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Surface diffusion and surface electromigration may lead to a morphological instability of thin solid
films and nanowires. In this paper two nonlinear analyzes of a morphological instability are devel-
oped for a single-crystal cylindrical nanowire that is subjected to the axial current. These treatments
extend the conventional linear stability analyzes without surface electromigration, that manifest a
Rayleigh-Plateau instability. A weakly nonlinear analysis is done slightly above the Rayleigh-Plateau
(longwave) instability threshold. It results in a one-dimensional Sivashinsky amplitude equation that
describes a blow-up of a surface perturbation amplitude in a finite time. This is a signature of a
formation of an axisymmetric spike singularity of a cylinder radius, which leads to a wire pinch-off
and separation into a disjoint segments. The scaling analysis of the amplitude spike singularity is
performed, and the time-and-electric field-dependent dimensions of the spike are characterized. A
weakly nonlinear multi-scale analysis is done at the arbitrary distance above a longwave or a short-
wave instability threshold. The time-and-electric field-dependent Fourier amplitudes of the major
instability modes are derived and characterized.

Keywords: Nanowires, morphological stability, electromigration, singular solutions of PDEs, weakly
nonlinear analysis, scaling analysis, multi-scale analysis

I. INTRODUCTION

Surface electromigration [1–3] is a well-known and efficient method to guide morphological changes of thin films by
surface diffusion. In particular, it has been used to manufacture nanocontacts by breaking of thin films and nanowires
via a controlled pinch-offs [4–6]. Such nanocontacts are required for engineering and biomedical applications, for
example, for measurement of the electrical conductance and electronic properties of a molecule, but forming a quality
nanocontact is still a major challenge [7]. To overcome that challenge, the first step should be a basic understanding
of a surface electromigration-driven morphological instability of a single-crystal wire that leads to a pinch-off event.

Modeling morphological instabilities of nanowires by a classical approach of accounting for surface diffusion via
an evolution partial differential equation (PDE) for a shape variable [8–10] flourished in the 1990s and early 2000s
[11–17]. A recent paper emphasizing this approach is by Wang et al. [18]. These authors considered a surface area
minimization problem, computed a wire pinch-off using a phase-field method, and extended the Rayleigh-Plateau
stability condition to finite amplitude perturbations. Also a limited Monte Carlo computations were published [19].
For predictive applied modeling of a nanocontact fabrication process a multi-physics framework is needed, that
explicitly includes a model and a computation of a nanowire pinch-off instability, whereby the latter is triggered and
enhanced by the surface current. Since the cited works do not consider the key mass transport mechanism, namely
surface electromigration (shortened to electromigration in the rest of the paper), they cannot form a basis for that
framework.

Toward the stated goal, in Ref. [20] this author introduced a PDE-based model for electromigrated cylindrical
nanowire deposited on a substrate. That model is complicated by the presence of the contact lines and a non-
axisymmetric surface instability modes. A linear stability analysis (LSA) of that model is performed in Ref. [20],
from which a simpler case of axisymmetrically evolving free-standing wire is easily recovered. Axisymmetric modes
dominate evolution of surface perturbations for a free-standing wire in the absence of electromigration, i.e. when
only a natural high-temperature surface diffusion is operative [11]. Provided the axial current and a corresponding
diffusion anisotropy that is a function of the axial variable, this is expected to hold when the electromigration is also
operative. Ref. [21] reports a computation of a wire breakup into a chain set of particles for the simpler case. The
breakup time and the number of particles that emerge upon a breakup are characterized as a function of the initial
surface roughness.

