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Abstract
We present a translation from linear temporal logic with past to deterministic Rabin automata. The
translation is direct in the sense that it does not rely on intermediate non-deterministic automata,
and asymptotically optimal, resulting in Rabin automata of doubly exponential size. It is based
on two main notions. One is that it is possible to encode the history contained in the prefix of a
word, as relevant for the formula under consideration, by performing simple rewrites of the formula
itself. As a consequence, a formula involving past operators can (through such rewrites, which
involve alternating between weak and strong versions of past operators in the formula’s syntax tree)
be correctly evaluated at an arbitrary point in the future without requiring backtracking through
the word. The other is that this allows us to generalize to linear temporal logic with past the
result that the language of a pure-future formula can be decomposed into a Boolean combination of
simpler languages, for which deterministic automata with simple acceptance conditions are easily
constructed.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Modal and temporal logics

Keywords and phrases Linear temporal logic, ω-automata, determinization

1 Introduction

Finite-state automata over infinite words, commonly referred to as ω-automata, have been
studied as models of computation since their introduction in the 1960s. Their introduction
was followed by extensive investigations into their expressive power, closure properties,
and the decidability and complexity of related decision problems, such as non-emptiness
and language containment. In particular, it was soon established that determinization
constructions of such automata are considerably more complex than they are for their finite
word counterparts, for which a simple subset construction is sufficient.

In the 1970s, Pnueli [14] proposed linear temporal logic (LTL) as a specification language
for the analysis and verification of programs, based on the idea that a program can be
viewed in the context of a stream of interactions between it and its environment. It has since
become ubiquitous in both academia and the industry due to the perceived balance of its
expressive power and the computational complexity of its related decision procedures. The
intimate semantic connection between LTL and ω-automata further motivated research into
the properties of both, also from a practical point of view. In addition to being of theoretical
interest, the fact that multiple automata-based applications of LTL as a specification language
- such as reactive synthesis and probabilistic model checking - require deterministic automata,
has drawn additional attention to the study of efficient translation procedures from LTL to
deterministic ω-automata.

In the classic approach to determinization, the given LTL formula is first translated
to a non-deterministic Büchi automaton. This automaton is subsequently determinized,
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for example using Safra’s procedure [15], or the more modern Safra/Piterman variant [12].
Such constructions are both conceptually complex and difficult to implement. Moreover,
information about the structure of the given formula is lost in the initial translation to Büchi
automata; in particular, because of the generality of such determinization procedures, they
cannot take advantage of the fact that LTL is less expressive than ω-automata.

In 2020, Esparza et al. [4] presented a novel translation from LTL to various automata,
that is asymptotically optimal in both the deterministic and non-deterministic cases. The
translation is direct in the sense that it avoids the intermediate steps of the classic approach,
which involve employing a variety of separate translation procedures. In particular, for
deterministic automata, it forgoes Safra-based constructions. Instead, the language of the
formula under consideration is decomposed into a Boolean combination of simpler languages,
for which deterministic automata with simple acceptance conditions can easily be constructed
using what the authors have dubbed the “after-function”; that such a decomposition exists
is a fundamental result named the “Master Theorem”. These simpler automata are then
combined into the desired final automaton using basic product or union operations according
to the structure of the decomposition.

In this paper, we consider past linear temporal logic (pLTL); the extension of LTL that
includes the past operators “Yesterday” and “Since”, analogous to the standard operators
“Next” and “Until”, respectively. We adapt the Master Theorem and generalize the derived
LTL-to-deterministic-Rabin-automata translation to pLTL, while maintaining the optimal
asymptotic complexity of the translation. The merits of LTL extended with past operators
were argued by Lichtenstein et al. [8], who also showed that their addition does not result in
a more expressive logic with respect to initial equivalence of formulae. At the same time,
the complexity of satisfiability/validity- and model checking remains PSPACE-complete for
pLTL [16]. When it comes to determinization, as Esparza’s approach [4] applies only to
(future) LTL, the only option is the two-step approach: translate pLTL to nondeterministic
Büchi automata [13] and convert to deterministic parity/Rabin automata [15, 12]. Our
generalization to pLTL is of both theoretical and practical interest, for two main reasons.
First, certain properties are more naturally and elegantly expressed with the help of past
operators. Secondly, there exist formulae in pLTL such that all (initially) equivalent LTL
formulae are exponentially larger [10]. Both of these properties can be exemplified by
considering the natural language specification “At any point in time, p may occur only if
q and r have occurred at least once in the past”. Expressing this in LTL requires explicitly
describing the possible desired orders of occurrences of p, q, and r:

(¬p ∧ ¬q) W (r ∧ ((¬p) W q)) ∨ (¬p ∧ ¬r) W (q ∧ ((¬p) W r)).

The same specification is very intuitively and succinctly expressed in pLTL by the formula
G(p ⇒ Oq ∧ Or).

The main contributions of this paper are an adaptation of the Master Theorem for pLTL
and a utilization of this in the form of an asymptotically optimal direct translation from
pLTL to deterministic Rabin automata. The paper is structured in following manner: In
section 2, we define the syntax and semantics of linear temporal logic with past, infinite
words and ω-automata, and the notion of propositional equivalence. As the automata we
aim to construct are one-way, we need a way to encode information about the input history
directly into the formula being translated; the machinery required to accomplish this is
introduced in section 3. The foundation of the translation from pLTL to Rabin automata
is the after-function of section 4. The subsequent sections 5 and 6 are adaptations of the
corresponding sections in Esparza et al. [4]. The decomposition of the language of the formula
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to be translated into a Boolean combination of simpler languages requires considering the
limit-behavior of the formula. This notion is made precise in section 5, which finishes with a
presentation of the Master Theorem for pLTL. Section 6 describes how to create deterministic
automata from the simpler languages of the decomposition, and how to combine them into a
deterministic Rabin automaton. Finally, we conclude with a brief discussion in section 7.

2 Preliminaries

2.1 Infinite Words and ω-automata

An infinite word w over a non-empty finite alphabet Σ is an infinite sequence σ0, σ1, . . .

of letters from Σ. Given an infinite word w, we denote the finite infix σt, σt+1, . . . , σt+s−1
of w by wts. If t = s, then wts is defined as representing the empty word ϵ. Note that no
ambiguity will arise as we use parentheses whenever required; for example, w(st)(en) rather
than wsten We denote the infinite suffix σt, σt+1, . . . of w by wt. We will also consider finite
words, using the same infix- and suffix notation.

An ω-automaton over an alphabet Σ is a quadruple (Q,Q0, δ, α), where Q is a finite set of
states, Q0 ⊆ Q a non-empty set of initial states, δ ∈ Q× Σ → 2Q a transition function, and
α a set constituting its acceptance condition. In the case where |Q0| = 1 and |δ(q, σ)| ≤ 1 for
all q ∈ Q and all σ ∈ Σ, the automaton is called deterministic. For deterministic automata
we write δ : Q × Σ → Q. Given an ω-automaton A = (Q,Q0, δ, α) and an infinite word
w = σ0, σ1, . . . , both over the same alphabet, a run of A on w is a sequence of states
r = r0, r1, . . . of Q such that r0 ∈ Q0 and ri+1 ∈ δ(ri, σi) for all i ≥ 0. Given such a run r,
we write Inf (r) to denote the set of states appearing infinitely often in r.

In this paper, we consider three particular classes of ω-automata, which differ only by
their acceptance condition α. Büchi- and co-Büchi automata are ω-automata with α as a
set Q′ ⊆ Q. A Büchi automaton accepts the infinite word w iff there exists a run r on w

such that Inf (r) ∩Q′ ̸= ∅, while a co-Büchi automaton accepts w iff there exists a run r on
w such that Inf (r) ∩Q′ = ∅. We will also consider Rabin automata. A Rabin automaton
has a set of subsets R ⊆ 2Q × 2Q as acceptance condition, and accepts w iff there exists a
run r on w and a pair (A,B) ∈ R such that Inf (r) ∩A = ∅ and Inf (r) ∩B ̸= ∅. We write
DBA, DCA, and DRA to refer to deterministic Büchi-, co-Büchi-, and Rabin automata,
respectively.

We use a specialized form of cascade composition of two automata: bed automaton and
runner automaton. Bed automata are automata without an acceptance condition. Runner
automata read input letters and (next) states of bed automata: given a bed automaton A with
S as set of states, a runner automaton is B = (S,Q,Q0, δ, α), where Q, Q0, and α are as before
and δ : Q× S × Σ → 2Q is the transition function. The composition A⋉B is the automaton
(S ×Q,S0 ×Q0, δ, α), where δ((s, q), σ)) = {(s′, q′) | s′ ∈ δA(s, σ) and q′ ∈ δB(q, s′, σ)} and
α is obtained by changing every set T in α to S × T . Note that A⋉B is an ω-automaton
with B’s acceptance, e.g., if A is deterministic and B is a DCA, then A⋉B is a DCA.

2.2 Linear Temporal Logic with Past

Given a non-empty finite set of propositional variables AP , the well-formed formulae φ of
pLTL are generated by the following grammar:

φ ::= ⊤ | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | Yφ | φSφ,

https://en.wikipedia.org/wiki/Millstone
https://en.wikipedia.org/wiki/Millstone
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where p ∈ AP . Given a formula φ, we write Var(φ) to denote the set of all atomic propositions
appearing in φ. Given a formula φ, natural number t, and infinite word w = σ0, σ1, . . . over
2Var(φ), we write (w, t) |= φ to denote that w satisfies φ at index t. The meaning of this is
made precise by the following inductive definition:

(w, t) |= ⊤ (w, t) ̸|= ⊥
(w, t) |= p iff p ∈ σi (w, t) |= ¬φ iff (w, t) ̸|= φ

(w, t) |= φ ∧ ψ iff (w, t) |= φ and (w, t) |= ψ (w, t) |= φ ∨ ψ iff (w, t) |= φ or (w, t) |= ψ

(w, t) |= Xφ iff (w, t+ 1) |= φ (w, t) |= Yφ iff t > 0 and (w, t− 1) |= φ

(w, t) |= φUψ iff ∃r ≥ t . ((w, r) |= ψ and ∀s ∈ [t, r) . (w, s) |= φ)
(w, t) |= φSψ iff ∃r ≤ t . ((w, r) |= ψ and ∀s ∈ (r, t] . (w, s) |= φ) .

When t = 0 we omit the index and simply write w |= φ. The language of a formula φ,
denoted L(φ), is the set of all infinite words w such that w |= φ. Two pLTL formulae φ and
ψ are semantically equivalent, denoted φ ≡ ψ, iff L(φ) = L(ψ).

In addition to the above, we will also consider the following derived operators:

Fφ := ⊤ Uφ Oφ := ⊤ Sφ Gφ := ¬F¬φ
Hφ := ¬O¬φ φWψ := φUψ ∨ Gφ φ S̃ψ := φSψ ∨ Hφ

φMψ := ψU (φ ∧ ψ) φBψ := ψ S (φ ∧ ψ) φRψ := ψW (φ ∧ ψ)
φ B̃ψ := ψ S̃ (φ ∧ ψ) Ỹφ := Yφ ∨ ¬Y⊤.

A pLTL formula that is neither atomic nor whose syntax tree is rooted with a Boolean
operator is called a temporal formula, and a pLTL formula whose syntax tree is rooted with
an element of {Y, Ỹ,S, S̃,B, B̃} a past formula. Finally, a pLTL formula that is a proposition
or the negation thereof is propositional. We write sf (φ) to denote the set of subformulae of
φ, and psf (φ) the set of past subformulae of φ. The size of a pLTL formula φ, denoted |φ|,
is defined as the number of nodes of its syntax tree that are either temporal or propositional.

