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The node-averaged complexity of a problem captures the number of rounds nodes
of a graph have to spend on average to solve the problem in the LOCAL model. A
challenging line of research with regards to this new complexity measure is to understand
the complexity landscape of locally checkable labelings (LCLs) on families of bounded-
degree graphs. Particularly interesting in this context is the family of bounded-degree
trees as there, for the worst-case complexity, we know a complete characterization of the
possible complexities and structures of LCL problems. A first step for the node-averaged
complexity case has been achieved recently [DISC ’23], where the authors in particular
showed that in bounded-degree trees, there is a large complexity gap: There are no
LCL problems with a deterministic node-averaged complexity between ω(log∗ n) and
no(1). For randomized algorithms, they even showed that the node-averaged complexity
is either O(1) or nΩ(1). In this work we fill in the remaining gaps and give a complete
description of the node-averaged complexity landscape of LCLs on bounded-degree trees.
Our contributions are threefold.

• On bounded-degree trees, there is no LCL with a node-averaged complexity between
ω(1) and (log∗ n)o(1).

• For any constants 0 < r1 < r2 ≤ 1 and ε > 0, there exists a constant c and an LCL
problem with node-averaged complexity between Ω((log∗ n)c) and O((log∗ n)c+ε).

• For any constants 0 < α ≤ 1/2 and ε > 0, there exists an LCL problem with
node-averaged complexity Θ(nx) for some x ∈ [α, α+ ε].
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MinINg for Green agents” (PE0000013, CUP D13C24000430001), and by the research project RASTA “Realtà
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1 Introduction

Distributed computation theory has witnessed remarkable progress since the 1980s. Researchers
have not only been able to determine tight complexities of many fundamental distributed graph
problems, but they have also been able to develop frameworks that can determine the complexity of
entire classes of problems at once. Many known results establish lower bounds on the amount of
rounds of communication that are required to solve certain problems. These results are proved for
ad-hoc, worst-case networks, suffering from notable limitations: in particular, such lower bounds do
not provide any information about the time it takes for a randomly selected node to terminate, and
they only state that at least one node of the network has to spend a lot of time. For this reason,
the last yearst have seen several attempts to go beyond worst-case complexity.

One recent successful line of research studies the node-averaged complexity of distributed graph
problems, which measures the average runtime of a node in the worst-case graph. The study of
node-averaged complexity of graph problems is not only interesting per se, but it can also be a
powerful tool for developing algorithms with better worst-case complexity. A notable example is
the recent algorithm for computing a (∆ + 1)-coloring in O(log n log2∆) deterministic worst-case
rounds [GK21], which is built on top of a subroutine for a variant of coloring (called list-coloring)
that has O(log2∆) deterministic node-averaged complexity. Any improvement on the node-averaged
complexity of this problem would lead to an algorithm for (∆+1)-coloring with better deterministic
worst-case complexity.

Locally Checkable Labelings. A rich and successful line of research has studied a class of
problems called Locally Checkable Labelings (LCLs), that have been introduced in the seminal work of
Naor and Stockmeyer [NS95]. Informally, these problems satisfy that a given solution is correct if and
only if the constant-radius neighborhood of each node satisfies some given constraints. LCLs include
many classical problems, such as coloring, maximal matching, and maximal independent set. The
worst-case complexity of LCLs has been extensively studied in the context of bounded-degree graphs.
In such a setting, we now have an almost complete characterization of what the possible deterministic
and randomized worst-case complexities of LCLs are, and sometimes we even have decidability
results: in many cases, given an LCL defined in some formal language, it is possible to automatically
compute its distributed time complexity, and synthesize an algorithm for it with optimal runtime.
These works studied different graph topologies, such as paths and cycles [CSS21, BBC+19], trees
[BBC+22, BBOS21, BHOS19, CP19, BBO+21, BBE+20, GRB22, BCM+21, BBF+22, Cha20], grids
[BHK+17], and general graphs [BBOS21, BBOS20, BCM+21, BHK+18, CKP19].

Node-averaged complexity of LCLs. A notable line of research regards the worst-case com-
plexity of LCLs on trees of bounded degree. There, we know that LCLs can only have the following
deterministic worst-case complexities: O(1), Θ(log∗ n), Θ(log n), and Θ(n1/k) for any fixed integer
k > 0. Moreover, randomization can only help for problems with deterministic complexity Θ(log n),
making their randomized complexity Θ(log log n). Building on such remarkable results, a first
attempt to generalize our knowledge to the case of node-averaged complexity has been done by
Feuilloley in [Feu17], who showed that on cycles, the deterministic node-averaged complexity of an
LCL is asymptotically the same as its worst-case complexity. Then, [BBK+23b] considered LCLs
on trees and proved the following results. Any LCL on trees either has node-averaged complexity
O(log∗ n), or it has polynomial node-averaged complexity. Thus, differently from the landscape of
worst-case complexities, there are no LCLs with node-averaged complexity Θ(log n) or Θ(log log n).
A concrete and surprising application of this generic result is that a 3-coloring can be computed
in just O(log∗ n) node-averaged rounds in bounded-degree trees. For this problem, it is known
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Figure 1: Everything that was known about the Node-Averaged Complexity Landscape before the results in
this paper.

that Ω(log n) worst-case rounds are required. Another result shown in [BBK+23b] states that, if

a problem has worst-case complexity Θ(n1/k) for some k, then it has Ω(n1/(2
k−1)) deterministic

node-averaged complexity and Ω(n1/(2
k−1)/ log n) randomized node-averaged complexity. Hence, a

problem that has polynomial worst-case complexity also has polynomial node-averaged complexity.
Finally, the authors show that any LCL on trees that can be solved in subpolynomial worst-case
time can be solved in O(1) randomized node-averaged complexity.

Node-averaged complexity of graph problems. Apart from LCLs, the node-averaged complex-
ity has been studied for several other specific problems. For example, Barenboim and Tzur [BT19]
considered the problem of vertex-coloring in graphs of small arboricity, showing that the node-
averaged complexity can be significantly smaller than what we currently know for worst-case. While
the node-averaged complexity of some problems is strictly better than their worst-case complexity,
in [BGKO23] it has been shown that the currently best known randomized worst-case lower bound
for the MIS problem, which is Ω(

√
log n/ log log n), holds in the case of node-averaged complexity

as well. On the other hand, the paper also showed that, for a slight relaxation of MIS, called
(2, 2)-ruling set, it is possible to provide an algorithm with a node-averaged complexity that is
significantly better than the known worst-case lower bound for this problem.

1.1 Our Contribution

In our work, we complete the characterization of the possible node-averaged complexities of LCLs on
trees of bounded degree. We show that, perhaps surprisingly, the landscape of possible node-averaged
complexities is significantly different from the one of possible worst-case complexities. Fig. 1 gives an
overview of everything that was known so far about the node-averaged complexity landscape of LCLs
on bounded degree trees. We will later see that with our results we get a complete characterization
of the landscape.

Polynomial regime. As already mentioned, in the case of worst-case complexities, the only
possible complexities in the polynomial regime are Θ(n1/k) for any constant integer k. Prototypical
problems exhibiting these worst-case complexities are so-called k-hierarchical 21

2 -coloring problems.
In our work, we show that the landscape of possible polynomial node-averaged complexities is
substantially different, that is, that the region nΩ(1)–O(

√
n) is infinitely dense. More in detail, we

show that, for any rational 0 < a/b ≤ 1/2, there exists an LCL with (deterministic and randomized)
node-averaged complexity Θ(na/b), implying the following.

Theorem 1. For any two real numbers 0 < r1 < r2 ≤ 1
2 there exists a constant r1 < c < r2 and an

LCL Π such that Π has node-averaged complexity Θ(nc)

We achieve this by creating a weighted version of k-hierarchical 21
2 coloring that depends on two

more parameters ∆, d. We call it Π2.5
∆,d,k and we prove matching upper and lower bounds for it.
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Theorem 2. For any D, d, k such that D ≥ d+3, the node-averaged complexity of Π2.5
∆,d,k is O(nα1),

where α1 =
1∑k−1

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

Theorem 3. For any constants D, d, k, such that D ≥ d + 3 the LCL Π2.5
∆,d,k has node-averaged

complexity Ω(nα1), where α1 =
1∑k−1

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

New complexities in the O(log∗ n) regime. In the case of worst-case complexities, it is known
that there are no LCLs that have a complexity that lies in the region ω(1)–o(log∗ n). Moreover, it is
known that, for randomized algorithms, there are no LCLs that have a node-averaged complexity that
lies in the region ω(1)–no(1). We show that, in the case of deterministic node-averaged complexities,
this is false. We first introduce a new class of problems we call k-hierarchical 31

2 -coloring, which

already gives an infinite amount of nonempty complexity classes between (log∗ n)Ω(1)–O(log∗ n).
We repeat a similar process as in the polynomial regime to obtain a new class of LCLs Π3.5

∆,d,k. We
again obtain a strong lower bound.

Theorem 4. For any constants D, d, k, such that D ≥ d + 3 the LCL Π3.5
∆,d,k has node-averaged

complexity Ω((log∗ n)α1(x)), where α1(x) =
1

1+(1−x)
∑k−2

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

However due to the fact that an algorithm for this problem can not even afford to have a
linear number of nodes run for log∗ n many rounds, proving a matching upper bound proves quite
challenging. We instead get an algorithm that almost matches the lower bound.

Theorem 5. For any D, d, k such that d ≥ 3, D ≥ d+ 3, the node-averaged complexity of Π3.5
∆,d,k is

O((log∗ n)α1(x′)), where α1(x
′) = 1

1+(1−x′)
∑k−2

j=0 (2−x′)j
and x′ = log(∆−d+1)

log(∆−1) .

We overcome these complications, by showing that through clever choice of parameters ∆ and
d, we can get our upper and lower bound to become arbitrarily close, giving us the same kind of
guarantee as in the polynomial regime.

Theorem 6. For any two real numbers 0 < r1 < r2 < 1 and any ε > 0 there exist constants
∆, d, k, c such that r1 ≤ c ≤ r2 and LCL Π3.5

∆,d,k has node-averaged complexity between Ω((log∗ n)c)

and O((log∗ n)c+ε).

New gaps in the O(log∗ n) regime. We complete the results about the O(log∗ n) regime by
proving a gap in the possible complexities.

Theorem 7. There are no LCLs with a deterministic complexity that lies in the range ω(1)–
(log∗ n)o(1). Moreover, given an LCL, it is decidable whether it can be solved in O(1) deterministic
node-averaged rounds.

The new node-averaged complexity landscape of LCLs on trees By including all of our
new results, we get a complete picture about the node-averaged complexity landscape of LCLs on
bounded-degree trees. We provide a complete overview in Fig. 2.

1.2 High-level Ideas and Techniques

In the following, we outline the main ideas that we use to prove our results.
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Figure 2: Everything that is known about the node-averaged complexity landscape after including the results
in this paper. The gap between constant and log∗(n)o(1) is due to Theorem 7. The regions of infinite density,
represented by red bars, are a result of Theorems 1 and 6. The gap between ω(

√
n) and o(n) is due to

Corollary 60.

LCLs with weighted node-averaged complexity Intuitively the idea is the following: Start
with a problem like 2-hierarchical 21

2 -coloring, which has worst case complexity Θ(n1/2) [CP19] and

node-averaged complexity Θ(n1/(2
k−1)) [BBK+23b]. Because the problem has worst case complexity

Θ(n1/2), there must exist an instance of the problem with a node v which runs for Tv ∈ Ω(n1/k)
rounds. Now assume we could give some nodes more weight during the node-averaged analysis. Then
we could give a linear amount of weight w(v) = n

2 to this node v and as a result the node-averaged
complexity would be at least

T̄ ≥ 1

n
· Tv · w(v) =

1

n
· Ω(n1/2) · n

2
∈ Ω(n1/2).

So the node-averaged complexity would match the worst-case complexity. We achieve such a
weighted behavior simply by designing an LCL in a clever way.

Assume we have marked some neighbor u of v as a weight node, by giving it an input label Weight.
Then such a weight node u must copy the output of its adjacent non-weight node v. Essentially u
has to wait for v to terminate, so it can then output the same thing. However to put a lot of weight
on v, we also have to attach a lot of nodes to v, but since the maximum degree is constant this is
not so simple. We solve this by having the output label of v propagate through weight nodes. For
example we could require weight nodes that are adjacent to other weight nodes to also copy the
same output label. We leverage this by attaching a path of n

2 nodes to v. Then all of the nodes
in that path have to copy the output of v and therefore all of the n

2 nodes have to wait for v to
terminate. However, we have made a grave error here, because the propagation along this long path
takes Ω(n) time. As a result we have increased the worst case complexity of this new LCL to Θ(n).

Luckily we have a complete understanding of what determines the worst case complexity of
LCLs on trees. The problems with worst case complexity Θ(n) are exactly the problems for which,
in long paths, it takes a linear amount of rounds to terminate, like, e.g., 2-coloring. So we include a
way to let nodes terminate earlier, by allowing some weight nodes to output Decline and immediately
terminate without copying any other output label.

So the resulting LCL could roughly be described like this: Weight nodes that are adjacent to
non weight nodes have to copy the output of one such non weight node. For any weight node that
did copy the output, at most d neighboring weight nodes may decline to also copy the output, but
the remaining nodes do have to copy the output.

As a consequence of allowing some nodes to Decline, not all weight nodes have to actually copy
the output and we run into efficiency problems. We will see that there is now some efficiency factor
x that determines how many of the weight nodes actually have to wait for our node v to terminate.
By scaling this efficiency factor between (0, 1), we are able to obtain all intermediate complexities

between the worst case complexity of Θ(n1/2) and the node-averaged complexity Θ(n1/2
k−1).

6



New complexities in the O(log∗ n) regime. We want to get the same kind of density result that
we get by introducing weight nodes to the family of k-hierarchical 21

2 -coloring problems, but with
complexities in O(log∗ n). Similarly to the polynomial regime, where we can scale between worst case

complexity Θ(n1/k) and node-averaged complexity Θ(n1/(2
k−1)), we introduce a new infinite family

of problems we call k-hierarchical 31
2 -coloring. These problems have worst case complexity Θ(log∗ n)

and node-averaged complexity Θ((log∗ n)1/2
k−1

). This allows us to again apply the same tricks with
weighted nodes, to scale between the worst case and the node-averaged complexities. However, since
an algorithm is only allowed o(log∗ n) rounds on average, it becomes highly non-trivial to actually
achieve a fast node-averaged complexity. Using the algorithm of [BBK+23b] we are able to still
achieve a node-averaged complexity that is close to the lower bound. By applying some tricks in the
choice of parameters, we can get this upper bound arbitrarily close to the lowerbound (but never
actually have them match). Still this will be enough to also prove the same kind of infinite density
result also for the O(log∗ n) regime.

New gaps in the O(log∗ n) regime. In order to show that there are no LCLs in the range
ω(1)–(log∗ n)o(1), we operate as follows. As already mentioned, in [BBK+23b] it is shown that there
are no LCLs with node-averaged complexity that lies in ω(log∗ n)–no(1). This result is shown by
providing a unified way to solve all problems that have (worst-case or node-averaged) complexity
no(1), and the provided normal-form algorithm has node-averaged complexity O(log∗ n). On a
high level, this normal-form algorithm computes a decomposition of the tree that satisfies some
desirable properties, and in parallel exploits the decomposition that is being computed in order to
let many nodes terminate early. The resulting O(log∗ n) complexity is only needed for splitting
some long paths, obtained during the decomposition, into shorter paths. Moreover, as already noted
in [BBK+23b], if such splitting can be avoided, then the node-averaged runtime could be directly
improved to O(1). In our work, we provide two main ingredients:

• Given an LCL, it is possible to automatically determine whether it is needed to split long
paths into shorter paths when computing the decomposition.

• If an LCL can be solved in (log∗ n)o(1) deterministic node-averaged rounds, then it is not
needed to split paths.

The importance of the above results is twofold. On the one hand, we get that, if a problem can
be solved in (log∗ n)o(1) deterministic node-averaged rounds, then it has O(1) deterministic node-
averaged complexity. On the other hand, we also obtain that we can automatically decide whether
a given problem has O(1) node-averaged complexity. We highlight that, in the worst-case setting,
determining whether a problem can be solved in O(1) rounds is a long-standing open question.

2 Preliminaries and Definitions

Locally Checkable Labeling Problems. As already mentioned, on a high level, the class of
Locally Checkable Labeling (LCL) problems contains all those problems defined on bounded-degree
graphs such that: (i) nodes may have inputs that come from a finite set, (ii) nodes must output
labels from a finite set, (iii) the produced solution must be correct in any r-radius neighborhood,
where r is some constant. More precisely, an LCL problem Π is defined as a tuple (Σin,Σout, C, r),
where: (i) Σin is a finite set of possible input labels for Π; (ii) Σout is a finite set of possible output
labels for Π; (iii) r ≥ 1 is an integer called the checkability radius of Π; (iv) C (that stands for
“constraint”) is a finite set containing the labeled graphs that represent all radius-r neighborhoods
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that are valid for Π. More in detail C is a finite set of pairs (H, v), where H = (VH , EH) is a
graph and v ∈ VH , satisfying the following: (1) v has eccentricity at most r in H; (2) To each
pair (v, e) ∈ VH × EH is assigned a label ℓin ∈ Σin and a label ℓout ∈ Σout. Then, solving an LCL
Π = (Σin,Σout, C, r) on a graph G = (V,E) (where all node-edge pairs are labeled with a label in
Σin) requires to label each pair (v, e) ∈ V × E with a label in Σout satisfying that, for each node
v ∈ V , the labeled graph induced by the nodes in the radius-r neighborhood of v is isomorphic to
some (labeled) graph in C.

Node-averaged complexity. In this paper, we use the notion of node-averaged complexity as in
[BGKO23, BBK+23b]. Let A be an algorithm solving an LCL Π. Let G be a family of graphs, and
let G = (V,E) ∈ G be a graph where we run A. Let v ∈ V and let TG

v (A) be the number of rounds
after which v terminates when running A on G. Then, the node-averaged complexity of A on the
family of graphs G is defined as follows.

AVGV (A) := max
G∈G

1

|V |
· E

 ∑
v∈V (G)

TG
v (A)

 = max
G∈G

1

|V |
·
∑

v∈V (G)

E
[
TG
v (A)

]

3 Road Map

We now provide a summary of the structure of the paper.

The k-hierarchical 31
2-coloring problems. We start, in Section 4, by formally defining the

k-hierarchical 31
2 -coloring problems. These problems are defined by slightly modifying the definition

of the k-hierarchical 21
2 -coloring problems of [CP19]. In Section 4, we show that the k-hierarchical

31
2 -coloring problems have complexity Θ((log∗ n)1/2

k−1
).

Weighted problems. While the results of Section 4 provide LCLs with some node-averaged
complexities in the range ω(1)–o(log∗ n), in our work we also show that the complexity landscape is
in fact infinitely dense in that region, and in the polynomial region. For this purpose, we start, in
Section 5, by introducing weighted versions of the problems of 21

2 - and 31
2 -coloring.

Weighted lower bounds. We provide lower bounds for the weighted variants of 21
2 - and 31

2 -
coloring in Section 6.

Weighted upper bounds. In Sections 7 and 8 we provide upper bounds for the weighted variants
of 21

2 -coloring, and 31
2 -coloring, respectively.

Density results. In Section 9, we combine the results of Sections 6 to 8 to show that the
node-averaged complexity landscape of LCLs is dense in the regions (log∗ n)Ω(1)–o(log∗ n) and
nΩ(1)–o(

√
n). Since to our knowledge this has not been stated anywhere else so far, we also give a

proof for the ω(
√
n)–o(n) gap as a direct consequence of a nice lemma by [Feu17].

More efficient weight. What is left out from the results of the previous sections is showing that
there are LCL problems in the polynomial regime that have the same worst-case and node-averaged
complexity. We do this in Section 10, by defining the weighted version of 21

2 -coloring differently.

8



The ω(1)–(log∗ n)o(1) gap We conclude, in Section 11, by proving that there are no LCLs with a
node-averaged complexity that lies in the range ω(1)–(log∗ n)o(1).

4 k-hierarchical 31
2-coloring

We first do a warm up by answering one of the open questions in [BBK+23b], namely the question
if there exist LCLs with node-averaged complexity in the range ω(1)–o(log∗ n). To give a positive
answer to this question, we define a new infinite family of LCLs called k-hierarchical 31

2 -coloring.
These problems are really just a small twist on the family of the k-hierarchical 21

2 -coloring problems
introduced by Chang and Pettie [CP19], that we now report.

Definition 8 (k-hierarchical 21
2 -coloring). There are no input labels. Instead, each node has a level

in {1, . . . , k + 1}, that can be computed in constant time, and the constraints of the nodes depend
on the level that they have. The level of a node is computed as follows.

1. Let i← 1.

2. Let Vi be the set of nodes of degree at most 2 in the remaining tree. Nodes in Vi are of level i.
Nodes in Vi are removed from the tree.

3. Let i← i+ 1. If i ≤ k, continue from step 2.

4. Remaining nodes are of level k + 1.

Each node must output a single label in Σout := {W,B,E,D}, where W stands for White, B for
Black, E for Exempt, and D for Decline, and based on their level, they must satisfy the following
local constraints.

• No node of level 1 can be labeled E.

• All nodes of level k + 1 must be labeled E.

• Any node of level 2 ≤ i ≤ k is labeled E iff it is adjacent to a lower level node labeled W , B,
or E.

• Any node of level 1 ≤ i ≤ k that is labeled W (resp. B) has no neighbors of level i labeled W
(resp. B) or D. In other words, W and B are colors, and nodes of the same color cannot be
neighbors in the same level.

• Nodes of level k cannot be labeled D. As a result they must be properly 2-colored with colors
W,B. They may output E only if their lower level neighbours did not output D.