In this communication, also for the axisymmetrically evolving free-standing wire, in Sec. III we perform a weakly
nonlinear analysis slightly above the longwave instability threshold. This analysis assumes, as follows from LSA,
that a critical (the most dangerous, i.e. the fastest growing) surface sinusoidal perturbation has a tiny wavenumber
k → 0. According to weakly nonlinear theory, such perturbation would develop into a protruding axisymmetric spikes
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from the surface toward the wire axis, the spikes being spaced along the wire axis with the separation distance 2π/k,
i.e. the spikes form via the deepening and sharpening of the minima of a critical perturbation. This is a weakly
nonlinear scenario of a wire pinch-off and its breakup into a set of nanoparticles. From this analysis we obtain a much
needed information on the time-and-electric field-dependent dimensions of the spike when the spike is not too deep,
i.e. when the surface deviation from the cylindricity is not too large, so that a nonlinearity is weak. Mathematically,
the latter is equivalent to a derivation of an amplitude equation via the expansion of a governing PDE up to the
terms that are quadratic in the perturbation amplitude (whereas LSA is based on the expansion up to linear terms,
i.e. a linearization procedure, which assumes that a perturbation amplitude is tiny). In other words, a perturbation
amplitude is finite in the weakly nonlinear analysis. This key underlying assumption is the same in this paper and in
Ref. [18]. A finite amplitude is quite likely to occur in the experiment [22].

Independent of weakly nonlinear analysis, in Sec. IV we start with the assumption of the initial unstable surface
perturbation having an arbitrary finite wavenumber 0 < k < kc, where kc is the instability cut-off wavenumber from
LSA, and ask which unstable surface modes are the fastest growing. In this weakly nonlinear multi-scale treatment
the spike formation is not considered. (As in the “standard” weakly nonlinear analysis in Sec. III, the governing PDE
for the surface variable will be expanded to second order in a small parameter that has a meaning of a perturbation
amplitude. This explains why we use the term “weakly nonlinear multi-scale analysis”.) Nonlinearity of the governing
PDE forces a fast distortion of the initial sinusoidal surface perturbation into a general smooth surface shape, and as
was just explained, we are interested in finding the fastest growing Fourier modes in its spectrum.

II. THE MODEL

We consider surface electromigration on a free-standing cylindrical nanowire of radius R0. (For details of the model
derivation, see Ref. [20].) Assuming axial symmetry and a constant electric field E0 in the axial direction, the wire
radius r(t, y) is governed by a nonlinear dimensionless evolution PDE:

rt =
1

r

∂

∂y

M(ry)
rKy + E√

1 + r2y

 , (1)

where y is the axial variable,

K =
1

r
√
1 + r2y

− ryy(
1 + r2y

)3/2 (2)

the mean curvature of the surface, and

M(ry) =
1 + S cos2 (arctan ry + ψ)

1 + S
(3)

the anisotropic diffusional mobility of the adsorbed atoms (adatoms) [23]. Here S > 0 is the anisotropy strength
and 0 ≤ ψ ≤ π/2 the misorientation angle for a wire oriented along [100] crystallographic direction. Also E =
Q∆V R2

0/(Ωγℓ) is the electric field parameter, where Q > 0 is the effective charge of ionized adatoms, ∆V a voltage
difference between the front and back faces of a wire, ℓ the wire length, Ω the atomic volume, and γ the surface energy.
Note that E0 = ∆V/ℓ, and thus a positivity (a negativity) of E0 and E depends on the sign of ∆V . When surface
diffusion is isotropic (S = 0 → M(ry) = 1) and the electric field is off (E = 0), Eq. (1) reduces to a well-known

evolution equation rt = 1
r
∂
∂y

[
rKy

(1+r2y)
1/2

]
[11, 12], which expresses only the adatom surface diffusion via a surface

Laplacian of mean curvature.

A. LSA

Eq. (1) has the trivial solution r = 1 (the base state), corresponding to unperturbed cylinder. Introducing a tiny
perturbation of the base state, r = 1 + ξ0e

σt cos ky, ξ0 ≪ 1, and linearizing in ξ0 gives the growth rate σ and the
instability cut-off wavenumber kc [20]:

σ(k;E) =
2 + S(1 + cos 2ψ)

2(1 + S)
k2
(
1− k2

)
+ E

S sin 2ψ

1 + S
k2 ≡ α1 + α3

2 (α3 − 1)
k2
(
1− k2

)
+

α2

α3 − 1
Ek2, (4)
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FIG. 1. Unperturbed cylindrical nanowire (the base state). je is the surface electric current that drives the surface electromi-
gration of adatoms via the ”electron wind” [1–3].

kc(E) =

√
1 +

2SE sin 2ψ

2 + S(1 + cos 2ψ)
≡
√

1 +
2α2E

α1 + α3
. (5)

