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Abstract

We consider generalizations of the classical inverse problem to Bayesien type estima-
tors, where the result is not one optimal parameter but an optimal probability distribution
in parameter space. The practical computational tool to compute these distributions is
the Metropolis Monte Carlo algorithm. We derive kinetic theories for the Metropolis
Monte Carlo method in different scaling regimes. The derived equations yield a different
point of view on the classical algorithm. It further inspired modifications to exploit the
difference scalings shown on an simulation example of the Lorenz system.
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1 Introduction

The subject of this paper is the solution of the following problem. Given a model depending
on a set of parameters and a set of observed data, find the optimal parameters to fit the
given data. In the framework of classical inverse problems this results into the minimization
problem

dist(ν, µ(x)) → min
x

, (1.1)

where ν = {zi ∈ RNν : i ∈ N} denotes the set of observed data zi and µ(x) : RNx → RNν is
obtained by the model µ using the (often high but finite–dimensional) parameter x ∈ RNx .
The function dist(ν, µ) denotes some measure of the distance between the measures ν and the

model µ (usually some norm of the form dist(ν, µ) =
∑|ν|

i=1 ||zi−µ||). In practical applications,
the problem (1.1) often turns out to be extremely ill conditioned, exhibiting multiple optima,
and has to be solved via various regularization techniques, see e.g. [8, 19, 12].

In this paper, we will consider the more general approach, seeking not a single optimal
parameter value x but a probability distribution P (x) on the space of parameters [22, 15, 4].
So, given a set of observed data ν, we compute a probability distribution P ν of the observed
data. The goal is to compute a probability distribution P (x) in the parameter space and a
corresponding distribution Pµ[P ] in the data space given by

Pµ[P ](z) =

∫
δ(z − µ(x))dP (x) ,
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with δ−being the Dirac-delta distribution, such that a distance

dist(P ν , Pµ[P ]) → min
P

(1.2)

becomes minimal. Here, dist(∗) denotes a measure of the distance between the measures P ν

and Pµ. Further, µ(x) denotes still the model computed for a single parameter x and Pµ[P ]
denotes the corresponding probability distribution of the results in the case when parameter x
is also distributed according to P.We note that the optimization problem (1.2) reduces to the
deterministic inverse problem (1.1) if we reduce the probability distribution P to a degenerate
distribution (i.e., a δ− distribution) and compatible distances. Therefore, the optimization
problem for a deterministic parameter x can be embedded into an optimization problem for
a probability density P .

The solution of this problem (1.2) yields significantly more information. The optimal
parameter x∗ will be chosen as the expectation EP (X) where X is a random variable with
distribution P . One also obtains additional information about the reliability of this parameter
by considering the variance VP (X) or the relative reliability of individual components of
x by computing the covariance COVP (X) in the case of a higher dimensional parameters.
Multiple local extrema of the classical inverse problem (1.1) may show up as local peaks in
the distribution P (x) in the solution of the problem (1.2).

To actually solve the optimization problem (1.2) we require sampling. We consider a
special class of Markov chain Monte Carlo (MCMC) methods. Namely, we will focus on
one of the simplest methods, the Metropolis Monte Carlo (MMC) algorithm [13]. Certainly,
there is a vast literature available on MCMC and MMC methods available and we refer to
e.g. [2, 10, 11, 9, 17] for further references. Our focus here, is to derive meanfield limits and
corresponding macroscopic equations. We focus on the simplest form of MMC to illustrate
the ideas: The following algorithm produces a sequence of probability distributions Pn which
(hopefully) converge to a density P∞ solving the problem (1.2).

MMC algorithm allows for iterative updates on the data set ν. In many applications, such
as in geophysics [3] or in meteorology [14], the data set ν = {z(tk) : k = 1, . . . } are updated
at the same time tk the model parameters or their distribution are computed in real time.
This generalizes the minimization problem (1.2) to the time dependent problem

dist(P ν(tk), P
µ[P (tk)]) → min

P (tk)
, k = 1, 2, ... , (1.3)

which is easily incorporated in the iterative MMC algorithm.
Relation to Bayesian estimation: The presented approach is closely related to the method-
ology of Bayesian inversion. This relies on Bayes’ formula

P(x|ν) = P(ν|x)Ppri(x)∫
P(ν|z)Ppri(z) dz

. (1.4)

Here, P(x|ν) is the conditional probability of the parameter x, given the data distribution ν
(the resulting distribution of the parameter x). P(ν|x) denotes the conditional probability of
the actual data given the parameter x, which is modeled by Pµ in formulation (1.2). Finally,
Ppri is the prior distribution of the parameter x (the prior). A ‘good’ prior turns out to be all
important for the success of Bayesian estimation, see e.g. [3, 21, 18]. In practice, the resulting
probability distribution P(x|ν) in Bayes’ formula (1.4) may also be computed by the MMC.
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So, the methodology in this paper can be interpreted as an iterative application of Bayesian
estimation, where the prior Ppri(x) is updated using the last iterate of the result P(x|ν).

This paper is organized as follows. In Section 2 we define the general iterative Metropolis
Monte Carlo algorithm studied in this paper, giving in iteration n a distribution function
fn(x) in the parameter space. We derive a kinetic equation for the parameter distribution
fn(x).

Section 3 is devoted to the behavior of the functions fn for many iterations, i.e. the
convergence properties of the iterative MMC method. Here, we will consider two regimes: In
the first regime we consider the case of a small acceptance probability in the MMC algorithm
but an arbitrary prediction probability. That is, we take a more or less arbitrary guess but
accept the guess only infrequently. This leads to a Boltzmann type equation for the parameter
density whose convergence properies wil be investigated using entropy methods, standard in
kinetic theory. In the second regime we use only predictions which only are a small random
variation from the previously computed data point, but use a more or less arbitrary acceptance
probability in the MMC algorithm. This leads to a Brownian motion regime and a Fokker -
Planck type equation for the parameter distribution.

In Section 4 we use the results of Section 3 to accelerate the convergence of the MMC
algorithm by decomposing the parameter density fn into a part which is computed by the
classical MMC algorithm and a part where we only use the macroscopic models from Section
3 (which are cheaper to evaluate). Finally, in Section 5 we verify the above results on a simple
model with a three dimensional parameter space. We choose the chaotic Lorentz system taken
from [16].

The more technical proofs and the details of the numerical implementation are deferred
to the Appendix in Section 7.

2 The Metropolis Monte Carlo algorithm (MMC)

In this section we will define the general MMC algorithm and analyze its convergence prop-
erties. We first take the point of view that we want to compute a given distribution P (x) by
computing a sequence of particles xn, n = 1, 2, ....

2.1 General definition of the method

The general structure of the MMC algorithm is the following:

Given a probability distribution Pn(x) computed from the particles x1, .., xn:

Step 1: Compute a random proposal xp from a probability distribution τ .

Step 2: Compute an acceptance rate α ∈ [0, 1] and accept the proposal xp with a
probability α or reject the proposal xp with probability P = 1− α.