The problem of k-hierarchical 21
2 -coloring has worst case complexity Θ(n1/k) [CP19]. However,

in [BBK+23b], it is shown that the node-averaged complexity of this problem is Θ(n1/(2
k−1)).

In order to better understand this family of problems, let us consider the case k = 2, which
gives an LCL with worst-case complexity Θ(

√
n). In a worst-case instance for this problem, there

are only nodes of level 1 and 2: nodes of level 2 form a path P of length Θ(
√
n), and to each node

v of P there is a path Qv of length Θ(
√
n) of nodes of level 1 connected to it. Let us call these

paths “Q-paths”. The constraints of the problem require that each Q-path is either all 2-colored
with labels W and B, or all labeled D. Then, the subpaths of P induced by nodes that are not
connected to a 2-colored Q-path must be properly 2-colored, while the other nodes of P can output
E. This implies that either some Q-path is 2-colored, or P is 2-colored, and it is possible to prove

9



that this implies a worst-case complexity of Θ(
√
n). In the case of node-averaged complexity, a

worst-case instance looks different: Q-paths have length Θ(n1/3) and P has length Θ(n2/3), and it
is possible to prove that the node-averaged complexity is Θ(n1/3). Intuitively, this happens because
the nodes of P are less, so they can spend more time while keeping the average runtime low.

In the following, we will slightly modify the definition of these problems to obtain the family of
k-hierarchical 31

2 -coloring problems. While our new problems will not be interesting from a worst
case perspective, we will prove that these problems result in an infinite amount of intermediate
complexities in the range ω(1)–o(log∗ n). The rules are almost the same as in k-hierarchical 21

2 -
coloring, except that level k nodes must either output E, or output a valid 3-coloring using the
colors {R,G, Y }. For completeness, we restate all of the rules.

Definition 9 (k-hierarchical 31
2 -coloring). Nodes are assigned a level in {1, . . . , k + 1}, in the

same way as for k-hierarchical 21
2 -coloring. However the set of possible labels is now Σout =

{R,G, Y,W,B,E,D}, which now also contains the colors red, green and yellow. Nodes must satisfy
the following rules based on their level:

• No node of level 1 can be labeled E.

• All nodes of level k + 1 must be labeled E.

• Any node of level 2 ≤ i ≤ k is labeled E iff it is adjacent to a lower level node labeled W , B,
or E.

• Any node of level 1 ≤ i < k that is labeled W (resp. B) has no neighbors of level i labeled W
(resp. B) or D. In other words, W and B are colors, and nodes of the same color cannot be
neighbors in the same level. Also, nodes in these levels must not output any label in {R,G, Y }.

• Nodes of level k cannot be labeled D,W,B. Also, adjacent nodes must not both have the
same label among R,G, Y , that is, nodes of level k not labeled E must be properly 3-colored
with colors in {R,G, Y }. Nodes of level k may output E only if their lower level neighbours
did not output D.

This problem can be expressed as a standard LCL by setting the checkability radius r to
be O(k) since, in O(k) rounds, a node can determine its level, and hence which constraints apply.
Furthermore, by simply having all nodes of level 1, . . . , k − 1 output D, and having the nodes in
level k compute a valid 3-coloring, we can solve the problem in worst case time O(log∗ n), due to the
fact that 3-coloring a path can be done in O(log∗ n) worst-case rounds by, e.g., using the algorithm
by Linial [Lin92]. In the rest of the section, we will prove that the node-averaged complexity
of k-hierarchical 31

2 -coloring lies strictly in the range ω(1)–o(log∗ n), which in particular implies
Ω(log∗ n) worst-case complexity, due to the fact that, on trees, there are no LCLs in the range
ω(1)–o(log∗ n) [GRB22]. Hence, we obtain the following corollary.

Corollary 10. k-hierarchical 31
2 -coloring has worst case complexity Θ(log∗ n).

The rest of the section is dedicated to proving tight upper and lower bounds for this infinite family
of problems, and thereby establishing an infinite amount of complexity classes in the node-averaged
landscape. We will prove the following theorem.

Theorem 11. The deterministic node-averaged complexity of computing a k-hierarchical 31
2 -coloring

is Θ((log∗ n)1/2
k−1

).
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This result, however, tells us nothing about the spaces between these complexities. In later
sections, we will build upon these problems to show that, not only are there an infinite amount of
intermediate complexities in the range ω(1)–o(log∗ n), but also that the complexity landscape is in
fact infinitely dense in that region.

4.1 A Generic Algorithm for 21
2
- or 31

2
-coloring

We first give a generic algorithm that consists of k phases and depends on parameters γ1, . . . , γk−1.
Phase i < k − 1 proceeds as follows.

• Fixing paths of level i: Consider the subgraph of nodes that did not yet output any label.
Then, nodes of level i check if they are in a path P , induced by level i nodes, of length at
least γi. Every node can have this information after at most 2γi rounds. If P has length at
least γi, then all nodes in P output D. Otherwise P must have length strictly less than γi.
As a result, all nodes in P have seen the entire path and can output a consistent 2-coloring
using the labels W,B.

• Higher level nodes choose E: Since some paths got consistently 2-colored, some higher-level
nodes are allowed to output E. Consider some path P of nodes of level i that just decided
their output labels. According to the rules of 21

2 - and 31
2 -coloring the endpoints of P might be

adjacent to higher level nodes u, v (there can only be two, because each endpoint had degree
2 when it was assigned a level). If P did output a proper 2-coloring, then u, v can output E.
Then again u and v might be adjacent to higher level nodes which can then also output E.
We iterate this until there are no more nodes that can output E, this takes at most k rounds,
because there are only k levels.

In phase k, all remaining level k nodes (the ones that did not yet output E) either compute a
consistent 2-coloring in linear time (in the case of 21

2 -coloring), or compute a consistent 3-coloring
in O(log∗ n) time (in the case of 31

2 -coloring). This finishes the description of our algorithm.
We note some properties of the provided algorithm. All paths of level i nodes either output a

consistent coloring, or D. Furthermore, nodes only output E if they have a lower level neighbor that
did not output D. Finally, nodes of level 1 do not output E, and nodes of level k do not output D.
Therefore, the algorithm satisfies all constraints, and we get the following corollary.

Corollary 12. The generic algorithm computes a valid solution to the k-hierarchical 21
2 -coloring,

or, respectively, the k-hierarchical 31
2 -coloring problem.

We will first prove a generic statement that will be useful in many places of the paper.

Lemma 13. Given any instance of either k-hierarchical 21
2 -coloring, or k-hierarchical 3

1
2 -coloring,

consider the execution of the generic algorithm. Let i be between 1 and k− 1, and let n′ be an upper
bound on the number of nodes of level ≥ i that did not yet output a label. Then, after executing
phase i of the generic algorithm with parameter γi, the number of remaining nodes (which all have
level > i) is at most O(n

′

γi
).

Proof. We argue that for each node of level i+ 1 that remains, there must be at least γi
2 nodes of

level i that did already terminate. Consider some remaining node v of level i+ 1, it must have at
least one neighbor u of level i that did output D. Otherwise v would have output E already. Since
u did output D, the path of level i nodes containing u must have length at least γi, so charge half
of all nodes in this path towards v (the other half might be charged to the node at the other end of
the path). So each remaining level i+ 1 node has at least γi

2 nodes that already terminated charged
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to it (and the sets of charged nodes are disjoint). As a result there can be at most 2n′

γi
∈ O(n

′

γi
) such

nodes of level i+1 remaining. Any path of level i+1 nodes has at most 2 level i+2 nodes adjacent
to the endpoints. So for any two nodes of level i+ 2 that still remain, there must exist at least one
node of level i+ 1 that did not terminate yet. By repeating this reasoning we get that for every
2j−i−1 nodes of level j > i+ 1 there exists at least one node of level i+ 1 that did not terminate
yet. Or conversely, for every level i+ 1 node that remains, there remain at most∑

i+1<j≤k

2j−i−1 ∈ O(1)

nodes of higher levels. If such a level i node did not exist, all of these higher level nodes could
simply output E. So since there exist at most O(n

′

γi
) level i+ 1 nodes, there also remain at most

O(n
′

γi
) nodes in total.

Now, equipped with Lemma 13, getting our upper bound on the node-averaged complexity of
k-hierarchical 31

2 -coloring is just a matter of choosing the parameters γ1, . . . , γk−1 correctly. Define

t := (log∗ n)1/2
k−1

as the target complexity. For 1 ≤ i ≤ k− 1 define γi := t2
i−1

. We run the generic
algorithm with value γi for phase i.

Lemma 14. Let t := (log∗ n)1/2
k−1

. The algorithm solves k-hierarchical 31
2 -coloring in O(t)

node-averaged complexity.

Proof. By repeatedly applying Lemma 13, and since k is a constant, we get that after phase i < k

only ri = O
(

n

t2i−1

)
nodes remain. In fact,

ri = n ·O
(

1

γ1

)
·O
(

1

γ2

)
· . . . ·O

(
1

γi

)
= O

(
n∏

j≤i γj

)
= O

(
n∏

j≤i t
2j−1

)

= O

(
n

t
∑

j≤i 2
j−1

)
= O

(
n

t2i−1

)
.

Nodes spend 2γi = 2t2
i−1

rounds in phase i < k, and O(log∗ n) = O(((log∗ n)1/2
k−1

)2
k−1

) = O(t2
k−1

)
rounds in phase k. Combining this with the above result of how many nodes remain for a given
phase, we get the following upper bound on the node-averaged complexity.

T̄ =
1

n

(
rk−1 ·O(t2

k−1
) +

k−1∑
i=1

ri−1 ·O(γi)

)
= O

(
1

n

k∑
i=1

n

t2i−1−1
· t2i−1

)
= O

(
1

n

k∑
i=1

n

t−1

)
= O(t)

4.2 Lower Bounds For 31
2
-Coloring

In this section, we prove the following result.

Lemma 15. The deterministic node-averaged complexity of k-hierarchical 31
2 -coloring is Ω((log

∗ n)1/2
k−1

).

Before proving a lower bound for k-hierarchical 31
2 -coloring, we state few important results about

node-averaged complexity. We use this very nice characterisation of the node-averaged complexity
of LCLs on paths and cycles by Feuilloley [Feu17].

Lemma 16 ([Feu17]). For any LCL problem Π defined on paths, the following holds:
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• Π has randomised and deterministic node-averaged complexity Θ(n) if and only if it has
randomised and deterministic worst case complexity Θ(n);

• Π has deterministic node-averaged complexity Θ(log∗ n) if and only if it has deterministic
worst case complexity Θ(log∗ n).

This lemma immediately gives us bounds on the deterministic node-averaged complexity of
2-coloring and 3-coloring paths, since these problems, on paths, are known to require Ω(n) and
Ω(log∗ n) worst-case rounds, respectively.

Corollary 17. The 3-coloring problem, on paths, has deterministic node-averaged complexity
Ω(log∗ n).

We now define the family of graphs that we use to prove our lower bounds.

Definition 18 (k-hierarchical lower bound graph). For some parameters ℓ1, . . . , ℓk, consider the
following recursive construction. Start from a path of length ℓk, which is called path of level k, and
its nodes are called nodes of level k. Then, recursively, for i = k − 1, . . . , 1 do the following. For
each path P of level i + 1, for each node v of P , create a path P ′ of length ℓi and connect one
endpoint of P ′ to v. The path P ′ is a path of level i and its nodes are nodes of level i. This graph is
called k-hierarchical lower bound graph.

An example of this construction, for k = 2, is depicted in Figure 3. We note a small corollary
about this construction, that will be useful in later sections. It is just an immediate consequence of
the definition.

Corollary 19. Consider the computation of levels as in Definition 8. For all i ∈ {1, . . . , k}, let Li

be the set of level i nodes. Then, |Li| ∈ Ω(
∏

i≤j≤k ℓj).

We now prove the following lemma.

Lemma 20. Let n be the size of the k-hierarchical lower bound graph, as a function of ℓ1, . . . , ℓk.
Let S = {1, . . . , nc} be the ID space. Let Gk be the family of k-hierarchical lower bound graphs
obtained by assigning IDs from S. Let A be an algorithm for k-hierarchical 31

2 -coloring. Then, one
of the following holds:

• either there exists an instance in G ∈ Gk and a value i ∈ {1, . . . , k − 1} such that at least half
of the nodes of level i spend at least ℓi/10, or

• there exist nc−1/4k graphs in Gk, using disjoint sets of IDs, such that, for each of them, for
all i in {1, . . . , k − 1}, all nodes of level i output D.

Proof. We split the ID space into nc−1 sets of size n, and for each set S we construct an instance
by using an arbitrary ID assignment over the IDs from S. Let I0 be the set of resulting instances.
We will prove by induction that, either we can construct an instance in which the first condition of
the lemma is satisfied, or we can construct a sequence of sets I1, . . . , Ik satisfying that, for all i, for
all instances in Ii, by running A, all nodes at level at most i output D, where the size of Ii is at
least |I0|/4i. Note that for i = 0 the claim trivially holds.

Hence, in the following, assume that, for all instances in Ii−1, by running A, all nodes at level
at most i− 1 output D. Then, construct Ii as follows. We run A on all instances in Ii−1, and:

• either there exists an instance I ∈ Ii−1 in which at least half of the nodes of level i spend at
least ℓi/10, or

13



• in all instances I ∈ Ii−1, at least half of the nodes of level i spend at most ℓi/10.

Note that, if the first case applies, then the claimed statement holds. Hence, in the following assume
that the second condition holds.

We now prove that all nodes that run in at most ℓi/10 must output D. Since n ≥ ℓi, for each
node u that runs in at most ℓi/10, we can find some other node v that also runs in at most ℓi/10,
and such that u and v have disjoint views (that is, their radius-ℓi/10 neighborhood is disjoint).
Note that, by inductive hypothesis, all nodes in level i cannot output E, and hence they either
output B,W , or D. If both u and v output B or W , then by adjusting the parity accordingly, we
can create a single path containing both u and v in which their outputs cannot be completed into a
proper 2-coloring, which is a contradiction. If at least one node outputs B or W , and the other
outputs D, we can create a single path that directly gives a contradiction. Hence, all nodes that
run in at most ℓi/10 rounds output D.

We now lower bound the number of paths containing at least one node u that satisfies the
following properties:

• Node u terminates in at most ℓi/10 rounds (and hence it outputs D).

• Node u is at distance at least ℓi/10 + 1 from the endpoints of the path containing u (and
hence u does not see outside the path).

Let x be the total number of paths of level i, and let p the number of paths satisfying the desired
properties. We have xℓi/2 nodes that output D and terminate in at most ℓi/10 rounds. At most
2xℓi/10 of them can be too close to the endpoints of their paths. In the worst case, the remaining
ones are in the same paths. Hence, we can lower bound p as follows.

p ≥ (
xℓi
2
− 2xℓi

10
) · 10

8ℓi
=

3x

8
> x/4

We thus get that, for every 4 instances in Ii−1 (recall that they use disjoint sets of IDs), we can
construct a single instance in which all nodes of level i output D. Such instances are added to
Ii.

We are now ready to prove Lemma 15. Assume for a contradiction that, for some k, the
k-hierarchical 31

2 -coloring can be solved in o((log∗ n)1/2
k−1

) rounds. Let t := (log∗ n)1/2
k−1

, and for

1 ≤ i ≤ k − 1, let ℓi := t2
i−1

. Then, let ℓk := ⌊n/(
∏

1≤i≤k−1 ℓi)⌋. We consider the k-hierarchical
lower bound graphs for these parameters. Observe that, by construction, the total number of nodes
is Θ(n).

We apply Lemma 20. If the first case of the lemma applies, we obtain that there exists an
instance and a value of i in which at least half of the nodes of level i spend at least ℓi/10. In this
case, we get that the node-averaged complexity is at least

1

2n
·
∏

i≤j≤k

ℓj ·
ℓi
10
≥ 1

2n
· n

2(
∏

1≤i≤k−1 ℓi)
·
∏

i≤j≤k−1

ℓj ·
ℓi
10

=

∏
i≤j≤k−1 ℓj

4(
∏

1≤i≤k−1 ℓi)
· ℓi
10

=
ℓi

40
∏

1≤j≤i−1 ℓj
.

Note that ℓi = t2
i−1

, and that
∏

1≤j≤i−1 ℓj = t2
i−1−1. Hence, the node-averaged complexity is at

least t/40, which is a contradiction.
Hence, the second case of the lemma applies. We obtain that there are many instances in which

all nodes, except the ones at level k, output D, which implies that the nodes at level k need to
properly 3-color the path at level k. We now prove that the nodes in the path at level k need
to spend Ω(log∗ n) rounds on average, by a reduction from the hardness of 3-coloring given by
Corollary 17.
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Figure 3: The figure illustrates the lower bound graph for 2-hierarchical 3 1
2 -coloring. All nodes of level 1 are

colored green and all nodes of level 2 are colored red. The nodes in level 1 form paths of length
√

log∗ n (and√
log∗ n+ 1 for the left and rightmost). The level 2 nodes are just one long path of length n√

log∗ n
− 2

Lemma 21. Assume all nodes at levels strictly smaller than k output D. Then, the nodes in the
path at level k need to spend Ω(log∗ ℓk) rounds on average.

Proof. Assume the ID space in which A runs is {1, . . . , nc}. Let f be an injective function that maps
the IDs from {1, . . . , nc−1} into instances given by Lemma 20. For c large enough, the 3-coloring
problem on paths has still Ω(log∗ n) deterministic node-averaged complexity even if the IDs are in
the range {1, . . . , nc−1}. We now show that we can use A to solve 3-coloring on paths, assuming
the IDs are in {1, . . . , nc−1}, by using a standard simulation argument. Given a 3-coloring instance
of size ℓk, nodes create a virtual instance of k-hierarchical 31

2 -coloring as follows. Each node v takes
an arbitrary node u of degree 2 in the path of level k in f(v), and takes the tree Tv induced by all
nodes of lower layers reachable from u. Each node v pretends to be connected not only with its
neighbors in the path, but also to Tv. By simulating A on this instance, we obtain that all nodes in
the virtual trees output D, and hence we get a 3-coloring in the path. Since the nodes in the path
are ℓk, and since by Corollary 17 the 3-coloring problem on a path of length ℓk requires Ω(log∗ ℓk),
the claim follows.

Since log∗ ℓk ∈ Ω(log∗ n), for some large-enough constant c we obtain the following lower bound
on the node-averaged complexity of A:

1

n
· ℓk · c log∗ n ≥

1

2c

log∗ n

t2k−1−1
=

1

2c
t,

which is a contradiction.
This, together with Lemma 14, concludes the proof of Theorem 11. In the next section, we

will see a way of extending 21
2 - and 31

2 -coloring in a way that turns them into something like a
weighted version of original problems. Here weighted means weighted in terms of the node-averaged
complexity. The idea is to attach some special weight nodes to every normal node that has to wait
until the normal node terminates. We start with doing this for 21

2 -coloring, as there the analysis is
easier.

5 Weighted Problems

In this section, we introduce weighted versions of the problems of 21
2 - and 31

2 -coloring. These
problems will be instrumental in showing the density of non-empty complexity classes in the
polynomial and the sub-log∗ n regimes.
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Formally, we will denote the weighted versions of k-hierarchical 21
2 - and 31

2 -coloring by ΠZ
∆,d,k,

where Z ∈ {21
2 , 3

1
2} indicates whether the problem is a weighted version of 21

2 - or 3
1
2 -coloring, and

the other three parameters ∆, d, and k indicate an upper bound for the maximum degree of the
considered graphs, a parameter for tuning the complexity of the problem, and the parameter k from
the definition of k-hierarchical 21

2 - or 3
1
2 -coloring, respectively.

Definition 22. Let ∆, d, and k be positive integers satisfying ∆ ≥ d+ 3, and let Z ∈ {21
2 , 3

1
2}.

The LCL ΠZ
∆,d,k has input label set Σin := {Active,Weight}, i.e., each node is labeled with either

Active or Weight. In the former case, we call the node an active node, in the latter we call the node
a weight node.

Each active node has to output a label from ΣActive
out , where ΣActive

out is the output label set of k-
hierarchical Z-coloring. Each weight node v has to output a label from the set {Decline,Connect,Copy}.
If v outputs Copy, then it has to additionally output a label from ΣActive

out . We will call this additional
output label from ΣActive

out the secondary output of v.
The output is correct if it satisfies the following properties.

1. The connected components induced by active nodes satisfy the constraints of k-hierarchical
Z-coloring provided in Definition 8 and Definition 9.

2. Each weight node that is adjacent to at least one active node must output Connect or Copy.

3. For each weight node v that outputs Connect, at least two neighbors of v are active or output
Connect as well. (To be clear, if v has one active neighbor and one weight neighbor that
outputs Connect, then this property is satisfied.)

4. For each node v that outputs Copy, at most d neighbors of v output Decline.

5. If a weight node v that outputs Copy has an active neighbor, then the secondary output
of v is identical to the output of at least one active neighbor of v. Moreover, for any two
adjacent weight nodes v, w that both output Copy, the secondary output of v is identical to
the secondary output of w.