Perturbations with a wavenumbers 0 < k < kc(E) destabilize the base state, since for these wavenumbers σ(k;E) > 0.
This is a longwave instability. Here we introduced a non-negative parameters α1 = S cos 2ψ, α2 = S sin 2ψ and a
positive parameter α3 = 2 + S. At S = 0 (isotropy) with either E = 0, or E ̸= 0, Eqs. (4) and (5) reduce to
σ(k; 0) = k2(1− k2) and kc(0) = 1, respectively, which characterize a classical Rayleigh-Plateau instability of a free-
standing solid wire [8]. In dimensional coordinates this implies that an axisymmetric sinusoidal perturbation induces
instability if and only if its wavelength is longer than the circumference of the undisturbed cylinder.

Setting σ = 0 results in the neutral stability curve E(k) = α1+α3

2α2

(
k2 − 1

)
. Fig. 2 shows this curve for S = 1 and

ψ = π/12 [20] (these values are fixed for the remainder of this paper). The threshold of a longwave instability is

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-4
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FIG. 2. The neutral stability curve E(k).

(k,Ec) = (0, −(α1+α3)
2α2

) = (0,−3.866). Above the neutral stability curve, i.e. at E > Ec the wire is unstable; below the
neutral stability curve it is stable. At E > 0 the instability is due to a combined action of two destabilizing factors,
the electromigration and a surface diffusion. At E < Ec the wire is completely stabilized by electromigration. At
Ec < E < 0 the stabilizing action of electromigration is weak and the instability due to surface diffusion still emerges.
Fig. 3 shows why not only a strength of the electric field, but also its direction (determined by a sign of ∆V ) matters
for a morphological instability.

Remark. In Ref. [18], where electromigration is not considered, a correction to kc(0) is derived that accounts for
the finite perturbation amplitude, i.e. the starting assumption ξ0 ≪ 1 is replaced by 0 < ξ0 < 1. The corrected
expression reads kc(0) =

√
1 + ξ20 . For the analyzes that follow in Sections III and IV it is not necessary to likewise

correct kc in Eq. 5, since in Sec. III k → 0 (is tiny) and kc is irrelevant, and in Sec. IV kc is not needed explicitly.
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FIG. 3. (a,b) Sketch of a cross-section of a bump on a wire surface by a plane that is parallel to a wire axis. A projection
of a constant electric field E0 onto a surface, Eloc, drives the electromigration adatom flux j in the opposite direction, i.e. in
the direction of the electron flow je. This contributes to either (a) a bump smoothing (stabilization), or to (b) a bump growth
(destabilization).

III. WEAKLY NONLINEAR ANALYSIS SLIGHTLY ABOVE THE INSTABILITY THRESHOLD
(k,E) = (0, Ec)

We start by substituting r = 1 + δξ(t, y), δ ≪ 1 in the right-hand side of Eq. (1), expanding to second order in δ,
and formally adding the coefficients of δ and δ2. This results in:

(α3 − 1) ξt = −
(
Eα2 +

1

2
(α1 + α3)

)
ξyy −

1

2
(α1 + α3)ξyyyy +

1

2
(α1 + α3)ξ

2
y −

1

2
(α1 + α3)ξ

2
yy

− (α1 + α3)ξyξyyy +

[
(Eα2 + α1 + α3)ξ +

(
2α2 −

1

2
E(5α1 + α3)

)
ξy + α2ξyyy

]
ξyy + α2ξyξyyyy. (6)

LSA results (4), (5) may be recovered from Eq. (6).
Let E = Ec + ϵE1, E1 = O(1) > 0. Note that the coefficient of ξyy changes its sign at E = Ec, hence it is

proportional to E − Ec = ϵE1, which is O(ϵ). The balance of the largest nonlinear term ∼ ξ2y with the linear
term ∼ ϵξyy is for ξ(t, y) = ϵϕ(t, y), ϕ = O(1). Also, since the linear instability interval is 0 < k < kc, where

kc =
√
1 + 2α2E

α1+α3
=
√
1− E

Ec
=
√

−E1

Ec
ϵ = O

(
ϵ1/2

)
, the appropriate rescaling of the axial coordinate y is Y = ϵ1/2y.