Step 3: Compute Pn+1 by either adding xn+1 = xp or xn+1 = xn to the distribution.
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The method will either add the proposal xp to the distribution or, in the case of rejection,
reinforce the parameter xn by adding an additional copy to the distribution Pn. The proposal
particle xp and the acceptance rate α will be chosen dependent on the already computed
values x1, .., xn and the given distribution of the observed data distribution P ν at iteration
n. In particular, the acceptance rate α will be chosen dependent on whether adding xp or
another copy of xn to the distribution will make the modeled data distribution Pµ[Pn+1] a
better match to the observed data distribution P ν in the sense of the distance dist(∗). In this
paper we will make the proposal xp and the acceptance rate α dependent not only on the last
computed node xn but also on the whole up to date computed distribution Pn.

We will restrict the dependence on Pn to the dependence on a certain number of moments
of Pn, i.e. considering quantities like means or variance. We define the moments κn ∈ RNκ

of the distribution Pn as

κn =
1

n

n∑
j=1

(xj , x
2
j , ..) . (2.1)

So, the general MMC algorithm considered in the following is of the form

General MMC algorithm (2.2)

Given the discrete distribution Pnby the already computed nodes x1, .., xn and the moments
of Pn by κn = 1

n

∑n
j=1(xj , x

2
j , ..):

Step 1 (Proposal) Compute a random proposal xp from the probability distribution τ :

dP[xp = z] = τ(z|xn, κn) dz

Step 2 (Acceptance/rejection step) To compute the acceptance probability α we have to com-
pare the quality of Pn+1 if we either add xp or another copy of xn to the distribution.
The update of the moment vector κn is of the form

κn+1(x, κn) =
∆κ(x) + nκn

n+ 1
, ∆κ(x) = (x, x2, ..)

with either x = xp or x = xn. So, we compute α(xp, ωn(xp, κn), xn, ωn(xn, κn)) with

ωn(x, κ) =
∆κ(x) + nκ

n+ 1
, ∆κ(x) = (x, x2, ..)

Step 3 (Update) Set

xn+1 = xp, κn+1 = ωn(xp, κn) with probability P = α(xp, ωn(xp, κn), xn, ωn(xn, κn))

or, set

xn+1 = xn, κn+1 = ωn(xn, κn) with probability P = 1−α(xp, ωn(xp, κn), xn, ωn(xn, κn))

Step 4 (Repeat) n→ n+ 1

So xn+1 equals the proposal xp if xp is ‘better’ than xn (determined by the acceptance rate
α) or xn+1 = xn otherwise.
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Remark 2.1 The acceptance rate α (and possibly the proposal probability τ) may depend on
the observed data distribution P ν . Since P ν is taken as a given within the MMC algorithm
we suppress this dependence in the notation for convenience.

Remark 2.2 There are two distinct scenarios for the estimation of the optimal parameter
distribution.

In the first scenario all data ν and the distribution P ν are known during the execution of
the algorithm (2.2).

In the other scenario, the data ν are updated continuously while the algorithm (2.2) is
executed. This scenario applies to c.f. weather prediction where the model parameters and the
resulting predictions are updated as new data arrive. [5].

In this scenario the acceptance rates α would have to be updated within the algorithm
(2.2). Due the implicit dependence of the acceptance rate on the observed data distribution
P ν this would result in α being dependent on the iteration index of the MMC algorithm , so
α = αn(xp, ω(xp, κn), xn, ω(xn, κn)) in Step 3 of algorithm (2.2) would hold.

Remark 2.3 In general the start up phase of algorithm (2.2), say the first 1000 nodes xn,
will be discarded to compute a steady state in algorithm (2.2), and using only N − 1000 nodes
overall for the distribution P (x) [24, 23].

2.2 Evolution of the probability density

In this section , we derive the evolution equation for the probability density

fn(x
′, κ′) dx′κ′ = dP[xn = x′, κn = κ′] .

corresponding to the Metropolis Monte Carlo algorithm (2.2).
For the derivation of the limiting density f∞(x, κ) = limn→∞ fn(x, κ) it will be convenient

to derive the evolution equation for fn in weak form. Summing over all possibilities in
algorithm (2.2), we have

fn+1(x, κ) =∫
δ(xp − x)(.ωn(xp, r)− κ)α(xp, ωn(xp, r), y, ωn(y, r))τ(xp|y, r)fn(y, r) dxpyr+∫
δ(y − x)(.ωn(y, r)− κ)[1− α(xp, ωn(xp, r), y, ωn(y, r))]τ(xp|y, r)fn(y, r) dxpyr ,

or, in weak form,∫
ϕ(x, κ)fn+1(x, κ) dxκ =∫
ϕ(x, ωn(x, r))α(x, ωn(x, r), y, ω(y, r))τ(x|y, r)fn(y, r) dxyr+∫
ϕ(y, ωn(y, r))[1− α(xp, ωn(xp, r), y, ωn(y, r))]τ(xp|y, r)fn(y, r) dxpyr ,
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for all test functions ϕ(x, κ) ∈ C∞
0 (RNx × RNκ ;R). After renaming xp → x in the second

integral, ∫
ϕ(x, κ)fn+1(x, κ) dxκ = (2.3)∫
ϕ(x, ωn(x, r))α(x, ωn(x, r), y, ω(y, r))τ(x|y, r)fn(y, r) dxyr+ (2.4)∫
ϕ(y, ωn(y, r))[1− α(x, ωn(x, r), y, ωn(y, r))]τ(x|y, r)fn(y, r) dxyr. (2.5)

The evolution equation in its weak form (2.3–2.5) will be used in the following to derive
the evolution of the probability density in various limits, where the index n is replaced by a
continuous variable.

3 Continuum limits for a large number of iterations

In this section we will derive the continuum limit for a continuous index (i.e. for a large
number N of iterations) in two different regimes. We will essentially replace the discrete
index n in (2.3) by a continuous limit
s = nh, n = 1 : N, h = N c−1, s ∈ (0, N c) for some constant c with 0 < c < 1. So, the
limit N → ∞, h→ 0, with N the total number of iterations performed, will correspond to a
continuous variable s ∈ [0,∞). We define

f(x, κ, s) = fn(x, κ), s = nh, n = 1 : N, h = N c−1, s ∈ (0, N c) . (3.1)

and

ωn(x, κ) =
∆κ(x) + nκ

1 + n
⇒ ω(x, κ, s) =

h∆κ(x) + sκ

h+ s
= κ+ hω1(x, κ, s), (3.2)

ω1(x, κ, s) =
∆κ(x)− κ

h+ s
. (3.3)

So, the term ω1(x, κ, s) gives the incremental change in the moments from one iteration step
to the next. Thus, (2.3) yields∫

ϕ(x, κ)f(x, κ, s+ h) dxκ = (3.4)∫
ϕ(x, r + hω1(x, r, s))α(x, r + hω1(x, r, s), y, r + hω1(y, r, s))τ(x|y, r)f(y, r, s) dxyr+

(3.5)∫
ϕ(y, r + hω1(y, r, s))[1− α(x, r + hω1(x, r, s), y, r + hω1(y, r, s))]τ(x|y, r)f(y, r, s) dxyr .