As the constraints of k-hierarchical Z-coloring mentioned in Property 1 as well as all other
properties mentioned in the problem description only depend on a constant-radius neighborhood of
the respectively considered nodes, the problem ΠZ

∆,d,k is an LCL problem.
We start with some intuition on these problems. We use inputs to decide which nodes are weight

nodes and which nodes have to solve 21
2 -coloring (resp. 31

2 -coloring). Property 2 and 5 ensure that
weight nodes don’t simply all output Decline. Notice that in a disconnected component consisting
of just weight nodes, they can all simply output Decline. However, if there is at least one active
node adjacent, then Property 2 creates at least one weight node with Connect or Copy.
We first ignore Connect labels and just think about a component of weight nodes C with just a
single active node v adjacent to C. As a result of Property 2, the weight nodes adjacent to v all
have to output Copy, and by Property 5 they must have as secondary output the same output as v.
Furthermore, this output spreads through C because nodes adjacent to a Copy node also have to
output Copy. As a result all of the nodes in C must wait for v to decide on its output label and
can only then propagate this output throughout C. This will cause very long dependency chains
and make this propagation take very long. To avoid very long dependency chains we allow some
nodes to output Decline in Property 4 and exclude Decline nodes from the need to propagate the
labels further. To understand Property 3 and the Connect label we have to consider components of
weight nodes with multiple active neighbors, for example a path of 4 nodes with both endpoints
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being active nodes and the two middle nodes being weight nodes. If we didn’t have the Connect
label, both the middle nodes would have to output Copy and have as secondary output the labels
that the endpoints chose. However, if these two labels are different we would get a contradiction
to Property 5. So if we consider a larger component of weight nodes with multiple active nodes
adjacent to it, we can use the Connect label to connect different active nodes that are too close
together. By Property 3 the nodes that output Connect are paths between active nodes and nothing
else, so this is the only use case for this Connect label. We will later see, in the upper bound, that if
these active nodes are sufficiently far apart we don’t need to use Connect, and in our lower bound
constructions weight components will only ever be adjacent to one active node, so the label Connect
can never be used.

Tour of the lower bound. In order to show the effectiveness of our construction, we start by
showing that if we attach W weight nodes in a balanced ∆-regular tree to a single active node v,
then W x of these weight nodes have to actually output v’s output as secondary output (Lemma 23).
Here x denotes some efficiency factor that is based on the parameters chosen. We then elaborate
on this by showing that if we instead spread these W nodes evenly in weight trees attached to
ℓ different active nodes, we have that ℓ(Wℓ )

x many nodes must copy an output from an active
node (Corollary 24). We use these insights to extend the classical lower bound constructions for
these problems by putting a linear amount of weight evenly distributed on nodes of each level
(Definition 25). Then, in order to actually prove our lower bounds, we first find ID assignments for
these problem instances such that the algorithm behaves in a predictable way, such that it either
completely colors all nodes of a level, or none (Lemma 26). We then calculate how much time it
would cost to color each level as a function of the length of the paths given by parameters nαi for
level i (Corollary 30). We get an optimisation problem that makes it so that no matter which level
the algorithm decides to color, it should take as long as possible (Corollary 31). We obtain an
analytic solution that gives us the length of the paths as a function of the efficiency factor x, and
obtain a lower bound for every choice of parameters ∆, d, k (Lemma 33).

Tour of the upper bound. We start by restating the problem of outputting the correct weight
labels as its own problem, and then develop an algorithm that only takes care of solving this weight
problem. The guarantees that this algorithm is able to achieve matches the efficiency factor from
the lower bound section (Lemma 40). We then use the generic algorithm from Section 4 to allow the
active nodes to compute a correct solution to the 21

2 -coloring problem (resp. 31
2). To upper bound

the node-averaged complexity, we calculate how much time would be spent coloring each level based
on the parameters of the generic algorithm and assuming a worst case distribution of weight. We
then see that, with the choice of parameters given by the lower bound section, we obtain a tight
upper bound (Proof of Theorem 2).

6 Weighted Lower Bounds

For the rest of this section, fix k,∆, d to be some integer constants, such that ∆ ≥ d+ 3. Since not
necessarily all of the weight nodes need to copy a label from an active node, the efficiency of the
weight decreases. The next lemma gives a lower bound on how many nodes have to wait for active
nodes.

Lemma 23. Let ∆, k, d ≥ 2 be constant such that ∆ ≥ d+ 3. Consider the LCL ΠZ
∆,d,k for any

Z. Consider an active node v with a balanced ∆ regular tree Tw of w weight nodes attached to it,
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then at least wlog(∆−1−d)/ log(∆−1) of these weight nodes have to output Copy and have as secondary
output the same output as v.

Proof. Let r be the weight node that is directly adjacent to v, think of the tree of weight nodes as
rooted at r. Since v is the only active node attached to Tw, none of the nodes in Tw can output
Connect. Consider some non-leaf node u in this tree of weight nodes. It has to have one edge
towards its parent (or for r one edge towards v) and then ∆− 1 children. As a result this tree has
height log∆−1(w). Now if u does not output Decline, then ∆− 1− d of u’s children have to copy
the output of u. Since r is directly adjacent to an active node it has to output Copy and use v’s
output as secondary output. Then at least ∆− d− 1 of r’s children have to also copy the output,
then ∆− 1− d of the childrens children have to do the same and so on. As a result the number of
nodes copying the output of v is at least:

(∆− 1− d)log∆−1(w) = (∆− 1)log∆−1(∆−1−d)·log∆−1(w) =

wlog∆−1(∆−1−d) = wlog(∆−1−d)/ log(∆−1)

From now on, let x = log(∆−d−1)
log(∆−1) . Notice that the more weight we put on a tree, the less efficient

it becomes, so to maximize the efficiency of our weight it makes sense to distribute it as evenly as
possible. Consider if we attach a tree of w/ℓ weight nodes to ℓ active nodes. By Lemma 23 for each
of these trees (w/ℓ)x nodes have to copy the output of their respective active node. Now clearly the
total amount of copying nodes is:

(w/ℓ)xℓ = wxℓ1−x > wx

Corollary 24. Let x = log(∆− 1− d)/ log(∆− 1). By distributing w weight nodes evenly among ℓ
∆-regular trees, each attached to an active node the amount of nodes that have to output Copy is
wxℓ1−x. Additionally such an even distribution results in the maximum amount of nodes copying.

Notice that the additionally part is a direct consequence of Jensen’s Inequality for the concave
function ϕ(a) = ax (for x ≤ 1), if we split the weight into ℓ parts w1, . . . , wℓ:

ϕ

(∑
wi

ℓ

)
≥
∑
ϕ(wi)

ℓ
. So, we get that: ℓϕ

(w
ℓ

)
≥
∑

ϕ(wi)

Equipped with the knowledge from these last two results, we now know how to extend the lower
bound construction Definition 18. We define a new weighted version of it, illustrated in Fig. 4. The
idea is to use n

k nodes to create the lower bound graph from Definition 18. In that construction the
number of nodes of level 1 is already linear in n, so we do not need additional weight there. For the
rest of the levels, we balance things out, by putting n

k weight nodes on the nodes of level 2, . . . k. As
a result every layer has a linear amount of weight. Note that since the number of nodes in lower
levels is significantly larger, this also means that the weight is more efficient. We distribute this
weight evenly in balanced ∆-regular trees, so we get the bounds from Corollary 24. This gives us
our new construction.

Definition 25 (Weighted Construction). Given a target size of n and parameters ℓ1, . . . , ℓk such
that

∏
1≤i≤k ℓi = n, define n′ = n/k, then start with the counterexample graph G′ from Definition 18

with n′ nodes, by setting ℓ′i = ℓi · 1
k1/k

(Then
∏

1≤i≤k ℓ
′
i = n′).

Define L1, . . . Lk to be sets of nodes such that Li is exactly the set of level i nodes in G′

(V (G′) =
⋃

1≤i≤k Li). For each of L2, . . . , Lk distribute n
k nodes evenly in balanced ∆-regular

trees, each attached to one of the nodes in Li. This is our weighted construction G, with a total of
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Figure 4: Showing the construction for k = 3. The red nodes have level 3, the green nodes level 2 and the
purple nodes have level 1 (Some purple paths from the green nodes in the middle are omitted). No trees are
attached to level 1 nodes, but every level 2, or 3 node has a tree attached to it. The trees attached to level 3
nodes are larger, as the same number of n

k nodes is evenly distributed among less nodes.

n nodes, n
k for G′ and then k − 1 times n

k for the weight nodes.
The Problem Instance: To obtain an instance of ΠZ

∆,d,k, we have to assign input labels
Active,Weight. All nodes in G′ get input label Active, all of the other nodes in the trees get
input label Weight. As a result we have a valid instance for ΠZ

∆,d,k.

Crucially, our lower bound construction contains the original lower bound graph from Defini-
tion 18. As a result any algorithm that correctly solves ΠZ

∆,d,k inside any graph from Definition 25

also solves either k-hierarchical 21
2 -coloring, or k-hierarchical 3

1
2 -coloring in G′. So for any algorithm

that correctly solves Π3.5
∆,d,k, we can apply Lemma 20.

Lemma 26. Consider any correct deterministic algorithm that solves Π3.5
∆,d,k, given any parameters

ℓ1, . . . , ℓk and an instance of the Weighted Construction. Then one of the following is true:

• There exists an assignment of IDs to the Weighted Construction and a value i ∈ {1, . . . , k− 1},
such that at least half of the nodes of level i run for at least ℓ′i/10 rounds.

• There exists an assignment of IDs to the Weighted Construction, such that for all of i ∈
{1, . . . , k − 1} all nodes of level i output D.

Instead consider a randomised algorithm trying to solve Π2.5
∆,d,k in the weighted lower bound

construction, then nodes cannot distinguish based on IDs, so the argumentation becomes a lot easier
than the proof of Lemma 20.

Lemma 27. Consider any correct randomised algorithm that solves Π2.5
∆,d,k, given any parameters

ℓ1, . . . , ℓk and an instance of the Weighted Construction. Then one of the following is true:

• There exists a value i ∈ {1, . . . , k − 1}, such that at least a third of the nodes of level i run for
at least ℓ′i/4 rounds

• For all i ∈ {1, . . . , k − 1} all nodes of level i output D.

Proof. Fix i ∈ {1, . . . , k − 1} and let P be an arbitrary path of level i nodes. Then by construction
P has length ℓ′i and furthermore the middle third of all of the nodes in P have an indistinguishable
ℓ′i
4 hop neighbourhood. As a result they all have to behave the same in the first

ℓ′i
4 rounds. If they

terminate in strictly less than
ℓ′i
4 rounds, it means that they all have to follow the same output

distribution. As a result, they cannot output a consistent 2-coloring and so for the algorithm to be

correct, they have to output D. If instead they terminate after at least
ℓ′i
4 ∈ Ω(ℓ′i) time we are in

exactly the other case.
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We can now use these results to obtain lower bounds on the total time an algorithm would
spend on nodes of level i, regardless of whether or not we are solving Π2.5

∆,d,k, or Π
3.5
∆,d,k. Notice that

regardless of whether we invoke Lemma 26, or Lemma 27, at least a third of the level i nodes spend
Ω(ℓ′) time. So in either case we can prove the following.

Lemma 28. Consider the nodes of some level 1 ≤ i < k. If at least a third of all level i nodes spend

Ω(ℓ′i) time, then the total amount of time used is Ω
(
nx · (

∏
i≤j≤k ℓj)

1−x · ℓi
)

Proof. By Corollary 19 |Li| ∈ Ω(
∏

i≤j≤k ℓ
′
j). Since we distribute

n
k many nodes in balanced ∆-regular

trees of weight nodes, by Corollary 24 the amount of nodes that have to wait for nodes in Li to
terminate is at least (nk )

x|Li|1−x. So if a third of the nodes in |Li| spend at least Ω(ℓ′i) time, then
since the weight is distributed evenly, also a third of the (nk )

x|Li|1−x nodes have to spend Ω(ℓ′i) time.
So for the total amount of time spent, we get at least

(n
k

)x
|Li|1−x · Ω(ℓ′i) =

(n
k

)xΩ

 ∏
i≤j≤k

ℓ′j

1−x

· Ω
(

ℓi

k1/k

)
= Ω

nx ·
 ∏

i≤j≤k

ℓj

1−x

· ℓi


The last inequality just comes from hiding a bunch of constants in the Ω notation. 1

kx is a constant,
because k and x are constants, the same goes for the k− i+ 1 factors of 1

k1/k
from transforming the

ℓ′j into ℓj .

We still need something to argue about the level k path, since Lemma 28 only holds for i < k.

Lemma 29. Computing a 2-coloring of the level k path takes Ω(nx · ℓ1−x
k · ℓk) total time for any

randomised algorithm and if we are in the second case of Lemma 26 then deterministically computing
a 3-coloring takes Ω(nx · ℓ1−x

k · log∗ ℓk) total time.

Proof. Again, because of Corollary 19, |Lk| ∈ Ω(ℓ′k) = Ω(ℓk), so since we distribute n
k many nodes

in balanced ∆-regular trees of weight nodes, by Corollary 24 the amount of nodes that have to wait
for nodes in Lk to terminate is at least (nk )

x|Lk|1−x.
If we want to 3-color the level k path, then by Lemma 21 this takes node-averaged time Ω(log∗ ℓ′k).
This then immediately gives the desired bound.

Now consider the case where we want to 2-color the path. By construction the middle third of

the nodes in the level k path have an indistinguishable
ℓ′k
4 hop neighborhood (that is, they cannot see

the ends). If they spend less than
ℓ′k
4 rounds, then they have to follow the same output distribution,

so they cannot output a consistent 2-coloring. So the total time to 2-color the path is lower bounded
by

Ω

((n
k

)x (ℓ′k)
1−x

3
·
ℓ′k
4

)
∈ Ω(nx · ℓ1−x

k · ℓk)

In the next section we will choose explicit ℓ1, . . . , ℓk and prove a lower bound for weighted
21
2 -coloring. For weighted 31

2 -coloring the lower bound proof is very similar with different choices of
ℓ1, . . . , ℓk.

6.1 The Polynomial Regime

Since the lemmas are very generic, we will work with some more concrete values. Let ℓ1 = nα1 , ℓ2 =
nα2 , . . . , ℓk−1 = nαk−1 . Lastly to get

∏
1≤i≤k ℓi = n, we choose ℓk = n1−

∑
j<k αj . We will deduce an
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optimisation problem, that will give us the exact values for α1, . . . , αk−1.

We now just plug these values in the lemmas from before and immediately get lower bounds on
the total amount of time spent. By normalising with 1

n we immediately get lower bounds on the
node-averaged complexity.

Corollary 30. Let ℓ1, . . . , ℓk be as above. Then, if an algorithm computes a 2-coloring of the level
k nodes, the node-averaged complexity is

Ω
(
n1+(x−2)

∑
j<k αj

)
=: Ak

For any 1 ≤ i < k if a third of all of the level i nodes spend Ω(ℓi) rounds, then the node-averaged
complexity is

Ω
(
n(x−1)

∑
j<i αj+αi

)
=: Ai

Proof. According to Lemma 29, the total amount of time spent for the 2-coloring of the level k
nodes is lower bounded by:

Ω(nx · ℓ1−x
k · ℓk) = Ω

(
nx ·

(
n1−

∑
j<k αj

)1−x
· n1−

∑
j<k αj

)
= Ω

(
n2+(x−2)

∑
j<k αj

)
.

So the node-averaged time is at least

Ω

(
1

n
· n2+(x−2)

∑
j<k αj

)
= Ω

(
n1+(x−2)

∑
j<k αj

)
.

For any 1 ≤ i < k, if we are in the case of Lemma 28 the total amount of time spent by level i
nodes is at least:

Ω

nx · ( ∏
i≤j≤k

ℓj)
1−x · ℓi

 = Ω
(
nx · (n

∑
i≤j≤k αj )1−x · nαi

)
=
(
nx+(1−x)(1−

∑
j<i αj)+αi

)
= Ω

(
n1+(x−1)

∑
j<i αj+αi

)
,

where we used that
∑

i≤j≤k αj = 1 −
∑

j<i αj , since
∏

1≤i≤k ℓi = n. Again we normalize by 1
n to

obtain a lower bound on the node-averaged complexity.

1

n
· Ω
(
n1+(x−1)

∑
j<i αj+αi

)
= Ω

(
n(x−1)

∑
j<i αj+αi

)
Because of Lemma 27, the paths in level i, either all decline, or nodes of level i spend a lot of

time. If the level i nodes spend a lot of time, then by Corollary 30 the node-averaged complexity
is at least Ai. But if all of them decline, then the nodes in level k must output a 2-coloring, so
according to Corollary 30 the node-averaged complexity is Ak. Since one of the two cases must
happen because of Lemma 27, we always get a lower bound on the node-averaged complexity.

Corollary 31. Let A1, . . . , Ak be as in Corollary 30, then any algorithm that correctly solves the
weighted 21

2 -coloring problem has node-averaged complexity

Ω


min

α1,...,αk−1



A1 := nα1 ,

A2 := n(x−1)α1+α2 ,

A3 := n(x−1)(α1+α2)+α3 ,
. . . ,

Ai := n(x−1)(
∑

j<i αj)+αi ,
. . . ,

Ak := n1+(x−2)
∑

j<k αj
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As a result our lower bound is the strongest when we choose α1, . . . , αk−1 such that the smallest
of the Ai terms is maximised.

max
α1,...,αk−1

min



A1 := nα1 ,

A2 := n(x−1)α1+α2 ,

A3 := n(x−1)(α1+α2)+α3 ,
. . . ,

Ai := n(x−1)(
∑

j<i αj)+αi ,
. . . ,

Ak := n1+(x−2)
∑

j<k αj


Since all terms have the same base, we can instead optimise just the exponents. As long as the
exponents are all positive, an optimal solution to this new problem is also an optimal solution the
the original problem.

max min
α1,...,αk−1



B1 := α1,
B2 := (x− 1)α1 + α2,
B3 := (x− 1)(α1 + α2) + α3,
. . . ,
Bi := (x− 1)(

∑
j<i αj) + αi,

. . . ,
Bk := 1 + (x− 2)

∑
j<k αj


Lemma 32. The optimal solution is achieved when setting all terms equal.

Proof. By interpreting each Bi as a function and noticing that B1 only depends on α1, while all
other terms have a negative dependence on α1, we can eliminate variables. Since ∂B1

∂α1
= 1 and

∂Bi
∂α1
≤ 0 for all 1 < i ≤ k the optimal value of

max
α1,...,αk−1

min{B1,min{B2, B3, . . . , Bk}}

is achieved by setting B1 = min{B2, B3, . . . , Bk}. We then iteratively apply this same argument on
min{B2, . . . , Bk} while treating α1 as a constant.

As a result we can obtain a formula for the optimal solutions depending only on x, by setting
the terms equal.

Lemma 33. The optimal solution is given by

αi = (2− x)αi−1, and (1)

α1(x) =
1∑k−1

j=0(2− x)j
(2)

Furthermore α1(x) = B1 = B2 = . . . = Bk holds for the optimal solution.
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Proof. For 1 < i < k

Bi = Bi−1 ⇒ (x− 1)(
∑
j<i

αj) + αi = (x− 1)(
∑

j<i−1

αj) + αi−1

⇒ (x− 1)αi−1 + αi = αi−1 ⇒ αi = (2− x)αi−1

and using the above

B1 = Bk ⇒ α1 = 1 + (x− 2)

k−1∑
j=1

αj = 1− (2− x)α1

k−1∑
j=1

(2− x)j−1

⇒ α1 = 1− α1

k−1∑
j=1

(2− x)j

⇒ 1 = α1 + α1

k−1∑
j=1

(2− x)j = α1(2− x)0
k−1∑
j=1

(2− x)j = α1

k−1∑
j=0

(2− x)j

⇒ α1 =
1∑k−1

j=0(2− x)j

Now, because of Corollary 31, we immediately get Theorem 3.

6.2 The log∗ n regime

We prove a lower bound on the weighted version of k-hierarchical 31
2 -coloring, so fix parameters

d,∆, k and let x = log(∆−d−1)
log(∆−1) be the efficiency factor from Lemma 23. We follow the exact same

procedure as in Section 6.1, but for ℓ1 = (log∗ n)α1 , ℓ2 = (log∗ n)α2 , . . . , ℓk−1 = (log∗ n)αk−1 . Lastly
to get

∏
1≤i≤k ℓi = n, we choose ℓk = n · (log∗ n)−

∑
j<k αj . Again we will deduce an optimisation

problem, that will give us the exact values for α1, . . . , αk−1.
First we prove that any algorithm must spend a lot of time if it wants to color paths.

Corollary 34. Let ℓ1, . . . , ℓk be as above, then if an algorithm computes a 3-coloring of the level k
nodes the node-averaged complexity is

Ω
(
(log∗ n)1+(x−1)

∑
j<k αj

)
=: Ak

For any 1 ≤ i < k if half of all of the level i nodes, spend at least
ℓ′i
10 time, then the node-averaged

complexity is at least

Ω
(
(log∗ n)(x−1)

∑
j<i αj)+αi

)
=: Ai

Proof. According to Lemma 29 the total amount of time spent for the 3-coloring of the level k nodes
is lower bounded by:

Ω(nx · ℓ1−x
k · (log∗ ℓk)) = Ω

(
nx ·

(
n · (log∗ n)−

∑
j<k αj

)1−x
· log∗

(
n · (log∗ n)−

∑
j<k αj

))
= Ω

(
n1 · (log∗ n)1+(x−1)

∑
j<k αj

)
.
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So the node-averaged time is at least

Ω

(
1

n
· n1 · (log∗ n)1+(x−1)

∑
j<k αj

)
= Ω

(
(log∗ n)1+(x−1)

∑
j<k αj

)
.

For any 1 ≤ i < k, if half of all of the level i nodes spend at least
ℓ′i
10 time, then according to

Lemma 28 the total amount of time spent for the 2-coloring of the level i nodes is lower bounded by

Ω

nx · ( ∏
i≤j≤k

ℓj)
1−x · ℓi

 = Ω

(
nx ·

(
n · (log∗ n)−

∑
j<i αi

)1−x
· (log∗ n)αi

)
= Ω

(
n1 · (log∗ n)(x−1)

∑
j<i αj)+αi

)
,

where we used that
∏

i≤j≤k ℓj = n ·
(
(log∗ n)−

∑
j<i αi

)
, since

∏
1≤i≤k ℓi = n. Again we normalize

by 1
n to obtain a lower bound on the node-averaged complexity.

1

n
· Ω
(
n1 · (log∗ n)(x−1)

∑
j<i αj)+αi

)
= Ω

(
(log∗ n)(x−1)

∑
j<i αj)+αi

)

Because of Lemma 26, the paths in level i, either all decline, or nodes in i spend at least Ai

node-averaged time, according to Corollary 34. But if all of them decline, then the nodes in level k
must output a 3-coloring, which by Corollary 34 also implies node-averaged complexity at least Ak.
Now because Lemma 26 states that one of these cases must happen, we get the following corollary.