A pLTL formula where negations only appear before atomic propositions is in negation
normal form. Observe that with the derived operators above, an arbitrary pLTL formula
can be rewritten in negation normal form with a linear increase in size. For the remainder of
the paper, when we write “formula” we implicitly refer to pLTL formulae in negation normal
form, with no occurrences of F,G,O or H. Subformulae rooted with one of the latter four
operators can be replaced by equivalent formulae of the same size: every subformula of the
form Fψ can be replaced with ⊤ Uψ and every subformula of the form Gψ with ψW ⊥,
and analogously for Oψ and Hψ. While these operators are not part of the syntax under
consideration, we will occasionally use them as convenient shorthand. When we write “word”
we implicitly refer to infinite words, unless otherwise stated.

We conclude this section by defining the notion of propositional equivalence, which is
a stronger notion of equivalence than that given by the semantics of pLTL. It is relatively
simple to verify whether two formulae are propositionally equivalent, which makes it useful
in defining the state spaces of automata as equivalence classes of formulae. We also state a
lemma that allows us to lift functions defined on formulae to the propositional equivalence
classes they belong to. Both are due to Esparza et al. [4].

▶ Definition 1 (Propositional Semantics of pLTL). Let I be a set of formulae and φ a formula.
The propositional satisfaction relation I |=p φ is inductively defined as,

I |=p ⊤ I |=p ψ ∧ ξ iff I |=p ψ and I |=p ξ

I ̸|=p ⊥ I |=p ψ ∨ ξ iff I |=p ψ or I |=p ξ,
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with I |=p φ iff φ ∈ I for all other cases. Two formulae φ and ψ are propositionally
equivalent, denoted φ ∼ ψ, if I |=p φ ⇔ I |=p ψ for all sets of formulae I. The (propositional)
equivalence class of a formula φ is denoted [φ]∼. The (propositional) quotient set of a set of
formulae Ψ is denoted Ψ/∼.

▶ Lemma 2. Let f be a function on formulae such that f(⊤) = ⊤, f(⊥) = ⊥, and for all
formulae φ and ψ, f(φ ∧ ψ) = f(φ) ∧ f(ψ) and f(φ ∨ ψ) = f(φ) ∨ f(ψ). Then, for all pairs
of formulae φ and ψ, if φ ∼ ψ then f(φ) ∼ f(ψ).

3 Encoding the Past

Informally, given a formula φ and word w, our aim is to define a function that consumes a
given finite prefix of w, of arbitrary length t, and produces a new formula φ′, such that the
suffix wt satisfies φ′ iff w satisfies φ. This function will serve as the foundation for defining
the state spaces and transition relations of the automata that we are to construct. For
regular LTL, defining such a function is straightforward using the local semantics of LTL.
With the introduction of past operators the situation becomes more complicated. As a prefix
of w is consumed we lose the information about the past therein, and must instead encode
this information in the rewritten formula. The key insight is that this can be accomplished
by rewriting strong past operators of φ - the operators Y, S , and B - into their weak
counterparts Ỹ, S̃ , and B̃ , respectively, and vice versa, based on the consumed input. This
section makes this idea precise.

▶ Definition 3 (Weakening and strengthening formulae). The weakening φw and strengthening
φs of a formula φ is defined by case distinction on φ as,

(Yψ)w := Ỹψ (ψ S ξ)w := ψ S̃ ξ (ψB ξ)w := ψ B̃ ξ

(Ỹψ)s := Yψ (ψ S̃ ξ)s := ψ S ξ (ψ B̃ ξ)s := ψB ξ.

For all other cases we have φw := φ, and similarly for φs.

▶ Definition 4 (Rewriting past operators under sets). Given a formula φ and set of past
formulae C, we write φ⟨C⟩ to denote the result of weakening or strengthening the past
operators in the syntax tree of φ according to C while otherwise maintaining its structure, as
per the following inductive definition:

a⟨C⟩ := a (a atomic)

(opψ)⟨C⟩ :=
{

(opψ⟨C⟩)w (opψ ∈ C)
(opψ⟨C⟩)s (otherwise) (op unary)

(ψ op ξ)⟨C⟩ :=
{

(ψ⟨C⟩ op ξ⟨C⟩)w (ψ op ξ ∈ C)
(ψ⟨C⟩ op ξ⟨C⟩)s (otherwise). (op binary).

▶ Example 5. Consider the formula φ = Y(p S̃ q) and set C = {φ}. We then have
φ⟨C⟩ = Ỹ(pS q). For the same formula φ and set C = {p S̃ q), we instead have φ⟨C⟩ = φ.

We overload this definition to sets: given a set of formulae S, we define S⟨C⟩ := {s⟨C⟩ | s ∈ S}.

▶ Definition 6 (Weakening conditions). Given a past formula φ, we define the weakening
condition function wc(φ):

wc(Yψ) := ψ wc(ψ S ξ) := ξ wc(ψB ξ) := ψ ∧ ξ

wc(Ỹψ) := ψ wc(ψ S̃ ξ) := ψ ∨ ξ wc(ψ B̃ ξ) := ξ.
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The weakening condition for a past formula serves as a requirement that must hold immediately
in order to justify weakening the formula for the next time step. More precisely, if w |= wc(φ)
then it is enough to check that w1 |= φw to conclude that (w, 1) |= φ.

▶ Example 7. Let φ = X(pS q) and w be a word such that w02 = {q}{p}. By establishing
that w |= wc(pS q) = q, we can “forget” about the initial letter {q}; it is enough to check
that w1 |= p S̃ q to conclude that (w, 1) |= pS q, and hence that w |= φ.

This suggests that there exists a set of past subformulae of φ that precisely captures the
information contained in the initial letter of w required to evaluate all past subformulae of φ
at every point in time. This is the main result of this section, which we now summarize.

▶ Definition 8 (Sets of entailed subformulae). Let φ be a formula, w a word, and t ∈ N. The
set of past subformulae of φ entailed by w at t is inductively defined as,

Cwφ,0 := {ψ ∈ psf (φ) | ψ = ψw} Cwφ,t := {ψ ∈ psf (φ⟨Cwφ,t−1⟩) | wt |= wc(ψ)} (t > 0).

When the word w above is clear from the context, we simply write Cφ,t. Given t ∈ N we denote
the sequence Cφ,0, . . . , Cφ,t of length t+ 1 by C⃗φ,t. Given a sequence C⃗ = C0, C1, . . . , Ct of
sets of past formulae, there exists a set C ⊆ psf (φ) that has the same effect in a rewrite as
the sequential application of rewrites of C⃗, i.e., such that φ⟨C⟩ = φ⟨C0⟩⟨C1⟩ . . . ⟨Ct⟩. We
denote such a set ◦ C⃗. In particular, there exists a set that captures the sequence of sets of
entailed subformulae, denoted ◦ C⃗φ,t.

▶ Lemma 9. Given a formula φ, word w, and t ∈ N, we have (w, t) |= φ iff wt |= φ⟨◦ C⃗φ,t⟩.

With these definitions in place, we are ready to define the after-function for pLTL.

4 The after-function for pLTL

The after-function is the foundation for defining the states and transition relations of all
automata used in our pLTL-to-DRA translation. We begin by defining the local after-function:

▶ Definition 10 (The local after-function). Given a formula φ, a letter σ ∈ 2Var(φ), and a
set of past formulae C, we inductively define the local after-function afℓ mutually with the
local past update-function puℓ as follows:

afℓ(⊤, σ, C) := ⊤ afℓ(⊥, σ, C) := ⊥
afℓ(p, σ, C) := if (p ∈ σ) then ⊤ else ⊥ afℓ(¬p, σ, C) := if (p ∈ σ) then ⊥ else ⊤

afℓ(Xψ, σ,C) := puℓ(ψ, σ, C) afℓ(Yψ, σ, C) := ⊥ afℓ(Ỹψ, σ,C) := ⊤
afℓ(ψ op ξ, σ, C) := afℓ(ψ, σ, C) op afℓ(ξ, σ, C) (op ∈ {∧,∨})
afℓ(ψ op ξ, σ, C) := afℓ(ξ, σ, C) ∨ afℓ(ψ, σ, C) ∧ puℓ(ψ op ξ, σ, C) (op ∈ {U,W})
afℓ(ψ op ξ, σ, C) := afℓ(ξ, σ, C) ∧ (afℓ(ψ, σ,C) ∨ puℓ(ψ op ξ, σ, C)) (op ∈ {R,M})
afℓ(ψ op ξ, σ, C) := afℓ(wc(ψ op ξ), σ, C)) (op ∈ {S, S̃ ,B, B̃}),

where puℓ(φ, σ, C) := φ⟨C⟩ ∧
∧

ψ∈psf (φ)∩C

afℓ(wc(ψ), σ, C).

Intuitively, in the context of reading the initial letter σ of the word w, the local after-function
decomposes φ into parts that can be fully evaluated using σ and immediately be replaced
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with ⊤ or ⊥, and parts that can only be partially evaluated using σ. The resulting formula is
then left to be further evaluated in the future; in the automaton, it corresponds to the state
reached upon reading σ from the state corresponding to φ. Crucially, the past subformulae
of the partially evaluated part are updated by puℓ, using the information in C. Here, C is to
be thought of as a guess of the past subformulae of φ whose weakening conditions hold upon
reading σ. Finally, the weakening conditions that must hold to justify the guess are added
conjunctively. Observe that, as these weakening conditions may contain subformulae referring
to the future, it may not be possible to fully evaluate them immediately; this motivates the
recursive application of afℓ in puℓ. Given a (possibly empty) finite word w of length n and
sequence of sets of past formulae C⃗ of length n+ 1, we extend afℓ to w and C⃗ as follows:

afℓ(φ, ϵ, C⃗01) := φ (n = 0)

afℓ(φ,w0n, C⃗0(n+1)) := afℓ
(
φn−1, w(n−1)n, C⃗n(n+1)

)
(n > 0),

where φn = afℓ
(
φ,w0n, C⃗0(n+1)

)
. Observe that the initial set of C⃗ is discarded; this is to

match the sequence of Definition 8. For formulae where no future operators are nested inside
past operators, the set of entailed subformulae is completely determined by the prefix w0n.
This is not the case in general, however, and so the (global) after-function is defined to
consider all possible subsets of past subformulae of φ as a disjunction.

▶ Definition 11 (The after-function). Let φ be a formula and σ a letter. The after-function
af is defined as: af (φ, σ) :=

∨
C∈2psf (φ)

afℓ(φ, σ, C).

▶ Example 12. Let φ = X(pS Xq). Observe that φ ≡ X(p ∧ q ∨ Xq). Upon reading a
letter σ we can guess that the “since” started holding at the current point, corresponding to
the set C = {pS Xq} and formula p S̃ Xq ∧ q. Alternatively, we may guess that the “since”
did not start holding upon reading σ, corresponding to the set C = ∅ and formula pS Xq.
Hence af (φ, σ) = p S̃ Xq ∧ q ∨ pS Xq. This is equivalent to p ∧ q ∨ Xq, which is what must
be satisfied by w1, as desired.

Given a (possibly empty) finite word w of length n, we extend af to w in the obvious way by
repeated application. The correctness of af is established by the following theorem:

▶ Theorem 13. For every formula φ, word w, and t ∈ N we have w |= φ iff wt |= af (φ,w0t).

5 Stability and the Master Theorem

We consider two fragments of pLTL: µ-pLTL, the set of formulae whose future operators are
members of {X,U,M}, and ν-pLTL, the set of formulae whose future operators are members
of {X,W,R}. Given a formula φ, we define the set µ(φ) of subformulae of φ whose syntax
trees are rooted with U or M. Similarly, we define the set ν(φ) of subformulae of φ whose
syntax trees are rooted with W or R.

