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Abstract

We implemented the Bayesian analysis to the polarised neutron reflectivity data. Reflectivity data from a
magnetic TbCo thin film structure was studied using the bundle of a Monte-Carlo Markov-chain algorithm,
likelihood estimation, and error modeling. By utilizing the Bayesian analysis, we were able to investigate
the uniqueness of the solution beyond reconstructing the magnetic and structure parameters. This approach
has demonstrated its expedience as several probable reconstructions were found (the multimodality case)
concerning the isotopic composition of the surface cover layer. Such multimodal reconstruction emphasizes
the importance of rigorous data analysis instead of the direct data fitting approach, especially in the case
of poor statistically conditioned data, typical for neutron reflectivity experiments. The analysis details and
the discussion on multimodality are in this article.

1 Introduction
Neutron reflectivity (NR) is a unique tool employed in the study of surfaces and layered nanostructures. By
measuring specularly reflected low energy (thermal or slow) neutrons at grazing angles, one effectively probes
the depth profile of the scattering length density (SLD) of the sample. It is sensitive to both the nuclear and
the magnetic SLDs. Therefore, it is primarily advantageous compared to X-ray reflectivity experiments to the
study to the study of magnetic properties of matter or the structure of matter with low Z contrast. Thus,
NR has a wide range of applications in science and technology. In spintronics, it is used for metallic thin
film characterization [1, 2]. In biophysics, NR is used to study biomembranes [3, 4] and macromolecules [5]
as deposited on the surface. In chemical research, NR is employed to the study of polymers structure and
surfactants [6]. NR has one of its most prominent applications in the study of atmospheric phenomena: the
study of aerosols [7] and the study of oxidation kinetics of organic monolayers [8]. Additional information of
the spin-states of reflected neutrons allows the reconstruction of the spatial distribution and the orientation of
magnetic moments. By using polarized neutron reflectometry (PNR) this method provides a more comprehensive
understanding of the magnetic properties of materials [9, 10].

The reflectivity calculation is irreversible, i.e., one cannot directly extract SLD profiles from the NR data.
That is due to the loss of phase and the dynamic scattering effects like the total external reflection. Thus,
despite our understanding of NR physics, the reconstruction of the SLD profile from experimental data is a
complicated problem. Typically, SLD reconstruction from NR data is done by building a forward model to
simulate reflectivity. Further, instead of directly studying the data, one studies the behavior of the model as
compared to the data. Then, iteratively, using optimization algorithms, one varies the SLD profile until the
corresponding reflectivity calculation fits the data according to the priorly chosen goodness of fit criterion.
Usually, it is the 𝜒2 criterion(see, for example [11]). The SLD corresponding to the optimal value of 𝜒2 is the
sought sample reconstruction.
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There are two main obstacles to such reconstruction in the context of PNR. First, PNR experiments yield
data with a low signal-to-noise ratio compared to, for instance, X-ray reflectivity data. That is due to a lower
incident beam flux. The use of the neutron reflectometry method requires high collimation and simultaneously
imposes limitations on the cross-sectional area of the neutron beam. This significantly affects the neutron flux in
the incident beam. Flux density values of 105 - 106 cm−2 s−1 are typical for many neutron reflectometers, while
synchrotron sources typically have flux densities in the range of 1013 - 1014 cm−2 s−1. The low neutron flux leads
to limited statistical significance of the measurement results. Alternatively, long beam times at the source are
required to perform a single experiment. However, it is not always feasible to increase the experiment time for
the sake of collecting statistics. Still, the sensitivity of PNR to the nuclear composition and magnetic structure
necessitates its use. Therefore, the approach optimized for the low signal-to-noise data is required. Second,
the uniqueness of reconstruction is not guaranteed. Moreover, in some cases, it is provably not unique [12]
(see also examples for the X-ray reflectivity in [13, 14]). Thus, one PNR dataset can be explained by several
different SLD profiles – the so-called multimodality. Meanwhile, the optimization approach provides a single
solution, and its uncertainty is estimated locally, i.e., with no regard to other possible solutions. That requires
a comprehensive approach capable of identifying multiple probable SLD reconstructions.