(3.6)

ı̈¿½

Remark 3.1 We note that, at first glance, the choice of the constant c ∈ (0, 1) seems to
be arbitrary and only serves to yield a continuous limit problem for the continuous variable
s ∈ (0,∞), and is just an interpretation of the discrete problem (2.3). However, to obtain a
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continuum limit for a total of N iterations, we have to have that h = N c−1 tends to zero. Also,
if we take only small steps to compute the next proposed node in the distribution, as is the case
in the Brownian motion regime in Section 3.2, we have to have that NE(τ) = Nh = N c tends
to infinity to cover the whole parameter space. While the stepsize h is just a mathematical
artifact, the choice of h actually influences the actual algorithm in Section 2 through the choice
of the acceptance rate and the proposal probability in the following sections.

3.1 The Boltzmann regime

In this section we derive the limiting equation for a large number N of iterations in the
algorithm (2.2) in the regime, where the proposal distribution τ(xp|x, κ) is arbitrary, but
the acceptance rate α is relatively small. We rescale the acceptance rate to be of order
h = N c−1, 0 < c < 1. With this rescaling we have the following result:

Proposition 3.1 If the acceptance rate α is uniformly of order O(h) = O(N c−1), then the
solution f(x, κ, s) will, for h→ 0, N → ∞ converge against the solution of the kinetic integro
- differential equation equation

∂sf(x, κ, s) = (3.7)

− divκ[ω1(x, κ, s)f ] +

∫
K(x, y, κ)f(y, κ, s) dy −

∫
K(y, x, κ)f(x, κ, s) dy , (3.8)

with the integral kernel K given by

K(x, y, κ) = α(x, κ, y, κ)τ(x|y, κ) . (3.9)

The proof of Proposition 3.1 is deferred to the Appendix.
We now compute the limiting solution f(x, κ,∞) of the solution of the kinetic transport

equation (3.7). To this end we use the concept of entropy, i.e. we define a convex functional
of the solution f which will decay monotonically until a steady state is reached. For the proof
of convergence we will restrict ourselves to the case where the proposal and the acceptance
rate do not depend on the moments κ, i.e. we set α = α(x, y) and τ = τ(x|y) in the equation
(3.7). This allows to integrate the moment variable κ out of equation (3.7). So, under these
assumptions, we consider the equation (3.7) in its weak form (7.9)∫

ϕ(x)∂sf(x, s) dx =

∫
[ϕ(x)− ϕ(y)]K(x, y)f(y, s) dxy , (3.10)

with K(x, y) = α(x, y)τ(x|y) and where we have chosen test functions ϕ which only depend
on the state x.

We define the limiting solution as a symmetrizer of the kernel K in (3.9). This is in kinetic
theory sometimes called the concept of detail balance [1, 6]. We formulate the:

Detail balance condition: Let the the function f∞(x) be defined by the symmetrizing
condition

α(x, y)τ(x|y)f∞(y) = α(y, x)τ(y|x)f∞(x) ∀ x, y (3.11)

Proposition 3.2 In the case that the acceptance probability α, the proposal distribution τ ,
and therefore the state probability f(x, s), do no depend on the moments κ, the probability
distribution f(x, s) will converge to the limiting distribution f∞(x) for s,N → ∞, which is
given by the symmetry condition (3.11).

The proof of Proposition 3.2 is deferred to the Appendix.
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3.2 The Brownian motion regime

In this section we derive an alternative continuum limit, based on a different limiting regime,
for a kinetic equation based on the evolution equation (3.4). This regime is based on the
idea of Brownian motion and yields not an integral equation as in Section (3.1), but a Fokker
- Planck - like differential equation with a diffusive term. According to (3.4) the discrete
evolution of the density f is given in weak form by∫

ϕ(x, κ)fn+1(x, κ) dxκ = ϕ(x, ωn(x, r))α(x, ωn(x, r), y, ωn(y, r))τ(x|y, r)fn(y, r) dyrx

(3.12)

+

∫
ϕ(y, ωn(y, r))[1− α(x, ωn(x, r), y, ωn(y, r))]τ(x|y, r)fn(y, r) dxry (3.13)

with the update of the moments given by

ωn(x, κ) =
∆κ(x) + nκ

1 + n
.

Again, we replace this by a model with a continuous time step s = nh, h = 1
N with N the

total number of steps taken. So N → ∞, h→ 0 holds in the continuum limit. In Section (3.1)
we assume a small acceptance rate α, proportional to the time step, and a proposed state x
with an arbitrary distance to the current state y. Conversely, the idea of the Brownian motion
regime is that the state x is only increased incrementally, that is with a mean proportional
to the time step, but, other than in the Boltzmann regime in Section 3.1, the acceptance
probability α can be chosen arbitrarily between zero and one. In classical Brownian motion
theory the proposed increment to the state is always accepted,yielding essentially a fractal
for the particle path [7, 20]. We modify the Brownian motion approach by including a
variable acceptance rate α, depending on the proposed and the current state as well as the
resulting higher order moments of the distribution. Again we replace (3.12) by a model with
a continuous index s = nh∫

ϕ(x, κ)f(x, κ, s+ h) dxκ = ϕ(x, ω(x, r, s))α(x, ω(x, r, s), y, ω(y, r, s))τ(x|y, r)f(y, r, s) dyrx

(3.14)

+

∫
ϕ(y, ω(y, r, s))[1− α(x, ω(x, r, s), y, ω(y, r, s))]τ(x|y, r)f(y, r, s) dxry, s = nh (3.15)

for all test functions ϕ(x, κ) ∈ C∞
0 (RNx ×RNκ ;R), and with the update of the moments given

by

ω(x, κ, s) =
h∆κ(x) + sκ

h+ s
. (3.16)

For α = 1 (always accepting the proposal) this should yield the classical Fokker - Planck
equation obtained for the Brownian motion model. To separate the standard model from the
influence of the acceptance rate, we write this in terms of a rejection rate β = 1 − α. So,
unconditional acceptance would mean β = 0. This gives∫

ϕ(x, κ)f(x, κ, s+ h) dxκ =

∫
ϕ(x, ω(x, r, s))[1− β(x, ω(x, r, s), y, ω(y, r, s))]τ(x|y, r)f(y, r, s) dyrx

(3.17)

+

∫
ϕ(y, ω(y, r, s))β(x, ω(x, r, s), y, ω(y, r, s))τ(x|y, r)f(y, r, s) dxry, s = nh (3.18)
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Next, following the idea of the Brownian motion regime, we write the proposal distribution in
terms of increments to the current state, setting τ(x|y, r) = τ1(x− y|y, r). So, τ1 is the distri-
bution of the increment to the current state y. Furthermore, we normalize the distribution τ1.
We set τ1(z|y, r) = 1

(
√
hσ(y,r))d

ψ( z−hE(y,r)√
hσ(y,r)

) with ψ a normalized distribution with mean zero

and the identity as covariance:
∫
(1, z, zzT )ψ(z) dz = (1, 0, I). So, the expectation hE(y, r) of

τ1 is of the order of the stepsize h and the standard deviation
√
hσ(y, r) is chosen such that

it yields a diffusion term in the Brownian motion regime. (Here d denotes the dimension of
the state vector x.) So, altogether, we have

τ(x|y, r) = 1

(
√
hσ(y, r))d

ψ(
x− y − hE(y, r)√

hσ(y, r)
) .