The Master Theorem for pLTL establishes that the language of a pLTL formula can be
decomposed into a Boolean combination of simple languages. It is motivated by two ideas:
i) Assume that φ is a formula and w is a word such that all subformulae in µ(φ) that are

eventually satisfied by w are infinitely often satisfied by w, and all subformulae in ν(φ)
that are almost always satisfied by w never fail to be satisfied by w. In this case, we
say that w is a stable word of φ, as will be properly defined momentarily. Under these
circumstances, a subformula of φ of the form ψU ξ is satisfied by w iff both ψW ξ and
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GF(ψU ξ) are. Dually, a subformula of φ of the form ψW ξ is satisfied by w iff either
ψU ξ or FG(ψW ξ) are. Hence, we can partition all words over Var(φ) into partitions
of the form PM,N , where w ∈ PM,N iff M is the set of µ-pLTL-subformulae of φ satisfied
infinitely often by w, and N the set ν-pLTL-subformulae of φ that are almost always
satisfied by w. Given two such sets M and N , the above implies that φ can be rewritten
into a formula that belongs to either the fragment µ-pLTL or ν-pLTL, as desired.

ii) Given a formula φ and word w, there exists a point in the future from which the above
holds. Indeed, if we look far ahead into the future, all subformulae of φ that are satisfied
by w only finitely often will have been satisfied for the last time. In particular, this is true
of the µ-pLTL-subformulae of φ. Similarly, there exists a point in the future at which all
subformulae of φ that are almost always satisfied by w will have failed to be satisfied by
w for the last time. In particular, this is true of the ν-pLTL-subformulae of φ.

These two notions suggest that, given a formula φ and word w ∈ PM,N , it is possible to
transform φ using the after-function until w becomes stable, and then rewrite it according to
either M or N . Since these sets are unknown, we need to consider all possible combinations of
such subsets, which ultimately manifests as a number of Rabin pairs exponential in the size of
the formula. For more details and further examples we refer the reader to Section 5 of Esparza
et al. [4]. The exposition of this section follows the similar exposition therein. However, the
Master Theorem and the lemmata that imply it require considerable “pastification”.

We now make precise the idea expressed in ii). Given a formula φ, word w, and t ∈ N,
we define the set of subformulae in µ(φ) that are satisfied by w at least once at t and the set
of subformulae in µ(φ) that are satisfied by w infinitely often at t. Similarly, we define the
set of subformulae in ν(φ) that are always satisfied by w at t and the set of subformulae in
ν(φ) that are almost always satisfied by w at t:

Fφ
w,t := {ψ ∈ µ(φ) | (w, t) |= Fψ} GFφ

w,t := {ψ ∈ µ(φ) | (w, t) |= GFψ}
Gφw,t := {ψ ∈ ν(φ) | (w, t) |= Gψ} FGφw,t := {ψ ∈ ν(φ) | (w, t) |= FGψ}.

As mentioned, we are in particular interested in the point at which the two sets in each row
coincide. We express this as the word being stable at that point.
▶ Definition 14 (Stable words). A word w is µ-stable (ν-stable) with respect to a formula φ
at index t if Fφ

w,t = GFφ
w,t (Gφw,t = FGφw,t). If w is both µ-stable and ν-stable with respect to

φ at index t, then it is stable with respect to φ at index t.

▶ Lemma 15. Let φ be a formula and w a word. Then there exists an index r ∈ N such that
w is stable with respect to φ at all indices t ≥ r.

The following two definitions specify how to rewrite a formula according to sets M and
N , as indicated in i):
▶ Definition 16. Let φ be a formula, M a set of µ-pLTL-formulae, and N a set of ν-pLTL-
formulae. The formulae φ[M ]ν and φ[N ]µ are inductively defined as,

(ψU ξ)[M ]ν := (ψM ξ)[M ]ν :={
(ψ[M ]ν) W (ξ[M ]ν) (ψU ξ ∈ M)
⊥ (otherwise)

{
(ψ[M ]ν) R (ξ[M ]ν) (ψM ξ ∈ M)
⊥ (otherwise),

(ψW ξ)[N ]µ := (ψR ξ)[N ]µ :={
⊤ (ψW ξ ∈ N)
(ψ[N ]µ) U (ξ[N ]µ) (otherwise)

{
⊤ (ψR ξ ∈ N)
(ψ[N ]µ) M (ξ[N ]µ) (otherwise).

The other cases are defined by recursive descent.
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Notice that once a formula has been rewritten by M , it becomes a µ-formula, that is a
safety formula. Dually, once a formula has been rewritten by N , it becomes a ν-formula,
that is a guarantee formula. It is relatively simple to construct deterministic automata for
such formulae as they do not require complicated acceptance conditions.

▶ Theorem 17 (The Master Theorem for pLTL). Let φ be a formula and w a word stable
with respect to φ at index r. Then w |= φ iff there exist M ⊆ µ(φ) and N ⊆ ν(φ) such that,

1) wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,r⟩]ν .

2) ∀ψ ∈ M .∀s .∃t ≥ s . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ).

3) ∀ψ ∈ N .∃t ≥ 0 . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν).

The statements of the Master Theorem in the if-direction can be significantly strengthened.
The existential quantification over t in premise 2 can be made universal. The statement
wt |= . . . in premise 3 holds for all t′ ≥ r. The strengthened version is proven in the appendix.
Given the semantics of F and G, this is not a surprise. However, the ability to do the rewrites
at every given moment is technically involved due to the incorporation of the past. In the
next section we show how to use the Master Theorem in the construction of a DRA.

6 From pLTL to DRA

We are now ready, based on the Master Theorem, to construct a DRA for the language of a
formula φ. We decompose the language of φ into a Boolean combination of languages, each
of which is recognized by a deterministic automaton with the relatively simple acceptance
condition of Büchi or co-Büchi. For every possible pair of sets M and N of µ- and ν-
subformulae we try to establish the premises of the Master Theorem. Premise 1 can be
checked by trying to identify a stability point r from which the safety automaton for
afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,t⟩]ν continues forever. Whenever this safety check fails, simply try
again. Overall, this corresponds to a co-Büchi condition and a DCA. Premise 2 can be
checked for every ψ ∈ M by identifying infinitely many points from which the guarantee
automaton for F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ finishes its check. Overall, this corresponds to a
Büchi condition and a DBA. Premise 3 is dual to premise 2 and leads to a DCA. The three
together are combined to a DRA with one pair. Overall, we get a DRA with exponentially
many Rabin pairs; one for each choice of M and N . We will as shorthand make use of the
operators F and G in the construction of these automata, as described in Section 2.2.

The major difficulty of incorporating the past into this part, is that the rewriting using the
set M and N needs to be done with the past subformulae correctly weakened. To facilitate this,
we begin by defining an auxiliary automaton that serves to track the weakening conditions
that must hold in order for a rewrite by a set Ci to be justified.

Throughout this section we consider a fixed formula φ that is to be translated into a Rabin
automaton and a fixed ordering C1, C2, . . . , Ck of the elements of 2psf (φ). For simplicity, we
assume C1 = {ψ ∈ psf (φ) | ψ = ψw} = Cφ,0. We freely make use of af , ·[·]ν , and ·[·]µ lifted
to equivalence classes of formulae. This is justified by Lemma 2.

6.1 The Weakening Conditions Automaton
The weakening conditions automaton (WC automaton) is a bed automaton that tracks the
development of weakening conditions under rewrites of the local after-function. Its states are
k-tuples of formulae, each of which describes the requirements that remain to be verified in
order to justify a sequence of rewrites. To facilitate this, we define the following function:
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▶ Definition 18. Given a k-tuple of formulae ψ× = ⟨ψ1, ψ2, . . . , ψk⟩ and a letter σ, the
rewrite condition function is defined as rc(ψ×, σ) := ⟨ψ′

1, ψ
′
2, . . . , ψ

′
k⟩, where,

ψ′
i =

∨
j∈[1..k]

(
afℓ(ψj , σ, Ci⟨Cj⟩) ∧

∧
ξ∈Ci

afℓ(wc(ξ⟨Cj⟩), σ, Ci⟨Cj⟩)
)
.

The rewrite condition function takes a k-tuple of formulae and a letter, and returns an
updated k-tuple. In the resulting tuple, the ith item ψ′

i is a formula that encodes the updated
requirements for further applying the rewrite ·⟨Ci⟩. We remark that, for every t > 0, there
exist indices i, j ≤ k such that Ci = ◦ C⃗φ,t, Cj = ◦ C⃗φ,t−1, and Ci⟨Cj⟩ = Cφ,t. For every
w and for every i we have rc(ψ×, w0i) = ⟨ψ1, . . . , ψk⟩ where each ψi is a positive Boolean
combination of subformulae of φ, weakened in different ways, together with ⊤ and ⊥. Let
B(φ) denote the state space of one such component.

We now define the WC automaton Hφ := (S, S0, δH) over 2Var(φ). Its set of states S
is (B(φ))k. The initial state S0 is the k-tuple (⊤,⊥, . . . ,⊥), that is, the k-tuple where the
first component is ⊤ and all others are ⊥. This represents that the set used to rewrite
φ into its initial form is known to be C1. Finally, the transition relation δ is defined by
δH(ψ×, σ) = rc(ψ×, σ).

6.2 Verifying the Premises of the Master Theorem
We now describe the co-Büchi- and Büchi automata that are capable of verifying the premises
of the Master Theorem. They are all runner automata with bed automaton Hφ := (S, S0, δH).

First, we define the reach of the after-function:

▶ Definition 19. Given a formula φ we define the set of formulae reachable from φ as,

Reach(φ) :=
{

af (φ,w) | w ∈
(
2Var(φ))∗}

.

A key observation is that the number of formulae reachable from φ, up to propositional
equivalence, is doubly exponential in the size of of φ. This is proven in Appendix B. Given a
formula ψ ∈ µ(φ) and set N ⊆ ν(φ) we define the runner automaton Bψ2,N := (S,Q,Q0, δ, α)
over 2Var(φ) with set of states Q := Reach(F(ψ[N ]µ)/∼, initial state Q0 := [F(ψ[N ]µ)]∼, and
Büchi acceptance condition α := [⊤]/∼. Finally, its transition relation is defined as,

δ(ζ, ξ×, σ) :=


∨

i∈[1..k]

F(ψ⟨Ci⟩[N⟨Ci⟩]µ) ∧ ξi[N⟨Ci⟩]µ (ζ ∼ ⊤)

af (ζ, σ) (otherwise),

where ξ× = {ξ1, ξ2, . . . , ξk}. For readability we express δ in terms of formulae, but ask the
reader to note that they represent their corresponding propositional equivalence classes.

Informally, the automaton Bψ2,N begins by checking that the input word w satisfies the
formula F(ψ[N ]µ). Because this formula is in the fragment µ-pLTL, it is satisfied by w iff
the after-function eventually rewrites it into a propositionally true formula. At this point,
the automaton restarts, checking the formula again. Because the subset of psf (φ) that puts
ψ[N ]µ in the correct form at this point - with respect to its past subformulae - is unknown,
all possible such sets are considered in the form of a disjunction. To each disjunct the
corresponding weakening conditions, as tracked by the WC automaton, are added. It follows
that Hφ⋉Bψ2,N is able to verify premise 2) of the Master Theorem for the considered formula
ψ and sets M and N .
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Given a formula ψ ∈ ν(φ) and set M ⊆ µ(φ) we define the runner automaton Cψ3,M :=
(S,Q,Q0, δ, α) over 2Var(φ) with set of states Q := Reach(G(ψ[M ]ν)/∼, initial state Q0 :=
G(ψ[M ]ν), and co-Büchi acceptance condition α := [⊥]/∼. Finally, its transition relation is
defined as,

δ(ζ, ξ×, σ) :=


∨

i∈[1..k]

G(ψ⟨Ci⟩[M⟨Ci⟩]ν) ∧ ξi[M⟨Ci⟩]ν (ζ ∼ ⊥)

af (ζ, σ) (otherwise),

where ξ× = {ξ1, ξ2, . . . , ξk}. As before, the formulae of δ represent their corresponding
equivalence classes. By a similar argument as before, the automaton H ⋉ Cψ3,M is able to
verify premise 3) of the Master Theorem for the formula ψ and sets M and N .