We address both these issues by implementing the Monte-Carlo Markov chain (MCMC) algorithm in the
analysis of the PNR data. This approach provides a numeric estimation of the likelihood of a given model, which
is the probability that a particular model SLD corresponds to the observed PNR data. Unlike the optimization
approach, which yields only one optimal solution, MCMC yields a likelihood distribution for different SLD
models across a specified range of parameters. If there are several possible solutions, the likelihood will have
several optima, and MCMC allows their investigation simultaneously. As such, we were able to study PNR data
for the multimodality. Together with the MCMC approach, we implemented the error modeling similar to what
described in [15]. In some instances, there exists an optimal (most probable) measurement error correction,
which MCMC can also study as part of the model. In the case of a low signal-to-noise ratio, which is precisely the
case with PNR data, the estimation of model parameters depends on the correct estimation of the measurement
errors.

In this work, we focus on the PNR data analysis strategy rather than on the description of PNR as a physical
phenomenon, as it is well studied; see an overview in [16, 17] among others. On the contrary, the implementation
of MCMC for the PNR data analysis is scarce in the literature, although it is getting more and more attention
in the scientific community [18, 19, 20, 21]. We implemented MCMC for the reconstruction of the SLD profile
of a Tb0.03Co0.97 thin film structure from the PNR data. The reconstruction revealed two possible solutions,
emphasizing the importance of studying the data for multimodality, particularly in statistically ambiguous data
such as PNR.

2 Deterministic and stochastic analysis of PNR data
There are several theoretical formalisms for calculating PNR[16, 17]. All of them are based on solving time-
independent Schrodinger equation and matching wave function and its derivative at the boundaries of thin films.
In this study, we use matrix formalism[17] for the forward simulation (𝐼calc(𝑝) – forward model). This model
provides a simulation of reflected beam intensity for a thin film model described with a vector of parameters 𝑝.

In this study we use a stochastic approach to analyze the PNR data. However, let us first revisit a conven-
tional deterministic approach. The deterministic approach consists of three parts: a forward model, a goodness-
of-fit criterion, and an optimization algorithm. Primarily, Pearson’s 𝜒2 is used (see examples in [22, 23]) as a
goodness-of-fit criterion:

𝜒2 =
1

𝑁 − 𝑙

∑︁
𝑖

[︀
𝐼calc𝑖 (𝑝)− 𝐼exp𝑖

]︀2
𝜎2
𝑖

, (1)

where 𝐼exp is the measured reflectivity data, 𝑁 is the size of 𝐼exp i.e. the number of measured points, 𝑙 is the
number of free parameters used for the forward model, 𝜎 – statistical errors of experimental points. The sum
in Eq. 1 is taken over the data points.

The 𝜒2 statistics imply the sum of stochastic variables with the standard normal distribution: 𝒩 (0, 1).
Hence, by using 𝜒2, one assumes that experimental data is normally distributed around some 𝐼calc(𝑝 ′) with the
standard deviation 𝜎, such so [𝐼exp − 𝐼calc(𝑝 ′)]/𝜎 ∼ 𝒩 (0, 1). Here, 𝑝 ′ is the optimal parameter vector. In other
words, 𝑝 ′ represents the set of model parameters which best describes the experimental data. Thus, finding 𝑝 ′

means reconstructing the structure parameters. It is evident from Eq. 1 that for 𝑝 ′ with increasing 𝑁 the value
converges 𝜒2 → 1. Indeed, if one assumes that the averaging over the realizations of a stochastic variable is
equivalent to the averaging over the angular data points, then the Eq. 1 is merely producing the variance of a
standard normal distribution in the limit, which is 1. Thus, by minimizing the 𝜒2 one finds a reconstruction 𝑝 ′

of the sample model. Such a search is typically done via an optimization algorithm, see e.g. [24, 25, 26].
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The reconstruction uncertainty can be estimated using the Hessian H of (𝑁−𝑙)𝜒2 calculated at 𝑝 ′. Assuming
the Eq. 1 the elements of the Hessian can be approximated as