With these assumptions (3.17) becomes∫
ϕ(x, κ)f(x, κ, s+ h) dxκ = (3.19)∫
ϕ(x, ω(x, r, s))[1− β(x, ω(x, r, s), y, ω(y, r, s))]

1

(
√
hσ(y, r))d

ψ(
x− y − hE(y, r)√

hσ(y, r)
)f(y, r, s) dyrx

(3.20)

+

∫
ϕ(y, ω(y, r, s))β(x, ω(x, r, s), y, ω(y, r, s))

1

(
√
hσ(y, r))d

ψ(
x− y − hE(y, r)√

hσ(y, r)
)f(y, r, s) dxry .

(3.21)

Proposition 3.3 In the regime outlined above, i.e. the proposal distribution τ(x−y|y, κ) for
the state increment has a mean hE(y, κ) and a standard deviation

√
hσ(y, κ), the solution

f(x, κ, s) will satisfy in the limit for many steps N → ∞, h→ 0 the Fokker - Planck equation

∂sf(x, κ, s) = −divκ[ω1(x, κ, s)f(x, κ, s)] (3.22)

+ divx[E(x, κ)(β(x, κ, x, κ)− 1)f(x, κ, s) + σ2∇1β(x, κ, x, κ)f(x, κ, s)] (3.23)

+
1

2
divx∇x[σ(x, κ)

2(1 + β(x, κ, x, κ))f(x, κ, s)] (3.24)

with the acceptance rate α = 1− β (β the rejection rate) and the increment ω1(x, κ, s) in the

moments given by ω1(x, κ, s) =
∆κ(x)−κ

s .
The proof of Proposition 3.3 is lengthy and deferred to the Appendix in Section 7.

Remark 3.2 For a regime where we always accept the small increment in the state x (for
α(x, κ, y, r) = 1, β = 0) this reduces to the classical Fokker - Planck equation for Brownian
motion [7] with a drift term in the state and a drift term ω1 in the moments and a diffusive
term caused by the variance σ2 in the proposal increment. So, (3.22) constitutes a modification
to the classical Brownian motion model for variable rejection and acceptance rates.

4 A micro–macro decomposition

The PDE (3.22) is possibly high–dimensional due to the dependence on x and the vector of
moments κ. It is therefore prohibitively expensive to solve. In order to utilize the possibility
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to have probability density τ of the proposal depending on xn and moments κn, we propose
a micro–macro decomposition of the kinetic density f. The microscopic part would then be
solved using particles and an acceptance probability α and proposal probability density τ
depending solely on x. The macroscopic part on the other hand would be solved with α, τ
solely depending on (a small number) of moments κ.

We consider the dynamics in the Boltzmann regime of Proposition (3.1). The case of the
regime of the Brownian motion is similar. The probability density f(x, κ, s) is the solution to
the kinetic integro-diferential equation (3.7):

∂sf(x, κ, s) = Q[f ](x, κ, s), (4.1)

Q[f ](x, κ, s) := −divκω1(x, κ, s)f +

∫
K(x, y, κ)f(y, κ, s)−K(y, x, κ)f(x, κ, s)dy. (4.2)

The micro–macro decomposition seeks to find a solution of the form

f(x, κ, s) = ζ(s)fmicro(x, κ, s) + (1− ζ(s))fmacro(x, κ, s), (4.3)

where fmicro will denote the tail and fmacro will denote the bulk of the distribution of f. Here,
ζ denotes the time–dependent splitting of the mass between tail and bulk. The update of this
quantity will be given below. The operator Q is linear in f and therefore the decomposition
(4.3) fulfills for any 0 < γ, ζ < 1 as

∂sfmicro(x, κ, s) = Q[γfmicro(x, κ, s) + (1− γ)fmacro](x, κ, s), (4.4)

∂sfmacro(x, κ, s) = Q[
ζ(1− γ)

1− ζ
fmicro(x, κ, s) +

1− 2ζ + ζγ

1− ζ
fmacro](x, κ, s) (4.5)

− ζ ′(s)

1− ζ(s)
(fmicro − fmacro)(x, κ, s). (4.6)

The quantity ζ(s) distributes the mass between the microscopic fmicro and the macroscopic
fmacro part of the distribution. The value of γ is a parameter for the design of the method.
Possible choices are for example γ = 1 which leads to the system

∂sfmicro(x, κ, s) = Q[fmicro(x, κ, s)], (4.7)

∂sfmacro(x, κ, s) = Q[fmacro](x, κ, s)−
ζ ′(s)

1− ζ(s)
(fmicro − fmacro)(x, κ, s). (4.8)

while the choice γ = ζ leads to

∂sfmicro(x, κ, s) = Q[ζfmicro + (1− ζ)fmacro](x, κ, s),

(4.9)

∂sfmacro(x, κ, s) = Q[ζ fmicro + (1− ζ)fmacro](x, κ, s)−
ζ ′(s)

1− ζ(s)
(fmicro − fmacro)(x, κ, s).

(4.10)

In particular, we solve the microscopic part fmicro using the Metropolis Monte–Carlo
method without dependence on κ, i.e., fmicro = fmicro(x, s), while the macroscopic part of
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the distribution fmacro is solved by updating only moments in κ. In this case, we may assume
that α, τ are independent on x and there exists a solution

fmacro(x, κ, s) = Mκ(s)(x) (4.11)

to equation (3.7). The evolution κ = κ(s) is then obtained by integration of equation (4.6)
against (x, x2, . . . ) leading to∫
(x, x2, . . . )∂sMκ(s)(x)dx =

∫
(x, x2, . . . )Q[

ζ(1− γ)

1− ζ
fmicro(x, κ, s) +

1− 2ζ + ζγ

1− ζ
Mκ(s)](x, κ, s)dx

−
∫
(x, x2, . . . )

ζ ′

1− ζ
(fmicro −Mκ(s))(x, κ, s).

The later yields an update formula for the moments of fmacro. It remains to define the dynam-
ics for ζ. The value of ζ(s+ ζs) will be chosen to balance the variance of the data σ2(νs) up
to time s and the variance of microscopic distribution fmicro(s+ ζs) and the bulk fmacro(s).
The details are given in the time-discrete case by equation (7.92) leading to the definition of
the distribution ζ(s).

