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Scaling of phase count in multicomponent liquids
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Mixtures with many components can segregate into coexisting phases, e.g., in biological cells
and synthetic materials such as metallic glass. The interactions between components dictate what
phases form in equilibrium, but quantifying this relationship has proven difficult. We derive scaling
relations for the number of coexisting phases in multicomponent liquids with random interactions
and compositions, which we verify numerically. Our results indicate that interactions only need
to increase logarithmically with the number of components for the liquid to segregate into many
phases. In contrast, a stability analysis of the homogeneous state predicts a power-law scaling. This
discrepancy implies an enormous parameter regime where the number of coexisting phases exceeds
the number of unstable modes, generalizing the nucleation and growth regime of binary mixtures

to many components.

Phase separation of multicomponent mixture plays
crucial roles in living systems and synthetic materials.
In living system, like biological cells, phase separation
enables biomolecular condensates, which involves thou-
sands of different components [1-4]. In synthetic ma-
terials, controlling phase separation is essential for en-
gineering high-performance multicomponent materials,
such as high-entropy alloys and metallic glasses [5, 6]. In
all these cases, interactions between constituents control
what phases form and which components they enrich.

Simple multicomponent mixtures are often studied us-
ing equilibrium thermodynamics of the seminal Flory-
Huggins model [7, 8]. Whereas phase separation of bi-
nary mixtures is textbook material [9], higher compo-
nent counts create fundamental challenges. In particu-
lar, many different phases can coexist [10], depending on
the overall composition and the pairwise interactions be-
tween components [11-13]. The details are captured by
the intricate geometry of the high-dimensional phase dia-
grams [14]. The geometry was already explored by direct
simulation [15-18] and by convexifying the free energy
landscape [19], which are both limited to small compo-
nent counts. Alternatively, analyzing the stability of the
homogeneous state [16, 20-24] readily provides results for
many components, but it is unlikely that this approach
predicts actual coexisting phases.

In this letter, we derive scaling relations that faith-
fully predict the number of coexisting phases in mixtures
with many components and random interactions. We
test these relations using an improved numerical method
based on the free energy minimization of an incompress-
ible mixture, characterized by mean volume fractions ¢;
of its N, components for i = 1,2,..., N, with }_, ¢ = 1.
In the simplest case of homogeneous state, the equilib-
rium physics is governed by the Flory-Huggins free en-
ergy density
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which combines pairwise interactions, quantified by the

symmetric Flory matrix x;; = x;; with x = 0, and
translational entropy captured by the last term [7, 8].
For some choices of x;;, the system can lower its free en-
ergy by splitting into multiple phases. We discuss this
phase separation in the simple case of a thermodynam-
ically large system where phases are homogeneous and
their interfaces are negligible, so that equilibrium states
minimize the average free energy density
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where phase p is described by its composition ¢£p ) and
the relative volume J,, obeying Zp Jp = 1. Material con-

servation additionally implies ¢; = Z;V:"l pqSl(.p ). Coex-
isting phases can in principle be obtained by minimizing
f for given interaction matrices Xi; and average volume
fractions ¢;. However, these parameters are often not
directly accessible in real systems. To circumvent this
challenge, we instead treat x;; and ¢; as random vari-
ables to make robust predictions for how they impact
the average number of the coexisting phases, J\_fp. In par-
ticular, we draw the entries of the interaction matrix x;;
for ¢ < j independently from the normal distribution
N(X,0y), parametrized by the mean interaction y and
the standard deviation o, .

To build intuition, we start with the special case of
identical interactions (xix; = X, 0y = 0) and symmetric
compositions (¢; = 1/N.). We first check whether the
homogeneous state is unstable, which marks the param-
eter region where phase separation is inevitable. Mathe-
matically, this corresponds to the region where the Hes-
sian matrix H;; = 9% f/0¢;0¢; is no longer positive def-
inite, i.e., where at least one eigenvalue is negative. For
#; = 1/ N, this is the case when [25]

x> N, (3)

suggesting interactions need to scale with the compo-
nents count N. to destabilize the homogeneous state.