We now turn to constructing automata for verifying the first premise of the Master
Theorem. Given a set M ⊆ µ(φ) we define the runner automaton C1

φ,M := (S,Q,Q0, δ, α)
over 2Var(φ) with set of states Q := Reach(φ[M ]ν)/∼ ×

⋃
ψ∈Reach(φ) Reach(ψ[M ]ν)/∼, initial

state Q0 := ⟨φ,φ[M ]ν⟩, and co-Büchi acceptance condition α := Reach(φ)/∼ × {[⊥]∼}. Its
transition relation is defined as,

δ(⟨ψ, ζ⟩, ξ×, σ) :=


〈

af (ψ, σ),
∨

i∈[1..k]

af (ψ, σ)⟨Ci⟩[M⟨Ci⟩]ν ∧ ξ′
i[M⟨Ci⟩]ν

〉
(ζ ∼ ⊥)〈

af (ψ, σ), af (ζ, σ)
〉

(otherwise),

where ξ× = {ξ′
1, ξ

′
2, . . . , ξ

′
k}. Again, we remind the reader that the formulae in the above

definition represent equivalence classes of formulae. The purpose of the above automaton
is to “guess” an index at which w is stable with respect to φ, starting with the guess that
it is initially stable. Both φ and φ[M ] are evaluated in tandem. If the current guess of
point of stability is incorrect, the second component will eventually collapse into a formula
propositionally equivalent to ⊥. At this point, the automaton proceeds with a new guess by
reapplying ·[M ]ν to φ as it has currently been transformed by the after-function. As with
the other automata, the formulae that make up the states of the WC automaton are used to
justify the rewrite by each set Ci. The automaton Hφ ⋉ C1

φ,M is able to verify premise 1) of
the Master Theorem for the formula φ and the set M .

6.3 The Rabin Automaton

We now construct the final deterministic Rabin automaton. The automaton is the disjunction
of up to 2n simpler Rabin automata; one for every possible choice of M ⊆ µ(φ) and N ⊆ µ(φ).
Taking the disjunction of deterministic Rabin automata is possible by running automata
for all disjuncts in parallel (product construction) and taking the acceptance condition that
checks that at least one of them is accepting. Each simpler Rabin automaton checks the three
premises of the Master Theorem for its specific M and N : (a) M ⊆ GFφ

w,0, (b) N ⊆ FGφw,0,
and (c) w satisfies a version of φ simplified by M . Each of the three is checked by a Büchi
or co-Büchi automaton. In order to check all three we have to consider their conjunction.
For a Rabin automaton (with one pair) it is possible to check the conjunction of Büchi and
co-Büchi by running automata for all conjuncts in parallel (product construction) and using
the Rabin acceptance condition (one pair) to ensure that all co-Büchi automata and all Büchi
automata are accepting.
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▶ Theorem 20. Let φ be a formula. For each M ⊆ µ(φ) and N ⊆ ν(φ), define,

B2
M,N :=

⋂
ψ∈M

Hφ ⋉ Bψ2,N C3
M,N :=

⋂
ψ∈N

Hφ ⋉ Cψ3,M

Rφ,M,N := (Hφ ⋉ C1
φ,M ) ∩ B2

M,N ∩ C3
M,N ,

where Rφ,M,N has one Rabin pair. Then the following DRA over 2Var(φ) recognizes φ:

ADRA(φ) :=
⋃

M⊆µ(φ)
N⊆ν(φ)

Rφ,M,N .

▶ Corollary 21. Let φ be a formula of size n + m, where n is the number of future- and
propositional subformulae of φ, and m is the number of past subformulae of φ. There exists
a deterministic Rabin automaton recognizing φ with doubly exponentially many states in the
size of the formula and at most 2n Rabin pairs.

7 Discussion

We presented a direct translation from pLTL to deterministic Rabin automata. Starting from
a formula with n future subformulae and m past subformulae, we produce an automaton with
an optimal 22O(n+m) states and 2O(n) acceptance pairs. Our translation relies on extending
the classical “after”-function of LTL to pLTL by encoding memory about the past through
the weakening and strengthening of embedded past operators. We extended the Master
Theorem about decomposition of languages expressed about LTL to pLTL.

The only applicable approach (prior to our work) to obtain deterministic automata from
pLTL formulae was to convert the formula to a nondeterministic automaton [13] and then
determinize this automaton [15, 12]. The first can be done either directly [8, 13] or through
two-way very-weak alternating automata [6]. In any case, the first translates a formula with
n future operators and m past operators to an automaton with 2O(n+m) states and the
second translates an automaton with k states to a parity automaton with O(k!2) states and
O(k) priorities. It follows that the overall complexity of this construction is 22O((n+m)·log(n+m)

states and 2O(n+m) priorities. Our approach improves this upper bound to 22O(m+n) . It is
well known that pLTL does not extend the expressive power of LTL. However, conversion
from pLTL to LTL is not viable algorithmically. The best known translation is worst-case
non-elementary [5] and the conversion is provably exponential [10]. So using a conversion to
LTL as a preliminary step to determinization could result in a triple exponential construction.
We note that in the case where there are no future operators nested within past operators, it
is possible to convert the past subformulae directly to deterministic automata. Then, the
remaining future can be determinized independently. This approach has been advocated for
usage of the past in reactive synthesis [2, 3] and implemented recently in a bespoke tool [1].

As future work, we note that the approach of Esparza et al. [4] additionally led to
translations from LTL to nondeterministic automata, limit-deterministic automata, and
deterministic automata. The same should be done for pLTL. Their work also led to a normal
form for LTL formulae, which we believe could be generalized to work for pLTL. The latter
could have interesting relations to the temporal hierarchy of Manna and Pnueli [9]. Such a
normal form could also be related to more efficient translations from pLTL to LTL. Finally,
this approach has led to a competitive implementation of determinization [7] and reactive
synthesis [11]. Extending these implementations to handle past is of high interest.
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A Omitted Proofs and Related Definitions

A.1 Section 2

▶ Lemma 2. Let f be a function on formulae such that f(⊤) = ⊤, f(⊥) = ⊥, and for all
formulae φ and ψ, f(φ ∧ ψ) = f(φ) ∧ f(ψ) and f(φ ∨ ψ) = f(φ) ∨ f(ψ). Then, for all pairs
of formulae φ and ψ, if φ ∼ ψ then f(φ) ∼ f(ψ).

Proof. The proof by Esparza et al. [4] immediately generalizes to our extended definition,
since all temporal subformulae are treated equally in the propositional semantics of pLTL. ◀

A.2 Section 3

In order to prove Lemma 9 we state some intermediary required propositions. First, the
formula φ⟨C⟩ weakens all the past formulae in C. For every formula ψ if (ψw) holds then
also (ψs) holds. It follows that if C ⊆ C ′ then weakening by C ′ holds whenever weakening
by C does.

▶ Proposition 22. Let φ be a formula, w a word, and C and C ′ two sets of past formulae
such that C ⊆ C ′. Then, for arbitrary t ∈ N,

(w, t) |= φ⟨C⟩ ⇒ (w, t) |= φ⟨C ′⟩.

Proof. Using the facts that (σ, t) |= ψ ⇒ (σ, t) |= ψw for all subformulae ψ of φ, and that φ
is in negation normal form, an inductive argument proves the proposition. ◀

We now prove that weakening indeed preserves the information that is lost by removing
the first letter of the word w. Namely, if the formula weakened by the correct set of formulae
holds at a certain time on the shorter word (without the first letter), then the original formula
holds in the same place in the full word.

▶ Proposition 23. Let φ and ζ be formulae such that φ is a subformula of ζ. Let w be a
word and t ∈ N. Then (w, t+ 1) |= φ iff (w1, t) |= φ⟨Cζ,1⟩.

Proof. We prove this by induction on the structure of the formula φ. The base cases are
trivial, as they involve no past operators, as are the cases for Boolean connectives in the
inductive step. We thus focus on cases in the inductive step where the top-level operator of
φ is temporal.

Case φ = ψU ξ:

(w, t+ 1) |= ψU ξ ⇔ (Def. of |=)
∃r > t . ((w, r) |= ξ and ∀s ∈ (t, r) . (w, s) |= ψ) ⇔ (IH)

∃r ≥ t . ((w1, r) |= ξ⟨Cζ,1⟩ and ∀s ∈ [t, r) . (w1, s) |= ψ⟨Cζ,1⟩) ⇔ (Def. of |=)
(w1, t) |= (ψ⟨Cζ,1⟩) U (ψ⟨Cζ,1⟩) ⇔ (Def. of ·⟨·⟩)
(w1, t) |= (ψU ξ)⟨Cζ,1⟩.
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Case φ = Yψ : Assume t = 0. Then,

(w, 1) |= Yψ ⇔ (Def. of |=)
w |= ψ ⇔ (Def. of Cζ,1)

Yψ ∈ Cζ,1 ⇔ (Def. of·⟨·⟩)
(Yψ)⟨Cζ,1⟩ = Ỹψ ⇔ (Def. of |=)
w1 |= (Yψ)⟨Cζ,1⟩.

Assume instead that t > 0. Then,

(w, t+ 1) |= Yψ ⇔ (Def. of |=)
(w, t) |= ψ ⇔ (IH, t > 0)

(w1, t− 1) |= ψ⟨Cζ,1⟩ ⇔ (Def. of |=)
(w1, t) |= Y(ψ⟨Cζ,1⟩) ⇔ (Def. of·⟨·⟩, t > 0)
(w1, t) |= (Yψ)⟨Cζ,1⟩.

Case φ = ψ S ξ: The inductive hypothesis gives us for all s, r, and t,

(w, s+ 1) |= ξ and ∀r ∈ (s+ 1, t] . (w, r) |= ψ ⇔ (IH)
(w, s) |= ξ⟨Cζ,1⟩ and ∀r ∈ (s, t) . (w, r) |= ψ⟨Cζ,1⟩.

This shows that,

(w, t+ 1) |= ψ S ξ ⇔ (w, t) |= (ψ⟨Cζ,1⟩) S (ξ⟨Cζ,1⟩). (1)

In particular, it proves the (⇒)-direction and both directions if ξ /∈ Cζ,1. It remains
to prove the (⇐)-direction given ξ ∈ Cζ,1. It suffices to assume ξ ∈ Cζ,1 and (w1, t) |=
H(ψ⟨Cζ,1⟩). Then the induction hypothesis gives us (w, r) |= ψ, for all r ≤ t+ 1. Since
ξ ∈ Cζ,1, we know that w |= ξ, showing that (w, t+ 1) |= ψ S ξ.
Case φ = Xψ:

(w, t+ 1) |= Xψ ⇔ (Def. of |=)
(w, t+ 2) |= ψ ⇔ (IH)

(w1, t+ 1) |= ψ⟨Cζ,1⟩ ⇔ (Def. of |=)
(w1, t) |= X(ψ⟨Cζ,1⟩) ⇔ (Def. of·⟨·⟩)
(w1, t) |= (Xψ)⟨Cζ,1⟩.

Case φ = ψW ξ:

(w, t+ 1) |= ψW ξ ⇔ (Def. of |=)
∀r > t . ((w, r) |= ψ or ∃s ∈ (t, r) . (w, s) |= ξ) ⇔ (IH)

∀r ≥ t . ((w1, r) |= ψ⟨Cζ,1⟩ or ∃s ∈ [t, r) . (w1, s) |= ξ⟨Cζ,1⟩) ⇔ (Def. of |=)
(w1, t) |= (ψ⟨Cζ,1⟩) W (ξ⟨Cζ,1⟩) ⇔ (Def. of ·⟨·⟩)
(w1, t) |= (ψW ξ)⟨Cζ,1⟩.

Case φ = Ỹψ: The proof is identical to that of the case φ = Yψ.
Case φ = ψ S̃ ξ : Assume (w, t+ 1) |= Hψ. Then (w, t) |= H(ψ⟨Cζ,1⟩, by the induction
hypothesis. In particular, w |= ψ, so that (ψ S̃ ξ) ∈ Cζ,1. Hence (w1, t) |= (ψ S̃ ξ)⟨Cζ,1⟩.
Assume (ψ S̃ ξ) ∈ Cζ,1 and (w1, t) |= H(ψ⟨Cζ,1⟩). The former implies that w |= ψ ∨ ξ,
while the latter together with the induction hypothesis imply that (w, t+1) |= Hψ. Hence
(w, t+ 1) |= ψ S̃ ξ. The other possibilities are covered by (1).
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Since the semantics of φ = ψM ξ, φ = ψR ξ, φ = ψB ξ, and φ = ψ B̃ ξ differ only from the
semantics of the already handled dual versions by the appearance of a conjunction of proper
subformulae in the right operand, their proofs are omitted. ◀

Lemma 9 now follows by induction: recursive weakening by the correct sets preserves the
truth value of the formula under removal of a longer prefix.