5 Application to an Inverse Problem for the Lorentz System

The example is taken from [16, Example 2.6]: the Lorenz ’63 is a continuous dynamical system
that is known to exhibit sensitivity to initial conditions v0 ∈ R3 as well as to parameters
x = (a, b, c) ∈ R3. Let v = (v1, v2, v3)(·) ∈ C1(0, T ;R3) be the solution to the set of ordinary
differential equation up to a given time T > 0 for a given set of parameters x.

d

dt
v1(t) = a(v2(t)− v1(t)), v1(0) = v1,0, (5.1a)

d

dt
v2(t) = −av1(t)− v2(t)− v1(t)v3(t), v2(0) = v2,0, (5.1b)

d

dt
v3(t) = v1(t)v2(t)− bv3(t)− b(c+ a), v3(0) = v3,0. (5.1c)

As in [16], the initial data is given by

vi,0 = 1, i = 1, . . . , 3, (5.1d)

We denote by v(t;x) the solution to system (5.1) at time t ∈ [0, T ] for given parameters x.
The problem is now rewritten in the form of problem (1.1). In the notation For some

fixed time t, the model µ(x) is hence given by

µ(x) = v(t;x) : R3 → R3.

We consider two different scenarios for the definition of the set ν of data points. In the
following Kmax is the number of data points and x∗ =

(
10, 83 , 28

)
.

Remark 5.1 The system (5.1) is chaotic. This makes a more detailed estimate of the pa-
rameters via the iterative Bayesian approach necessary [16].
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5.1 Fixed terminal time

In the first example, the set of observed data is obtained as solution to (5.1) at time T using
randomly perturbed parameters, i.e., ν = {zi : i = 1, . . . ,Kmax}, and

zi = v(T, x∗ + ξi), i = 1, . . . ,Kmax. (5.2)

Here, ξi are the realization of a uniformly distributed random variable

ξ ∼ ⊗3
j=1U(−aj , aj). (5.3)

We consider the Metropolis Monte Carlo method without information of the moments κ. In the
simulations, we compare using a Gaussian distribution or a gradient based approach to provide
the proposal point xp. The further details of the implementation are stated in Section 7.2.
In Figure 5.1 and Figure 5.1 we compare the two strategies for generating proposals. While
the true mean is not exactly recovered, we observe that both strategies succeed in solving the
minimization problem (1.1). The histograms show a concentration close to the true mean.
The later is obtained as v(T, x∗) where x∗ is the true set of parameters without perturbation.

5.2 Running terminal time

In the second example, we consider a problem where the time horizon is not fixed. Denote
by ti = i∆t for i = 1, . . . ,Kmax and with Kmax∆t = T for a fixed terminal time T. The set
of data points ν = {zi : i = 1, . . . ,Kmax} is given by the solution at time ti for perturbed
parameters:

zi = v(ti, x
∗ + ξi) (5.4)

where ξi are realizations of a random variable ξ distributed as in equation (5.3). We compare
the Metropolis Monte Carlo method without and with using moment information on the
identification problem (1.1). The proposal xp is obtained using a micro-macro decomposition
using an indicator ζ as outlined in Section 4. The further details of the implementation are
stated in Section 7.2. The results are depicted in Figure 5.2 and Figure 5.2, respectively.
We observe that the micro–macro decomposition is feasible and leads to similar histograms
compared with the Metropolis Monte Carlo method. The rate of the macroscopic updates is
about 1% in the reported results.

6 Summary

In this paper we developed a kinetic convergence theory for Metropolis Monte Carlo algo-
rithms. The application to Bayesian type inverse problems, where the result is not one optimal
parameter but a probability distribution in parameter space which optimally fits the given
data, is considered. The kinetic theory allows for the theoretical reduction to lower dimen-
sional problems which, in turn, allows for the efficient use of improved predictors an proposal
distributions. All this leads to iterative Bayesian estimation procedures with a significant
increase in the quality of the posterior distribution as well as an increase in computational
efficiency.
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Figure 1: Fixed terminal time simulated by Metropolis Monte–Carlo using Gaussian propos-
als. The initial distribution P0 is depicted in blue as a histogram. The histogram of the
terminal distribution PN is shown in red. In the top part we show the histogram of the
parameters, in the bottom part the corresponding histogram of the model evaluations, i.e.
µ. With the parameters and model evaluations similar, we show x2 and x3 and v2 and v3
in the lower part of the diagram, respectively. The value ’true mean’ represents the solution
v(T, x∗) for the optimal parameter x∗.
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7 Appendix

7.1 Technical proofs

Proof of Proposition 3.1:
Separating the terms in (3.4)into those containing the acceptance rate and the term indepen-
dent of α gives, using the fact that

∫
τ(x|y, r) dx = 1 holds,∫

ϕ(x, κ)f(x, κ, s+ h) dxκ =

∫
ϕ(y, r + hω1(y, r, s))f(y, r, s) dyr+ (7.1)

h

∫
[ϕ(x, r + hω1(x, r, s))− ϕ(y, r + hω1(y, r, s))]× (7.2)

α(x, r + hω1(x, r, s), y, r + hω1(y, r, s))τ(x|y, r)f(y, r, s) dxyr (7.3)

The first integral on the right hand side of (7.1) gives after Taylor expansion in the stepsize h∫
ϕ(y, r + hω1(y, r, s))f(y, r, s) dyr = (7.4)∫
ϕ(y, r)f(y, r, s) dyr +

∫
h∇2ϕ(y, r) · ω1(y, r, s)f(y, r, s) dyr + o(h) . (7.5)

The second term on the right hand side of (7.1) gives, up to order o(h)

h

∫
[ϕ(x, r + hω1(x, r, s))− ϕ(y, r + hω1(y, r, s))]× (7.6)

α(x, r + hω1(x, r, s), y, r + hω1(y, r, s))τ(x|y, r)f(y, r, s) dxyr = (7.7)

h

∫
[ϕ(x, r)− ϕ(y, r)]K(x, y, r)f(y, r, s) dxyr + o(h) , (7.8)
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with the kernel K given by (3.9). Combining (7.4) and (7.6), letting h→ 0, N → ∞ gives∫
ϕ(x, κ)∂sf(x, κ, s) dxκ = (7.9)∫
∇2ϕ(y, r) · ω1(y, r, s)f(y, r, s) dyr +

∫
[ϕ(x, r)− ϕ(y, r)]K(x, y, r)f(y, r, s) dxyr (7.10)

which is the weak form of

∂sf(x, κ, s) = (7.11)

− divκ[ω1(x, κ, s)f ] +

∫
K(x, y, κ)f(y, κ, s) dy −

∫
K(y, x, κ)f(x, κ, s) dy (7.12)

with the kernel K given by (3.9).

Proof of Proposition 3.2 :
We define the symmetrized kernel Ksym by Ksym(x, y) = K(x, y)f∞(y) = α(x, y)τ(x|y)f∞(y)
satisfying, according to the detail balance condition (3.11), the symmetry Ksym(x, y) =
Ksym(y, x). This makes (3.10) into∫

ϕ(x)∂sf(x, s) dx =

∫
[ϕ(x)− ϕ(y)]Ksym(x, y)

f(y, s)

f∞(y)
dxy ∀ϕ .

