. In the
case of large datasets complying to sparsity requirements,
a recent work could also provide further insights to the
modeling process [28].

Furthermore, the explainability of a acute outbreak
would require causal inference of multiple factors that
goes beyond the scope of this project; while a halt, or

a markedly decrease, of cases may be related to the im-
plementation of lock-downs and other containment mea-
sures and should be taken into account when asserting
the accuracy of predictions. In this context, the pro-
posed methodology will then be effective in scenarios
where the epidemic does not include such variations, un-
less those changes in the disease’s pattern can be ex-
plained by known data. These models will then provide
useful insights into the diseases dynamics by employing
variables known to be linked to it that also improve fore-
castings, which in turn could contribute as an additional
information source for public health decision-making.
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