▶ Lemma 9. Given a formula φ, word w, and t ∈ N, we have (w, t) |= φ iff wt |= φ⟨◦ C⃗φ,t⟩.

Proof. If t = 0 the result is immediate since φ⟨◦ C⃗φ,0⟩ = φ⟨Cφ,0⟩ = φ and w0 = w. If t > 0
then the result follows by repeated applications of Lemma 24. ◀

A.3 Section 4
We prove the correctness of Theorem 13. We state and prove intermediate results. The after
function tries out all possible sets of past subformulae as the sets according to which the
formula is weakened. We first shows that for the disjuncts that choose the correct weakening
the after function works as expected. That is, if at every letter read we choose the correct set
of formulae to weaken the formula by, then the local after function preserves the satsifaction
of the formula.

▶ Lemma 24. Let φ and ζ be two formulae such that φ is a subformula of ζ, w be a word,
and t ∈ N. Then w |= φ iff wt |= afℓ(φ,w0t, C⃗ζ,t).

Proof. We prove this for t = 1 (◦ C⃗ζ,1 = C⃗ζ,1) by induction on the structure of φ. The full
proof follows by induction on t. We concentrate on the inductive step for the cases where φ
is a temporal formula. By definition, w satisfies the weakening conditions of all formulae in
Cζ,1. As part of the inductive hypothesis, we thus have for all subformulae ψ of φ,

w1 |=
∧

ξ∈psf (ψ)∩Cζ,1

afℓ(wc(ξ), σ, Cζ,1).

For this reason, we omit this component of puℓ in the below proof. We proceed by case
distinction on φ.

Case φ = Xψ:

w |= Xψ ⇔ (Def. of |=)
(w, 1) |= ψ ⇔ (Prop. 23)
w1 |= ψ⟨Cζ,1⟩ ⇔ (Def. of afℓ)
w1 |= afℓ(Xψ,w01, Cζ,1)

Case φ = ψU ξ: We use the identity ψU ξ ≡ ξ ∨ ψ ∧ X(ψU ξ). From the inductive
hypothesis we get w |= ψ ⇔ w1 |= afℓ(ψ,w01, Cζ,1) and w |= ξ ⇔ w1 |= afℓ(ξ, w01, Cζ,1).
It remains to show the following:

(w, 1) |= ψU ξ ⇔ (Def. of |=)
∃k ≥ 1 . ((w, k) |= ξ and ∀j ∈ (0, k) . (w, j) |= ψ) ⇔ (Prop. 23)

∃k ≥ 0 . ((w1, k) |= ξ⟨Cζ,1⟩ and ∀j ∈ [0, k) . (w1, j) |= ψ⟨Cζ,1⟩) ⇔ (Def. of |=)
w1 |= (ψ⟨Cζ,1⟩) U (ξ⟨Cζ,1⟩) ⇔ (Def. of·⟨·⟩)
w1 |= (ψU ξ)⟨Cζ,1⟩.
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Case φ = ψW ξ: We use the identity Gψ ≡ ψ ∧ X(Gψ). By the induction hypothesis we
have w |= ψ ⇔ w1 |= afℓ(ψ,w01, Cζ,1). We also have,

(w, 1) |= Gψ ⇔ (Prop. 23)
w1 |= G(ψ⟨Cζ,1⟩) ⇔ (Def. of·⟨·⟩)
w1 |= (Gψ)⟨Cζ,1⟩.

This together with the proof for φ = ψU ξ completes the proof.
Case φ = Yψ: Immediate, as w ̸|= Yψ.
Case φ = ψ S ξ:

w |= ψ S ξ ⇔ (Def. of |=)
w |= ξ ⇔ (IH)
w1 |= afℓ(ξ, w01, Cζ,1) ⇔ (Def. of afℓ)
w1 |= afℓ(ψ S ξ, w01, Cζ,1).

Case φ = ψ S̃ ξ:

w |= ψ S̃ ξ ⇔ (Def. of |=)
w |= ψ ∨ ξ ⇔ (IH)
w1 |= afℓ(ψ,w01, Cζ,1) ∨ afℓ(ξ, w01, Cζ,1) ⇔ (Def. of afℓ)
w1 |= afℓ(ψ S̃ ξ, w01, Cζ,1).

As in the proof of Proposition 23, and for the same reason, we omit the cases dual to the
ones handled above. ◀

We now show that the correct weakening at time t can be found by taking a sequence
of weakenings and updating the formula recursively by every letter consumed by the after
function in turn.

▶ Lemma 25. Let φ and ζ be two formulae such that φ is a subformula of ζ, w a word, and
t ∈ N. Then wt |= afℓ(φ,w0t, C⃗ζ,t) iff there exists a sequence of sets of past formulae C⃗ of
length t+ 1 such that wt |= afℓ(φ,w0t, C⃗).

Proof. We prove this for t = 1. The full proof follows by an inductive argument. The “only
if”-direction is immediate, since Cζ,1 ∈ 2psf (ζ). We will prove the “if”-direction by induction
on the size of φ. The base cases are immediate, as is the inductive step if φ is a Boolean- or
past formula.

Assume a set C ∈ 2psf (ζ). Given a subformula ψ of φ, we have,

w1 |=
∧

ξ∈psf (ψ)∩C

afℓ(wc(ξ), w01, C) ⇒ (IH)

w1 |=
∧

ξ∈psf (ψ)∩C

afℓ(wc(ξ), w01, Cζ,1) ⇒ (Lemma 24)

w |=
∧

ξ∈psf (ψ)∩C

wc(ξ),

which in turn implies that psf (ψ) ∩ C ⊆ Cζ,1. From this and Proposition 22, we conclude
that

w1 |= puℓ(ψ,w01, C) ⇒ w1 |= puℓ(ψ,w01, Cζ,1). (2)
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The top-level structure of afℓ(φ,w01, C) and afℓ(φ,w01, Cζ,1) are identical with respect to
applications of afℓ and puℓ. Since these are applied to proper subformulae of φ, the inductive
hypothesis together with (2) finishes the proof. ◀

Based on these two results on the local after function and the choice of the correct
weakenings we can show that the (total) after function is indeed correct. That is, if the
formula holds initially, then applying after to it for every letter read leads to a formula that
holds over the shortened suffix (and the other direction holds as well).

▶ Theorem 13. For every formula φ, word w, and t ∈ N we have w |= φ iff wt |= af (φ,w0t).

Proof. This follows directly from the above two lemmata:

w |= φ ⇔ (Lemma 24)

wt |= afℓ(φ,w0t, C⃗φ,t) ⇔ (Lemma 25)

∃C⃗ . wt |= afℓ(φ,w0t, C⃗) ⇔ (Def. of |= and af )
wt |= af (φ,w0t).

◀

A.4 Section 5
In order to show that a word w eventually becomes stable with respect to φ (Lemma 15, we
first show that there is stabilization with respect to single formulae.

▶ Lemma 26. Let φ be a formula and w a word. Then,

1) ∃r . ∀t ≥ r . (w, t) |= Fφ ⇔ (w, t) |= GFφ
2) ∃r . ∀t ≥ r . (w, t) |= Gφ ⇔ (w, t) |= FGφ.

Proof. 1) We prove the (⇒)-direction, as the other is obvious from the semantics of pLTL.
Assume w |= Fφ. If w |= GFφ then we are done. If w ̸|= GFφ there exists a r ≥ 0 such that
∀t ≥ r . (w, t) ̸|= Fφ, which implies that ∀t ≥ r . (w, t) ̸|= GFφ.

2) We prove the (⇐)-direction, as the other is obvious from the semantics of pLTL.
Assume w |= FGφ. Then there exists an r ≥ 0 such that ∀t ≥ r . (w, t) |= Gφ, which implies
that ∀t ≥ r . (w, t) |= FGφ. ◀

Based on stability with respect to an individual formula, we can show stability with
respect to a set by taking the maximum.

▶ Lemma 15. Let φ be a formula and w a word. Then there exists an index r ∈ N such that
w is stable with respect to φ at all indices t ≥ r.

Proof. By Lemma 26, there exist for every subformula of φ indices k1 and k2 satisfying
premise 1) and 2) of its statement. The desired index is the maximum of all such indices for
all subformulae of φ. ◀

On the way to proving the Master Theorem (Theorem 17), we first establish properties
of the rewriting of formulae by sets of µ and ν formulae. The following lemma states when
rewriting is possible and - depending on whether the formula we rewrite by is satisfied finitely
often, infinitely often, eventually always, or always - what it means regarding the preservation
of the truth value of the formula.
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▶ Lemma 27. Let φ be a formula, w a word, and t ∈ N. Let M and N be sets of formulae.
Then,

1) If Fφ
w,0 ⊆ M and (w, t) |= φ, then (w, t) |= φ[M ]ν .

2) If M ⊆ GFφ
w,0 and (w, t) |= φ[M ]ν , then (w, t) |= φ.

3) If FGφw,0 ⊆ N and (w, t) |= φ, then (w, t) |= φ[N ]µ.
4) If N ⊆ Gφw,0 and (w, t) |= φ[N ]µ, then (w, t) |= φ.

Proof. We will prove this using induction on the structure of φ. We only consider the
inductive step, and only a representative for the cases where ·[M ]ν or ·[N ]µ affect the
operator at the root of the syntax tree of φ; the other cases are proven by straightforward
induction and the base steps are trivial.

1) Assume Fφ
w,0 ⊆ M . Let φ = ψU ξ and assume (w, t) |= ψU ξ. Then ψU ξ ∈ M . We

have,

(w, t) |= ψU ξ ⇒ (IH)
(w, t) |= (ψ[M ]ν) U (ξ[M ]ν) ⇒ (Def. of |=)
(w, t) |= (ψ[M ]ν) W (ξ[M ]ν) ⇒ (Def. of M , φ ∈ M)
(w, t) |= (ψU ξ)[M ]ν .

2) Assume M ⊆ GFφ
w,0. Let φ = ψU ξ and assume (w, t) |= (ψU ξ)[M ]ν . Then

ψU ξ ∈ M , since (w, t) ̸|= ⊥. Since M ⊆ GFφ
w,0, we have w |= GF(ψU ξ), and in particular

(w, t) |= Fξ. Hence,

(w, t) |= (ψU ξ)[M ]ν ⇒ (Def. of M , φ ∈ M)
(w, t) |= (ψ[M ]ν) W (ξ[M ]ν) ⇒ (IH)
(w, t) |= ψW ξ ⇒ ((w, t) |= Fξ)
(w, t) |= ψU ξ.

3) Assume FGφw,0 ⊆ N . Let φ = ψW ξ and assume (w, t) |= ψW ξ. If ψW ξ ∈ N , then
(ψW ξ)[N ]µ = ⊤, and we are done. Assume ψW ξ /∈ N . Since FGφw,0 ⊆ N , this means that
w ̸|= FG(ψW ξ). In particular, it means that w ̸|= FG(ψ ∨ ξ), implying that (w, t) ̸|= Gψ.
Thus, by using the fact that ψW ξ ≡ ψU ξ ∨ Gψ, we get,

(w, t) |= ψW ξ ⇒ ((w, t) ̸|= Gψ)
(w, t) |= ψU ξ ⇒ (IH)
(w, t) |= (ψ[N ]µ) U (ξ[N ]µ) ⇒ (Def. of N , φ /∈ M)
(w, t) |= (ψW ξ)[N ]µ.