Interchanging the integration variables x ↔ y in the integral on the right hand side gives
(because of the symmetry of Ksym)∫

ϕ(x)∂sf(x, s) dx =

∫
[ϕ(y)− ϕ(x)]Ksym(x, y)

f(x, s)

f∞(x)
dxy . ∀ϕ ,

Summing these two equations gives

2

∫
ϕ(x)∂sf(x, s) dx =

∫
[ϕ(x)− ϕ(y)]Ksym(x, y)[

f(y, s)

f∞(y)
− f(x, s)

f∞(x)
dxy . ∀ϕ . (7.13)

First, we see from (7.13) that we obtain a steady state for f(x, s) = f∞(x) since the right hand

side vanishes for all test functions ϕ. Second, choosing the special test function ϕ = f(x,s)
f∞(x)

2

∫
f(x, s)

f∞(x)
∂sf(x, s) dx = ∂s

∫
f(x, s)2

f∞(x)
dx = −

∫
Ksym(x, y)[

f(y, s)

f∞(y)
− f(x, s)

f∞(x)
]2 dxy ≤ 0 .

Thus, the convex entropy functional Hf (s) =
∫ f(x,s)2

f∞(x) dx decays monotonically until the limit
f = f∞ is reached.

Proof of Proposition 3.3
We separate (3.19) into a term which reduces to the pure Browninan motion (for β = 0) and
a term dependent on the rejection rate β.∫

ϕ(x, κ)f(x, κ, s+ h) dxκ = A+B (7.14)

A =

∫
ϕ(x, ω(x, r, s))

1

(
√
hσ(y, r))d

ψ(
x− y − hE(y, r)√

hσ(y, r)
)f(y, r, s) dyrx (7.15)

B =

∫
[ϕ(y, ω(y, r, s))− ϕ(x, ω(x, r, s))]β(x, ω(x, r, s), y, ω(y, r, s))× (7.16)

1

(
√
hσ(y, r))d

ψ(
x− y − hE(y, r)√

hσ(y, r)
)f(y, r, s) dyrx . (7.17)
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This gives for the term A in (7.15), after the variable transformation x→ y+hE+
√
hσx, dx→

σddx,

A =

∫
ϕ(y + hE(y, r) +

√
hσ(y, r)x, ω(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx (7.18)

The term A should (for β = 0) give the classical Brownian motion term. Similarly, for the
term B in (7.16) (the correction if we do not always accept) we obtain, normalizing τ and
transforming in the integral

B = [ϕ(y, ω(y, r, s))− ϕ(y + hE +
√
hσx, ω(y + hE +

√
hσx, r, s))]× (7.19)

β(y + hE +
√
hσx, ω(y + hE +

√
hσx, r, s), y, ω(y, r, s))ψ(x)f(y, r, s) dyrx,

We will still have to move the zero order term in A to the left hand side and divide by the
stepsize h to obtain a derivative in s. So, what remains is to expand (7.18) and (7.19) for
small stepsizes h up to o(h).

Expansion of A. We have from (7.18)

A =

∫
ϕ(y + hE(y, r) +

√
hσ(y, r)x, ω(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx

We first expand ϕ in terms of the perturbation in the first variable y.

A = A0 +A1 +A2 + o(h) . (7.20)

A0 =

∫
ϕ(y, ω(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx . (7.21)

A1 =

∫
(hE(y, r) +

√
hσ(y, r)x)∂1ϕ(y, ω(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx (7.22)

A2 =

∫
1

2
(hE(y, r) +

√
hσ(y, r)x)2∂21ϕ(y, ω(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx

(7.23)

First we write the proposed moments ω(x, κ, s) in (3.16) as a O(h) perturbation around the
current moments κ:

ω(x, κ, s) = κ+ hω1(x, κ, s), ω1(x, κ, s) =
∆κ(x)− κ

s+ h
. (7.24)

expanding the growth ω in the moments using ω(y, r, s) = r + hω1(y, r, s)

A0 =

∫
ϕ(y, r + hω1(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx (7.25)

=

∫
ϕ(y, r)ψ(x)f(y, r, s) dyrx+

∫
(hω1(y + hE +

√
hσx, r, s) · ∇rϕ(y, r))ψ(x)f(y, r, s) dyrx+O(h2)

(7.26)

=

∫
ϕ(y, r)ψ(x)f(y, r, s) dyrx+

∫
hω1(y, r, s) · ∇rϕ(y, r)ψ(x)f(y, r, s) dyrx+ o(h) (7.27)

integrating against the normalized distribution ψ gives

A0 =

∫
ϕ(y, r)f(y, r, s) dyr +

∫
hω1(y, r, s) · ∇rϕ(y, r)f(y, r, s) dyr + o(h) .
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We proceed in the same way with the terms A1 and A2:

A1 =

∫
(hE(y, r) +

√
hσ(y, r)x) · ∇yϕ(y, r + hω1(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx

(7.28)

=

∫
(hE(y, r) +

√
hσ(y, r)x) · ∇yϕ(y, r))ψ(x)f(y, r, s) dyrx+O(h3/2) (7.29)

=

∫
hE(y, r) · ∇yϕ(y, r)f(y, r, s) dyr +O(h3/2) . (7.30)

For A2 we obtain

A2 =

∫
1

2
(hE(y, r) +

√
hσ(y, r)x)2∂21ϕ(y, r + hω1(y + hE +

√
hσx, r, s))ψ(x)f(y, r, s) dyrx

(7.31)

=

∫
1

2
(hE(y, r) +

√
hσ(y, r)x)2∂21ϕ(y, r)ψ(x)f(y, r, s) dyrx+O(h2) (7.32)

=
1

2
h

∫
σ(y, r)2(x)2∂21ϕ(y, r)ψ(x)f(y, r, s) dyrx+O(h3/2) (7.33)

=
1

2
h

∫
σ(y, r)2xjxk∂yjykϕ(y, r)ψ(x)f(y, r, s) dyrx+O(h3/2) (7.34)

=
1

2
h

∫
σ(y, r)2f(y, r, s)divy∇yϕ(y, r) dyr +O(h3/2) (7.35)

so, we have for the pure Brownian motion term (with a zero rejection rate β = 0) A =
A0 +A1 +A2 + o(h) with

A =

∫
ϕ(y, r)f(y, r, s) dyr +

∫
hω1(y, r, s) · ∇rϕ(y, r)f(y, r, s) dyr (7.36)

+

∫
hE(y, r) · ∇yϕ(y, r)f(y, r, s) dyr +

1

2
h

∫
σ(y, r)2f(y, r, s)divy∇yϕ(y, r) dyr + o(h) .

(7.37)

Expansion of B: We define the difference in the argument of the test function in (7.19)
as

∆ϕ(x, y, r, s) = [ϕ(y, ω(y, r, s))− ϕ(y + hE +
√
hσx, ω(y + hE +

√
hσx, r, s))]

with E = E(y, r) and σ = σ(y, r) and, from (7.19) we write

B =

∫
∆ϕ(x, y, r, s)β(y+hE+

√
hσx, ω(y+hE+

√
hσx, r, s), y, ω(y, r, s))ψ(x)f(y, r, s) dyrx .