Corollary 35. Let A1, . . . , Ak be as in Corollary 34, then any algorithm that correctly solves the
weighted 31

2 -coloring problem has node-averaged complexity

Ω


min

α1,...,αk−1



A1 := (log∗ n)α1 ,

A2 := (log∗ n)(x−1)α1+α2 ,

A3 := (log∗ n)(x−1)(α1+α2)+α3 ,
. . . ,

Ai := (log∗ n)(x−1)(
∑

j<i αj)+αi ,
. . . ,

Ak := (log∗ n)1+(x−1)
∑

j<k αj




As a result, our lower bound is the strongest when we choose α1, . . . , αk−1 such that the smallest

of the Ai terms is maximised.

max
α1,...,αk−1

min



A1 := (log∗ n)α1 ,

A2 := (log∗ n)(x−1)α1+α2 ,

A3 := (log∗ n)(x−1)(α1+α2)+α3 ,
. . . ,

Ai := (log∗ n)(x−1)(
∑

j<i αj)+αi ,
. . . ,

Ak := (log∗ n)1+(x−1)
∑

j<k αj
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Since all terms have the same base, we can instead optimise just the exponents. As long as the
exponents are all positive, an optimal solution to this new problem is also an optimal solution the
the original problem.

max min
α1,...,αk−1



B1 := α1,
B2 := (x− 1)α1 + α2,
B3 := (x− 1)(α1 + α2) + α3,
. . . ,
Bi := (x− 1)(

∑
j<i αj) + αi,

. . . ,
Bk := 1 + (x− 1)

∑
j<k αj


Exactly in the same way as was proven in Lemma 32, we also get that in this optimisation

problem it is enough to set all the terms equal, so we do it to obtain a formula for the optimal
solutions depending only on x.

Lemma 36. The optimal solution is given by

αi = (2− x)αi−1 (3)

and

α1(x) =
1

1 + (1− x)
∑k−2

j=0(2− x)j
(4)

Furthermore α1(x) = B1 = B2 = . . . = Bk holds for the optimal solution.

Proof. For 1 < i < k

Bi = Bi−1 ⇒ (x− 1)(
∑
j<i

αj) + αi = (x− 1)(
∑

j<i−1

αj) + αi−1

⇒ (x− 1)αi−1 + αi = αi−1 ⇒ αi = (2− x)αi−1

and using the above

B1 = Bk ⇒ α1 = 1 + (x− 1)
k−1∑
j=1

αj = 1− (1− x)α1

k−1∑
j=1

(2− x)j−1

⇒ α1 = 1− (1− x)α1

k−2∑
j=0

(2− x)j

⇒ 1 = α1 + (1− x)α1

k−2∑
j=0

(2− x)j = α1(1 + (1− x))
k−2∑
j=0

(2− x)j

⇒ α1 =
1

1 + (1− x)
∑k−2

j=0(2− x)j

Now, because of Corollary 35, we immediately get Theorem 4.

Theorem 4. For any constants D, d, k, such that D ≥ d + 3 the LCL Π3.5
∆,d,k has node-averaged

complexity Ω((log∗ n)α1(x)), where α1(x) =
1

1+(1−x)
∑k−2

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .
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7 Algorithm for Weighted 21
2-Coloring

In this section, we provide an algorithm that solves problem Π
2 1
2

∆,d,k with node-averaged complexity

O(nα1), where α1 = 1∑k−1
j=0 (2−x)j

and x = log(∆−1−d)
log(∆−1) . To this end, we introduce a new problem,

called the d-free weight problem. The d-free weight problem essentially constitutes a subproblem of

Π
2 1
2

∆,d,k (and simultaneously Π
3 1
2

∆,d,k) that has to be solved to solve Π
2 1
2

∆,d,k (and Π
3 1
2

∆,d,k). After stating
the problem, we will design an algorithm that solves the problem, which will become an essential

part of our algorithm for solving Π
2 1
2

∆,d,k. In Section 8, we will make use of the d-free weight problem

in a similar manner (using a different algorithm for solving it) to design an algorithm for Π
3 1
2

∆,d,k.

The d-free weight problem. Let ∆ and d be positive integers satisfying d < ∆ and ∆ ≥ 3. The
d-free weight problem is an LCL on trees with input label set Σin = {A,W} and output label set
Σout = {Decline,Connect,Copy}. Each node v has one input label from Σin and must output one
output label from Σout. We call nodes that have input label A adjacent nodes and nodes with input
label W weight nodes. The (global) output is correct if it satisfies the following (local) properties:

1. If a node v with input label A outputs Connect, at least one neighbor of v outputs Connect
as well. If a node v with input label W outputs Connect, at least two neighbors of v output
Connect as well.

2. For each node v that outputs Copy, at most d neighbors of v output Decline.

3. Each node with input label A outputs Connect or Copy.

In the following, we provide an algorithm A for solving the d-free weight problem with worst-case
complexity O(log n) rounds. We will later show that the output produced by A does not only
produce a correct output but additionally has useful properties that we will make use of in the

analysis of the algorithm we design for Π
2 1
2

∆,d,k.

The algorithm. Algorithm A proceeds as follows. First, each node collects its (3⌈logd+1 n⌉+ 3)-
hop neighborhood. Then, based on the collected information each node chooses its output according
to the following rules.

Any node that lies on a path of length at most (2⌈logd+1 n⌉+ 2) between two nodes with input
A outputs Connect. All other nodes output Decline or Copy (as specified in the following).

Let v be a node with input A that does not output Connect, and denote the set of nodes in
the (⌈logd+1 n⌉)-hop neighborhood of v by Uv and the set of nodes in the (⌈logd+1 n⌉ + 1)-hop

neighborhood of v by Ûv. Let φ : Ûv → {Decline,Copy} be a function with the following properties.

1. For each u ∈ Ûv \ Uv, we have φ(u) = Decline.

2. For each u ∈ Uv, we have φ(u) ∈ {Decline,Copy}.

3. φ(v) = Copy.

4. For each node u that outputs Copy, at most d neighbors of u output Decline.

5. Among all function satisfying Properties (1) to (4), φ is one that assigns Copy to the minimum
amount of nodes in Ûv possible.
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Now, each node u that is contained in the (⌈logd+1 n⌉+1)-hop neighborhood of a node v as described

above outputs φ(u) (where φ is the function defined on the respective Ûv). (Note that a node u
cannot be contained in the (⌈logd+1 n⌉ + 1)-hop neighborhood of two such nodes v as otherwise
those two nodes would output Connect.) All nodes for which the above rules do not uniquely specify
the output output Decline. This concludes the description of A.

Note that the information contained in the (2⌈logd+1 n⌉+ 2)-hop view of a node v suffices to
determine whether v lies on a path of length at most (2⌈logd+1 n⌉ + 2) between two nodes with
input A. Consequently, the information contained in the (3⌈logd+1 n⌉ + 3)-hop neighborhood of
a node u suffices to determine whether u is contained in the (⌈logd+1 n⌉ + 1)-hop neighborhood
of a node v with input A that does not output Connect. Hence, the information contained in the
(3⌈logd+1 n⌉+ 3)-hop neighborhood collected by each node at the beginning of A indeed suffices for
each node to perform all step specified in the description of A.

However, from the description of A, it is not obvious that A is well-defined, which we take care
of with the following lemma.

Lemma 37. Algorithm A is well-defined.

Proof. To show well-definedness, it suffices to prove that for any node v with input A that does not
output Connect there exists a function ψ : Ûv → {Decline,Copy} that satisfies Properties (1) to (4),
which we do in the following.

Let v be a node with input A that does not output Connect. Consider the following (sequential)
algorithm A∗ for defining ψ, where, abusing notation, we consider Ûv as a rooted tree with root
v. Set ψ(v) := Copy. Select the min{d,deg(v)} children of v for which the subtrees hanging from
the children have the largest numbers of nodes (breaking ties arbitrarily). Set ψ(u) := Decline for
any node u in any of those min{d,deg(v)} subtrees (including their roots). Set ψ(u) := Copy for
any child of v that is not in any of these subtrees. Then iterate on each subtree hanging from such
a child u with ψ(u) = Copy where, for the min expression, we use min{d,deg(u) − 1} (where, as
before, deg(u) denotes the degree of u in Ûv). This concludes the description of A∗.

We argue that the function ψ produced by A∗ satisfies Properties (1) to (4). From the description
of A∗, it is immediate that Properties (2) to (4) are satisfied. To show that also Property (1) is
satisfied, consider the following claim: if a node u ∈ Ûv with ψ(u) = Copy has distance i from v,
then the number of nodes in the subtree hanging from u is at most |Ûv|/

(
(d+ 1)i

)
. This claim

implies that Property (1) is satisfied, as any node u ∈ Ûv \ Uv has distance ⌈logd+1 n⌉+ 1 from v

and |Ûv|/
(
(d+ 1)i

)
< 1 for i = ⌈logd+1 n⌉+ 1 ≥ ⌈logd+1 |Ûv|⌉+ 1, which implies that such a node

u cannot output Copy.
In the following, we prove the claim by induction in i. For i = 0, the claim is trivially true.

Now assume that the claim holds for some i, and consider some node u ∈ Ûv with ψ(u) = Copy
that has distance i+ 1 from v. Let w denote the parent of u, which implies that w has distance
i from v. Moreover, by the design of A∗, we know that ψ(w) = Copy. By applying the induction
hypothesis to w, we know that the subtree hanging from w has at most |Ûv|/

(
(d+ 1)i

)
nodes. Since,

by the design of A∗, the subtree hanging from u contains at most as many nodes as any of the d
“heaviest” subtrees hanging from children of w, it follows that the subtree hanging from u has at

most
(
|Ûv|/

(
(d+ 1)i

))
/(d+ 1) = |Ûv|/

(
(d+ 1)i+1

)
nodes, as desired.

As it immediately follows from the algorithm description that A has a runtime of O(log n), we
obtain the following corollary.

Corollary 38. Algorithm A solves the d-free weight problem in O(log n) rounds.
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Next, we collect some useful properties of the output that A produces in Observation 39
and Lemma 40.

Observation 39. Each maximal connected component C of nodes that output Copy contains
exactly one node with input A. Moreover, for each node v with input A that outputs Copy,
exactly one such maximal connected component C contains nodes that are also contained in the
(⌈logd+1 n⌉ + 1)-hop neighborhood of v, and this connected component C is a subgraph of the
(⌈logd+1 n⌉)-hop neighborhood of v.

Proof. From the description of A, it follows that any two nodes with input A that output Copy are at
distance at least 2⌈logd+1 n⌉+3 from each other. Moreover, all nodes that output Copy are contained
in the (⌈logd+1 n⌉)-hop neighborhood of such a node v. Hence, each maximal connected component
of nodes outputting Copy must be entirely contained in the (⌈logd+1 n⌉)-hop neighborhood of such a
node v. Observe further that, by the design of A, the nodes in the (⌈logd+1 n⌉+1)-hop neighborhood
of such a node v that output Copy form a connected component and contain v. All statements made
in the observation follow.

Lemma 40. Let v be a node with input A that outputs Copy, and let Û denote the set of nodes of
the (⌈logd+1 n⌉)-hop neighborhood of v. Let ÛCopy ⊆ Û denote the subset of nodes in Û that output

Copy. Then |ÛCopy| ≤ 6|Û |
log(∆−1−d)
log(∆−1) .

Proof. We upper bound the number of nodes in ÛCopy by upper bounding the number of nodes
that output copy under the function ψ obtained by executing the sequential algorithm A∗ from
the proof of Lemma 37 on Û . Let K denote the number of nodes u ∈ Û with ψ(u) = Copy.
Furthermore, let K1 denote the number of nodes u ∈ Û with ψ(u) = Copy that are at distance
at most ⌊log∆−1 |Û |⌋ from v, and K2 the number of nodes u ∈ Û with ψ(u) = Copy that are at

distance at least ⌊log∆−1 |Û |⌋+ 1 from v. In particular, we have k = K1 +K2.

We first bound K1. By the description of A∗, the nodes in Û that output Copy induce a subtree
(which we can assume to be rooted at v) in which each node has at most ∆− 1− d children, possibly
except for v, which has at most ∆− d children. This implies

K1 ≤
∆− d

∆− 1− d

⌊log∆−1 |Û |⌋∑
i=0

(∆− 1− d)i ≤ 2 · 2(∆− 1− d)⌊log∆−1 |Û |⌋

≤ 4 · 2log(∆−1−d)
log |Û|

log(∆−1) ≤ 4|Û |
log(∆−1−d)
log(∆−1) .

Next, we bound K2. Let Li denote the number of nodes in ÛCopy that are contained in trees

hanging from nodes in Û that are at distance i from v. Observe that the design of A∗ ensures that
Li+1 ≤ ∆−1−d

∆−1 Li for any i ≥ 1, and L1 ≤ ∆−d
∆ L0 =

∆−d
∆ |Û |. Therefore, we obtain

K2 ≤
∆− d
∆

·
(
∆− 1− d
∆− 1

)⌊log∆−1 |Û |⌋
· |Û |

≤ 2 ·
(
∆− 1− d
∆− 1

)log∆−1 |Û |
· |Û | = 2(∆− 1− d)log∆−1 |Û | = 2|Û |

log(∆−1−d)
log(∆−1) .

Combining the bounds on K1 and K2, we obtain

K = K1 +K2 ≤ 6|Û |
log(∆−1−d)
log(∆−1) .
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Observe that Property 5 in the definition of Algorithm A ensures that the number of nodes in ÛCopy

is upper bounded by K. Hence, we obtain

|ÛCopy| ≤ 6|Û |
log(∆−1−d)
log(∆−1) ,

as desired.

7.1 The Upper Bound

Now we are set to describe the algorithm Apoly for Π
2 1
2

∆,d,k that will achieve the desired upper bound.

The algorithm Apoly Let x := log(∆−1−d)
log(∆−1) , and set

αi := (2− x)αi−1, (5)

for all 2 ≤ i ≤ k − 1, and

α1 :=
1∑k−1

j=0(2− x)j
, (6)

as in Lemma 33. Moreover, set γi := nαi , for all 1 ≤ i ≤ k − 1.
In Apoly, each active node v executes the generic algorithm for solving k-hierarchical 21

2 -coloring
from Section 4.1 on the maximal connected component of active nodes containing v with parameters
γi as specified above.

Each weight node w starts by solving the d-free weight problem on the subgraph induced by the
maximal connected component of weight nodes containing w, using Algorithm A. For this, each
weight node that is adjacent to an active node assumes that it has input A, while any other weight
node assumes that it has input W . After 3⌈logd+1 n⌉ + 3 rounds, each weight node has finished
executing A. If a weight node outputs Connect or Decline in the execution of A, then it also outputs
the respective label in Apoly and terminates. If a weight node outputs Copy in the execution of A,
then it will also output Copy in Apoly but it also has to compute its secondary output, so it will
not terminate yet. Instead it will wait until 3⌈logd+1 n⌉+ 3 rounds have passed (counted from the
beginning of the algorithm), and then proceed to the next phase, described in the following.

After round 3⌈logd+1 n⌉ + 3, as soon as an active neighbor of a weight node w with input
label A decides on its output label in the k-hierarchical 21

2 -coloring problem, w will flood this
output label through the connected component of weight nodes outputting Copy that contains w
(breaking ties arbitrarily in case w has two or more active neighbors that decide on their output
label simultaneously). If immediately after round 3⌈logd+1 n⌉ + 3, a weight node w with input
label A already knows about a neighbor that has decided on its output label in the k-hierarchical
21
2 -coloring problem, then w will use this output label for flooding through the connected component

of weight nodes outputting Copy that contains w (again, breaking ties arbitrarily.) As soon as a
node in the connected component learns this output label ℓ, it will output ℓ as its secondary output
(and Copy as its primary output). This concludes the description of Algorithm Apoly.

Algorithm Apoly is well-defined, by Observation 39 and the fact that the design of A ensures that
any two weight nodes with input label A outputting Copy are at distance at least 2⌈logd+1 n⌉+ 3
from each other.

In the following, we will prove the correctness of Apoly and bound its node-averaged complexity.

Lemma 41. Algorithm Apoly computes a correct output for Π
2 1
2

∆,d,k.
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Proof. To show correctness of Apoly, it suffices to show that the five properties of a correct output for

Π
2 1
2

∆,d,k specified in Definition 22 are satisfied. Property (1) (with Z = 21
2) follows from Corollary 12.

Properties (2), (3), and (4) follow from Properties (3), (1), and (2) in the definition of the d-free
weight problem, respectively. Property (5) follows from the way in which weight nodes that output
Copy determine their secondary output in Apoly and Observation 39.

Theorem 2. For any D, d, k such that D ≥ d+3, the node-averaged complexity of Π2.5
∆,d,k is O(nα1),

where α1 =
1∑k−1

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

Proof. We start by observing that the weight nodes that output Copy form connected components
containing exactly one node u that has at least one active neighbor and that all nodes in such
a component output the same secondary label that furthermore is the output label of an active
neighbor of u. (This follows from the design of Apoly and Observation 39.) Let v be an active
neighbor of such a node u such that u (and therefore all nodes in the connected component C(u)
of Copy nodes containing u) “copied” the output of v and returned it as secondary output during
the execution of Apoly. Then we say that each node in C(u) is assigned to v (where we break ties
arbitrarily so that each weight node outputting Copy is assigned to exactly one active node). For each
active node v, let D(v) denote the set of all weight nodes assigned to v. Note that the design of Apoly

ensures that all nodes in D(v) terminate at most O(log n) rounds after v, by Corollary 38. Hence, for
our calculations we can (and will) assume that all nodes in D(v) terminate at the same time as node
v as the O(log n) additive overhead per node does not exceed the targeted node-averaged complexity.
Furthermore, observe that the weight nodes that output Connect or Decline terminate in O(log n)
rounds (by Corollary 38) and can therefore be ignored for the calculations of the node-averaged
complexity as, again, their contribution does not exceed the targeted node-averaged complexity.

We proceed by bounding the sum of the individual termination times of all other nodes. As a
first step, we compute, for each phase 1 ≤ i ≤ k of the generic algorithm applied on the active nodes
(described in Section 4.1), the number of nodes that have still not terminated at the start of the
phase. By Lemma 13, at the beginning of phase i, there are at most still n ·

∏i−1
j=1

1
γj

active nodes

remaining (where we assume an empty product to evaluate to 1). Moreover, the argument used
for proving the second part of Corollary 24, combined with Lemma 40, implies that the number of
weight nodes that have not terminated at the beginning of phase i is at most

6 · n
i−1∏
j=1

1

γj
·

n/
n i−1∏

j=1

1

γj

x

= 6n

i−1∏
j=1

γj

x−1

.

Hence, the total number of nodes that have not terminated at the beginning of phase i is at most

n ·
i−1∏
j=1

1

γj
+ 6n

i−1∏
j=1

γj

x−1

≤ 7n

i−1∏
j=1

γj

x−1

.

Multiplying with the runtime of the respective phase and summing up over all k phases, we obtain
that the aforementioned sum of individual termination times is upper bounded by

7n

k−1∑
i=1

γi
i−1∏

j=1

γj

x−1+

(
n∏k−1

j=1 γj

)
·

k−1∏
j=1

γj

x−1 .
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By using the fact that γi = nαi , for each 1 ≤ i ≤ k − 1, our upper bound can written as

7n

(
k−1∑
i=1

(
nαi+(x−1)

∑i−1
j=1 αj

)
+ n1+(x−2)

∑k−1
j=1 αj

)
.

Observe that the exponents of the k summands are precisely those that also appeared in Section 6.
In particular, Lemma 33 ensures that all k exponents are equal to α1, enabling us to rewrite our
upper bound as

7n(k · nα1).

As k is a constant, we obtain that the aforementioned sum of individual termination times is in
O(n · nα1), implying a node-averaged complexity of Apoly of

O(nα1) = O
(
n1/(

∑k−1
j=0 (2−x)j)

)
,

where x = log(∆−1−d)
log(∆−1) , as desired.

8 Solving Weighted 31
2-coloring

When trying to solve the weighted versions of 21
2 - and 31

2 -coloring, the new challenge is to deal with
the weight nodes. This challenge is significantly harder in the lower regime, where we often have
only o(log∗ n) node-averaged time to work with. We formalised the problem that the weight nodes
want to solve as the d-free Weight Problem in Section 7. We restate it here for completeness.

The d-free weight problem Let ∆ and d be positive integers satisfying d < ∆ and ∆ ≥ 3. The
d-free weight problem is an LCL on trees with input label set Σin = {A,W} and output label set
Σout = {Decline,Connect,Copy}. Each node v has one input label from Σin and must output one
output label from Σout. We call nodes that have input label A adjacent nodes and nodes with input
label W weight nodes. The (global) output is correct if it satisfies the following (local) properties:

1. If a node v with input label A outputs Connect, at least one neighbor of v outputs Connect
as well. If a node v with input label W outputs Connect, at least two neighbors of v output
Connect as well.

2. For each node v that outputs Copy, at most d neighbors of v output Decline.

3. Each node with input label A outputs Connect or Copy.

We are interested in solutions where not too many nodes must output the label Copy. The
ultimate goal would be to match Lemma 23 and show that if a component of w weight nodes is
attached to an adjacent node v, at most wx many nodes have to output Copy, where x = log(∆−d−1)

log(∆−1) .
In the polynomial regime we were able to give an algorithm that achieves such a behaviour, but this
algorithm was allowed to spend O(log n) rounds. In the log∗ regime we can not afford such luxuries.
We will instead show that we can achieve something similar, but with a slightly worse efficiency
factor of x′ = ∆−d+1

∆−1 .
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8.1 Using the algorithm from [BBK+23a]

To achieve the goal of an efficiency factor x′ = ∆−d+1
∆−1 we use the algorithm of [BBK+23a] which

computes a (γ, ℓ, O(log n))-decomposition (Definition 71) with a node-averaged complexity of just
O(log∗ n). We will call it the Fast Decomposition Algorithm. This decomposition can then be used
to obtain a good solution for the weight problem. The full description and analysis of their algorithm
is quite lengthy and we encourage the reader to look up the details in the original paper. To keep
this work at a reasonable length, we will only restate the relevant details.