4) Assume N ⊆ Gφw,0. Let φ = ψW ξ and assume (w, t) |= (ψW ξ)[N ]µ. If ψW ξ ∈ N ,
then w |= G(ψW ξ), so that (w, t) |= G(ψW ξ), as required. If ψW ξ /∈ N , then,

(w, t) |= (ψW ξ)[N ]µ ⇒ (Def. of N , φ /∈ M)
(w, t) |= (ψ[N ]µ) U (ξ[N ]µ) ⇒ (IH)
(w, t) |= ψU ξ ⇒ (Def. of |=)
(w, t) |= ψW ξ.

◀
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We are ready to prove the if side of the Master Theorem. We prove a stronger claim,
which replaces existential quantifications by universal quantifications. Namely, for the right
sets of µ and ν-formulae that indeed occur infinitely often and eventually always, it is possible
to rewrite formulae to safety formulae and guarantee formulae and combine this with the
application of weakening.

▶ Lemma 28. Let φ be a formula and w a word that is stable with respect to φ at index r.
If M = GFφ

w,0 and N = FGφw,0, then,

∀ψ ∈ M .∀t ≥ 0 . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ)
and

∀ψ ∈ N .∀t ≥ r . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν).

Proof. Let ψ ∈ M , so that w |= GFψ, and let t ≥ 0. Since FGφw,t = FGφw,0 ⊆ N we have

FGφ⟨◦ C⃗φ,t⟩
wt,0 ⊆ N⟨◦ C⃗φ,t⟩. By Lemma 9, it holds that wt |= GF(ψ⟨◦ C⃗φ,t⟩), and we have in par-

ticular that wt |= F(ψ⟨◦ C⃗φ,t⟩). Applying Lemma 27.3 we get wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ).
Let ψ ∈ N , so that w |= FGψ, and let t ≥ r. Then (w, t) |= Gψ, since w is stable

at index t, and so wt |= G(ψ⟨◦ C⃗φ,t⟩), by Lemma 9. By assumption, we have Fφ
w,t =

GFφ
w,t ⊆ Fφ

w,0 ⊆ M , which implies that Fφ⟨◦ C⃗φ,t⟩
wt,0 ⊆ M⟨◦ C⃗φ,t⟩. By Lemma 27.1, we then

get wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν). ◀

We prove the only if direction of the Master Theorem. If we are able to prove that the
rewrite of formulae to safety formulae and guaratnee formulae combined with application
of weakening, then it is indeed the case that the original formulae occur infinitely often or
eventually always.

▶ Lemma 29. Let φ be a formula and w a word. Let M ⊆ µ(φ) and N ⊆ ν(φ). If,

∀ψ ∈ M .∀s .∃t ≥ s . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ)
and

∀ψ ∈ N .∃t ≥ 0 . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν),

then M ⊆ GFφ
w,0 and N ⊆ FGφw,0,

Proof. Fix an enumeration ψ1, ψ2, . . . , ψn of the subformulae of M ∪ N such that for all
i, j ∈ [1..n], if ψi is a proper subformula of ψj , then i < j. We define the (unique) sequences,

M0 := ∅ Mi :=
{
Mi−1 ∪ {ψi} if ψi ∈ µ(φ)
Mi−1 if ψi ∈ ν(φ)

N0 := ∅ Ni :=
{
Ni−1 if ψi ∈ µ(φ)
Ni−1 ∪ {ψi} if ψi ∈ ν(φ).

Note that Mn = M and Nn = N , and for all i ∈ [1..n] exactly one of ψi ∈ Mi and ψi ∈ Ni
holds. We prove the lemma by induction on n. The base case with n = 0 is vacuously true,
so we proceed by proving the inductive step with n = i > 0.

Assume ψi ∈ M . By Lemma 15 and the assumption of M , there exists an infinite number
of indices r such that Gφw,r = FGφw,r = FGφw,0 and wr |= F(ψi⟨◦ C⃗φ,r⟩[Ni⟨◦ C⃗φ,r⟩]µ). For such
an index r, we have by the inductive hypothesis that Gφw,r = FGφw,0 ⊇ Ni−1 = Ni, so that
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Ni⟨◦ C⃗φ,r⟩ ⊆ Gφ⟨◦ C⃗φ,r⟩
wr,0 . Lemma 27.4 establishes that wr |= F(ψi⟨◦ C⃗φ,r⟩). By Lemma 9, this

means that (w, r) |= Fψi. Since the index r is one of infinitely many, we have ψi ∈ GFφ
w,0.

Assume ψi ∈ N . Then wr |= G(ψi⟨◦ C⃗φ,r⟩[Mi⟨◦ C⃗φ,r⟩]ν) for some index r, by assumption
of N . By the inductive hypothesis, we have GFφ

w,r = GFφ
w,0 ⊇ Mi−1 = Mi, so that

Mi⟨◦ C⃗φ,r⟩ ⊆ GFφ⟨◦ C⃗φ,r⟩
wr,0 . Lemma 27.2 establishes that wr |= G(ψi⟨◦ C⃗φ,r⟩). By Lemma 9,

this means that w |= FGψi, or ψi ∈ FGφw,0. ◀

The Master Theorem follows from the two lemmata. It complements the results about the
formulae that hold infinitely often and eventually always by stating the connection between
formulae holding and being able to prove that the rewrite of the main formula to a safety
formula combined with the application of weakening on it.

▶ Theorem 17 (The Master Theorem for pLTL). Let φ be a formula and w a word stable
with respect to φ at index r. Then w |= φ iff there exist M ⊆ µ(φ) and N ⊆ ν(φ) such that,

1) wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,r⟩]ν .

2) ∀ψ ∈ M .∀s .∃t ≥ s . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ).

3) ∀ψ ∈ N .∃t ≥ 0 . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν).

Proof. (⇒): Let M = GFφ
w,0 and N = FGφw,0. Properties 2) and 3) hold by Lemma 28.

By assumption w |= φ, which implies that wr |= afℓ(φ,w0r, C⃗φ,r) by Lemma 24. Since
Fφ
w,r = GFφ

w,r = GFφ
w,0 ⊆ M , we get Fφ⟨◦ C⃗φ,r⟩

wr,0 ⊆ M⟨◦ C⃗φ,r⟩. Applying Lemma 27.1, we get
wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,r⟩]ν .

(⇐): Assume properties 1) through 3) hold. That M ⊆ GFφ
w,0 = GFφ

w,r follows from

Lemma 29, which implies that M⟨◦ C⃗φ,r⟩ ⊆ GFφ⟨◦ C⃗φ,r⟩
wr,0 . Applying Lemma 27.2 to the

assumption that wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,r⟩]ν implies wr |= afℓ(φ,w0r, C⃗φ,r). Finally,
from Lemma 24 we get w |= φ. ◀

A.5 Section 6
We now prove the correctness of the construction of the DRA.

We start by stating properties of the after function when applied to safety formulae
and guarantee formulae. Namely, a guarantee formula is eventually rewritten by the after
function to true. Dually, a safety formula is never rewritten by the after function to false.
This is a result of Esparza [4], which we extend here to the case of formulae including past.

▶ Lemma 30. Let φ be a formula and w a word. Then

1) If φ ∈ µ-pLTL then w |= φ ⇔ ∃t . af (φ,w0t) ∼ ⊤.
2) If φ ∈ ν-pLTL then w |= φ ⇔ ∀t . af (φ,w0t) ̸∼ ⊥.

Proof. The proof of these properties is very similar to that in Esparza et al. [4] and is
omitted. ◀

The automata that we are going to construct are going to apply consecutive weakenings.
Our next steps is to delve into the workings of repeated weakenings and how they combine with
the conversion of formulae to safety and guarantee formulae. Before that, as a technicality,
we extend the rewriting of conditions that are used as part of the WC automaton to finite
words.
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▶ Definition 31 (The extended rewrite condition function). We extend the definition of rc to
finite words of length n in the following way:

rc(ψ×, ϵ) := ψ× (n = 0)
rc(ψ×, w0n) := rc(rc(ψ×, w0(n−1)), w(n−1)n)) (n > 0).

We turn now to the properties of weakenings. We show that the sets of possible weakenings
that we consider are rich enough to develop the correct weakening step by step. That is,
given a current weakening, there is a way to use it on top of one of a basic set of weakenings
to get to the next correct weakening.

▶ Lemma 32. Let w be a word and t ∈ N. Then,

◦ C⃗φ,t+1⟨◦ C⃗φ,t⟩ = Cφ,t+1.

Proof. We have,

◦ C⃗φ,t+1⟨◦ C⃗φ,t⟩ = {ψ | ψ ∈ psf (φ) and wt |= wc(ψ⟨◦ C⃗φ,t⟩)}⟨◦ C⃗φ,t⟩

= {ψ⟨◦ C⃗φ,t⟩ | ψ ∈ psf (φ) and wt |= wc(ψ⟨◦ C⃗φ,t⟩)}

= {ψ | ψ ∈ psf (φ⟨◦ C⃗φ,t⟩) and wt |= wc(ψ)}
= Cφ,t+1.

◀

We continue with our quest for defining the correct weakening in terms of basic weakenings.
This will be required when the automata we construct blindly try out all possible weakenings
(but add conditions that make sure that only correct weakenings will be used).

▶ Lemma 33. Let w be a word. Then there exists a sequence of indices i0, i1, . . . such that
Cit = ◦ C⃗φ,t for all t ≥ 0.

Proof. Let i0 = 1, so that Ci0 = {ψ | ψ ∈ psf (φ) and ψ = ψw} = ◦ C⃗φ,0. For t ≥ 0, we
inductively define it+1 to be the index such that,

Cit+1 := {ψ | ψ ∈ psf (φ) and wt |= wc(ψ⟨Cit⟩)}.

A simple inductive argument shows that i0, i1, . . . is the sought sequence. ◀

Getting close to constructs that appear in the automata, we show that the information
maintained by the WC automaton interacts well with the conversion to safety and guarantee.
Namely, we are able to take the weakening conditions maintained by the WC automaton
and turn them into safety or guarantee formula. In order to do that, we update the original
µ- and ν-formulae that are subformulae of φ by weakening them. If we manage to prove
that the weakened safety/guarantee weakening condition holds, then the weakenings we used
are correct. That is, we try all possible weakenings and check when applying one that its
weakening condition holds actually works and interacts well with the conversion to safety
and guarantee automata.

▶ Lemma 34. Let w = σ0, σ1, . . . be a word and i0, i1, . . . a sequence of indices such that
Cit = ◦ C⃗φ,t for all t ∈ N, where i0 = 1. Let ζ = ⟨⊤,⊥, . . . ,⊥⟩. Assume rc(ζ, w0t) =
⟨ψt1, ψt2, . . . , ψtk⟩. Then,

1) wt |= ψtit ,
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for all t ∈ N and i ≤ k. Moreover, if M ⊆ µ(φ), then,

2) If M ⊆ GFφ
w,0 then wt |= ψti [M⟨Ci⟩]ν ⇒ Ci ⊆ ◦ C⃗φ,t,

for all t and i ≤ k. Finally, if N ⊆ ν(φ) and w is stable with respect to φ at time r, then,

3) If N ⊆ FGφw,0 then wt |= ψti [N⟨Ci⟩]µ ⇒ Ci ⊆ ◦ C⃗φ,t,

for all t ≥ r and i ≤ k.

Proof. 1) We prove this by induction on t. By definition we have ψ0
i0

= ⊤, so that w |= ψ0
i0

,
proving the base case. For the inductive step, assume t ≥ 0. Consider the following disjunct
of ψt+1

it+1
:

afℓ(ψtit , σt, Cit+1⟨Cit⟩) ∧
∧

ξ∈Cit+1

afℓ(wc(ξ⟨Cit⟩), σt, Cit+1⟨Cit⟩).

By our choice of indices and Lemma 32 we have Cit+1⟨Cit⟩ = Cφ,t. The inductive hypothesis
establishes that wt |= ψtit and by definition we have that wt |= wc(ξ) for all ξ ∈ Cφ,t. By
applying Lemma 24 we conclude that wt+1 satisfies the above disjunct, so that wt+1 |= ψt+1

it+1
.