Again, we use ω(y, r, s) = r + hω1(y, r, s). Expanding the shift in y in ∆ϕ gives

∆ϕ(x, y, r, s) = [ϕ(y, ω(y, r, s))− ϕ(y + hE +
√
hσx, ω(y + hE +

√
hσx, r, s))] (7.38)

= T0 + T1 + T2 +O(h3/2) for (7.39)

T0 = ϕ(y, ω(y, r, s))− ϕ(y, ω(y + hE +
√
hσx, r, s)) (7.40)

T1 = −(hE +
√
hσx) · ∇1ϕ(y, ω(y + hE +

√
hσx, r, s)) (7.41)

T2 =
1

2
(hE +

√
hσx)2 · ∂21ϕ(y, ω(y + hE +

√
hσx, r, s)) (7.42)
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Again, expanding ω using ω(y, r, s) = r + hω1(y, r, s) gives for T0, T1, T2

T0 = ϕ(y, r + hω1(y, r, s))− ϕ(y, r + hω1(y + hE +
√
hσx, r, s)) (7.43)

= ϕ(y, r)− ϕ(y, r) (7.44)

= +hω1(y, r, s)∂2ϕ(y, r)− hω1(y + hE +
√
hσx)∂2ϕ(y, r) = O(h3/2) , (7.45)

and for T1 and T2, respectively:

T1 = −(hE +
√
hσx) · ∇1ϕ(y, r + hω1(y + hE +

√
hσx, r, s)) = −(hE +

√
hσx)∂1ϕ(y, r) +O(h3/2) ,

(7.46)

T2 =
1

2
(hE +

√
hσx)2 · ∂21ϕ(y, r + hω1(y + hE +

√
hσx, r, s)) =

1

2
(hE +

√
hσx)2 · ∂21ϕ(y, r) +O(h2) .

(7.47)

So, altogether, we have

∆ϕ(x, y, r, s) = −(hE +
√
hσx) · ∇1ϕ(y, r) +

1

2
(hE +

√
hσx)2 · ∂21ϕ(y, r) +O(h3/2)

or

∆ϕ(x, y, r, s) = −(hE +
√
hσx) · ∇1ϕ(y, r) +

1

2
hσ2x2 · ∂21ϕ(y, r) +O(h3/2) (7.48)

Expansion of β. We note, that ∆ϕ = O(
√
h). So, we have to expand β only up to o(

√
h)

to obtain an expression for the product ∆ϕβ up to order o(h). We first expand again in the
state variable:

β(y + hE +
√
hσx, ω(y + hE +

√
hσx, r, s), y, ω(y, r, s)) = β0 + β1 + o(

√
h), (7.49)

β0 = β(y, ω(y + hE +
√
hσx, r, s), y, ω(y, r, s)) (7.50)

β1 = (hE +
√
hσx)∂1β(y, ω(y + hE +

√
hσx, r, s), y, ω(y, r, s)) (7.51)

Expansion in the moment corrections ω gives, using ω(y, r, s) = r + hω1(y, r, s)

β0 = β(y, r + hω1(y + hE +
√
hσx, r, s), y, r + hω1(y, r, s)) = β(y, r, y, r) + o(

√
h) (7.52)

β1 = (hE +
√
hσx) · ∇1β(y, r + hω1(y + hE +

√
hσx, r, s), y, r + hω1(y, r, s)) = (7.53)

(hE +
√
hσx) · ∇1β(y, r, y, r) + o(

√
h) (7.54)

Therefore, we have

β(y + hE +
√
hσx, ω(y + hE +

√
hσx, r, s), y, ω(y, r, s)) =

β(y, r, y, r) + (hE +
√
hσx)∂1β(y, r, y, r) + o(

√
h) (7.55)

multiplying ∆ϕ with β from (7.48) and (7.55) gives

∆ϕβ = [−(hE +
√
hσx) · ∇1ϕ(y, r) +

1

2
hσ2x2 · ∂21ϕ(y, r) +O(h3/2)]× (7.56)

[β(y, r, y, r) + (hE +
√
hσx) · ∇1β(y, r, y, r) + o(

√
h)] (7.57)

∆ϕβ = −(hE +
√
hσx) · ∇1ϕ(y, r)β(y, r, y, r) +

1

2
hσ2x2 · ∂21ϕ(y, r)β(y, r, y, r) (7.58)

− (hE +
√
hσx) · ∇1ϕ(y, r)(hE +

√
hσx)∂1β(y, r, y, r) (7.59)

+
1

2
hσ2x2∂21ϕ(y, r)(hE +

√
hσx)∂1β(y, r, y, r) + o(h) (7.60)
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neglecting the o(h) terms gives

∆ϕβ = −(hE +
√
hσx) · ∇1ϕ(y, r)β(y, r, y, r) +

1

2
hσ2x2 · ∂21ϕ(y, r)β(y, r, y, r) (7.61)

− h[σx∂1ϕ(y, r)][σx∂1β(y, r, y, r)] + o(h) (7.62)

integrating against the normalized distribution ψ, using
∫
(1, x, xxT )ψ(x) dx = (1, 0, Id) gives∫

∆ϕβψ(x) dx = −hE · ∇yϕ(y, r)β(y, r, y, r) +
1

2
hσ2β(y, r, y, r)divy∇yϕ(y, r) (7.63)

− hσ2∇yϕ(y, r) · ∇1β(y, r, y, r) + o(h) (7.64)

multiplying with f(y, r) and integrating dyr give the term B in (7.19) up to terms of order
o(h).

B =

∫
[−hE · ∇yϕ(y, r)β(y, r, y, r) +

1

2
hσ2β(y, r, y, r)divy∇yϕ(y, r) (7.65)

− hσ2∇yϕ(y, r) · ∇1β(y, r, y, r)]f(y, r, s) dyr + o(h) (7.66)

combining (7.36) and (7.65) gives∫
ϕ(x, κ)f(x, κ, s+ h) dxκ = A+B + o(h)

or, after changing the variables y → x and r → κ in the integrals on the right hand side∫
ϕ(x, κ)f(x, κ, s+ h) dxκ = (7.67)∫
ϕ(x, κ)f(x, κ, s) dxκ+

∫
hω1(x, κ, s) · ∇κϕ(x, κ)f(x, κ, s) dxκ (7.68)

+

∫
hE(x, κ) · ∇xϕ(x, κ)f(x, κ, s) dxκ+

1

2
h

∫
σ(x, κ)2f(x, κ, s)divx∇xϕ(x, κ) dxκ (7.69)

+

∫
[−hE · ∇xϕ(x, κ)β(x, κ, x, κ) +

1

2
hσ2β(x, κ, x, κ)divx∇xϕ(x, κ) (7.70)

− hσ2∇xϕ(x, κ) · ∇1β(x, κ, x, κ)]f(x, κ, s) dxκ+ o(h) (7.71)

moving the O(1) term
∫
ϕ(x, κ)f(x, κ, s) dxκ to the left of the equality sign and dividing by

the stepsize h, and letting h→ 0 gives for all test functions ϕ :∫
ϕ(x, κ)∂sf(x, κ, s) dxκ = (7.72)∫
ω1(x, κ, s) · ∇κϕ(x, κ)f(x, κ, s) dxκ (7.73)