𝐻𝑗𝑘 = (𝑁 − 𝑙)
𝜕2𝜒2

𝜕𝑝𝑗𝜕𝑝𝑘
≈

∑︁
𝑖

2

𝜎2
𝑖

𝜕𝐼calc𝑖

𝜕𝑝𝑗

𝜕𝐼calc𝑖

𝜕𝑝𝑘
. (2)

Here, the contribution of the higher-order derivative is negligible as it is multiplied by (𝐼calc−𝐼exp), which is zero
on average. Then, again, assuming that the measurement errors are distributed normally, one can calculate
the covariance matrix as the inverse of Hessian C = H−1. Finally, with the covariance matrix C, one can
estimate the uncertainty of reconstructed parameters. Now the standard deviation of parameter reconstruction
is calculated from the diagonal elements: STD(𝑝𝑗) =

√︀
𝐶𝑗𝑗 . Together with the reconstruction uncertainty,

covariance matrix C instantly gives the Pearson correlation matrix R, with elements 𝑅𝑗𝑘 = 𝐶𝑗𝑘/
√︀
𝐶𝑗𝑗𝐶𝑘𝑘.

This matrix describes the correlation between the reconstructed parameters, i.e., how much the change in one
parameter can be offset by the change in another, maintaining a similar goodness-of-fit. For example, 𝑅𝑗𝑘 > 0
means that a positive (or negative) shift in 𝑝𝑗 can be compensated by a positive (or, correspondingly, negative)
shift in 𝑝𝑘. Thereby, 𝑅 provides the information on how well the optima 𝑝 ′ is defined. It can also be considered
from a geometry perspective. Consider a multi-dimensional space of parameters in which a point describes
a specific model 𝑝. Then, the optimal model 𝑝 ′ is a single point in this parametric space. Furthermore, the
uncertainty is represented by a geometric 𝑙-dimensional shape surrounding 𝑝 ′ in this space. The optimization of
𝜒2 yields an estimation of the optimum 𝑝 ′, the standard deviation of parameters yields the estimate of the size
of an optimum in each dimension, and the correlation coefficient provides an estimate of how similar the shape
of a 2D section of an optimum in parametric space to the line. If, for instance, 𝑅𝑖𝑗 = ±1, then the section of an
optimum in the 𝑖𝑗 plane is flat, and the model is over-defined. Therefore, one aims to find a model with lower
correlations. In that sense, the result of such an analysis is represented by a 0D cross-section of a parametric
space – the solution itself, a 1D cross-section – the error of reconstruction, and an estimate of a 2D cross-section
– correlation in model parameters.

One of the drawbacks of this approach is the assumption of the uniqueness of the solution, according to
which the optimal set of parameters 𝑝 ′ minimizing the function 𝜒2 is considered to be the complete and only
description of the reconstructed sample structure. At the same time, this approach fails to take into account
the possibility of the influence of underestimation of measurement errors on the restored sample structure. This
problem becomes particularly relevant in cases of limited statistical information or significant background noise
in the experimental data. In this context, parameter sets corresponding to significantly different structures may
be statistically close, so a more optimal 𝜒2 value may characterize the non-physical solution. In this framework,
it is impossible to establish the solution’s uniqueness and correctly evaluate its stability. The application of the
presented approach may need to be corrected in the case of the distribution of model parameters being different
from the normal and nonlinear correlations between them.

Another approach for solving the optimization problem used in this paper is a stochastic analysis, namely
the Bayesian inference. This method is particularly effective with many-parameter models and a low signal-
to-noise ratio. The approach was originally successfully applied to astrophysics and cosmology problems [27].
However, in recent years, its application has been extended to other areas of physics, such as X-ray and neutron
reflectometry [21]. The details of the method can be found in literature [15]. Let us briefly focus on its
fundamental principles.

The posterior function (posterior probability density) 𝜋(𝐼|𝐷) of the expected parameters of the structure 𝑝,
given already existing knowledge about the system 𝐼 ≡ 𝐼calc(𝑝) and given the occurrence of experimental events
𝐷, by the Bayes’ theorem, is:

𝜋(𝐼|𝐷) =
𝜋(𝐷|𝐼)𝜋(𝐼)

𝜋(𝐷)
. (3)

The prior function (apriori probability density) 𝜋(𝐼) corresponds to the already available data on the system
under the study. The denominator of the Eq. 3 𝜋(𝐷) describes the probability of observing experimental data
𝐷, thus in our case 𝜋(𝐷) = 1.