Thus also let:

ξ = ϵϕ; T = ϵ2t⇔ ∂t = ϵ2∂T , Y = ϵ1/2y ⇔ ∂y = ϵ1/2∂Y , (7)

where T, Y are a slow time and a stretched axial variable.
Inserting E = Ec + ϵE1 and expansions (7) in Eq. (6) we get:

ϕT ϵ
3 = −

{
α2Ec +

1

2
(α1 + α3)

}
ϕY Y ϵ

2 +
{
−aϕY Y − b

[
ϕY Y Y Y − ϕ2Y − ϕϕY Y

]}
ϵ3 +O

(
ϵ7/2

)
, (8)

where a = α2E1

α3−1 = SE1 sin 2ψ
1+S = E1/4 > 0, b = α1+α3

2(α3−1) = 2+S(1+cos 2ψ)
2(1+S) ≈ 0.966. Noticing that the coefficient of ϕY Y ϵ

2

is zero, in the lowest order ϵ3 we get the amplitude equation that resembles the famed Kuramoto-Sivashinsky (KS)
equation, ϕT = −ϕY Y –ϕY Y Y Y − ϕ2Y :

ϕT = −aϕY Y − b
[
ϕY Y Y Y − ϕ2Y − ϕϕY Y

]
. (9)

It can be seen that Eq. (9) has the term bϕϕY Y that is absent in KS equation, also the sign of ϕ2Y term is the opposite
of the one in KS equation. This sign can be inverted by making the replacement ϕ → −ϕ, thus it does not make a
difference for the dynamics. However, bϕϕY Y term changes the solutions and their dynamics qualitatively, as will be
discussed shortly. Eq. (9) can be also written in the form:

ϕT = −aϕY Y − bϕY Y Y Y +
1

2
b ∂Y Y ϕ

2. (10)

Introducing the scalings of Y and T :

X =

√
a

2b
Y ⇔ ∂Y =

√
a

2b
∂X , τ =

a2

2b
T ⇔ ∂T =

a2

2b
∂τ (11)
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eliminates one parameter from Eq. (10) and results in equation that has the form of Eq. (9) in Ref. [24]:

ϕτ = −ϕXX − 1

2
ϕXXXX + c ∂XXϕ

2, c =
b

2a
. (12)

Letting ϕ = hX in Eq. (12) gives equation

hτ = −hXX − 1

2
hXXXX + c ∂Xh

2
X , (13)

that has the form of Eq. (8) in Ref. [24]. LSA of Eqs. (12) and (13) about the base states ϕ = 1 and hX = 1,

respectively, give the perturbation growth rate ω = (1− 2c)k2 − k4

2 . Thus these base states are longwave unstable at

0 < c < 1/2 ⇔ 0 < b/a < 1, with the instability cut-off wavenumber kc =
√
2(1− 2c).

Notice that setting ϕ = wXX , c = 1 in Eq. (12) and integrating twice with respect to X gives wτ = −wXX −
wXXXX + w2

XX [25]. This equation was rigorously studied in Ref. [26] (see equation (1D MKS) on p. 377 of that
paper, which reads wτ = −wXX−wXXXX+(1−λ)w2

X+σλw2
XX , with λ = σ = 1). For 1D MKS equation on a periodic

domain these authors proved that depending on the stability of the trivial solution, either: (i) if it is unstable, there
exist arbitrarily small initial perturbations that lead to a solution blow-up in a finite time, or (ii) if it is stable, there
exist finite-amplitude initial perturbations that lead to a finite-time blow-up. These singularities exhibit self-similar
structure in wXX . Their numerical results indicated that w generically becomes pointwise infinite at a finite time.
Notice that the limit λ → 0 recovers the KS equation which does not exhibit blow-up in one dimension. Also, Eq.
(12) with the −1 coefficient of ϕXXXX and c = −1 has been studied in Ref. [27]. For that equation (the Sivashinsky
equation) these authors found an infinite family of self-similar blow-up solutions, performed their LSA, and identified
a unique stable blow-up solution. We will refer to Eq. (12) also as Sivashinsky equation.