+

∫
E(x, κ) · ∇xϕ(x, κ)f(x, κ, s) dxκ+

1

2

∫
σ(x, κ)2f(x, κ, s)divx∇xϕ(x, κ) dxκ (7.74)

+

∫
[−E · ∇xϕ(x, κ)β(x, κ, x, κ) +

1

2
σ2β(x, κ, x, κ)divx∇xϕ(x, κ) (7.75)

− σ2∇xϕ(x, κ) · ∇1β(x, κ, x, κ)]f(x, κ, s) dxκ+ o(1) (7.76)
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After integrating by parts this is the weak form of

∂sf(x, κ, s) = −divκ[ω1(x, κ, s)f(x, κ, s)] (7.77)

− divx[E(x, κ)f(x, κ, s)] +
1

2
divx∇x[σ(x, κ)

2f(x, κ, s)] (7.78)

+ divx[σ
2∇1β(x, κ, x, κ)f(x, κ, s)] . (7.79)

We consolidate

∂sf(x, κ, s) = −divκ[ω1(x, κ, s)f(x, κ, s)] (7.80)

+ divx[E(x, κ)(β(x, κ, x, κ)− 1)f(x, κ, s) + σ2∇1β(x, κ, x, κ)f(x, κ, s)] (7.81)

+
1

2
divx∇x[σ(x, κ)

2(1 + β(x, κ, x, κ))f(x, κ, s)] (7.82)

7.2 Implementation details

We report on the details required for the simulation of the Metropolis Monte Carlo algorithm
of Section 2.1. Here, all parameter choices are detailed. For readability we present a the
parameters in the order of appearance.
The total number of time steps n = 1, . . . , N is N = 10′000 in all simulations.
In all cases we set T = 25, Kmax = 10′000 and a1 = a3 = 10 and a2 = 1.
The moments κ defined by equation (2.1) we consider κ = (κ1, σ) defined by

κn1 =
1

n

n∑
j=1

xj , σ
n = κn2 − (κn1 )

2, κn2 =
1

n

n∑
i=1

(xj)
2 . (7.83)

According to remark (2.3), the Monte Carlo algorithm requires a start up phase. We realize
this by producing an initial distribution obtained by considering i = 1, . . . , N simulations of
model (5.1) with parameter xi := x∗ + ξi and ξi being a realization of the random variable ξ
distributed according to equation (5.3). This yields the distribution

P0(x) =
1

N0

N0∑
i=1

δ(x− xi), (7.84)

and the corresponding moments κ0. In our simulations we set N0 = 100.
The ODE system (5.1) is solved on the time interval [0, T ] using an explicit 3(2) Runge-Kutta
of the Matlab routine ode23.
The acceptance rate α is chosen independently of the update ω in all simulations. We set

α(xp, xn) =
L(xp, ν)

L(xp, ν) + L(xn, ν)
, (7.85)

for a likelihood function L. The likelihood function depends on the test case. In the first
example, we set at iteration n

L(x, ν) =
1

∥v(T, x)− zn∥2
, (7.86)
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while in the second example, we set

L(x, ν) =
1

1
n

∑n
i=1 ∥v(ti, x)− zi∥2

, (7.87)

The probability for the random proposal τ(z|xn, κn) is chosen either as Gaussian distribution
or using a gradient approach. In case of the Gaussian distribution we consider a random
variable Z with distribution as

Z ∼ N (xn, Id3×3), (7.88)

and obtain the proposal xp as xp = P[ 5
4
x∗, 3

4
x∗](Z̃), where Z̃ is a realisation of Z and P[a,b](x)

denotes the projection of x on the interval [a, b]. The later is necessary, since for T large the
system (5.1) is known to exhibit chaotic behavior and the solution may diverge for proposals
xp far from x∗.

In the case of a gradient based approach we proceed as follows. With probability p ∼ 1
2

we set xp = P[ 5
4
x∗, 3

4
x∗]

(
xn + Z̃

)
or xp = P[ 5

4
x∗, 3

4
x∗]

(
xn − Z̃

)
, respectively. The value of

Z̃ is obtained as (an approximation) to the gradient of the likelihood with respect to the
parameters∇xL(xn, ν). Evaluation of the gradient requires to differentiate the solution v(t∗, x)
with respect to x for some fixed t∗. Due to equation (5.1), the variations of v with respect to
x fulfill a linear ODE system of dimension 3× 3 given by

d

dt

(
∂v

∂x

)
=

 v2 − v1 + a(∂av2(t)− ∂av1(t)) a(∂bv2 − ∂bv1) a(∂cv2 − ∂cv1)
−v1 − a∂av1 − ∂av2 − ∂a(v1v3) −a∂bv1 − ∂b(v2 − v1v3) −a∂cv1∂c(v2 − v1v3)

∂a(v1v3 − bv3)− b ∂b(v1v3 − bv3)− v3 − (c+ a) ∂c(v1v3 − bv3)− b


(7.89)

In the previous equation we omit the dependence on t. The initial conditions are ∂v
∂x(t = 0) =

03×3. Solving this system for each proposal is computationally prohibitive. We therefore use
an explicit Euler discretization with a single time step t∗ to approximate it’s solution. This
leads to

∂v

∂x
(t∗, x) ≈ t∗

v2 − v1 0 0
−v1 0 0
−b −(c+ a) −b

 . (7.90)

In the case of fixed terminal time L is given by (7.86), we have t∗ = T , and obtain the
following explicit form of Z̃ at iteration n :

Z̃i = − 2

∥v(T, xn)− zn∥4
(v(T, xn)− zn) ·

∂vi
∂x

(T, xn), i = 1, . . . , 3. (7.91)

For the micro–macro decomposition we need to specify the distribution parameter ζn. To this
end, we compute the maximal variance of the data ν up to data point n, σ2ν = ∥Var(z1, . . . , zn)∥∞,
the variance Var((fmacro)n−1) of the prior macroscopic approximation (fmacro)n−1, and the
variance of the current parameter distribution σ2n = Var(Pn). Depending on the ratio r

r =
σ2ν − Var((fmacro)n−1)

σ2n
(7.92)
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we update ζn as

ζn =

(
P[0,1](

√
r) r > 0

ζnn− 1 r < 0.

)
(7.93)

In case of the micro–macro decomposition, we decide according to ζn on the probability density
τ(z|xn, κn), i.e., if the realisation of a uniform random variable Z ∼ U(0, 1) at iteration n is
less than ζn−1 we sample from the microscopic distribution. In this case, τ is independent
of κn and the sampling is described above in equation (7.88). For the macroscopic case,
the probability density τ is independent of xn and solely depends on the moments κn of the

macroscopic distribution gn. The proposal xp is then given by xp = P[ 5
4
x∗, 3

4
x∗]

(
Z̃
)
where Z̃

is a realization of the random variable Z

Z ∼ N (E(gn−1),Var((fmacro)n−1)), (7.94)
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