The function 𝜋(𝐷|𝐼) determines the probability that the model calculated for the parameter set 𝑝 agrees
with the experimental data set 𝐷. Simply put, 𝜋(𝐷|𝐼) is a measure of how much evidence there is to justify the
use of a particular model. This function is called the likelihood ℒ = 𝜋(𝐷|𝐼). Assuming that the experimental
data are measured with normally distributed errors, the logarithm of the likelihood function can be written in
the form:

logℒ = −1

2

∑︁
𝑖

{︃[︀
𝐼calc𝑖 (𝑝)− 𝐼exp𝑖

]︀2
𝜎2
𝑖

+ log 2𝜋𝜎2

}︃
. (4)

The log-likelihood in its form and its underlying meaning coincides with the Eq. 1 with the difference that
logℒ is not normalized by the number of experimental points is strictly negative, and has an additional term
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Figure 1: Nominal structure model. A Tb0.03Co0.97 layer with a nominal thickness of 1000Å is positioned on
a SiO2 substrate and is protected from atmospheric exposure by a partially oxidized Ti layer with a nominal
thickness of 500 Å.

with the logarithm of measurement errors. The best agreement between the model and experimental now data
corresponds to the maximum of the likelihood function as opposed to the minimum of 𝜒2.

Using the stochastic approach to solve the optimization problem makes it possible to conduct a more thorough
evaluation of experimental errors. Indeed, in addition to systematic and statistical errors, actual measurements
are subject to inevitable measurement noise. There are two primary sources of noise in reflectometry mea-
surements. First, variations in the intensity of the incident neutron beam, and second, noise from background
fluctuations. Note that Eq. 4 has an optimum with respect to 𝜎. In statistical terms, this means that there is a
maximum plausible error. The error estimate can be corrected within the same structure reconstruction process
if there is a correct systematic model for an error. Analysis in [15, 28] showed that the linear error model is
applicable for experiments with discrete signal detection:

𝜎2 = [𝑎𝐼calc(𝑝)]2 + 𝑏2 + 𝜎2
𝑒 , (5)

where 𝜎𝑒 is the standard deviation, as in the case of the 𝜒2 method, a and b are free scalar parameters included
in the vector 𝑝. Thus, in the presented approach, the error model is optimized together with the experiment
model.

One approach to approximating the posterior for a set of parameters is the Monte Carlo numerical modeling
methods for Markov chains (MCMC) [29, 30]. This approach allows to numerically obtain a set of parameters
p that is statistically equivalent to the likelihood ℒ, while it becomes possible to explore large parameter spaces
efficiently [19]. One can estimate the parameter reconstruction error by analyzing the sample of each parameter
from the vector p. By evaluating the pairwise realizations (𝑝𝑖, 𝑝𝑗 ), one can numerically estimate the correlation
between the 𝑖-th and 𝑗-th parameters without being limited by the assumption of its linearity. In this way, the
correlation function of the parameters can be analyzed directly, as well as the assumption of the linear nature
of the correlation. Another advantage of this approach is the absence of the requirement of the uniqueness of
the solution, which makes it possible to consider multimodal posterior distributions (however, there remains
the need to choose the most appropriate solution from several variants).

3 Experiment layout and sample growth
Sample growth. The thin amorphous film Tb0.03Co0.97 was grown using magnetron sputtering machine. The
nominal thickness of the Tb0.03Co0.97 layer is 1000 Å. The sputtering gas was Ar of 99.9999% purity and the
growth pressure 10−3 mbar. «Corning» glass substrate with size 20×20 mm was used. Uniform magnetic field
of 150 Oe during growth, were applied parallel to the film plane to imprint a small uniaxial in-plane magnetic
anisotropy. The sample had a protective coating of Ti thin layer (nominal thickness is 500 Å), which was applied
at the final stage of the process cycle. Due to the well-known oxidation of Titanium in the atmosphere, it is
reasonable to assume the presence of an external TiO2 layer. Thus, the model structure of the investigated thin
film is shown in Figure 1 and has the form: TiO2/Ti/Tb0.03Co0.97/glass.