A convenient scaling analysis of a solution singularity development for Eq. (12) (and Eq. (13)) was performed in
Ref. [24]. Using directly the results of that analysis, we obtain that a downward spike in ϕ develops that is centered at

the point X(τ); the depth of the spike increases as (τs − τ)
−1/2

and its width decreases as (τs − τ)
1/4

as τ approaches
τs from below. Here τs is the time of a singularity formation (the blow-up time). In terms of the original variables:

spike depth =
c1

(E − Ec)
√
b (ts − t)

, (14)

spike width = c2
√
a (E − Ec)

(
ts − t

b

)1/4

, (15)

spike center displacement from y = 0 =
c3
√
a (E − Ec)

b1/4

[
t1/4s − (ts − t)

1/4
]
, (16)

where the time of a singularity formation ts and the proportionality constants c1,2,3 can’t be determined from the
scaling analysis. Obviously, one expects that ts = ts(E − Ec) ≡ ts(∆E), thus Eqs. (14)-(16) show the dependence of
the spike parameters on time, but not yet on ∆E. In order to find the latter functional dependence, first, we notice
that the computation of Eq. (12) results in τs ∼ 40 (Fig. 4(a)). Thus using Eqs. (7) and (11):

ts =
2bτs
a2ϵ2

=
2bE2

1τs

a2 (E − Ec)
2 =

32τs

(E − Ec)
2 ∼ 1300/ (E − Ec)

2 ∼ 1.3× 107 (17)

at a = 2, b = 1, E1 = 8 ⇔ c = 1/4 and a representative value ∆E = 0.01. Evolution of the spike dimensions at these
(fixed) values of ∆E and ts is shown in Fig. 4(b). It is seen that in comparison to the singularity of the width and
the displacement, the singularity of the depth develops abruptly.

Next, inserting ts = 2bE2
1τs/a

2 (E − Ec)
2
in Eqs. (14)-(16) gives the following forms for the dependence of the

spike parameters on ∆E and t:

spike depth =
c1a

b

√
2E2

1τs −
a2(E−Ec)

2t
b

, (18)

spike width = c2

(
2E2

1τs −
a2 (E − Ec)

2
t

b

)1/4

, (19)
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FIG. 4. (a) Spike formation via computation of Eq. (12) with c = 1/4. The initial condition is a small Gaussian-shaped
perturbation of the base state ϕ = 1 on the interval 0 ≤ X ≤ 2

√
2π, where 2

√
2π is the most dangerous instability wavelength

(the one at which the growth rate ω is the maximum value). Boundary conditions are periodic. The last shown profile
corresponds to τs = 43.35. (b) Evolution of the spike dimensions (Eqs. (14)-(16)) at ∆E = 0.01, a = 2, b = 1, E1 = 8, ts =
1.3× 107. Proportionality constants c1,2,3 = 1 are chosen to facilitate plotting three functions on the same screen.

spike center displacement from y = 0 = c3

(2τs)1/4√E1 −

(
2E2

1τs −
a2 (E − Ec)

2
t

b

)1/4
 . (20)

Figure 5 shows the major spike dimension, its depth, as the contour plot of the two-variable function (18). Spike
depth increases as the time and ∆E increase. Moreover, unless the time is close to a blow-up and ∆E is not very
small, the depth is more sensitive to ∆E change than to t change. This is the signature of a product (E − Ec)

2
t

in Eq. (18), where the exponent of t is one, and the exponent of ∆E is two. Same is true for the spike width and
displacement. Also it is useful to expand Eq. (18) for small ∆E and t:

FIG. 5. Spike depth, as given by Eq. (18). a = 2, b = 1, E1 = 8, τs = 40, c1 = 1. (b) is the zoom view of (a) in the middle of
the time interval.

spike depth =
c1a

bE1

√
2τs

+
c1a

3

4
√
2b2E3

1τ
3/2
s

(E − Ec)
2
t+O

(
(E − Ec)

4
t2
)
. (21)

This shows that the spike depth grows quadratically in ∆E and only linear in t.