The layers of such a decomposition implicitly define an ordering and the main point of interest in
[BBK+23a] are local maximums with regards to the partial order of layers defined in Definition 75.

We adapt the naming convention and call nodes that already have a layer assigned assigned
nodes and all other nodes free nodes.

Definition 42 (local maximum [BBK+23a]). A local maximum is an assigned node v ∈ V (G) with
the following two properties:

1. Node v and all of its neighbors are assigned.

2. For each neighbor w of v, the layer of w is strictly smaller than the layer of v.

However the algorithm of [BBK+23a] requires Θ(log∗ n) rounds of precomputation, which is not
fast enough for us. The bottleneck of their algorithm is the Compress With Slack procedure, which
requires us to be able to split paths into short subpaths of length in [ℓ, 2ℓ] for some constant ℓ. This
is required to satisfy the definition of a proper (γ, ℓ, L)-decomposition. We define a relaxed version
of a (γ, ℓ, L)-decomposition that does not need to split paths into small subpaths. We emphasise
that this is the only difference to the partial (γ, ℓ, i)-decomposition in [BBK+23a].

Definition 43 (relaxed (γ, ℓ, i)-decomposition). Given three integers γ, ℓ, i, a (γ, ℓ, i)-decomposition
is a partition of a subset V ′ ⊂ V (G) into 2i−1 layers V R

1 = (V R
1,1, . . . , V

R
1,γ), . . . , V

R
i = (V R

i,1, . . . , V
R
i,γ),

V C
1 , . . . , V

C
i−1 such that the following hold for all layer numbers 1 ≤ ℓ ≤ i.

1. Compress layers: The connected components of each G[V C
ℓ ] are paths of length at least ℓ, the

endpoints have exactly one neighbor in a higher layer, and all other nodes do not have any
neighbor in a higher layer, or that is not yet assigned a layer.

2. Rake layers: The diameter of the connected components in G[V R
ℓ ] is O(γ), and for each

connected component at most one node has a neighbor in a higher layer, or that is not yet
assigned a layer.

3. The connected components of each sublayer G[V R
ℓ,j ] consist of isolated nodes. Each node in a

sublayer V R
ℓ,j has at most one neighbor in a higher layer, or that is not yet assigned a layer.

The following is implicit in Section 5.4 of [BBK+23a].

Corollary 44 ([BBK+23a] Section 5.4). For any constant ℓ, the Fast Decomposition Algorithm
computes a relaxed (γ, ℓ, O(log n))-decomposition with node-averaged complexity O(1) and worst case
complexity O(log n).

Similar to the algorithm presented in Section 11.2, the Fast Decomposition Algorithm consists
of iteratively performing Rakes and Compresses. The key idea to obtain a fast node-averaged
complexity is to insert additional compress paths, to create more local maximums. As a result, they
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Figure 5: This figure from [BBK+23a] illustrates the way edges are oriented in the Fast Decomposition
Algorithm. The two black nodes at the top are nodes that are not yet assigned a layer. The arrows in the
tree show how edges are oriented when such a tree is raked away and the bold path in the middle represents
a compress path. In such a compress path, only the first and last ℓ edges are oriented.

will mess with the ordering of the layers. To still be able to argue about which nodes were assigned
first, they introduce an orientation of the edges in the following way. When a node v is raked, the
node orients its unique remaining edge (if it exists) towards itself. When a path is compressed, the
first and last ℓ edges are oriented inwards. Refer to Fig. 5 for an illustration.

During the analysis the authors mark nodes when they are able to terminate. For any iteration
i, this is only done in the following two cases (refer to [BBK+23a] Lemmas 34-36 for details):

1. Whenever a node v becomes a local maximum it becomes marked. Furthermore all nodes
that can be reached from v through a consistently oriented path also become marked in O(i)
rounds.

2. For all compress layers V C
i−1

0 in the relaxed decomposition, all nodes u that are at distance
at least ℓ from any endpoint of a path become marked. Furthermore all nodes that can be
reached from u through a consistently oriented path also become marked in O(i) rounds.

They then use these marks to obtain a fast node-averaged complexity with the following lemma.

Lemma 45 ([BBK+23a] Lemma 36). There exists a constant 0 < σ < 1, such that for every
iteration i > 5 of the Fast Decomposition Algorithm at most 2∆bnσi nodes are not marked.

We will not cover more details of the original algorithm, as we believe this would only cause
more confusion. The original analysis is quite long and complicated, so instead we will state the
following observations from the original paper which we will need to solve the d-free weight problem
efficiently:

Observation 46.

1. If ℓ ≥ 2 any assigned node has at most one incoming edge. This holds because edges are only
ever oriented from unassigned nodes to newly assigned nodes. (If ℓ is too small, a node in a
compress path might have two incoming edges.)

2. If ℓ > 2 then two local maxima must have distance at least 3. Consider a path between two
local maxima, there must necessarily be a compress path, as otherwise the layers on this path
must be strictly decreasing in both directions.

3. The only case in which the endpoint of a compress path v gets marked, is when there is a
consistently oriented path from another node u towards it and u got marked.

0In iteration i, compress layer i− 1 is assigned.
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4. Unoriented edges between assigned nodes are only in compress layers, at distance at least ℓ
from the endpoints.

5. In iteration i of the algorithm, the connected components induced by consistently oriented
edges have diameter at most O(i). This is a direct result of each Rake or Compress only
extending such a component by only a constant length.

We use these observations to find a good solution to the weight problem. To be more explicit,
we change the algorithm in the following ways.

Adapted Algorithm: Each node v with input label A checks its 5-hop neighborhood. If there
is at least one other node with input label A, then the unique path between u and v all output
Connect. As a result all remaining nodes with input label A have distance at least 5. We then
proceed to start to run the Fast Decomposition Algorithm with parameter ℓ = 3 (so all of the
observations hold) in the remaining graph (so ignoring all nodes with output Connect). In each
iteration we apply these additional rules whenever they come up:

1. If a node v with input label A gets assigned a layer in iteration i, it immediately does the
following based on the type of layer:

• Case 1 Rake Layer: Then by the properties of a relaxed (γ, ℓ, i) decomposition, v has
at most a single edge towards an active node u. If such a u exists, we label it Decline
and call it a border node. Furthermore v outputs Copy and all nodes that can be reached
from v through a consistently oriented path (that did not already output Decline) also
output Copy in O(i) rounds.

• Case 2 Compress Layer: Then by the properties of a relaxed (γ, ℓ, i) decomposition, v
has at most 2 neighbors u,w that are in the same layer, or that are not yet assigned. Both
of these nodes immediately output Decline and and are now border nodes. Furthermore v
outputs Copy and all nodes that can be reached from v through a consistently oriented
path (that did not already output Decline) also output Copy in O(i) rounds. If either
u,w, or both were already an assigned node all nodes that can be reached from them
through a consistently oriented path also output Decline in O(i) rounds.

2. If a border node v becomes assigned a layer all nodes (that did not already output Decline)
that can be reached from v through a consistently oriented path also output Decline in O(i)
rounds.

3. If a node v becomes a local maximum, it immediately adapts label Decline. Furthermore all
nodes (that did not already output Decline) that can be reached from v through a consistently
oriented path also output Decline in O(i) rounds.

4. For all compress layers V C
i−1 in the relaxed decomposition, all nodes u, that are at distance at

least ℓ from any endpoint of a path, adapt label Decline. Furthermore all nodes (that did not
already output Decline) that can be reached from u through a consistently oriented path also
output Decline in O(i) rounds.

All nodes that become marked in the original Fast Decomposition Algorithm fix their output
label in our adapted version, in fact we are more aggressive with having nodes terminate than the
base algorithm. As a consequence we obtain the following result.
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Corollary 47. Let R(i) = {v ∈ V | v did not output Copy or Decline after iteration i}. Then there
exists a constant 0 < σ < 1, such that for every iteration i > 5 of the adapted Fast Decomposition
Algorithm the number of nodes in R is at most 2∆bnσi.

To prove that we actually compute a solution to the d-free Weight Problem, we have to make
sure that any node with output Copy has at most d neighbors with output Decline. The following
lemma will be enough to prove correctness. Note also that, by ignoring the precomputation, we do
not actually use the Connect label at all. Furthermore, since the rest of the algorithm runs on the
graph without the nodes that did output Connect in the beginning, we never actually encounter a
node that has output Connect for the rest of the algorithm.

Lemma 48. Assuming nodes with input label A have distance at least 5 and ℓ > 2, then for all
iterations i, any node v that did not output Decline has at most 2 neighbors that do. Furthermore,
at most one of them is not a border node.

Proof. There are only three different reasons why nodes output Decline. As the result of a local
maximum, in the middle of compress paths, or because of border nodes. If a node v does not have
input label A, then it has at most one neighboring border node. This is true because, if there were
at least two such border nodes, then the respective nodes with input A would have distance exactly
4 < 5 a contradiction.
If instead v has input label A itself, it can only have border nodes when v itself is assigned a layer.
We distinguish whether or not v is a rake or compress node.

• If v is a rake node, it has exactly one border node and can not have more because of the
distance to other nodes that have input A.

• If v is in a compress layer, then it has two border nodes. Furthermore if v is an endpoint of
the compress layer, the two border nodes are the unique higher layer neighbor and its unique
neighbor inside its compress layer. If instead v is not an endpoint of the compress layer, then
the two border nodes are its two unique neighbors inside the layer.

Next we consider how many neighbors with output Decline a node v has without considering
border nodes. We consider the three cases unassigned, assigned to a rake layer, and assigned to a
compress layer. Since we already took care of border nodes, we only consider local maximums and
the nodes in compress paths.

• Case 1 v is unassigned: Since local maximums must be surrounded by assigned nodes, none
of the neighbors of v can be local maximums. Furthermore for any already assigned neighbor
u of v, v must be the unique unassigned neighbor of u. As a result the edge between them is
oriented from v to u, because of Observation 46. So u must either be a rake node itself, or the
endpoint of a compress path, so u did not output Decline.

• Case 2 v is in a rake layer: If v is in a rake layer, then the edge to its unique higher layer
(or unassigned) neighbor u must be oriented from u to v. So if u had output Decline, then
also v would have output Decline. Clearly no other neighbor w of v can be a local maximum
and again, cannot have output Decline because of some other local maximum because of
Observation 46. If u was the endpoint of a path, it also would not have output Decline because
of Observation 46.

• Case 3 v is in a compress layer: If v is in a compress layer, then it can have at most one
neighbor u in the same layer that did output Decline. This would be the case only if u is at
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distance exactly ℓ from an endpoint of the path and v is at distance exactly ℓ − 1 from an
endpoint of the path. This holds because otherwise they either both output Decline (when
they are deep enough in the path), or both do not (because both are not and the edge is
oriented from v to u). The other possibility is that v is an endpoint of the path and the unique
higher layer neighbor u is a local maximum. Then the edge between them must be oriented
from v to u, since otherwise v would have also output Decline. Because ℓ > 2 these two cases
cannot happen simultaneously.
Whichever one of the two possibilities for compress nodes is true (either v is the endpoint, or
v is exactly at distance ℓ from an endpoint), if v also has input A, it still will have at most 2
neighbors that do output Decline, since there is an overlap.

As a result of Lemma 48, we immediately get that at the end we will have a valid solution to
the d-free weight problem, as long as d ≥ 2. Additionally, because of Corollary 47, we get that we
will be done after O(log n) rounds and that the node-averaged complexity is O(1).

Corollary 49. The adapted Fast Decomposition Algorithm computes a valid solution to the d-free
weight problem, for d ≥ 2. Furthermore the node-averaged complexity is O(1) and all nodes have
decided on an output after O(log n) rounds.

Assume some node v that has input label A gets assigned a layer in iteration i and as a
consequence immediately outputs Copy. Then all of the nodes that have not yet chosen an output
label and can be reached from v over a consistently oriented path also output Copy. Let us denote
by C(v) all of the nodes that do output Copy as a consequence of v being assigned a layer.

Lemma 50. For any node v with input label A, the set C(v) is a tree rooted at v with diameter in
O(i), where i is the iteration in which v is assigned a layer. Assuming nodes with input label A
have distance at least 5, then for any v, if u /∈ C(v) is adjacent to C(v), then u has output Decline.
Furthermore for two nodes u ̸= v, both with input label A, C(v) and C(u) are disjoint.

Proof. By Observation 46, we get the claim on the diameter and that no node has more than one
incoming edge. The incoming edge of v is exactly its edge to its unique unassigned neighbor. But
that neighbor does output Decline. So all other edges of v are oriented away from v. Since also
all other nodes in C(v) have only one incoming edge and only nodes reachable by a consistently
oriented path output Copy, the subtree C(v) is rooted at v.
Consider the orientation of an edge between a node w ∈ C(v) and a node u /∈ C(v).

• Oriented from w to u: either u did already output Decline previously, or u would have to
also output Copy. Furthermore u cannot have Copy as the result of some other propagation of
Copy labels, since its unique incoming edge comes from w.

• Oriented from u to w: w would have two incoming edges, since w must have a consistently
oriented path from v to w, a contradiction.

• The edge {u,w} is not oriented: by Observation 46, u must be a node inside a compress
layer that is at distance at least ℓ from the endpoints, so u did output Decline. If u also has
input A, then w cant also have input A and so w would be a border node and output Decline.

To see the furthermore part, assume this is not the case. So take a node w ∈ C(u) ∪ C(v).
Because of the distance between two nodes that have input A, we have that v ̸= w ̸= u. So w can
be reached over a consistently oriented path from u and another such path from v. But nodes only
have one incoming edge, a contradiction.
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As a result, the components that output Copy are completely separated by Decline. This will be
enough for the rest of our analysis.

8.2 Generic algorithm for Π3.5
∆,d,k

We are ready to give an algorithm for the LCL Π3.5
∆,d,k from Definition 22. So assume ∆, d, k to be fixed

constants satisfying ∆ ≥ d+ 3 and d ≥ 3, and let x′ = log(∆−d+1)
log(∆−1) . We will give an algorithm that

achieves node-averaged complexity Θ((log∗ n)α1(x′)), where the function α1(x
′) = 1

1+(1−x′)
∑k−1

j=0 (2−x′)j

is the one from Theorem 4. Note that this is not tight because x′ > x, however we will see in the
proof of Theorem 6 that with some tricks we will get x′ < x+ ε for any arbitrarily small constant ε.
Our generic algorithm will be a mixture of the generic algorithm for k-hierarchical 31

2 -coloring from
Section 4.1 and the algorithm for the d-free weight problem that we just discussed.

Algorithm Description Each node has input either Active or Weight, let V A be the set of nodes
that have input Active and V W be the set of nodes that have input Weight. We call V A the set of
active nodes and V W the set of weight nodes, we further note that V = V A ∪ V W . Let α1, . . . , αk−1

be the values obtained in Lemma 36 by using x′ = log(∆−d+1)
log(∆−1) . We set γ1 = (log∗ n)α1 , . . . γk−1 =

(log∗ n)αk−1 and run the generic algorithm with these parameters on the graph induced by V A. We
note that computing these γi values is just local computation.

On the other hand, nodes in V W run the adapted Fast Decomposition Algorithm to compute a
solution to the d-free Weight Problem. Each node in V W that is adjacent to an active node v ∈ V A

gets input label A, while all other nodes in V W adopt input label W . The graph induced by V W

is now a valid instance for the d-free weight problem (the parameter d is the same as in Π3.5
∆,d,k).

When running the adapted Fast Decomposition Algorithm in V W , every node that chooses output
label Decline as its solution for the d-free weight problem, also immediately outputs Decline as its
output for Π3.5

∆,d,k.
Some nodes will be assigned Connect right at the beginning, these nodes also immediately output
Connect as their output for Π3.5

∆,d,k.
Any node v with input label A waits for the adapted fast decomposition algorithm to assign it

the label Copy, let the iteration in which that happens be iteration i. Then v does the following
with the set C(v) from Lemma 50.

• Case 1 v has an active neighbor that already terminated with output o: Then all
nodes in C(v) output label Copy with secondary output o in O(i) rounds.

• Case 2 all of v’s active neighbors still did not terminate yet: Then it first collects
the entire topology of the rooted subtree induced by C(v) in O(i) time. By Lemma 48 any
node in C(v) has at most 2 neighbors with output label Decline. v changes some labels in
C(v) to Decline in a way that minimises the number of nodes that have label Copy, while still
maintaining a valid solution to the d-free weight problem. We note that we do not change
nodes that previously had output Decline. Then, all nodes that are newly assigned Decline
immediately output Decline as their output for Π3.5

∆,d,k.

When an active node v ∈ V A terminates with output o and an adjacent active node u ∈ V W already
was assigned a set C(u) in iteration i, in O(i) rounds all nodes in C(u), that still have label Copy as
their solution for the d-free weight problem, output Copy with secondary output o as their output
for Π3.5

∆,d,k.
This finishes the description of the algorithm. We will first argue that the algorithm is correct.
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Lemma 51. The algorithm computes a correct solution to Π3.5
∆,d,k.

Proof. Because of the correctness of the generic algorithm from Section 4.1 the nodes in V A output
a correct solution to k-hierarchical 31

2 -coloring. So we only need to show that the nodes in V W

output correct solutions.
First notice that all of the nodes that output Connect at the beginning of the fast decomposition
algorithm are paths between active nodes. So they satisfy the constraints. All other nodes with
input A do output Copy so we also get that all nodes u adjacent to an active node v ∈ V A output
either Copy or Connect.
So the last thing we need to show is that for each node u ∈ V W that does output Copy at most d
neighbors output Decline. The only nodes that output Copy are ones that were in a set C(v) for
some node v adjacent to an active node. By Lemma 48 we get that when v is first assigned a layer
in some iteration i each node in C(v) has at most 2 neighbors that output Decline . Note that these
nodes did output Decline for both the d-free weight problem and Π3.5

∆,d,k. This only changes if v
computes a reassignment of output labels and changes some nodes from Copy to Decline. However
when v does so, it knows the entire topology of C(v), and does so such that these labels are a valid
solution to the d-free weight problem. So as a result all nodes that still output Copy have at most d
neighbors that do output Decline, satisfying the constraints of Π3.5

∆,d,k.

Next we consider some node v ∈ V W that gets input label A for the d-free weight problem.
Assume it gets assigned a label by the adapted Fast Decomposition Algorithm in iteration i and the
active node adjacent to v has not yet terminated.

Lemma 52. If a node v ∈ V W with input label A for the d-free weight problem reassigns some labels
in C(v), the number of nodes that still have label Copy is at most 2|C(v)|x′

, where x′ = log(∆−d+1)
log(∆−1) .

Proof. By Lemma 50 the set C(v) is a tree rooted at v with diameter at most O(i). By Lemma 48
any node in C(v) initially has at most 2 neighbors that output Decline. Since the maximum degree is
∆, the fan-out of the tree C(v) is at most ∆−1, and as a result the diameter is at least log∆−1(|C(v)|).
We start at v and for every one of the layers 0 ≤ j ≤ log∆−1(|C(v)|) (layer 0 is v) of the rooted tree
C(v) we do the following. Each node u in layer j has at most 2 neighbors that already have output
Decline, so it can assign at least d− 2 of its at most ∆− 1 children the output Decline. We always
assign Decline to the children with the heaviest subtrees and then also change all of the Copy outputs
in that subtree to Decline. As a result with every layer we lose at least d−2

∆−1 nodes. Let C′(v) ⊂ C(v)
be all nodes that still have output Copy after the reassignment. In the first log∆−1(|C(v)|) layers,
the tree C′(v) now has fan-out ∆− d− 1, so the number of nodes in these first layers is at most

(∆− d− 1)log∆−1(|C(v)|) = (∆− 1)log∆−1(∆−d−1)·log∆−1(|C(v)|) = |C(v)|log∆−1(∆−d−1) = |C(v)|x.

Since we loose a d−2
∆−1 fraction of the nodes every layer until log∆−1(|C(v)|), the number of remaining

nodes after that layer is upper bounded by

|C(v)| ·
(
∆− d+ 1

∆− 1

)log∆−1(|C(v)|)
= |C(v)| · (∆− d+ 1)log∆−1 |C(v)|)

|C(v)|
= (∆− 1)log∆−1(∆−d+1)·log∆−1 |C(v)|)

= |C(v)|log∆−1(∆−d+1) = |C(v)|x′
.

Combining the two, the size of C′(v) is upper bounded by

|C′(v)| ≤ |C(v)|x + |C(v)|x′ ≤ 2|C(v)|x′
.
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Next we analyse the guarantees that we get from the generic algorithm for k-hierarchical
31
2 -coloring. By the description and Lemma 13 we get the following results.

Corollary 53. Phase i < k of the generic algorithm that runs on V A takes O((log∗ n)αi) rounds
and after it all nodes of level i have terminated. Furthermore the number of remaining nodes in V A

is upper bounded by

O

(
n∏

j≤i(log
∗ n)αj

)
.

Let Li ⊂ V A be all nodes that terminate in phase 1 ≤ i ≤ k of the generic algorithm. Let Ai

be all weight nodes adjacent to a node in Li that did already get assigned a layer by the adapted
Fast Decomposition Algorithm at the end of phase i of the generic algorithm. Then we also define
Wi = Li

⋃
v∈Ai

C′(v) as the set that includes all weight nodes that were in C′(v) components for any
v adjacent to a node in Li (We ignore nodes adjacent nodes that don’t have a C′(v) yet, as we will
deal with them later.) Note that we refer to the sets C′(v) from Lemma 52.