PNR data acquisition. Experimental measurements were carried out at the reflectometer REFLEX [31]
which is located at beamline 9 of the high flux pulsed reactor IBR-2. The reflectometer operates in time-of-
flight mode with an available wavelength range of 1.2 - 8 Å. The V-cavity polarizer (Swiss Neutronics AG)
provides an average polarization level of 90% over the entire range. The momentum transfer range is 0.001
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Figure 2: Experimental (points) and simulated (solid lines) polarised neutron reflectometry curves from
Tb0.03Co0.97 sample after normalisation. Lines represent 500 samples from the posterior distributions. The
bottom and top panels show residuals u++ and u−− for R++ and R−− respectively.

- 0.13 Å−1, and the sample flux is 105 cm−2s−1. The detector system consists of a two-dimensional position
sensitive detector (PSD) with a size of 200×200 mm2 and a spatial resolution of 1.5 mm [32, 33].

The feature of the beamline 9 is that it is a tangential channel with respect to the moderator, i.e. the
radiating surface is the flat end part of the thermal moderator, whose main working surface is a neutron source
for the 4th, 5th and 6th beamline. As a result, the REFLEX reflectometer is an instrument with a small flux
of thermal neutrons on the sample.

The experiment performed in full polarisation analysis mode requires three successive reflections of the
neutron beam: from the polariser mirror, from the sample and from the analyser mirror. Each reflection leads
to some broadening of the neutron beam due to scattering on the roughness and non-ideal flatness of the mirror
surfaces. In the experiment performed, this fact, together with the small size of the sample, resulted in a rather
blurred image of the scattered intensity on the position sensitive detector, slightly above the background level.
In order to collect a sufficient number of counts for analysis within a reasonable amount of experimental time, it
was necessary to increase the angular range within which data was collected. As a result, the resolution of the
momentum transfer was degraded and it was not possible to determine its exact value during the experiment.
However, it is possible to estimate the resolution from the setup parameters. Considering the neutron flash
duration (Full Width at Half Maximum (FWHM) ∼ 320 𝜇s) and the distance from the moderator to the detector
(42 m), the time-of-flight resolution is calculated to be about 3

𝜆%. Furthermore, the beam was collimated to
about 0.3 mrad at a measurement angle of 4 mrad, which corresponds to an angular divergence of ∼ 8%.
Consequently, the resolution of 𝛿𝑄/𝑄 is estimated to be in the range of 8-9%.

The result of the polarized neutron reflectometry experiments on the Tb0.03Co0.97 thin film is shown in
Figure 2. Here, the green triangles and orange dots correspond to the non-spin-flip reflectivities R++ and R−−,
respectively. The experimental data presented are normalised so that the reflectivity saturates at unity at low
wave vector transfer (normalised by the incident neutron intensity).
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Figure 3: The individual panels show the trace of the 30000 walker positions for the structural parameters of
the Tb0.03Co0.97 layer. One randomly chosen walker is highlighted in yellow to show that the walkers are able
to move around the parameter space and jump between two well separated modes.

4 Results and discussion
The thin film structure was reconstructed using an MCMC algorithm [29] by analysing the log-likelihood function
Eq. 4. For the forward model, the structure was divided into two interface layers (labeled "In1" and "In2") at
the surface of the structure, the magnetic layer (labeled "TbCo") and the glass substrate layer (labeled "SiO2").
Each layer is parameterized by the thickness 𝑑, the nuclear contribution to the SLD 𝜌N. Imperfections at the
interlayer boundaries, which may result from sample growth peculiarities or interdiffusion, were considered as
follows: A transition layer of width 𝜂 was assumed to exist between layers 𝑎 and 𝑏, within which the SLD varied
according to the law:

𝜌(𝑧) = 𝜌𝑎 +
𝜌𝑏 − 𝜌𝑎

2

[︂
1 + erf

(︂
𝑧 − 𝑧𝑡√

2𝜂

)︂]︂
, (6)

where erf(𝑧) is the error function, 𝑧𝑡 = (𝑧𝑏 − 𝑧𝑎)/2 the position of the transition layer.
The magnetic layer is also parameterized by its magnetic contribution to the SLD 𝜌M. A linear error model

was considered to fit the estimation of the measurement uncertainties. As in Eq. 5, the parameters for the error
model are 𝑎 and 𝑏. Finally, the instrumental resolution 𝛿𝑄/𝑄 and background noise values were also optimized.
A total of 96 walkers were initialised, each with randomly generated starting values for layer thicknesses, SLD
values and for transition layer thicknesses. The prior information used in the calculations included nuclear SLD
𝜌N values for each layer in the range [−6.0, 6.0]×10−6Å−2, the thicknesses 𝑑 and transition layer thicknesses
𝜂 of the two outermost layers limited to [0,200] Å, and the thickness of the magnetic layer 𝑑TbCo limited to
[800, 1400] Å. Optimisation parameters included background noise values within [10−6 − 10−2] and resolution
𝛿𝑄/𝑄 within [0.05, 0.15].

After setting the walkers, the burn-in phase is initiated. In this work, the model is burnt in for 5,000 steps
to allow the walkers to distribute in the parameter space according to the posterior probability. Based on visual
inspection of the walker trajectory, it was determined that this number of steps was sufficient for the walkers to
converge. After a burn-in period of 5,000 steps, the production models were run for 30,000 steps. The chains
were checked to ensure convergence by the estimate of the integrated autocorrelation time.

Figure 3 shows the trace of 96 walkers for the structural parameters of the Tb0.03Co0.97 layer over the
30,000 MCMC steps after the burn-in phase. It is obvious that the walkers have separated into two different
positions. One randomly chosen walker is highlighted in yellow to show that the walkers are able to move
around the parameter space and frequently jump from mode to mode. The behavior of the walkers indicates
multimodality: there are two sets of model parameters for which the values of the likelihood function (4) are
comparable; during the calculations it was found that this difference does not exceed 2%.

A corner plot of the posterior distributions for a selected set of the structural parameters and the instrumental

6



Figure 4: A corner plot of the MCMC sample. Two different modes are marked with colors: Mode 1 – blue, Mode
2 – red. Diagonal subplots are the 1D histograms. Other subplots are the pair plots showing the correlations
between each pair of parameters. Visualization is done with the corner package [34].

7



Layer Thickness
𝑑, Å

Transition layer
thickness 𝜂, Å

Nuclear SLD
𝜌𝑁 , 10−6Å−2

Magnetic SLD
𝜌M, 10−6 Å−2

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

Interface 1 179+44
−36 61+34

−28 120+6
−6 25+26

−16 -3.8+0.2
−0.2 1.9+0.3

−0.3 – –

Interface 2 137+34
−46 124+18

−25 47+50
−32 97+28

−42 -3.7+0.2
−0.2 -1.1+0.1

−0.2 – –

Tb0.03Co0.97 1033+3
−3 1063+3

−3 104+5
−5 102+4

−4 1.45+0.04
−0.03 2.09+0.02

−0.02 4.03+0.03
−0.03 3.38+0.01

−0.01

SiO2 – – {50} {50} 3.320.01−0.02 3.38+0.01
−0.01 – –

Table 1: Magnetic and structural parameters reconstructed from the PNR data using the MCMC. The results
are given for both modes of the multimodal solution. Subscripts and superscripts indicate 16% and 84% quantiles
respectively. Curly braces indicate fixed parameters.

resolution is shown in Fig. 4. The set of parameters selected for demonstration is not the full set that was
optimized, as this figure would be difficult to read. For the full set of structural parameters, see Table 1, and
for their correlations, see the Pearson correlation matrix in Fig. 6 later in the text. The diagonal panels show
the 1D histogram for each model parameter, with a solid line indicating the median. The off-diagonal panels
show 2D projections of the posterior probability distributions for each pair of parameters. It can be seen that
the posterior distribution of all parameters has a two-peak structure. This indicates the presence of two modes
of parameters with comparable values of the likelihood function. To make it easier, different solution modes
is shown with different colors for better understanding. We will call the solution mode with a negative value
of SLD 𝜌NIn1 as Mode 1, represented by the blue color, and the one with a positive value of SLD 𝜌NIn1 as Mode
2, represented by the red color. Based on the information provided in Figure 4, it is clear that the posterior
distribution deviates from normal for certain parameters. In such cases, the median (highlighted by lines in
Figure 4) becomes a more informative measure of central tendency than the mean. The final result of the
reconstruction are shown in Table 1. We chose the median (50% quantile) as the estimate of the structure
parameter. For the reconstruction uncertainty interval, 16% and 84% quantiles are chosen.