IV. A WEAKLY NONLINEAR MULTI-SCALE ANALYSIS OF THE PRIMARY MODES OF
INSTABILITY

As was already noted in Introduction, due to nonlinearity of a governing PDE (1) very shortly after the initiation
of a morphological instability the initial sinusoidal, single-harmonic form of a solution (the initial condition) ceases
to exist, and the solution is represented by a Fourier series. Without a loss of generality, we will account only for
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a handful of major terms in that series, i.e. the sinusoidal terms having a wavenumbers that are a small integer
multiples of a wavenumber of the primary mode (the sinusoidal initial condition/perturbation) [18], and derive their
time-dependent amplitudes. The primary mode has a finite wavenumber 0 < k < kc.
We start with the following ansatz for the perturbation of the base state r = 1:

r = 1 + ϵr1 (t0, t1, t2;E) cos ky + ϵr4 (t0, t1, t2;E) sin ky + ϵ2r2 (t0, t1, t2;E) cos 2ky + ϵ2r3 (t0, t1, t2;E) sin 2ky, ϵ≪ 1
(22)

where t0 is the fast time and t1, t2 are the slow times. Thus the time derivative reads:

∂

∂t
=

∂

∂t0
+ ϵ

∂

∂t1
+ ϵ2

∂

∂t2
. (23)

The initial conditions are chosen as:

r1 (0, t1, t2;E) = ξ0, 0 < ξ0 < 1; r2,3,4 (0, t1, t2;E) = 0. (24)

Now we proceed according to this plan: substitute the expansions (22) and (23) in Eq. (1), collect the terms of the
same powers of ϵ on each of the two sides of the equation and equate them; next, for each of the resulting statements,
collect the terms proportional to cos ky, sin ky, cos 2ky, and sin 2ky on each of the two sides of a statement and equate,
separately, the coefficients of these harmonics.

At the order ϵ we get:

∂r1
∂t0

cos ky +
∂r4
∂t0

sin ky = σ(k;E)r1 cos ky + σ(k;E)r4 sin ky, (25)

thus

∂r1,4
∂t0

= σ(k;E)r1,4, (26)

where the growth rate σ(k;E) is given by Eq. (4).
At the order ϵ2 we get:

∂r1
∂t1

cos ky+
∂r4
∂t1

sin ky+
∂r2
∂t0

cos 2ky+
∂r3
∂t0

sin 2ky = f1 (k, r1, r4;E)+f2 (k, r1, r4, r2;E) cos 2ky+f3 (k, r1, r4, r3;E) sin 2ky,

(27)
where f1,2,3 are certain complicated functions. Therefore:

•

∂r1,4
∂t1

= 0 → r1,4 = r1,4 (t0, t2;E) . (28)

Applying the initial conditions (24) and accounting for Eq. (28) we get from the linear ODE (26):

r1 = r1 (t0;E) = ξ0e
σ(k;E)t0 , r4 = 0. (29)

It can be observed now that the LSA result of Sec. II A for the primary mode has been obtained at the linear
stage (at order ϵ) of a multi-scale expansion.

• Substituting r4 = 0 in f2 and f3, for r2 and r3 from Eq. (27) one obtains the linear ODEs:

∂r2,3
∂t0

= f2,3 (k, r1, r2,3;E) = p(k;E)r2,3 + q2,3(k;E)r1 (t0;E)
2
, (30)

where

p(k;E) = 2
2 + S(1 + cos 2ψ)

1 + S
k2
(
1− 4k2

)
+ 4E

S sin 2ψ

1 + S
k2 = 4σ(k;E)− 6

2 + S(1 + cos 2ψ)

1 + S
k4, (31)

q2(k;E) = −3
2 + S(1 + cos 2ψ)

4(1 + S)
k2
(
1 + k2

)
− E

S sin 2ψ

2(1 + S)
k2, (32)
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q3(k;E) =
S sin 2ψ

1 + S
k3
(
1− k2

)
+ E

S2(cos 4ψ − 1)− S(6 cos 2ψ + 10)− 12

4(1 + S)
k3. (33)

Substituting r1 (t0;E) from Eq. (29) and taking into account the initial conditions, the solutions of Eqs. (30)
read:

r2,3 = r2,3 (t0;E) =
q2,3(k;E)ξ20

p(k;E)− 2σ(k;E)
[exp (p(k;E)t0)− exp (2σ(k;E)t0)] . (34)

• Finally, for consistency of Eq. (27) one needs f1 (k, r1;E) = 0. This gives the constraint k2
(
k2 − k2c

)
r1 (t0;E)

2
=

0, where kc is seen in Eq. (5). Since r1 (t0;E) ̸= 0, either k = 0, or k = kc. This implies that the results
would formally apply only at the longwave instability threshold k = 0, or at the shortwave instability cut-
off wavenumber kc. However, we reasonably assume that the constraint holds approximately at k = δ1 and
k = kc− δ2, where δ1,2 are a positive constants that quantify the deviation from these values into the instability

interval 0 < k < kc. In particular, k = δ1 is the most dangerous wavenumber in LSA when δ1 = kc/
√
2.