Lemma 54. For all i < k, the total time spent by nodes in Wi is upper bounded by

O
(
n1 ·

(
log∗(n)αi+(x′−1)

∑
j<i αj

))
.

Proof. By Corollary 53, we get

|Li| ∈ O

(
n∏

j<i(log
∗ n)αj

)
= O

(
n

(log∗ n)
∑

j<i αj

)
.

Because of Lemma 52, the size of Wi is upper bounded by

|Wi| = |Li|+
∑
v∈Ai

|C′(v)| ≤ |Li|+
∑
v∈Ai

2|C(v)|x′ ≤ 2|Li|
(∑

v∈Ai
|C(v)|

|Ai|

)x′

≤ 2|Li|
(∑

v∈Ai
|C(v)|

∆|Li|

)x′

≤ 2

∆x′ |Li|
(

n

|Li|

)x′

∈ O

nx′ ·

(
n

(log∗ n)
∑

j<i αj

)1−x′
= O

(
n1 ·

(
(log∗ n)−

∑
j<i αj

)1−x′)
= O

(
n1 ·

(
(log∗ n)(x

′−1)
∑

j<i αj

))
.

All of the nodes in Li terminate after t ∈ O(γ1 + γ2 + . . .+ γi) = O(γi) rounds, where the equality
comes from the fact that α1 ≤ α2 ≤ . . . ≤ αk−1. The diameter of the C′(v) components can clearly
also be at most t (since only t rounds happened so far). So after at most an additional t rounds all
nodes in |Wi| have terminated. As a result, the total time spent by nodes in Wi is upper bounded
by

O
(
n1 ·

(
(log∗ n)(x

′−1)
∑

j<i αj

))
·O(γi) = O

(
n1 ·

(
(log∗ n)αi+(x′−1)

∑
j<i αj

))
.

For i = k the calculation is a bit different

Lemma 55. The total time spent by nodes inWk is upper bounded by O
(
n1 ·

(
(log∗ n)1+(x′−1)

∑
j<k αj

))
.
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Proof. In the same way as before we get

|Wk| = O
(
n1 ·

(
(log∗ n)(x

′−1)
∑

j≤k αj

))
.

All of the nodes in Lk terminate after t ∈ O(log∗ n) rounds. The diameter of the C′(v) components
can clearly also be at most t (since only t rounds happened so far). So after at most an additional t
rounds all nodes in |Wk| have terminated. As a result, the total time spent by nodes in Wk is upper
bounded by

O
(
n1 ·

(
(log∗ n)(x

′−1)
∑

j<i αj

))
·O(log∗ n) = O

(
n1 ·

(
(log∗ n)1+(x′−1)

∑
j<k αj

))
.

Now we take care of the nodes in V W which are not yet accounted for, that is, all those that are
immediately assigned Decline, or those that when reaching an adjacent node v with input A can all
immediately terminate. Remember that the second case happens only when a neighbor u ∈ V A of v
had already terminated with some output o, when v was assigned.

Lemma 56. All nodes in W := V W \
(⋃

1≤i≤kWi

)
terminate in a constant number of rounds on

average.

Proof. This is an immediate consequence of Corollary 47. Let

R(i) = {v ∈ V W | v did not output Copy or Decline after iteration i}

be the set as in Corollary 47. We argue that all of these nodes have already terminated, or are in
one of the sets W1, . . . ,Wk. All nodes that get assigned output label Decline for the d-free weight
problem all immediately terminate with output Decline for Π3.5

∆,d,k. If instead the nodes did output
C, then they are in one of the C(v) for some v. If this v has a neighbor that did already terminate,
then also all of the nodes in C(v) can terminate O(i) iterations later. If they don’t have such a
neighbor, then they are necessarily part of one of the Wi.
So the remaining nodes in W after iteration i are exactly the set R(i). By Corollary 47, for constant
b ∈ O(1), 0 < σ < 1, the following holds after iteration i ≥ 5:

|R(i)| ≤ 2∆bnσi.

Since by Corollary 49 the algorithm terminates after c log n ∈ O(log n) rounds for some constant c,
we get for the node-averaged complexity of the nodes in W ,

T̄ ≤ 1

n
·

5n+
∑

5<i≤c log(n)

|R(i)|

 ≤ 5 +
1

n
·

∑
5<i≤c log(n)

2∆bnσi = 5 + 2∆b
∑

5<i≤c log(n)

σi ∈ O(1).

Now we can bound the total node-averaged complexity by differentiating between the nodes in
W and nodes in W1, . . . ,Wk. So we finally give a proof for Theorem 5.

Theorem 5. For any D, d, k such that d ≥ 3, D ≥ d+ 3, the node-averaged complexity of Π3.5
∆,d,k is

O((log∗ n)α1(x′)), where α1(x
′) = 1

1+(1−x′)
∑k−2

j=0 (2−x′)j
and x′ = log(∆−d+1)

log(∆−1) .
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Proof. We can write down the node-averaged runtime using W and W1, . . . ,Wk. We denote the
termination time of a node v by Tv.

T̄ =
1

n
·
∑
v∈G

Tv =
1

n
·

∑
v∈W

Tv +
∑

1≤i≤k

∑
v∈Wi

Tv


By Lemma 56 we get that the contribution of the nodes in W is a constant. We can use Lemma 55
to bound the total time of nodes in Wk and Lemma 54 to bound the total time for nodes in Wi for
i < k. We get:

T̄ = O(1) +
1

n
·

 ∑
1≤i<k

O
(
n1 ·

(
(log∗ n)αi+(x′−1)

∑
j<i αj

))
+O

(
n1 ·

(
(log∗ n)1+(x′−1)

∑
j<k αj

))
= O

 ∑
1≤i<k

(
(log∗ n)αi+(x′−1)

∑
j<i αj

)
+
(
(log∗ n)1+(x′−1)

∑
j<k αj

) .

These exponents are exactly the terms as in Lemma 36, and we choose α1, . . . , αk−1 as the optimal
solutions given there. Furthermore, all of these exponents equal each other and are α1(x

′). Hence,
we get the following:

T̄ = O

 ∑
1≤i<k

(
(log∗ n)αi+(x′−1)

∑
j<i αj

)
+
(
(log∗ n)1+(x′−1)

∑
j<k αj

)
= O

 ∑
1≤i<k

(
(log∗ n)α1(x′

)
+
(
(log∗ n)α1(x′)

) = O
(
k ·
(
(log∗ n)α1(x′

))
= O

((
(log∗ n)α1(x′

))
,

as claimed.

9 Density Results

We will now show that the node-averaged complexity landscape of LCLs on bounded degree trees
is dense in the region nΩ(1)–o(n1/2). To do this, we will use Theorem 3 and Theorem 2, that we
restate here for ease of reading.

Theorem 3. For any constants D, d, k, such that D ≥ d + 3 the LCL Π2.5
∆,d,k has node-averaged

complexity Ω(nα1), where α1 =
1∑k−1

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

Theorem 2. For any D, d, k such that D ≥ d+3, the node-averaged complexity of Π2.5
∆,d,k is O(nα1),

where α1 =
1∑k−1

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

We first need to show that α1(x) is well behaved.

Lemma 57. α1(x) =
1∑k−1

j=0 (2−x)j
is a continuous monotonically increasing function over the interval

[0, 1] ⊂ R.
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Proof. Notice that P (x) :=
∑k−1

j=0(2− x)j is just a polynomial with real coefficients and therefore

continuous. Clearly ∂P
∂x (x) =

∑k−1
j=1 −j(2− x)j−1, which, for x ∈ [0, 1], is always a negative number.

Therefore, P (x) is strictly decreasing on [0, 1], and as a result α1(x) =
1

P (x) is strictly increasing and

continuous on [0, 1], as long as we do not divide by 0. But since α1(0) =
1

2k−1
, and as just discussed

α1(x) is strictly increasing on [0, 1], this also means that α1(x) is well behaved on our interval.

Lemma 58. For any integer k and any two real numbers 1
2k−1

≤ r1 < r2 <
1
k , there exist constants

∆, d, c such that r1 ≤ c ≤ r2 and Π2.5
∆,d,k has node-averaged complexity nc.

Proof. The complexities with 1
2k−1

are simply given by the original k-hierarchical 21
2 -coloring [BBK

+23b].

So in the following assume 1
2k−1

< r1. Notice that the complexity induced by Theorems 2 and 3 is
exactly

nα1(x),

so if we find some constants ∆, d, such that

α1(x) =
1∑k−1

j=0(2− x)j
= c,

we are done. Since according to Lemma 57 we have that α1(x) is continuous and strictly increasing,
we can obtain x1 = α−1

1 (r1) and x2 = α−1
1 (r2). Furthermore, for any x1 ≤ a ≤ x2, it holds that

r1 = α1(x1) ≤ α1(a) ≤ α1(x2) = r2, again because α1 is a continuous strictly increasing function.
We also note that since α1(0) =

1
2k−1

and α1(1) =
1
k , we get that 0 < x1 < x2 < 1.

Now the only thing left to do is to choose a appropriately. Notice that we may only choose a value
from among the set

X := {log(∆d− 1)/ log(∆− 1) | s,∆ ∈ N s.t. ∆ ≥ d+ 3}.

However, given any rational number p/q with p < q we can choose ∆ := 2q + 1 and then solve for d
in

∆− d− 1 = 2p ⇒ 2q + 1− d− 1 = 2p ⇒ d = 2q − 2p > 0

and therefore p/q ∈ X. Now since between any two real numbers 0 < x1 < x2 < 1 there exists a
rational number 0 < a < 1 ∈ Q satisfying r1 ≤ a ≤ r2 and as just discussed also a ∈ X, we simply
choose c = α1(a) and get that r1 ≤ c ≤ r2.

Observe that Lemma 58 does not actually allow us to reach a node-averaged complexity of
Θ(
√
n). We will take care of such a complexity in Lemma 69 of Section 10. By combining Lemma 69

and Lemma 58, we obtain the following.

Theorem 1. For any two real numbers 0 < r1 < r2 ≤ 1
2 there exists a constant r1 < c < r2 and an

LCL Π such that Π has node-averaged complexity Θ(nc)

Proof. If we want an LCL with complexity Θ(n1/k), then we invoke Lemma 69. Otherwise, since
there exists k such that r1 <

1
2k−1

< r2, we just invoke Lemma 58 with r′1 =
1

2k−1
, r2 and get the

desired result.

We conclude the discussion about the polynomial regime by showing that there is a gap between
Θ(n) and Θ(

√
n) in the node-averaged complexity landscape. This is a simple consequence of a

result by Feuilloley.
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Lemma 59 ([Feu17]). Let A be an algorithm that solves an LCL problem Π with node-averaged
complexity T . Then, if a node v runs for t rounds, either there exist at least t/2− 1 nodes in the
t/2-radius neighborhood of v that run for at least t/2 rounds, or v could terminate earlier.

When we apply this lemma to a node that runs for linear in n many rounds we immediately get
that we spend too much total time to have a fast node-averaged complexity.

Corollary 60. Any LCL with worst case complexity Ω(n) has node-averaged-complexity Ω(n).

Proof. Since the LCL has worst case complexity Ω(n), there must exist an instance I and a node v
in this instance, such that v runs for at least cn rounds for some constant c. By Lemma 59 this
means that there are at least cn

2 nodes that run for at least cn
2 rounds which already results in a

node-averaged complexity of at least

1

n
· cn
2
· cn
2

= c′n,

for an adequate constant c′.

Next we will show that the node-averaged complexity landscape of LCLs on bounded degree
trees is dense in the region (log∗ n)Ω(1)–o(log∗ n). Things will be a bit more tricky, but Theorem 4
together with Theorem 5, which we restate here for ease of reading, will be enough.

Theorem 4. For any constants D, d, k, such that D ≥ d + 3 the LCL Π3.5
∆,d,k has node-averaged

complexity Ω((log∗ n)α1(x)), where α1(x) =
1

1+(1−x)
∑k−2

j=0 (2−x)j
and x = log(∆−d−1)

log(∆−1) .

Theorem 5. For any D, d, k such that d ≥ 3, D ≥ d+ 3, the node-averaged complexity of Π3.5
∆,d,k is

O((log∗ n)α1(x′)), where α1(x
′) = 1

1+(1−x′)
∑k−2

j=0 (2−x′)j
and x′ = log(∆−d+1)

log(∆−1) .

Again we start by showing that α1(x) is well behaved.

Lemma 61. α1(x) =
1

1+(1−x)
∑k−2

j=0 (2−x)j
is a continuous monotonically increasing function over the

interval [0, 1] ⊂ R.

Proof. Notice that P (x) := 1 + (1− x)
∑k−2

j=0(2− x)j is just a polynomial with real coefficients and
therefore continuous. By the product rule,

∂P

∂x
(x) = (1− x)

k−2∑
j=0

−j(2− x)j−1 −
k−2∑
j=0

(2− x)j ,

which for x ∈ [0, 1] is always a negative number. Therefore P (x) is strictly decreasing on [0, 1] and
as a result α1(x) =

1
P (x) is strictly increasing and continuous on [0, 1] as long as we do not divide by

0. But since α1(0) =
1

2k−1 and as just discussed α1(x) is strictly increasing on [0, 1], this also means
that α1(x) is well behaved on our interval.

Since there is a gap between the results in Theorems 4 and 5, we have to make sure that this
gap gets arbitrarily small.

Lemma 62. For all ε > 0 and any x = a
b ∈ Q ∩ [0, 1], there exists ∆, d such that x = log(∆−d−1)

log(∆−1)

and x′ = log(∆−d+1)
log(∆−1) and |x− x′| < ε.
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Proof. Fix ε, a, b, we will show that proper ∆, d exist. It suffices to show that, for any constant c,
we can pick ∆, d such that ∆− d− 1 = 2ca and ∆− 1 = 2cb, because then x = ca

cb = a
b and

x′ =
log(∆− d+ 1)

∆− 1
=

log(∆− d− 1 + 2)

cb
=

log(2ac + 2)

cb
≤ 1

cb
· (log(2ac) + 2

2ac

= x+
2

2ac
< x+ ε,

where we used that the Taylor Expansion of log(z) at z = 2ac is a proper upper bound, because the
logarithm is a concave function and the fact that we can choose c such that 2

2ac < ε for any ε > 0.
Now, to prove that for any constant c we can pick ∆, d such that ∆− d− 1 = 2ca and ∆− 1 = 2cb,
we first set

∆− 1 = 2cb ⇒ ∆ = 2cb + 1,

and then we use that in

∆− d− 1 = 2ca ⇒ ∆− d− 1 = 2cb + 1− d− 1 = 2cb − d = 2ca ⇒ d = 2cb − 2ca > 0.

Since we can now make the gap between the upper and the lower bound arbitrarily small, the
rest follows in the same way as it did in the polynomial regime.

Theorem 6. For any two real numbers 0 < r1 < r2 < 1 and any ε > 0 there exist constants
∆, d, k, c such that r1 ≤ c ≤ r2 and LCL Π3.5

∆,d,k has node-averaged complexity between Ω((log∗ n)c)

and O((log∗ n)c+ε).

Proof. We first start by fixing k such that 1
2k−1 ≤ r1 < 1/k, which is possible, since r1 > 0. As

a result of this choice of k the function α1(x) actually outputs values from 1
2k−1 to 1

k . Now since

by Lemma 61 the function α1(x) = 1
1+(1−x)

∑k−2
j=0 (2−x)j

is continuous and strictly increasing on

the real interval [0, 1], we obtain x1 = α−1
1 (r1), x2 = α−1

1 (r2), and we choose a
b ∈ Q, such that

0 < x1 <
a
b < x2 < 1. As a result it holds that r1 = α1(x1) < α1(

a
b ) < α1(x2) = r2, again because

α1 is a continuous strictly increasing function. Choose ε′ := min{ε, (r2 − α1(
a
b ))/2} to ensure

that everything fits in the gap between α1(
a
b ) and r2. Now since α1(x) is continuous, for every

ε′ > 0 there exists some δ > 0 such that for all values τ ∈ (α1(
a
b ) − δ, α1(

a
b ) + δ) it holds that

α1(
a
b ) − ε

′ < α1(τ) < α1(
a
b ) + ε′. So now given ε′ we get a δ that we can use in Lemma 62 and

obtain values ∆, d such that x = a
b and |x− x′| < δ. As a result |α1(x)− α1(x

′)| < ε′ because of
our choice of δ.
Now by Theorems 4 and 5 the complexity of Π3.5

∆,d,k is between Ω((log∗ n)α1(x)) and O((log∗ n)α1(x′)) ⊂
O((log∗ n)α1(x)+ε′).

10 More efficient weight

Observe that Lemma 58 allows us to only get arbitrarily close to the worst case complexity, but
it does not give us LCLs that have worst-case and node-averaged complexities that are the same.
For example, choose k = 2. Then, the worst case complexity is Θ(

√
n), but Lemma 58 only gives

us LCLs with node-averaged complexity o(
√
n). As it turns out, if we design our LCLs differently,

we can also obtain a problem with node-averaged complexity Θ(
√
n). According to the analysis of

the previous sections, this happens exactly if the efficiency factor x is 1. However, with the way
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we defined our weight augmented LCLs, we can only push x arbitrarily close to 1. What we really
need is a nice twist on the rules that weight nodes need to follow, that allows us to reach x = 1.
However, at the same time, we have to ensure that our worst case complexity does not become
Θ(n). The way the LCLs ΠZ

∆,d,k are defined results in a complexity O(log n) for the problem on

weight nodes. To solve this issue and achieve Θ(
√
n) node-averaged complexity, we will require

weight nodes to solve a problem with worst case complexity Θ(
√
n). This way we keep the same

worst case complexity, but as we will soon see, make much more efficient use of weight nodes.
To get the desired worst case runtime we must create a problem that only allows k compresses.

The problem we use is essentially the problem of computing a (γ, ℓ, L)-decomposition (Definition 71,
but modified to be an LCL). Instead of outputting the exact layer number in the decomposition, we
require nodes to only choose an output label that represents how many compresses have been used
so far. To enforce an actual decomposition, we require the nodes to output the orientation implied
by a rake and compress decomposition.

Definition 63 (k-hierarchical labeling). For any integer k, the k-hierarchical labeling problem
consists of the input set Σin = ∅ and the output set Σout = {R0, R1, . . . , Rk, C1, C2, . . . , Ck}. We
call the labels R1, . . . , Rk rake labels and C1, . . . , Ck−1 compress labels. Furthermore, there is an
ordering of the labels R1 < C1 < R2 < C2 < R3 < · · · < Ck−1 < Rk. Any legal labeling must satisfy
the following rules:

1. All edges adjacent to a rake label must be oriented.

2. Each node v has at most one edge e = (v, u) oriented away from itself, except for compress
nodes that have two compress neighbors, who must not have any outgoing edge.

3. For all oriented edges (u, v) the label of v is larger than or equal to the label of u.

4. For all compress labels, the subgraph induced by the nodes of that label consists only of
disjoint paths.

5. Two nodes that have a different compress label must not be adjacent.

6. Any node v with a rake label has at most one compress label neighbor pointing towards it.
Furthermore if there is such a neighbor, then all neighbors that point towards v have a strictly
lower label.

Some intuition on this rules.

• Items 1 and 2 force us to consistently orient all of the rake label components towards some
component specific root node.

• Items 4 and 5 force us to use compress labels only in paths and to ensure that two different
compress paths are separated by at least one rake label.

• Item 3 ensures that we have to keep track of how many compresses we have used so far.
Basically the way we will be handling a long path P is, to have every node but the endpoints
take compress label Ci and have both endpoints pick rake label Ri. Then we orient the edges
connecting the endpoints towards the endpoints. Clearly this works only if we have used only
R1, . . . , Ri−1 so far.

• Item 6 will help us argue about how many nodes have to wait when we use this formulation
to augment other LCLs.
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Clearly all of the rules can be checked by just looking at the immediate neighbors of a node.

Corollary 64. For any constant k, the k-hierarchical labeling is an LCL.

Lemma 65. The k-hierarchical labeling problem has worst case complexity O(n
1
k ).

Proof. We will first use Lemma 72 with L = k and ℓ = 4 to obtain a (O(n
1
k ), 4, k)-decomposition

in O(n
1
k ) rounds. We will now describe how every node v can compute its output label for the

k-hierarchical labeling problems using only the information from its direct neighbors. Every node v
is either assigned to a Rake Layer, or to a Compress Layer. We will handle both cases separately.

• Rake Layer: Let v be in Rake Layer V R
i,j with 1 ≤ i ≤ k and j ∈ O(n

1
k ). We now have v

choose output label Ri. By Property 3 of the decomposition there exists at most one neighbor
with a higher layer than v. If such a neighbor u exists, then orient the edge between v and u
from v to u.

• Compress Layer: Let v be in Compress Layer V C
i with 1 ≤ i ≤ k − 1. then by Property 1 of

the decomposition v is in path P of length in [4, 8], in which all of the nodes have the same
layer. If v is not an endpoint of the path, then v will output Ci. If instead v is an endpoint
of the path v will output Ri+1. Since v is an endpoint it has exactly one neighbor u in P ,
we will orient the edge from u to v. Furthermore by Property 1 of the decomposition v has
exactly one neighbor w in a higher layer. We will orient the edge from v to w.

Now we argue that all rules of the k-hierarchical labeling problem are satisfied.

1. Consider a node v that did output a rake label. Consider any neighbor u of v, if in the initial
decomposition u was assigned a lower layer than v, then u did orient the edge towards v. If v
had a higher layer, then v oriented the edge towards u. Lastly the only possible way for u and
v to be in the same layer in the decomposition is if both were in the same compress layer. But
then v must be an endpoint of that layer, since it did output a rake label. Furthermore since
compress layers have at least 4 nodes, u cannot be an endpoint of the path and so the edge
was oriented from u to v. Also no inner node of the compress path has to orient both edges.

2. Whenever we orient edges above, we only orient edges away from the current node and if we
do that we only do it once per node.