Equilibrium states can exhibit phase separation even
when the homogeneous state is (locally) stable [26, 27].
To estimate the minimum interaction strength neces-
sary for phase separation, we next consider N, coexisting
phases, each enriching a single component while diluting
all other components by the same volume fraction qbiN“),
with gbka“) ~ e X for ¥ > InN, [25]. The free energy
associated with this phase separated state is necessarily
lower than the homogeneous state when [25]
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which provides a lower bound for the interaction strength
above which phase separated states are favored. The re-
lation indicates that interactions required for phase sepa-
ration need to scale only logarithmically with the compo-
nent count N.. A comparison with Eq. (3) suggests that
the stability of the homogeneous state is a bad proxy for
the phase separation behavior of multicomponent liquids.

Since phase separation of multi-component liquids not
only depends on interactions but also composition [24],
we next study the average behavior for all permissible
volume fractions (¢; > 0, > ¢; = 1), maintaining iden-
tical interactions (x;x%; = X, 0, = 0). In this case, we
expect the number of coexisting phases, Ny, to vary be-
tween N, = 1 (homogeneous system) and N, = N, (max-
imum allowed by Gibb’s phase rule [28]). Similarly, the
number of unstable modes of the homogeneous state, Ny,
will vary between N, = 0 and N, = N, — 1, since only
N, — 1 variables are independent due to incompressibil-
ity. These two extreme scenarios suggest the relation
Np ~ Ny + 1.

To determine the average number of unstable modes,
N, we chose random compositions using Beta distribu-
tions [11] and diagonalized the Hessian matrix H numer-
ically. Fig. la shows that N, increases with the mean
interaction strength x, as expected. An analytical esti-
mate for N, follows from Cauchy’s interlacing theorem:
The number N, of negative eigenvalues of H equals the
number of sign changes in the sequence

detHo,detHl,...,detHNc_l, (5)
where det H,, = ([[\_, ¢:) (>, ¢; ') is the determinant
of the rank-n leading minor of H with ¢; = q_ﬁ; 1 _ ¢ and
det Hy = 1. The number of sign changes in Eq. (5)
is either N_ or N_ — 1, where N_ is the number of
negative ¢;, i.e., the number of @; larger than y~! [25].
This implies that N, is bounded by En_[¢; > ¥}
Ny +1 < En. [ > ¥ Y + 1, where En_[¢; > h]
N.(1 — h)Ne~! denotes the expected number of ¢; larger
than h. The normalized average number of unstable
modes, (N, + 1)/N., is thus bounded by
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FIG. 1. Average number of phases exceeds number of
unstable modes for identical interactions. (a, b) Nor-
malized average number of unstable modes, (N, + 1)/N, as
a function of the mean interaction strength ¥ in (a) and the
scaled interaction ¥/N. in (b) for various component counts
Nc. The shaded area in (a) indicates the bounds given by
Eq. (6), and the black line in (b) denotes the asymptotic ex-
pression (7). (¢, d) Normalized average number of coexisting

phases, N,,/N¢, (green-blue) and (N, +1)/N. (orange-purple)
as a function of ¥ in (¢) and ¥ — In(N: — 1) in (d). The black
line in (d) marks the asymptotic expression (9). (a—d) Each
dot results from an average over 500-20 000 uniformly sam-
pled compositions.

consistent with our numerics; see Fig. la. The two
bounds in Eq. (6) converge for large N, implying
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This scaling indicates that the normalized number of un-
stable modes averaged over the phase diagram, N, /N,
is controlled by the single scaled interaction parameter
X/Nc. Fig. 1b shows that this scaling indeed collapses
the numerical data for large V., even for small y.