The results of the calculation using the transfer matrix method [17] of polarized neutron reflectometry curves
for 500 samples from the posterior distributions are shown in Figure 2 as solid lines. The blue lines correspond to
samples from the first solution mode, while the red lines correspond to the second. Furthermore, the residuals
𝑢 = (𝐼exp − 𝐼calc)/𝜎 are also shown in Figure 2. The good agreement between the fit calculations and the
experimental data can be seen for both solution modes from the residuals, which are well within the range of
[-3,3].

It is evident that the SLD profiles reconstructed for each mode of the solutions show significant differences.
This is most evident in Figure 5, where the profiles for 500 randomly selected samples from the posterior
distribution are represented by thin lines. In addition, the figure shows the profiles plotted for the median
values of the parameters for each mode of the solutions. The primary difference between the SLD profiles
obtained for different solution modes is observed in the outer layers (see Table 1).

We would like to highlight an interesting result of this research. The SLD values for the interfaces were
sought in the wide range [−6, 6] × 10−6 Å−2. Such choice of SLD during reconstruction was made without
regard to the possible isotopic configuration of the interface material. Nevertheless, the reconstructed interface
SLDs in both Mode 1 and Mode 2 correspond to the tabular parameters of real materials, for the natural Ti
𝜌N = −0.42, and for the 48Ti 𝜌N = −3.35. Starting from arbitrary SLD values, the reconstruction concludes
to values corresponding to real materials: Mode 1 corresponds to the assumption that isotopic titanium is
used for the deposition of the outer layer. In this case, the film surface consists of a wide transition layer Air
–48Ti (𝜂 ≈ 120 Å). The distance from the film surface to the Tb0.03Co0.97 layer is about 400 Å. Mode 2, on
the other hand, suggests that the outer layer is titanium oxide, formed by the oxidation of titanium in the
surrounding atmosphere. This titanium oxide layer then passes into a thin layer of pure natural titanium and
a thin transition layer (𝜂 ≈ 100 Å) before reaching the Tb0.03Co0.97 layer. The combined thickness of these
interface layers is about 300 Å. Note that the obtained values of structural and magnetic parameters for the
main magnetic layer Tb0.03Co0.97 do not vary significantly for the different modes (see Table 1). Thus, the
stochastic approach extends the reconstruction beyond the limits of a single best-fit solution. This makes it
possible to find unexpected properties of the structure. This is particularly useful in the case of statistically
ambiguous experimental data.

Having the MCMC samples, we calculated Pearson correlation martrices R for both solutions (see Fig. 6).
It is symmetric, with diagonal elements strictly equal to one. Thus, only half of the matrix contains unique
information. In the Figure 6, the lower left corner corresponds to Mode 1 parameters, while the upper right
corner corresponds to Mode 2 parameters. Two modes show different correlation patterns among the parameters,
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Figure 5: Reconstructed SLD profile of the Tb0.03Co0.97 film. The thin lines correspond to the values of the
profile obtained from 500 randomly selected samples from the posterior distribution. The bold line represents
the profile constructed using the median values.