3. Again whenever we orient an edge (u, v), the decomposition layer of u is smaller than v. Also
notice that when we assign output labels the ordering on the layers of the decomposition will
directly translate to the ordering we need for our problem.

4. The compress labels will form paths of length [2, 6] since both endpoints adopt a rake label.

5. Different compress layers are disjoint in the decomposition and the endpoints of the original
compress layer use a rake label. As a consequence, any two nodes that use different compress
labels will be separated by these rake label nodes.

6. The only case when compress nodes orient towards a rake label is at the endpoints. Since
compress layers are disjoint paths, no node can be the endpoint of more than one compress
path. Furthermore if we consider such an endpoint, then by Property 1 of the decomposition
none of its neighbors are in a higher layer. So the nodes that might output an equal label are
only the ones inside its own compress layer, but these all output a smaller compress label.
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The definition of a (γ, ℓ, L)-decomposition immediately gives that the rake layers have diameter
at most γ. Now because only nodes that are in rake layer V R

i are assigned rake label Ri, the nodes
that output rake labels also form components of diameter at most γ.

Corollary 66. Using the construction above, rake labels induce components ofsize at most O(n
1
k ).

Now we also add the weight functionality into the ruleset.

Definition 67 (k-hierarchical weight augmented 21
2 -coloring). For any k, the k-hierarchical weight

augmented 21
2 -coloring LCL has input label set Σin = {Weight,Active}. We call nodes with input

Active active nodes and nodes with input Weight weight nodes. Each active node has to output a
label from ΣActive

out , where ΣActive
out is the output label set of k-hierarchical 21

2 -coloring. Each weight
node has to output a label from the set {R1, . . . , Rk, C1, . . . , Ck−1}.
Further all weight nodes must output a secondary output from ΣActive

out ∪ {Decline}. The following
rules must be satisfied.

1. The active nodes have to compute a valid solution to k-hierarchical 21
2 -coloring on the subgraph

induced by active nodes and output only labels from ΣActive
out .

2. The weight nodes have to output a valid solution to the k-hierarchical labeling problem on
the subgraph induced by weight nodes.

3. Any weight node w adjacent to at least one active node v has to orient the edge (w, v) towards
exactly one of these active nodes v. Furthermore w must have as secondary output exactly
the output of v. (v must output from ΣActive

out according to Item 1)

4. All weight nodes pointing towards other weight nodes must output the same secondary output,
unless they also point towards an active node and copy that output.

5. Only compress label nodes may output Decline as their secondary output and they do so if
and only if they are not also adjacent to an active node. If they are adjacent to an active
node, then they must have that nodes output as their secondary output.

Now we prove the effectiveness of this construction.

Lemma 68. For any integer k ∈ O(1), consider any k-hierarchical weight augmented LCL Π′.
Consider an active node v with a balanced ∆-regular tree of w weight nodes attached to it. Let v
output x ∈ ΣΠ

out, then Ω(w) of these weight nodes must have x as their secondary output.

Proof. Let r be the weight node that is attached to v and consider it as the root of the attached
tree. Now because of Item 2 of the k-hierarchical weight augmented definition, r must have x as
secondary output and point towards v. Since the tree is ∆-regular, the fan-out of the tree is ∆− 1
and so as a result a subtree of height h has exactly (∆− 1)h− 1 many nodes. Now r can have either
a rake label or a compress label.

• If r has a rake label, according to Item 2 of the k-hierarchical labeling problem, r is pointing
to at most one other node. So it has at least ∆− 2 incoming edges.

• If instead r has a compress label, then according to the rules of the k-hierarchical labeling
problem r has at most 2 compress neighbors and if it has only one compress neighbor, then it
has just one outgoing edge. As a result, r has at least ∆− 3 incoming edges.

We call nodes adjacent to r that have an edge oriented towards r, children of r. Consider one such
child u.
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1. u has a rake label: Then by Item 4 of the k-hierarchical weight augmented problem, u must
also have x as its secondary output.

2. u has a compress label: Then u must output Decline as its secondary output. So all of the
nodes in the subtree of u must also have Decline as their secondary output. But because the
tree is balanced, this is at most an 1

∆−1 fraction of nodes. Furthermore if this is the case, then
by Item 6 all of the other children of r must output a rake label that is at least one smaller
than that of r.

If r is a rake node, then we have that ∆− 2 children have to also output x, if instead r is a compress
node at least ∆− 3 children have to also output x. For each one of these children that have to copy,
they must be rake nodes, and therefore have ∆− 1 children. For each of them we make the same
argument that all rake children have to copy x. It is only in the second case, where one such child
is a compress child, that there are actually nodes that do not have to have x as their secondary
output. However since then all other children must have a strictly smaller rake label and since there
are only k different rake labels, this can happen only k − 1 times. In the worst case this happens in
the first k levels of the tree, so we lose (∆− 1)h−i − 1 many nodes in the i-th level. Therefore, the
number of weight nodes that must have x as their secondary output is upper bounded by

w − (∆− 1)h−1 − 1− (∆− 1)h−2 − 1− · · · − (∆− 1)h−(k−1) − 1 = w − (k − 1)−
∑

1≤i<k

w

(∆− 1)i

Which is in Ω(w) when ∆ and k are constant.

This basically means that we can attach trees with efficiency factor x = 1. So by following
the same lower bound argumentation as in Section 6, we get that the node-averaged complexity of
k-hierarchical weight augmented 21

2 -coloring is in Θ(n1/k). (The upper bound follows from the fact

that both k-hierarchical 21
2 -coloring is worst case O(n1/k) and also k-hierarchical labeling problem

is in O(n1/k).

Lemma 69. The node-averaged complexity of k-hierarchical weight augmented 21
2 -coloring is in

Θ(n1/k).

11 The ω(1) – (log∗ n)o(1) Gap

In this section, we prove that there is no LCL with deterministic node-averaged complexity that
lies between ω(1) and (log∗ n)o(1). Before diving into this proof, we summarize some notions and
high-level ideas from previous work, that will be useful in our proofs.

It is known that there are no LCLs with a worst-case complexity (neither deterministic nor
randomized) that lies between ω(log n) and no(1) [CP19], and that there are no LCLs with a worst-
case complexity (neither deterministic nor randomized) that lies between ω(n1/(k+1)) and o(n1/k)
for any integer k > 0 [Cha20]. These results have been shown as follows.

• It is shown that there exists a generic algorithm for solving all problems Π that have O(log n)
worst-case complexity. This generic algorithm requires the existence of a suitable function
called fΠ,∞.

• It is shown that an algorithm with no(1) worst-case (deterministic or randomized) complexity
implies the existence of a function fΠ,∞.
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• It is shown that there exists a generic algorithm for solving all problems Π that have O(n1/(k+1))
worst-case complexity. This generic algorithm requires the existence of a suitable function
called fΠ,k+1.

• It is shown that an algorithm with o(n1/k) worst-case (deterministic or randomized) complexity
implies the existence of a function fΠ,k+1.

Moreover, it is shown that the existence of a function fΠ,∞ or a function fΠ,k, for a given integer
k > 0, is decidable (i.e., there exists a centralized algorithm that takes as input a problem Π and
always terminates, outputting the function if it exists, or an error message otherwise).

In [BBK+23a] it is shown that there is no LCL with node-averaged complexity that lies between
ω(log∗ n) and no(1), and that if a problem cannot be solved in no(1) worst-case complexity, then
it cannot be solved in no(1) node-averaged complexity. These results are proved by showing the
following.

• If a suitable function fΠ,∞ exists, then Π can be solved in O(log∗ n) node-averaged complexity.

• If a problem has (deterministic or randomized) worst-case complexity Ω(n1/k), then it has

randomized node-averaged complexity Ω(n1/(2
k−1)/ log n) and deterministic node-averaged

complexity Ω(n1/(2
k−1)). This is shown by using a randomized algorithm with node-averaged

complexity o(n1/(2
k−1)/ log n), or a deterministic algorithm with node-averaged complexity

o(n1/(2
k−1)), to construct a function fΠ,k+1.

In this section, we prove the following.

• Recall that the existence of a suitable function fΠ,∞ implies that the problem Π has node-
averaged complexity O(log∗ n), and that it is possible to use an algorithm with O(log∗ n)
node-averaged complexity to construct a suitable function fΠ,∞. We show that, if the function
fΠ,∞ satisfies some additional properties, then Π can be solved in O(1) rounds. Moreover, we
show that it is decidable whether such function exists.

• If there exists an algorithm with deterministic node-averaged complexity (log∗ n)o(1), then a
function with such properties exists.

Hence, by showing the above, we obtain that the existence of an algorithm with deterministic
node-averaged complexity (log∗ n)o(1) implies the existence of an algorithm with deterministic node-
averaged complexity O(1), and hence that there are no LCLs with a deterministic node-averaged
complexity that lies in the range ω(1) – (log∗ n)o(1). Moreover, we also obtain that, whether a
problem can be solved in O(1) node-averaged rounds, is decidable. Hence, we obtain the following
theorem.

Theorem 7. There are no LCLs with a deterministic complexity that lies in the range ω(1)–
(log∗ n)o(1). Moreover, given an LCL, it is decidable whether it can be solved in O(1) deterministic
node-averaged rounds.

In the reminder of the section, we start by giving a recap of some notions presented in [BBK+23a],
and then we prove our statements. More precisely, the section is structured as follows.

• In [BBK+23a], it is first shown that all LCLs on trees can be converted into problems described
in a specific formalism, called the black-white formalism, while preserving the node-averaged
complexity of the problem under consideration. In Section 11.1 we present this formalism.
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• In [BBK+23a] it is shown that, every LCL in the black-white formalism can be solved in
a specific generic way, that starts by decomposing the tree in some way. This result is an
adaptation, to the black-white formalism, of results already presented in [CP19, Cha20], We
give a high-level overview of this decomposition, and of the generic algorithm, in Section 11.2,
and Section 11.3, respectively.

• Fundamental ingredients of the generic algorithm are the concepts of classes and label-sets,
that we present in Section 11.4.

• In Section 11.5, we provide a high-level overview of how the described ingredients are used in
[BBK+23a] to obtain an algorithm with O(log∗ n) node-averaged complexity.

• As already mentioned, the generic algorithm relies on the existence of a function with special
properties. In Section 11.6, we show how the existence of this function is determined.

• Finally, in the reminder of the section, we show that, if this function satisfies some additional
properties, then the problem can be solved in O(1) deterministic node-averaged complexity.

11.1 LCLs in the Black-White Formalism

Definition 70 ([BBK+23a]). A problem Π described in the black-white formalism is a tuple
(Σin,Σout, CW , CB), where:

• Σin and Σout are finite sets of labels.

• CW and CB are both sets of multisets of pairs, where each pair (ℓin, ℓout) is in Σin × Σout.

Solving a problem Π on a graph G means that:

• G = (W ∪B,E) is a graph that is properly 2-colored, and in particular each node v ∈W is
labeled c(v) =W , and each node v ∈ B is labeled c(v) = B.

• To each edge e ∈ E is assigned a label i(e) ∈ Σin.

• The task is to assign a label o(e) ∈ Σout to each edge e ∈ E such that, for each node v ∈W
(resp. v ∈ B) it holds that the multiset of incident input-output pairs is in CW (resp. in CB).

In [BBK+23a], it is shown how, by starting from an LCL Π on trees, one can define an LCL
Π′ in the black-white formalism that has the same asymptotic node-averaged complexity as Π.
Observe that, when considering a problem in the black-white formalism, it is assumed that the tree
is 2-colored.

11.2 A Tree Decomposition

The generic algorithms used in [CP19, Cha20] are based on the idea of decomposing the tree into
layers. More in detail, the first step is running a procedure called rake-and-compress, that takes as
input a parameter γ and works as follows. For i = 1, . . . perform the following.

• For j = 1, . . . , γ remove nodes of degree 1. Call the removed nodes at step (i, j) rake nodes of
layer (i, j), and let V R

i,j be the set of these nodes. Call all the nodes removed at step i rake

nodes of layer i and let V R
i be the set of these nodes.

• Remove nodes of degree 2 and call the removed nodes compress nodes of layer i, and let V C
i

be the set of these nodes.
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• Repeat until the tree becomes empty.

The choice of γ affects the number of obtained layers: if γ = 1, then it is possible to prove that
the obtained layers are at most O(log n), while if γ = Θ(n1/k) then it is possible to prove that rake
layers are bounded by k and compress layers are bounded by k − 1. This decomposition algorithm
can be slightly tweaked to obtain additional properties, summarized in Definition 71. The worst-case
time required to compute such a decomposition is summarized in Lemma 72.

Definition 71 ((γ, ℓ, L)-decomposition [BBK+23a]). Let G = (V (G), E(G)) be a tree. Let G[V ′],
where V ′ ⊆ V (G), be the subgraph induced by the nodes in V ′. Given three integers γ, ℓ, L, a (γ, ℓ, L)-
decomposition is a partition of the nodes in V (G) into 2L− 1 layers V R

1 = (V R
1,1, . . . , V

R
1,γ), . . . , V

R
L =

(V R
L,1, . . . , V

R
L,γ), V

C
1 , . . . , V

C
L−1 such that the following hold.

1. Compress layers. The connected components of each G[V C
i ] are paths of length in [ℓ, 2ℓ],

the endpoints have exactly one neighbor in a higher layer, and all other nodes do not have
any neighbor in a higher layer.

2. Rake layers. The diameter of the connected components in G[V R
i ] is O(γ), and for each

connected component at most one node has a neighbor in a higher layer.

3. The connected components of each sublayer G[V R
i,j ] consist of isolated nodes. Each node in a

sublayer V R
i,j has at most one neighbor in a higher layer or sublayer.

Lemma 72 ([CP19, Cha20]). Assume ℓ = O(1). Then the following hold.

• For any positive integer k and γ = n1/k(ℓ/2)1−1/k, a (γ, ℓ, k)-decomposition can be computed
in O(k · n1/k) rounds.

• For γ = 1 and L = O(log n), a (γ, ℓ, L)-decomposition can be computed in O(log n) rounds.

11.3 The Generic Algorithm

The rake-and-compress procedure produces a useful layering on the tree, that is used as follows.
Consider, for simplicity, the case in which there are no nodes in compress layers: according to the
ordering (i, j) < (i′, j′) if i < i′ or i = i′ ∧ j < j′, we get that each node has at most one neighbor in
a higher rake layer. We call the edge connecting a node u to its unique higher-layer neighbor v the
outgoing edge of u, and all the other edges incident to u are called incoming edges of u.

Recall that, solving a problem Π in the black-white formalism means assigning one label for
each edge such that the constraints of the problem are satisfied. We now process the tree to assign a
set of labels to each edge. We process nodes from lower to higher layers. To each node u, we assign
a set of labels to its outgoing edge, such that, for any choice in such a set, there exists a choice in
the sets assigned to the incoming edges of u, such that the constraints of the problem are satisfied
on u. Note that such a set is always non-empty, as long as the problem is solvable in any tree. In
other words, we compute what labels we could put on the outgoing edge of u such that we can pick
a valid labeling on the whole subtree rooted at u. This set of labels, informally, is called class of
the subtree rooted at u. Observe that, once a set has been assigned to each edge, we can process
the nodes in reverse order to assign a label to each edge and make the constraints of the problem
satisfied on all nodes.

While we discussed how to handle rake layers, handling compress layers is more complicated. In
fact, if we define incoming and outgoing edges analogously as in the case of rake nodes, we get that
compress paths have two outgoing edges, one for each endpoint. The issue in having two outgoing
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edges is that, fixing a label on the edge of one endpoint of a compress path may affect what are
the valid labelings on the edge of the other endpoint, and hence there is no straightforward way to
assign sets of labels to the two endpoints such that this labeling is completable into a valid solution
in the path.

This issue is handled in [CP19, Cha20] by first using a decomposition that gives only paths of
constant size, and by then using some function that maps the sets of the incoming edges of a path
into two sets for the two outgoing edges of the path. This function must satisfy a special property:
we want the whole process to never compute empty sets (since otherwise we cannot then assign
labels to the edges), and in [CP19, Cha20] is proved that such a function always exists (conditioned
on the problem being solvable in the target runtime). We now provide a formal definition of class,
also extended to the case of compress paths.

11.4 Classes and Label-Sets

While the generic algorithms are provided already in [CP19, Cha20], in [BBK+23a] the same
algorithms are provided in a more accessible form, thanks to the fact that they are restricted to
LCLs in the black-white formalism. We now present some of the ingredients provided in [BBK+23a].
The first ingredient is the definition of label-sets and classes.

Definition 73 ([BCM+21, BBK+23a]). Assume we are given an LCL Π = (Σin,Σout, CW , CB) in
the black-white formalism. Consider a tree G = (V,E), and a connected subtree H = (VH , EH)
of G. Assume that the edges connecting nodes in VH to nodes in V \ VH are split into two parts,
Fincoming and Foutgoing, that are called, respectively, the set of incoming and outgoing edges. Assume
also that for each edge e ∈ Fincoming is assigned a set Le ⊆ Σout. This set is called the label-set of e.
Let Lincoming = (Le)e∈Fincoming . A feasible labeling of H w.r.t. Fincoming, Foutgoing, and Lincoming is a
tuple (Loutgoing, Lincoming, LH) where:

• Lincoming is a labeling (le)e∈Fincoming of Fincoming satisfying le ∈ (Lincoming)e for all e ∈ Fincoming,

• Loutgoing is a labeling (le)e∈Foutgoing of Foutgoing satisfying le ∈ Σout for all e ∈ Foutgoing,

• LH is a labeling (le)e∈EH
of EH satisfying le ∈ Σout for all e ∈ EH ,

• the output labeling of the edges incident to nodes of H given by Loutgoing, Lincoming, and LH is
such that all node constraints of each node v ∈ VH are satisfied.

Also, we define the following:

• a class is a set of feasible labelings,

• a maximal class is the unique inclusion maximal class, that is, it is the set of all feasible
labelings,

• an independent class is a class A such that for any
(
Loutgoing, Lincoming, LH

)
∈ A, and for any(

L′
outgoing, L

′
incoming, L

′
H

)
∈ A the following holds. Let L′′

outgoing be an arbitrary combination of
Loutgoing and L′

outgoing, that is, L
′′
outgoing = (le)e∈Foutgoing where le ∈ {(Loutgoing)e, (L

′
outgoing)e}.

There must exist some L′′
incoming and L′′

H satisfying
(
L′′
outgoing, L

′′
incoming, L

′′
H

)
∈ A.

Note that the maximal class with regard to some given Π, H, Fincoming, Foutgoing, and Lincoming,
is unique. In contrast, there may be different ways (or none) to restrict a maximal class to a
(nonempty) independent class.

As discussed, the generic algorithm needs to assign label-sets to edges in two specific types of
subgraphs H, that are the following.
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Figure 6: The figure illustrates the two cases of the label-set computation, where it is assumed that the
incoming edges have already a label-set assigned and the goal is to assign a label-set to the outgoing edges;
the left side depicts the case of a single node, the right side shows the case of a short path.

• The graph H consists of a single rake node. By construction, H has only one outgoing edge.

• The graph H consists of a short compress path. By construction, H has only two outgoing
edges.

Hence, Definition 73 is used only for the two specific types of graphs H: either single nodes, or
short paths. In each of these cases we need to compute a label-set for each outgoing edge. We now
report the way to compute label-sets in these two cases as presented in [BBK+23a]. The cases are
illustrated in Figure 6, which comes from [BBK+23a].

Definition 74 (label-set computation [BBK+23a]). Assume we are given some function fΠ,k (to be
specified later). We define a function g(v) that can be used to compute label-sets for the outgoing
edges as a function of H, Π, Fincoming, Foutgoing, Lincoming, and fΠ,k, for two specific types of graphs
H.

• Single nodes: the graph H consists of a single node v that has a single outgoing edge e, and
hence Foutgoing = {e}. All the other edges (which might be 0) are incoming, and for each of
them we are given a label-set (where Lincoming represents this assignment). We assign, to the
outgoing edge, the label-set g(v), that consists of the set of labels that we can assign to the
outgoing edge, such that we can pick a label for each incoming edge in a valid manner. More
in detail, let B be the maximal class of H w.r.t. Π, Fincoming, Foutgoing, and Lincoming. Then,
we denote g(v) =

⋃
(Loutgoing,Lincoming,LH)∈B{(Loutgoing)e}. We have g(v) ⊆ Σout. Observe that

each node v can compute g(v) if it is given the value of g(u) (that is, the label-set of the edge
{u, v}) for each incoming edge {v, u}.

• Short paths: the graph H is a path of length between ℓ and 2ℓ, for some ℓ = O(1) that
depends solely on Π and the target running time. The endpoints of the path are v1 and
v2. The outgoing edges are Foutgoing = {e1, e2}, where e1 (resp. e2) is the outgoing edge
incident to v1 (resp. v2). Let B be the maximal class of H. We assume to be given a function
fΠ,k, that depends solely on Π and some parameter k (that, in turn, depends on the target
running time), that maps a class B into an independent class B′ = fΠ,k(B). For i ∈ {1, 2},
let g(vi) =

⋃
(Loutgoing,Lincoming,LH)∈B′{(Loutgoing)ei}. We have g(vi) ⊆ Σout. The label-set of

e1 (resp. e2) is g(v1) (resp. g(v2)). Observe that the values of g(vi), for i ∈ {1, 2}, can be
computed given H and Lincoming.

Observe that, by the definition of independent class, we get that, for any choice of labels in the
two label-sets assigned to the outgoing edges of a compress path, there exists a valid labeling for
the compress path that is compatible with the label-sets of the incoming edges.
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11.5 From Worst-Case to Node-Averaged Case

Definition 74 provides a way to process the layers of a rake-and-compress decomposition to assign
label-sets to all edges, such that then nodes can be processed in reverse order to assign a label to
each edge. In fact, consider the following ordering.

Definition 75 (Layer ordering [BBK+23a]). We define the following total order on the (sub)layers
of a (γ, ℓ, L)-decomposition.