To test how well the average number N, of unstable
modes predicts the average phase count, Np, we next
investigate equilibrium states. In contrast to the unsta-
ble modes, it is difficult to obtain the coexisting states
since they involve global information of the free energy
landscape. To alleviate this challenge, we designed an
efficient algorithm to determine coexisting states at arbi-
trary interactions and mean compositions, which is sim-
ilar to the Gibbs ensemble method [29-31]. The method
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Illustration of phase count bounds. The center plot shows the phase diagram as a function of the volume

fractions ¢; of No = 3 components for x;x; = 2.8. The colored regions indicate the number of coexisting phases, Ny, = 1,2, 3.
The adjacent plots approximate the phase diagram using boundaries parallel to the axes, obtained by expanding the N, =1
region (left) or the central region with N, = N. (right). They respectively provide lower and upper bounds to the average
phase count N, which can be obtained from the fraction covered by an area associated with each component (thick red lines).

minimizes the mean free energy f given by Eq. (2) by
redistributing components and volume across an ensem-
ble of compartments, while obeying volume and material
conservation [25]. In a key improvement over our ear-
lier implementation [10, 11], we now initialize compart-
ments such that the average fractions ¢; can attain any
value, which in principle allows us to determine the full
(N — 1)-dimensional phase diagram. Sampling the nu-
merically obtained phase count IV, over the entire phase
diagram allows us to estimate the average number of the
coexisting phases in equilibrium, J\_fp.

The numerical results shown in Fig. 1lc indicate
that N, increases much more quickly with the interac-
tion strength y than the number of unstable modes N,,.
Moreover, the scaled interaction strength x/N., derived
for N, from Eq. (7), cannot collapse these data. To de-
rive an alternative scaling law, we focus on strong interac-
tions, where Eq. (4) is satisfied, so we have the maximal
number of phases (N, = N;) for equal composition at
the center of the phase diagram (¢; = 1/N.). The re-
gion where these N, phases are stable forms a (N, — 1)-
dimensional simplex (green region in Fig. 2), which covers
a larger area for higher y. However, averaging IV, over
the entire phase diagram is difficult since phase bound-
aries are generally curved. Instead, we next derive lower
and upper bounds of Np by replacing curved boundaries
with flat hyperplanes that are parallel to the axes of the
phase diagram [25]. For the lower bound, we enlarge re-
gions with few phases so their boundaries extend the flat
boundaries of the central region, intersecting the axes at

vac) (left plot in Fig. 2). For the upper bound, we move
the straight boundaries of the central region such that
their extensions intersect the axes of the phase diagram
at ¢5<2), which marks the coexistence point between the 1-
phase and 2-phase region (right plot in Fig. 2). For both
bounds, all phase boundaries are then parallel to the axes

of the phase diagram, and the average phase count N,
can be calculated from the volume of the smallest sim-
plex enclosing the central region and one corner of the
phase diagram. One of these simplexes is marked by the
red line in Fig. 2, and there are two congruent regions an-
chored at the remaining corners. Since the phase count
at each point in the phase diagram is given by the num-
ber of these simplexes covering that point, Np is simply
N, times the fraction covered by a single simplex. For
general component counts, the normalized average phase
count N,/ N, is then bounded by [25]
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For ¥ > 1, the fractions ¢§NC) and qi(f) converge to e X,
implying [25]

el (1 3 e_X)Nc—l ~ exp[(Nc — 1)e_x] . 9)
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This approximation reveals that Np is asymptotically
given by En_[¢; > e X], i.e., the expected number of
¢; larger than e~X. This result is similar to that for N,
following from Eq. (7), except the threshold is now e™X
instead of y~!. Consequently, we predict that N,/N.
is controlled by the single shifted interaction parameter
X—In(N.—1). Indeed, Fig. 1d shows that this scaling col-
lapses the data in a surprisingly large parameter range,
even when the limits used in Eq. (9) are violated.

The data collapse that we identify in Fig. 1d indicates
that the interaction parameter x;»; = X needs to exceed
roughly 3 4+ In(N. — 1) to have many phases (N, ~ N.).
Since the stability analysis instead predicts a linear scal-
ing of ¥ with N., we conclude that stability analysis is
not suited to predict phase counts when components ex-
hibit identical interactions.
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FIG. 3. More variable random interactions im-

ply more phases. Normalized average number of unstable
modes, (N, +1)/N. (orange-purple), and normalized average
number of coexisting phases, N,/N. (green-blue), as a func-
tion of two different scalings of the standard deviation oy of
the interactions for various component counts N, and x = 0.
Each dot results from an average over 10°-10" pairs of ran-
dom interaction matrices x;; and compositions &i.