2) If t = 0 then the proof is immediate. Assume t > 0. By assumption there exists a
sequence of indices j1, j2, . . . , jt such that,

wt |=
∧

ξ∈Cjs

f(wc(ξ⟨Cjs−1⟩), s)[M⟨Cjt⟩]ν ,

for s ∈ [1..t], where f is inductively defined as,

f(ξ, t+ 1) = ξ

f(ξ, s) = f(afℓ(ξ, σs−1, Cjs
⟨Cjs−1⟩), s+ 1) (s ∈ [1..t]).

We define the analogous function g for the sequence of entailed sets of past formulae:

g(ξ, t+ 1) = ξ

g(ξ, s) = f(afℓ(ξ, σs−1, ◦ C⃗φ,s⟨◦ C⃗φ,s−1⟩), s+ 1) (s ∈ [1..t]).

Fix an ordering ξ1, ξ2, . . . , ξn of the subformulae in psf (φ) such that the subformula order
is respected; we assume that psf (φ) ̸= ∅ or the proof is trivial. Define S0 := ∅ and
Si := {ξi} ∪ Si−1 for i ∈ [1..n]. We will prove by induction on n that,

wt |= f(wc(ξ⟨Cjs⟩), s+ 1)[M⟨Cjt⟩]ν ⇒ ws |= wc(ξ⟨◦ C⃗φ,s⟩), (3)

for all ξ ∈ Sn and all s < t. This implies that Cjs
∩ Sn ⊆ C⃗φ,s.

The base case n = 1 is trivial, since wc(ξ1) contains no past subformulae. Assume
n > 1 and that (3) holds for all ξ ∈ Sn−1 and all s < t. Moreover, assume that wt |=
f(wc(ξn⟨Cjs

⟩), s+ 1)[M⟨Cjt
⟩]ν .

The formula f(wc(ξn⟨Cjs⟩), s + 1) is a Boolean combination of formulae of the form
ζ⟨◦ C⃗⟩, where C⃗ is the subsequence Cjs

, Cjs+1 , . . . , Cjt
and ζ is a proper subformula of ξn.

Fix such a formula ζ. We will show by structural induction on ζ that,

(wt, r) |= ζ⟨◦ C⃗⟩[M⟨Cjt⟩]ν ⇒ (wt, r) |= ζ⟨◦ C⃗φ,t⟩, (4)

for all r ≥ 0. Assume (wt, r) |= ζ⟨◦ C⃗⟩[M⟨Cjt⟩]ν . We consider two cases; the others are
analogous or trivial. Assume ζ is a past formula. The interesting case is when ζ ∈ ◦ C⃗,



24 A Direct Translation from LTL with Past to Deterministic Rabin Automata

from which it follows that wt |= f(wc(ζ⟨Cjs−1⟩), s)[M⟨Cjt⟩]ν . Since ζ ∈ Sn−1, equation (3)
holds by the inductive hypothesis. Hence ws−1 |= wc(ζ⟨◦ C⃗φ,s−1⟩), and so ζ ∈ ◦ C⃗φ,s. By the
inductive hypothesis on (4) the result follows. Now assume ζ is rooted with a U-operator and
that ζ⟨◦ C⃗⟩ ∈ M⟨Cjt⟩. Then ζ⟨◦ C⃗⟩ ∈ M⟨◦ C⃗⟩, since Cjt ⊆ ◦ C⃗, and so ζ⟨◦ C⃗φ,t⟩ ∈ M⟨◦ C⃗φ,t⟩.
Then,

(wt, r) |= (ζ1 U ζ2)⟨◦ C⃗⟩[M⟨Cjt
⟩]ν ⇒ (ζ⟨C⃗⟩ ∈ M⟨Cjt

⟩)

(wt, r) |= (ζ1⟨◦ C⃗⟩[M⟨Cjt⟩]ν) W (ζ2⟨◦ C⃗⟩[M⟨Cjt⟩]ν) ⇒ (IH (4))

(wt, r) |= (ζ1⟨◦ C⃗φ,t⟩) W (ζ2⟨◦ C⃗φ,t⟩) ⇒ (Def. of ·⟨·⟩)

(wt, r) |= (ζ1 W ζ2)⟨◦ C⃗φ,t⟩ ⇒ (ζ⟨◦ C⃗φ,t⟩ ∈ M⟨◦ C⃗φ,t⟩)

(wt, r) |= (ζ1 U ζ2)⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩].

By assumption M ⊆ GFφ
w,0 = GFφ

w,t, so that M⟨◦ C⃗φ,t⟩ ⊆ GFφ⟨◦ C⃗φ,t⟩
w,t . By Lemma 27.2 we

get (wt, r) |= (ζ1 U ζ2)⟨◦ C⃗φ,t⟩, as required.
To recapitulate, we have shown, in particular, that wt |= ζ⟨◦ C⃗⟩[M⟨Cjt

⟩]ν implies that
wt |= ζ⟨◦ C⃗φ,t⟩ for all subformulae ζ of f(wc(ξn⟨Cjs⟩), s+1). The formula g(wc(ξn⟨C⃗φ,s⟩, s+1)
differs from f(wc(ξn⟨Cjs

⟩), s+1) only by the potential addition of extra weakening conditions.
However, these are by definition satisfied. Hence wt |= g(wc(ξn⟨C⃗φ,s⟩, s+1). From Lemma 24
we get that ws |= wc(ξn⟨C⃗φ,s⟩).

3) This is completely analogous to the proof of 2) and omitted. The difference is that
stability at t is required in order to apply Lemma 27.4. ◀

We are now ready to show that the Büchi automata we construct for a µ formula ψ

indeed work correctly. That is, based on the correctness of the ν rewritings applied to it, the
automaton accepts if and only if the µ-formula ψ holds infinitely often.

▶ Lemma 35. Let φ be a formula and ψ ∈ µ(φ). Consider Hφ := (S, S0, δH) the WC
automaton defined in section 6.1 used as bed automaton and Bψ2,N := (Q,Q0, δ, α) defined in
Section 6.2 used as runner automaton, both over 2Var(φ). Then,

1) If FGφw,0 ⊆ N and w satisfies

∀t ≥ 0 . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ),

then Hφ ⋉ Bψ2,N accepts w.
2) If N ⊆ FGφw,0 and there exists an accepting run of Hφ ⋉ Bψ2,N on w then,

∀s .∃t ≥ s . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ).

Proof. 1) By assumption w |= F(ψ[N ]µ). By Lemma 30, there exists a smallest index t such
that af (F(ψ)[N ]µ, w0t) ∼ ⊤, showing that an accepting state will be visited at least once.
The subsequent state of Bψ2,N visited after reading wt(t+1) is∨

i∈[1..k]

F(ψ⟨Ci⟩[N⟨Ci⟩]µ) ∧ ξti [N⟨Ci⟩]µ,

where ξti is the ith component of the bed automaton’s state. Again by assumption, we
have wt+1 |= F(ψ⟨◦ C⃗φ,t+1⟩[N⟨◦ C⃗φ,t+1⟩]µ). Moreover, from Lemma 34.1 we get wt+1 |= ξtl ,
where l is such that Cl = ◦ C⃗φ,t; such an l exists by Lemma 33. From the assumption that
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FGφw,0 ⊆ N we get FGφ⟨◦ C⃗φ,t+1⟩
wt+1,0 ⊆ N⟨◦ C⃗φ,t+1⟩, and from an application of Lemma 27.3

that wt+1 |= ξtl [N⟨◦ C⃗φ,t+1⟩]µ, and so,

wt+1 |=
∨

i∈[1..k]

F(ψ⟨Ci⟩[N⟨Ci⟩]µ) ∧ ξti [N⟨Ci⟩]µ.

By the same argument as before, we see that an accepting state will again be visited. The
proof follows by induction.

2) Assume u = (ξ0, s0), (ξ1, s1), . . . is an accepting run of Hφ ⋉ Bψ2,N on w. Let t be an
arbitrary index such that w is stable with respect to φ and st−1 ∈ α. Then st corresponds
to the formula,

η =
∨

i∈[1..k]

F(ψ⟨Ci⟩[N⟨Ci⟩]µ) ∧ ξti [N⟨Ci⟩]µ,

where ξti is the ith component of ξt, as before. Let t′ be the minimal index such that t′ ≥ t and
st′ ∈ α. We then have wt′ |= af (η, wtt′). From Theorem 13 it follows that wt |= η. Let i be
such that wt |= F(ψ⟨Ci⟩[N⟨Ci⟩]µ ∧ ξti [N⟨Ci⟩]µ. In particular, wt |= ξti [N⟨Ci⟩]µ. Since t was
chosen such that w is stable with respect to φ at t and by the assumption that N ⊆ FGφw,0,
we can apply Lemma 34.3 and get Ci ⊆ ◦ C⃗φ,t. Then wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ). As t
was chosen as an arbitrary point such that st ∈ α the claim follows. ◀

We turn to the dual construction of a co-Büchi automaton for a ν-formula ψ. Based on
the correctness of the µ-rewritings applied to it, the automaton accepts if and only if the
ν-formula ψ holds eventually indefinitely.

▶ Lemma 36. Let φ be a formula and ψ ∈ ν(φ). Consider Hφ := (S, S0, δH) the WC
automaton defined in section 6.1 used as bed automaton and Cψ3,M := (Q,Q0, δ, α) defined in
Section 6.2 used as runner automaton, both over 2Var(φ). Let w be a word that is stable with
respect to φ at index r. Then,

1) If GFφ
w,0 ⊆ M and w satisfies

∀t ≥ r . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν),

then Hφ ⋉ Cψ3,M accepts w.
2) If M ⊆ GFφ

w,0 and there exists an accepting run of Hφ ⋉ Cψ3,M on w then,

∃t ≥ 0 . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν)

Proof. This is dual to the proof of Lemma 35 and omitted. ◀

The final automaton checks the derivative of the formula itself. We show that, based on
correctness of the sets M and N , this automaton accepts exactly the words for which the
formula holds.

▶ Lemma 37. Let φ be a formula. Consider Hφ := (S, S0, δH) the WC automaton defined
in section 6.1 used as bed automaton and Cφ1,M := (Q,Q0, δ, α) defined in Section 6.2 used
as runner automaton, both over 2Var(φ). Let w be a word that is stable with respect to φ at
index r. Then,

1) If M = GFφ
w,0 and w satisfies,

wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨C⃗φ,r⟩]ν ,

then Hφ ⋉ Cφ1,M accepts w.
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2) If M ⊆ GFφ
w,0 and there exists an accepting run of Hφ ⋉ Cφ1,M on w, then,

wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨C⃗φ,r⟩]ν .

Proof. 1) Assume that M = GFφ
w,0 and that,

wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨C⃗φ,r⟩]ν .

As M = GFφ
w,0 we have M⟨◦ C⃗φ,r⟩ ⊆ GFφ⟨◦ C⃗φ,r⟩

wr,0 . By Lemma 27.2 we have that wr |=
afℓ(φ,w0r, C⃗φ,r). Then from Lemma 24 we conclude w |= φ.

Let u = (ξ0, s0), (ξ1, s1), . . . be the run of Hφ ⋉ Cφ1,M on w. If u does not visit α after k,
then we are done. Otherwise, there is t− 1 > r such that st−1 ∈ α. Let it be the index such
that Cit = ◦ C⃗φ,t; this exists by Lemma 33. By Lemma 34.1, we have that wt |= ξit , where
ξit is the ith

t updated component of the bed automaton. As w is stable with respect to φ
at index t and t > r, it is also stable at index t. Thus M⟨◦ C⃗φ,t⟩ = GFφ⟨◦ C⃗φ,t⟩

wt,0 = Fφ⟨◦ C⃗φ,t⟩
wt,0 .