• V R
i,j < V R

i′,j′ iff i < i′ ∨ (i = i′ ∧ j < j′)

• V R
i,j < V C

i

• V C
i < V R

i+1,j

We can first process the nodes according to the ordering of Definition 75 to assign label-sets to
all edges by using Definition 74. Then, we can process the nodes in reverse order and assign a label
to each edge such that the constraints of the problem are satisfied. For more details, see [BBK+23a,
Section 4].

In [CP19, Cha20] it is shown that the parameter ℓ required by the decomposition can be computed
solely as a function of Π, and that ℓ is O(1). Given a function fΠ,∞, by using a (1, O(1), O(log n))-
decomposition, we obtain an algorithm that solves Π in O(log n) worst-case deterministic rounds,
while by using a (O(n1/k), O(1), k)-decomposition, for k = O(1), we obtain an algorithm that solves
Π in O(n1/k) worst-case deterministic rounds. We call these generic algorithms solvers.

In order to obtain O(log∗ n) node-averaged complexity, in [BBK+23a] it is shown how to compute
a tree decomposition with O(log∗ n) node-averaged complexity, and how to additionally tweak it
so that the label-set computation, and the following label picking phase, can be computed in O(1)
node-averaged complexity. For more details, see [BBK+23a, Section 5]. The O(log∗ n) time is
actually only spent for splitting compress paths into shorter paths (of length between ℓ and 2ℓ),
and the whole algorithm of [BBK+23a] would actually require O(1) rounds if splitting long paths
into short ones is not needed. What we show in the rest of the section is that, if there exists an
algorithm with (log∗ n)o(1) deterministic node-averaged complexity, then this splitting is not needed,
implying an algorithm with O(1) deterministic node-averaged complexity.

11.6 Finding a Function

Recall that, in the described solver procedure, it is required to use a function fΠ,k for solving a
problem in O(n1/k) worst-case deterministic rounds, or a function fΠ,∞ for solving a problem in
O(log n) worst-case deterministic rounds. Moreover, recall that the function used in the solver needs
to satisfy the condition that the solver never creates empty label-sets. We call good a function that
satisfies this condition.

In [CP19, Cha20], it is argued that there is a finite amount of possible (good or bad) functions
fΠ,∞, and for a given k, there is a finite amount of possible functions fΠ,k. Moreover, it is shown
that it is decidable whether a given function is good, implying that it is decidable whether a good
function exists, and if it exists it is possible to compute it.

We now present the algorithm, shown in [BBK+23a], that tests whether a given function is good.
This function is called testing procedure. The procedure depends not only on the function to be
tested, but also on a parameter ℓ that, in [CP19, Cha20], it is shown that it can be determined
solely as a function of Π. The testing procedure is well-defined for any integer k > 0, but also for
k =∞. The idea of the testing procedure is to keep track of all possible label-sets that one could
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possibly obtain while running the solver. For each of these label-sets L, the procedure also keeps
track of a subtree (where nodes are also marked with the layers of a decomposition) where, if we
run the solver by using the function that we are testing, we would obtain an edge with label-set L.
These trees, called representative trees, will be used later.

Algorithm 1: The testing procedure of [BBK+23a]

1. Initialize S with all the possible values of the label-set g(v) of v (as defined in Definition 74)
that could be obtained when v is a leaf. Note that the possible values are a finite amount that
only depends on the amount of input labels of Π. Initialize R1 by inserting one pair ((T̃ , u), L)
for each element L in S, where T̃ is a tree composed of 2 nodes {u, v} and 1 edge {u, v}, and
L = g(v). Node v is marked as a rake node of layer 1, while u is marked as a temporary node.

2. For i = 1, . . . , k do the following. If, at any step, an empty label-set is obtained, then the
tested function is not good.

(a) Do the following in all possible ways. Consider x arbitrary elements ((T̃j , vj), Lj) of Ri,
where 1 ≤ j ≤ x and 1 ≤ x ≤ ∆. Construct the tree T as the union of all trees T̃j ,
where all the nodes vj (note that each node vj has degree 1) are identified as a single
node, call it v, which, after this process, has degree x in T . Let Fincoming be the set of
edges connected to v, and let Lincoming be the label-set assignment given by the sets Lj .
The node v is marked as a rake node of layer i. If v has an empty maximal class w.r.t.
Fincoming, Foutgoing = {}, and Lincoming, then the tested function is not good.

(b) Do the following in all possible ways. Consider x arbitrary elements ((T̃j , vj), Lj) of Ri,
where 1 ≤ j ≤ x and 1 ≤ x ≤ ∆− 1. Construct the tree T as the union of all trees T̃j ,
where all the nodes vj are identified as a single node, call it v. Attach an additional
neighbor u to v. Let Foutgoing = {{u, v}}. Let Fincoming be the set of edges connected to
v, excluding {u, v}, and let Lincoming be the label-set assignment given by the sets Lj .
The node v is marked as a rake node of layer i, while u is marked as a temporary node.
Let L = g(v) (as defined in Definition 74). If L is empty, then the function is not good.
Add ((T, u), L) to Ri if no pair with second element L is already present.

(c) Repeat the previous two step until nothing new is added to Ri. This must happen, since
there are a finite amount of possible label-sets.

(d) If i = k, stop.

(e) Initialize Ci = ∅.
(f) Do the following in all possible ways. Construct a graph starting from a path H of length

between ℓ and 2ℓ where we connect nodes of degree 1 to the nodes of H satisfying: (i)
all nodes in H have degree at most ∆; (ii) the two endpoints of H have an outgoing
edge that connects respectively to nodes u1 and u2 that are nodes of degree 1; (iii) all
the other edges connecting degree-1 nodes to the nodes of H are incoming for H. Next,
replace each incoming edge e and the node of degree 1 connected to it with a tree T̃
of a pair ((T̃ , u), L) in Ri, by identifying u with the node of the path connected to e.
Different trees can be used for different edges. The nodes u1 and u2 are marked as
temporary nodes, while the nodes of the path are marked as compress nodes of layer i.
Use the function as described in Definition 74 to compute the label-sets L1 and L2 of
the two endpoints. If L1 or L2 is empty, then the function is not good. Otherwise, add
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the pair ((H,u1), L1) (resp. ((H,u2), L2)) to Ci if no pair with second element L1 (resp.
L2) is already present. The representative tree of P = (H,Fincoming, Foutgoing,Lincoming)
is defined as r(P ) = T .

(g) Set Ri+1 = Ri ∪ Ci. If Ri+1 = Ri, stop.

For more details about this procedure, we refer the reader to [BBK+23a, Section 7]. As discussed
in [BBK+23a], it is possible to prove that the testing procedure generates exactly those label-sets
that could possibly be obtained by running the solver [CP19, Cha20]. Hence, if empty label-sets are
never obtained, then the function can indeed be used to solve a problem. We now prove a useful
property of this testing procedure.

Lemma 76. Let Π be an LCL in the black-white formalism. Let F be the (finite) set of all possible
functions fΠ,∞. Let kmax be the largest value of i reached when testing all the function in F . If a
good function fΠ,kmax+1 exists, then a good function fΠ,∞ exists.

Proof. Define fΠ,∞ := fΠ,kmax+1. The proof follows from the fact that all functions fΠ,∞ that are
not good fail the testing procedure within the first kmax steps, while fΠ,kmax+1 does not fail in the
first kmax+1 steps.

11.7 The Plan for Saving the O(log∗ n) Term

We now discuss how the O(log∗ n) term in the node-averaged complexity of the solver procedure of
[BBK+23a] can be avoided. The solver procedure, as shown in [BBK+23a], precomputes a distance-
O(1) O(1)-coloring (for some suitable constants), which can be done in O(log∗ n) deterministic
worst-case rounds. Then, throughout its execution, the solver handles each compress path P in the
compress layer V C

i as follows.

• First, compute a set S of nodes of the compress path P such that the subpaths induced by
the nodes in P \ S form paths of length in [ℓ, 2ℓ], and such that endpoints of P are not in S.
The nodes in S are moved to V R

i+1,1. This is done in O(1) deterministic worst-case rounds by
exploiting the precomputed coloring.

• The function fΠ,∞ is used to assign label-sets to the edges connecting nodes of the subpaths
to their higher-layer neighbors.

• Nodes in S now have all incoming edges with label-sets assigned, and no outgoing edges. This
means that they can pick a valid labeling for all their incident edges and terminate.

• Nodes in the subpaths, except for the first and the last subpath, can now pick a valid labeling
for their incident edges and terminate, since such subpaths are connected to nodes in S on
both sides, and since the subpaths have constant length.

This whole procedure allows to fully label the nodes of a path (except for the first and last subpath)
in O(1) worst-case rounds, by exploiting the precomputed coloring. We now provide an alternative
way for handling compress paths in O(1) worst-case rounds, that, on the one hand, it does not
require to precompute a coloring, but on the other hand, it requires the function fΠ,∞ to satisfy
some additional properties. We thus get that, if there exists a function fΠ,∞ that satisfies these
additional properties, then the algorithm with deterministic node-averaged complexity O(log∗ n)
of [BBK+23a] can be turned into an algorithm with O(1) deterministic node-averaged complexity.
Finally, we will show that if a problem can be solved in (log∗ n)o(1) deterministic node-averaged
complexity, then a function with the required properties exists.
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11.8 The New Way of Handling Compress Paths

We modify the algorithm of [BBK+23a], and in particular the handling of compress paths, as
follows. In the original algorithm, all compress paths have length in [ℓ, 2ℓ], due to the fact that they
have been split by exploiting the precomputed coloring. Since we cannot precompute this coloring
anymore, we now need to be able to handle paths of arbitrary length (still at least ℓ). Observe that
if a path P has length at most 3ℓ+ 4, a coloring in P can be computed in constant time, and hence
the original algorithm can be used. Hence, in the following, we assume the path to be of length at
least 3ℓ+4. We now show how to handle a path P in compress layer i, that is, all nodes of P are in
V C
i .

Consider the two nodes at distance exactly ℓ + 1 from an endpoint of P . We split P into three
subpaths by promoting these two nodes to V R

i+1,1 (that is, the next layer). We call (according to
some arbitrary ordering) the first and last promoted node s1 and s2, the first and last subpath P1

and P2, and the middle path Pm. Observe that P1 and P2 have length exactly ℓ, and Pm has length
at least ℓ. We use the function fΠ,∞ to assign label-sets to the edges connecting the endpoints of P1

and P2 to their higher-layer neighbors (that include s1 and s2).
What remains to be done is assigning labels to the edges of Pm, and this must be done in constant
time even if Pm is of superconstant length. On a high-level, we have discussed why this is sufficient
in order to obtain an algorithm with O(1) deterministic node-averaged complexity, and this is also
shown more formally in [BBK+23a, Lemma 40, arXiv version].
We define a new LCL problem Π′, as a function of Π = (Σin,Σout, CW , CB), fΠ,∞, a set of label-sets
C, and the original maximum degree ∆, that captures exactly what we need (that is, to assign labels
to the edges of Pm).

Definition 77 (Compress Problem Π′). We define an LCL problem Π′ (not in the black-white
formalism) that has checkability-radius O(ℓ), where inputs are provided to nodes, and outputs are
on edges. The problem Π′ is defined on paths, that is, it is assumed that all nodes have degree at
most 2. If the path is shorter than ℓ (recall that ℓ = O(1)), then the problem Π′ is defined such
that any output is allowed. Hence, in the following we assume that the path has length at least ℓ.
The problem Π′ = (Σ′

in,Σ
′
out, C

′) is defined as follows. Let Σ′
in :=

⋃∆−1
j=0 Cj , that is, a node receives

as input a tuple of size at most ∆ − 1, where each element of the tuple is a label-set in C. Let
Σ′
out := Σout, that is, the possible outputs of Π and Π′ are the same. We now define the constraint

C ′, by consider three possible cases.

• Nodes of degree 2. The constraint C ′, on an arbitrary node v of degree 2, is defined as
follows. If the tuple that v received as input is of size ∆ − 1, then v is unconstrained (any
output is allowed). Let o1, o2 be the labels outputted by v on its incident edges, and let
(L1, . . . , Lk) be the input of v. It must hold that there exists a choice ℓ1 ∈ L1, . . . , ℓk ∈ Lk

such that the multiset {o1, o2}∪ {ℓ1, . . . , ℓk} is in the constraint of v of the original problem Π.

• Nodes of degree 1. For a node v of degree 1, the constraint C ′ is defined as follows. Let
(L1, . . . , Lk) be the input of v. If k = 0, then v is unconstrained (that is, any output is
allowed). If L1 is not in the codomain of the function g (that is defined as a function of fΠ,∞
in Definition 74), then v is unconstrained. Otherwise, the constraint of v is defined in the
same way as in the case of nodes of degree 2.

Before proving that a constant-time algorithm for Π′ implies that we can assign labels to the edges
of Pm in constant time, we report a useful property about LCLs on paths.

Observation 78 ([BBC+19]). Let Π be an LCL defined on paths. Let A be an algorithm that
solves Π in O(1) worst-case rounds, when given as input the size n of the path. Then, there exists a
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value n0 = O(1) such that A solves Π in constant time on instances of size n ≥ n0 when given as
input n0 instead of n.

We observe the following.

Observation 79. If Π′ can be solved in worst-case O(1) rounds, then the edges incident to the
nodes of Pm can be labeled in worst-case O(1) rounds such that the following hold.

• The constraints of Π are satisfied.

• On edges that have an assigned label-set, the output is from that set.

Proof. The claim follows directly from the definition of Π′. In fact, the path Pm is of length at least
ℓ, and the edges connecting the endpoints of Pm to neighbors of higher layers have a label-set that
is in the codomain of g. Under these conditions, the constraint of Π′ is defined in such a way that it
satisfies the requirements of the observation. Hence, by running an algorithm for Π′ we obtain the
required labeling. However, in the LOCAL model, it typically is assumed that, when running an
algorithm, the size n of the graph is provided to the nodes, but in our case nodes do not know the
size of Pm. Though, by Observation 78, such a knowledge of n is not required on instances of size
at least some constant n0. On instances smaller than n0 we can anyways compute the size of the
path in constant time.

We are now ready to define the additional property that we require on a function.

Definition 80 (Constant-good function). A function fΠ,∞ is called constant-good if its associated
problem Π′ has worst-case complexity O(1).

Observe that, by combining Observation 79 with a constant-good function, we can handle compress
paths in constant time without precomputing a coloring. We exploit the following lemma.

Lemma 81 ([BBC+19]). Given an LCL problem Π defined on paths, it is possible to decide whether
it can be solved in O(1) worst-case rounds.

It is easy to modify the testing procedure to additionally check if a tested function fΠ,∞ is constant-
good: first, run the normal testing procedure, then, if a function passes the test, additionally
check, by using Lemma 81, whether the problem Π′ defined as a function of fΠ,∞ can be solved in
worst-case O(1) rounds.

11.9 From a (log∗ n)o(1) Node-Averaged Algorithm to a Constant-Good Function

We now prove that, if there exists an algorithm A solving Π with deterministic node-averaged
complexity (log∗ n)o(1), then there exists a function fΠ,∞ that is constant-good. We start by
reporting a useful lemma shown in [BBK+23a].

Lemma 82 (Lemma 60 in the arXiv version of [BBK+23a], rephrased). Let A be an algorithm with

deterministic node-averaged complexity o(w1/(2k−1)), where w = w(n) is in O(n). Let {1, . . . , nc} be
the range of IDs for which the algorithm is defined, and assume that c is a large-enough constant.
Moreover, let n be an integer that is at least a large-enough constant. Then, it is possible to construct
a good function fΠ,k+1, as a function of A and n, satisfying the following properties.
Let ((T, v), L) be a pair obtained by the testing procedure by using the function fΠ,k+1. Then, there
exists a tree T ′ satisfying the following properties.

• T ′ contains a node v′ of degree one.

58



• T ′ has at most N nodes, where N = Θ(w(n)), and

• there exists a set X containing O(nc−4) disjoint sets of IDs

satisfying that, for each X ∈ X , it is possible to assign IDs to the nodes of T ′, such that:

• All the IDs are from X.

• There exists a set of nodes D in T ′ that, by running A on any supertree of T ′ of size n, they
do not see outside T ′.

• Any labeling of T ′ that agrees with the outputs of the nodes of D restricts the labels on the
edge incident to v′ to a subset of L.

Since A runs in (log∗ n)o(1) ⊆ no(1), we get that a good function fΠ,k exists for any arbitrary
k [BBK+23a]. By Lemma 76, this implies that a good function fΠ,∞ exists. In the rest of the
section, we prove that some constant-good function fΠ,∞ exists (but not necessarily the one given
by Lemma 76). Observe that we only need to prove that there exists a function fΠ,∞ for which its
associated problem Π′ has worst-case O(1) complexity.
For this purpose, we first define a different LCL problem Π′′, and, by exploiting Lemma 82, we
prove that Π′′ has O(1) worst-case complexity, by showing that we can use A to solve it. We will
later show that this implies that there exists a function fΠ,∞ for which its associated problem Π′

has worst-case O(1) complexity.

Definition 83 (The Problem Π′′). The problem Π′′ is a problem on paths defined as follows. Let
F = {f1, . . . , fh} be the set of possible good functions for Π (recall that h = O(1)), and let Π′

i be
the problem Π′ defined as a function of fi. Each node receives an input for Π′

i for each i. Each
node has to output a value i ∈ {1, . . . , h} and an output for Π′

h. If two nodes are neighbors, they
are required to output the same index i. The output for Π′

h needs to satisfy the constraints of Π′
h.

Observe that the definition of Π′′ does not depend on a specific function, but it solely depends on
the original problem Π.

Lemma 84. The problem Π′′ has worst-case complexity O(1).

Proof. We start by showing how to use A to solve Π′′. For this purpose, we show how, nodes of a
path, can simulate A on a virtual graph constructed as a function of their input.
Let n be the length of the path. If n is smaller than some large enough constant, we solve the
problem by brute force. A solution exists because Π′′ is constructed by using good functions. Let
w(n) =

√
log∗ n. Observe that (log∗ n)o(1) is in o(w(n)1/(2

k−1)) for any k, and hence we can use
Lemma 82. Let n′ = c · n ·

√
log∗ n, for some large enough constant c. We apply Lemma 82 to

construct a good function f = fΠ,kmax+1 with parameters n′ and w. Let i be the index of f in the
definition of the problem Π′′ (which exists since the definition of Π′′ considers all the good functions).
Let P = (v1, . . . , vn) be a path, where the input of node vj at index i is L = (Lj

1, . . . , L
j
dj
). We show

that we can use A to solve Π′′ with index i, by constructing a virtual graph where we run A.
The virtual graph is obtained by connecting to each node vj , dj trees, one for each label-set in
L, as given by Lemma 82, where the node v′ of each tree is identified with vj . It is known that
the complexity of an LCL problem on paths does not depend on the range of the IDs [BBC+19],
and thus, for our purpose, we assume that the IDs on the path are in the range {1, . . . , nc−5}.
We get that, for large enough n, there exists an injective function from the IDs on the path to
{1, . . . , O(nc−4)}. Hence, by Lemma 82, we can label the whole virtual graph with unique IDs that
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satisfy the following. By running A (and telling it that there are n′ nodes, which, by Lemma 82, is
an upper bounds on the nodes of the virtual graph), we obtain that, by Lemma 82, for each node vj
of the path, the labeling produced by A satisfies that the virtual hth edge of vj has a label present

in Lj
h. Moreover, A also assign a solution to the edges of the path. Thus, we get a solution for Π′

i,
and hence a solution for Π′′.
We now prove that the deterministic node-averaged runtime is bounded by o(log∗ n), and by [Feu17],
o(log∗ n) deterministic node-averaged complexity on paths implies O(1) worst-case complexity.
The sum of the runtimes on the virtual instance is bounded by S′ ≤ n′ · (log∗ n′)o(1) = n′ · (log∗ n)o(1).
Let S be the sum of the running times of the nodes in the path. We obtain that the node-averaged
complexity is bounded by the following.

1

n
S ≤ 1

n
S′ ≤ c ·

√
log∗ n

n′
S′ ≤ c ·

√
log∗ n

n′
· n′ · (log∗ n)o(1) ≤ c · (log∗ n)

1
2
+o(1) ∈ o(log∗ n)

Note that the deterministic algorithm that we constructed for solving Π′′ in O(1) may solve, for
different values of n, different subproblems Π′

i, which by itself is not sufficient to show that there is
a problem Π′

i with deterministic worst-case complexity O(1). However, we now show that, the fact
that Π′′ has worst-case complexity O(1), implies that Π′

i has worst-case complexity O(1) for some i,
implying that a constant-good function exists.

Lemma 85. There exists an i for which Π′
i has worst-case complexity O(1).

Proof. By Observation 78, any large-enough instance of Π′′ can be solved by running an algorithm
A for Π′′ by providing it always the same value of n, call it n0.
We start by proving that, given two large enough instances I1 and I2 for Π′′, even of different sizes,
the solution produced by A in I1 and I2 must satisfy that all nodes, in both instances, output a
solution that uses the same index i. For a contradiction, suppose that there are two different large
enough instances I1 and I2 where nodes use different indices. Then, we can create a single instance
I3 where there is at least one node that has the same view as in I1 within its runtime, and at least
one node that has the same view as in I2 within its runtime. Since A is run by telling it that there
are n0 nodes, we get that these two nodes, in I3, produce the same output as in the instances I1
and I2. This contradicts the correctness of the algorithm, since the constraints of Π′′ require that
all nodes output the same index i.
Since, for large enough instances, A always solves Π′′ with the same index i, and for all small enough
instances we can find a solution by brute force, we get that an algorithm that solves Π′

i in O(1)
rounds exists.
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Jukka Suomela. The distributed complexity of locally checkable problems on paths
is decidable. In Proc. 38th ACM Symposium on Principles of Distributed Computing
(PODC 2019), pages 262–271. ACM Press, 2019.

[BBC+22] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and
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