as can be seen in Figure 6 as well as in the off-diagonal panels in Fig 4. What they have in common is that
for both modes the parameters for the interface layers are correlated with each other, while the parameters for
the inner magnetic layer are significantly correlated with each other. One difference is the stronger correlation
between the interface and inner magnetic layers, which is characteristic of Mode 1, while such a correlation is
not evident for Mode 2. The pattern of correlations is similar for the parameters describing the magnetic layer
in both Mode 1 and Mode 2 solutions. However, the parameters describing the interface are different between
Mode 1 and Mode 2. As a visual aid, we have divided these sets of correlations into blocks with dashed lines
in Fig. 6. The substrate SLD and error model parameters have low correlation with all other parameters and
with each other. This indicates that both Mode 1 and Mode 2 solutions are insensitive to variations in these
parameters. Note also that the magnetic SLD of the TbCo layer is strongly negatively correlated in both modes
(Mode 1 𝑅 = −0.89 and Mode 2 𝑅 = −0.95). Of course, this is because the model preserves the total amount
of scattering capability of the given layer, i.e. the reduction of the magnetic SLD can be compensated by the
nuclear SLD. This is a source of ambiguity in the reconstruction. However, it is still possible to distinguish
between magnetic and nuclear SLDs, since they correlate differently with the thickness of the magnetic layer.
In the end, the uncertainty in the reconstruction of the magnetic SLD is less than 2% (see Table 1). Overall,
the reconstruction differs only in the interpretation of the surface structure. This can also be seen in the SLD
profiles in Figure 5

Let us discuss the reasons that lead to such ambiguity in the reconstruction of the structure of the studied
thin film Tb0.03Co0.97. An obvious reason is the limited statistical power of the experiment caused by the
low neutron flux on the reflectometer. As a result, data points corresponding to wave vector transfer values
𝑄 > 0.03 Å−1 have large uncertainties and contribute minimally to the likelihood function. This, together
with the background contribution, makes it difficult to reconstruct the profile unambiguously. Another reason
is the inability to determine the exact experimental resolution. As mentioned above, the parameter 𝛿𝑄/𝑄 was
used in the optimization process due to the impossibility to determine the experimental resolution exactly.
The two resolution parameters obtained for Mode 1 and Mode 2, 8.3+0.2

−0.2 and 9.1+0.2
−0.2 respectively, as shown in

Figure 4, are consistent with the estimates based on the setup parameters, which predict a resolution of about
8-9%. A final reason is related to the specificity of neutron scattering - isotope sensitivity. As a result, even
significantly different SLD-profiles, such as those shown in Figure 5, can describe the same structure made of
different titanium isotopes.

Thus, the stochastic analysis of the PNR data allowed us to study the magnetic properties of the TbCo
thin film structure. Moreover, it revealed two possible profiles of the surface structure of the sample. These
solutions are plausible with similar probabilities. Coincidentally, two solutions can be attributed to the different
isotopic compositions of the surface. In our particular case, we were convinced that the Mode 2 solution was
correct because the isotopic composition was controlled in the growth process and the depth of the Air-48Ti
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Figure 6: Matrix of Pearson’s correlation coefficients between variables for Mode 1 (lower left corner) and for
Mode 2 (upper right corner).

transition layer for Mode 1 was measured to be 120Å, which is physically unlikely. However, the main point
here is that the MCMC approach is indeed capable of finding multiple structure reconstructions from PNR
data. This extends the applicability of PNR to problems in physics and nanometrology.

5 Conclusion
In this work, an approach based on Markov chain Monte Carlo sampling and Bayesian statistics was used to
analyze statistically ambiguous polarized neutron reflectometry data obtained from thin film Tb0.03Co0.97. Brief
descriptions of the experimental conditions and sample synthesis are provided, along with detailed information
on the methodology used and the optimization process.

The presence of multimodality in the solutions has been established, with parameter sets corresponding
to significantly different reconstructed profiles exhibiting comparable likelihood function values. Intriguing,
both reconstructed profiles were found to be realistic and could potentially correspond to the true structure
of the investigated thin film. Pairwise correlation dependencies were analyzed and presented for both sets of
solutions, with the most significant correlations observed for structural parameters associated with interfacial
layers. Possible sources of ambiguity in the reconstruction of the film structure are discussed and analyzed.

Thus, the application of Markov chain Monte Carlo sampling and Bayesian statistics to the analysis of
polarised neutron reflectometry data has demonstrated its exceptional effectiveness. It is of interest to further
apply this method to the analysis of data from neutron reflectometry experiments and to apply this approach
to the analysis of data from other neutron experiments, such as small-angle neutron scattering and neutron
spectroscopy.
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