From Lemma 27.1 we have wt |= ξit [M⟨◦ C⃗φ,t⟩]ν .
By w |= φ and Lemma 24 we have that wt |= afℓ(φ,w0t, C⃗φ,t), and from Lemma 27.1

that wt |= afℓ(φ,w0t, C⃗φ,t)[M⟨◦ C⃗φ,t⟩]ν . Together,

wt |= afℓ(φ,w0t, C⃗φ,t)[M⟨◦ C⃗φ,t⟩]ν ∧ ξl[M⟨◦ C⃗φ,t⟩]ν ,

which is a disjunct in the second component of st. By Lemma 30, this component never
becomes propositionally equivalent to ⊥ and so u is accepting.

2) Let w be a word accepted by Hφ ⋉ Cφ1,M and u = (ξ0, s0), (ξ1, s1), . . . an accepting run
of Hφ ⋉ Cφ1,M on w. Let j − 1 be the final index such that the second component of sj−1 is
propositionally equivalent to ⊥. By construction the first component of sj−1 is af (φ,w0(j−1)).
Then the second component of sj is,∨

i∈[1..k]

af (φ,w0j)⟨Ci⟩[M⟨Ci⟩]ν ∧ ξji [M⟨Ci⟩]ν ,

where ξji is the ith updated component of the bed automaton’s state ξj . As the run is accepting,
it follows that for some Ci we have wj |= af (φ,w0j)⟨Ci⟩[M⟨Ci⟩]ν and wj |= ξji [M⟨Ci⟩]ν . By
assumption M ⊆ GFφ

w,0 meaning that Lemma 34.2 can be applied to yield that Ci ⊆ ◦ C⃗φ,j ,
and so wj |= af (φ,w0j)⟨◦ C⃗φ,j⟩[M⟨◦ C⃗φ,j⟩]. Moreover, the assumption M ⊆ GFφ

w,0 also gives

us that M⟨◦ C⃗φ,j⟩ ⊆ GFφ⟨◦ C⃗φ,j⟩
wj ,0 . Hence wj |= af (φ,w0j) by Lemma 27.2 and by Theorem 13

we get w |= φ. ◀

We are finally ready to state the correctness of the full construction. We show that the
different assumptions made by the different automata, when checked together indeed lead to
the correct conclusion. Mostly, the different assumptions made by the different automata on
each other are not really circular.

▶ Theorem 20. Let φ be a formula. For each M ⊆ µ(φ) and N ⊆ ν(φ), define,

B2
M,N :=

⋂
ψ∈M

Hφ ⋉ Bψ2,N C3
M,N :=

⋂
ψ∈N

Hφ ⋉ Cψ3,M

Rφ,M,N := (Hφ ⋉ C1
φ,M ) ∩ B2

M,N ∩ C3
M,N ,

where Rφ,M,N has one Rabin pair. Then the following DRA over 2Var(φ) recognizes φ:

ADRA(φ) :=
⋃

M⊆µ(φ)
N⊆ν(φ)

Rφ,M,N .
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Proof. Assume w is a word such that w |= φ, where w is stable with respect to φ at the
index r. Then, by Theorem 17 there exist M ⊆ µ(φ) and N ⊆ ν(φ) such that its premises
hold. In particular, for M = GFφ

w,0 and N = FGφw,0, the stronger properties below hold due
to Lemma 28:

1) wr |= afℓ(φ,w0r, C⃗φ,r)[M⟨◦ C⃗φ,r⟩]ν .

2) ∀ψ ∈ M .∀t ≥ 0 . wt |= F(ψ⟨◦ C⃗φ,t⟩[N⟨◦ C⃗φ,t⟩]µ).

3) ∀ψ ∈ N .∀t ≥ r . wt |= G(ψ⟨◦ C⃗φ,t⟩[M⟨◦ C⃗φ,t⟩]ν).

This means that the premises of Lemma 37.1 hold, as well as the premises of Lemma 35.1
for each ψ ∈ M and of Lemma 36.1 for each ψ ∈ N . Hence w is accepted by Hφ ⋉ C1

φ,M ,
by Hφ ⋉ Bψ2,N for every ψ ∈ M , and by Hφ ⋉ Cψ3,N for every ψ ∈ N . It follows that w is
accepted by Rφ,M,N for this particular choice of M and N , and hence also by ADRA(φ).

Now assume that w is a word accepted by ADRA(φ). This means that there exists an
accepting run on Rφ,M,N of w for some M ⊆ µ(φ) and N ⊆ ν(φ). Then w is also accepted
by Hφ ⋉ C1

φ,M , by Hφ ⋉ Bψ2,N for every ψ ∈ M , and by Hφ ⋉ Cψ3,N for every ψ ∈ N . It
remains to show that M ⊆ GFφ

w,0 and N ⊆ FGφw,0, so that the premises of Lemma 37.2, of
Lemma 36.2, and of Lemma 35.2 are satisfied. This will establish that the premises of the
Master Theorem hold, so that w |= φ.

The argument is very similar to that used in the proof of Lemma 29. We again fix an
enumeration ψ1, ψ2, . . . , ψn of the subformulae of M ∪N such that for all i, j ∈ [1..n], if ψi
is a proper subformula of ψj , then i < j. We define,

M0 := ∅ Mi :=
{
Mi−1 ∪ {ψi} if ψi ∈ µ(φ)
Mi−1 if ψi ∈ ν(φ)

N0 := ∅ Ni :=
{
Ni−1 if ψi ∈ µ(φ)
Ni−1 ∪ {ψi} if ψi ∈ ν(φ),

and proceed by induction on n. The base case when n = 0 is vacuously true. We proceed
with the inductive step with n = i > 0. Assume ψi ∈ M . By the inductive hypothesis,
FGφw,0 ⊇ Ni−1 = Ni. Thus the premises of Lemma 35.2 are satisfied, so that,

∀s .∃t ≥ s . wt |= F(ψi⟨◦ C⃗φ,t⟩[Ni⟨◦ C⃗φ,t⟩]µ).

This implies that there are infinitely many points t such that wt |= F(ψi⟨◦ C⃗φ,t⟩[Ni⟨◦ C⃗φ,t⟩]µ).
In particular, for each such t ≥ r, since Ni⟨◦ C⃗φ,t⟩ ⊆ FGφ⟨◦ C⃗φ,t⟩

wt,0 = Gφ⟨◦ C⃗φ,t⟩
wt,0 , we get from

Lemma 27.4 that wt |= F(ψi⟨◦ C⃗φ,t⟩). It follows that ψi ∈ GFφ
w,0, which together with the

inductive hypothesis shows that Mi ⊆ GFφ
w,0. In the same manner, assuming that ψi ∈ N ,

we get,

∃t ≥ 0 . wt |= G(ψi⟨◦ C⃗φ,t⟩[Mi⟨◦ C⃗φ,t⟩]ν).

For such an index t, we get by Lemma 27.2 and the same reasoning as above that wt |=
G(ψi⟨◦ C⃗φ,t⟩). Then ψi ∈ FGφw,0, which together with the inductive hypothesis establishes
that Ni ⊆ FGφw,0. ◀

We now analyze the size of the resulting automaton.

▶ Corollary 21. Let φ be a formula of size n + m, where n is the number of future- and
propositional subformulae of φ, and m is the number of past subformulae of φ. There exists
a deterministic Rabin automaton recognizing φ with doubly exponentially many states in the
size of the formula and at most 2n Rabin pairs.
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Proof. By Theorem 20, the automaton ADRA(φ) recognizes φ. That it has at most 2n Rabin
pairs is clear, since each component Rφ,M,N contributes with one Rabin pair and there are
at most 2n choices of M and N . We will now establish bounds on the size of the state spaces
for the components by using the result of Lemma 40 in Appendix B.

Each component B(φ) of the WC automaton is bounded by Reach(φ). There is one
such component for each of the 2m sets of past subformulae of φ, resulting in at most
(22n+2m)2m = 22n+3m states. Since this is the bed automaton for C1

φ,M as well as for the
automaton Bψ2,N for every ψ ∈ M and Cψ3,M for every ψ ∈ N , only a single copy of it is
required. As such, we will restrict our attention to the sets Q of the runner automata below.

The automaton B2
M,N is a product of Büchi automata, each of which has at most 22n+2m+1

states. Thus this component consists of at most n(22n+2m+1)n states. The multiplication by n
is due to the need to convert from generalized Büchi with at most n acceptance sets to Büchi.
Similarly, the automaton C3

M,N , being a product of co-Büchi automata, consists of at most
(22n+2m+1)n states. Finally, the automaton C1

φ,M consists of at most (22n+2m)2 = 22n+2m+1

states.
Together, with the WC automaton’s contribution appearing only once, we get a bound of,

22n+3m

· 22n+2m+1
· n(22n+2m+1

)n · 22n+2m+1
≤ (22n+3m

)3 · n(22n+2m+1
)n

≤ (22n+3m

)4 · 2log2(n)+n2n+2m+1

≤ 22n+3m+2
· 222n+2m+2

≤ (223n+3m+2
)2

= 223n+3m+3
.

It follows that the number of states of the automaton is in 22O(|φ|) . ◀

B The Reach of the after-function

The definition of the propositional semantics of pLTL of section 2 implies that each equivalence
class of Reach(φ) can be interpreted as a Boolean function over a set of variables that
correspond to a subset of ∪φ′∈[φ]≈p

sf (φ′). It appears at first glance that these are Boolean
functions of up to 2|φ| variables. This would only allow us to establish a triply exponential
bound on the size of Reach(φ)/∼. We will improve this bound by showing that the past
subformulae of Reach(φ)/∼ can only appear in a very restricted way.

▶ Definition 38 (Past-modified pairs of formulae). A formula φ is a past-modification of ψ,
denoted φ ≈p ψ, if φ and ψ are identical with the only allowed exception being that every
arbitrary past operator in the syntax tree of φ may appear in either its weak or strong form
in the syntax tree of ψ. Formally,

φ ≈p ψ ⇔ φ⟨∅⟩ = ψ⟨∅⟩.

Given a formula φ, we denote the equivalence class of past-modifications of φ by [φ]≈p
.

▶ Lemma 39. Let φ be a formula, σ a letter, and C a set of past formulae. Then
sf (afℓ(φ, σ, C)) ⊆ sf (φ′) ∪ {⊤,⊥} for some φ′ ∈ [φ]≈p .

Proof. It is clear from the definition of afℓ that an application thereof results in a Boolean
combination of subformulae of φ rewritten by C, and potentially of ⊤ and ⊥. Since ·⟨C⟩ is
a function on subformulae of φ, the result follows. ◀



S. Azzopardi, D. Lidell, N. Piterman 29

▶ Lemma 40. Let φ be a formula of size n + m, where n is the number of future- and
propositional subformulae of φ, and m is the number of past subformulae of φ. Then,∣∣Reach(φ)/∼

∣∣ ≤ 22n+2m

.

Proof. Consider a fixed ordering φ1, φ2, . . . , φ2m of the elements of [φ]≈p
, and a word

w. By Lemma 39 and an inductive argument, for every t ∈ N the formula af (φ,w0t) is
a disjunction of formulae, each of which contains subofmulae in exactly one of the sets
sf (φ1) ∪ {⊤,⊥}, . . . , sf (φ2m) ∪ {⊤,⊥}. Since we can freely rearrange the disjuncts while
retaining propositional equivalence, af (φ,w0t) is propositionally equivalent to a disjunction
ψ1, ψ2, . . . , ψ2m , where each ψi is a Boolean combination of subformulae of φi. There are
22n+m possible formulae for each ψi, up to propositional equivalence. Because there are 2m
disjuncts ψi, we establish the following bound:∣∣Reach(φ)/∼

∣∣ ≤ (22n+m

)2m

= 22m2n+m

= 22n+2m

.

◀

▶ Remark 41. The bound established by Lemma 40 can easily be improved to 22n+m by
modifying the local after-function. This is done by noting that each maximal past subformula
(i.e. past subformulae that appear only under ∧ or ∨ in the syntax tree) that appears in an
application of af can immediately be evaluated and thus removed. This is because formulae
rooted with one of S, S̃,B, or B̃ are initially equivalent to their weakening conditions, while
formulae rooted with Y or Ỹ are initially equivalent to ⊥ or ⊤, respectively. Applying this
optimization complicates notations considerably and we delay a formal treatment of it.
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