Figure 6 shows r1 as the function of the electric field at fixed t0 and at various distances δ from the longwave
instability threshold k = 0 and from the short-wave instability cut-off k = kc. For this, we took δ1 = δ2 = δ
and substituted k = δ and k = kc − δ in Eq. (29), where σ(k;E) and kc(E) are given by Eqs. (4), (5). In the
former case (Fig. 6(b)) one can see that r1 ∼ c1 exp (c2E), c1, c2 = const., and values of these constants can be
easily calculated. However, for the particular numerical values of the parameters and for the plotting interval these
exponential curves are well approximated by the straight lines. In the latter case (Fig. 6(a)) the analytical dependence
on E is complicated, but the curve data can be fitted: δ = 0.001: r1 = 0.00997 + 0.000048 exp (0.145717E); δ = 0.01:
r1 = 0.00973 + 0.000458 exp (0.153945E); δ = 0.025: r1 = 0.00941 + 0.001056 exp (0.16734E).

FIG. 6. The amplitude of cos ky term in the ansatz (22), given by Eq. (29), at t0 = 1, ξ0 = 0.01 for Ec + 0.01 ≤ E ≤ −Ec,
where Ec = −3.866. (a) Near the short-wave instability cut-off; (b) Near the long-wave instability threshold.

A close look at r2(E) and r3(E) curves (Fig. 7) and the comparison to r1(E) in Fig. 6 shows, first, that r1 is several
orders of magnitude larger than r2,3. Thus the primary mode cos ky is dominant in the spectrum, as expected [18].
Next, the absolute values of r2 are two orders of magnitude larger than the absolute values of r3 near the longwave
instability threshold, while the converse is true near the short-wave instability cut-off. Therefore cos 2ky and sin 2ky
are the next two fast growing modes in the spectrum.

The largest of r2,3 amplitudes, r3, is plotted in Fig. 8 vs. t0 and E near the short-wave instability cut-off. Cross-
secting Fig. 8(a) by a vertical cut shows that at any fixed t0 the amplitude dependence on E is roughly as seen in
Fig. 7(b). Moreover, a (positive) maximum of the amplitude increases with t0, as seen in Fig. 8(b).

V. SUMMARY

Provided that the electric field slightly exceeds a threshold value that is necessary for initiation of a morphological
instability, the weakly nonlinear analysis that we carried out shows for the first time the electric field-and-time
dependence of the dimensions of the shallow spike, whose strongly nonlinear development would ultimately lead to
a wire pinch-off and its breakup into a chain of nanoparticles. In particular, this analysis shows that the spike
depth initially grows quadratically in the deviation from a threshold value of the electric field. For the initial surface
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FIG. 7. The amplitudes of cos 2ky and sin 2ky terms in the ansatz (22), given by Eqs. (34), at t0 = 1, ξ0 = 0.01 for
Ec + 0.01 ≤ E ≤ −Ec, where Ec = −3.866. (a,b) Near the short-wave instability cut-off; (c,d) Near the long-wave instability
threshold.

FIG. 8. The amplitude of sin 2ky term in the ansatz (22), given by Eqs. (34), at ξ0 = 0.01, near the short-wave instability
cut-off. (b) is the zoom view of the bottom region in (a).

perturbation of the form ξ0 cos ky, 0 < ξ0 < 1 (where y is the axial variable) a separate, multi-scale analysis of a
weakly nonlinear phase of the instability shows that in that regime the fastest growing instability modes are cos ky,
cos 2ky, and sin 2ky, and for these modes we found the explicit dependence of their amplitudes on time and the
strength of the applied electric field.
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