We next extend our results by varying the individual
interactions as well as the composition. For simplicity,
we first consider vanishing mean interactions (xy = 0)
and instead vary the standard deviation o, of the nor-
mal distribution governing the symmetric interaction ma-
trix x;;. In the case of equal composition (¢; = Nc_l),
N, can be obtained from the eigenvalues of the ran-
dom interaction matrix, which are distributed according
to Wigner’s semicircle law and scale with o,+/N. [20].
The same scaling applies to the case of uniformly dis-
tributed compositions [25], suggesting that the normal-
ized number of unstable modes, (N, + 1)/N,, is con-
trolled by o, /v/N. [20, 24]. Fig. 3a shows that this scal-
ing can indeed collapse data for N,, whereas it fails for
the phase counts that we determined using our numerical
algorithm.

To obtain a scaling for phase count, we recall the
asymptotic scalings of N, and N, followed from ex-
pectation values involving the compositions and mean
interaction strength y, N, + 1 ~ En.[¢;" < ¥] and
N, ~ En,[f;' < €X]. These scalings suggest that in-
teraction strengths related to unstable modes enter ex-
ponentially in similar expressions for the phase count.
Specifically, this idea indicates that the normalized phase
count ]\_fp /N, is controlled by the scaling parameter
o4V N/ In N, for random interaction matrices with van-
ishing mean (Y = 0) [25]. Indeed, Fig. 3b reveals that this
scaling collapses Np /N, for sufficiently large N.. Thus,
larger variations of the interactions lead to more phases,
and Np /N, grows with N, even when oy is fixed. In con-
trast, stability analysis suggests that o, needs to grow
with v/N; to have the same fraction of unstable modes,
so N, severely underestimates the phase count N, par-
ticularly for large N..

So far, we have identified how N, and N,, scale with
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FIG. 4. Numerically estimated master functions for
Egs. (10). (a) Normalized average number of unstable modes,
(Ny + 1)/ N, as a function of scaled mean interaction ¥ and
standard deviation oy. (b) Normalized average number of
coexisting phases, N,/N., as a function of scaled ¥ and oy.
(a, b) Functions were obtained by averaging 300 samples of
random interaction matrices and compositions for each value
of x and oy for component counts N. = 16, 20, 24, 28, 32; see
[25].

the component count N. when interactions are identical
(o = 0) or their mean vanishes (x = 0). To test whether
these scalings persist when both o, and ¥ are nonzero, we
next combine the control parameters derived for o, = 0
(see Fig. 1) and for ¥ = 0 (see Fig. 3) and postulate

N,+1 N i Oy and
N TP\ UL !
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where ¢, and g, are master functions for the number
of unstable modes and coexisting phases, respectively.
We determine these functions by sampling random in-
teraction matrices and random compositions for several
components counts N; see Fig. 4. Fig. A2 [25] shows
that the deviation of the prediction of Egs. (10) to the
actually measured N, and Np is low in most parameter
regions, implying that the proposed scaling captures the
essence for different N.. Fig. 4 shows that both master
functions are qualitatively similar: They are close to 0
for strongly attractive interactions (large negative y and
small o, ) and they converge to 1 when repulsive interac-
tions dominate (large y and small o, ), implying N, coex-
isting phases. In contrast, both master functions predict
%NC for strongly varying interactions (small x¥ and large
oy), and the respective influence of ¥ can be approxi-
mated analytically [25]. While the master functions ex-
hibit similarities, the axes are scaled very differently, im-
plying different interpretations of what constitutes large
interactions: For large V., the mean interactions y and
the variance o’i need to scale with N, to obtain similar
fractions g, of unstable modes. In contrast, the predic-
tions for the phase count implies a much weaker depen-
dence on N,.

(10a)




Our results indicate that the interactions necessary to
have large phase counts scale weakly with the compo-
nent count N.. Consequently, even moderate interaction
strengths of a few kg7 could lead to many coexisting
phases, even for thousands of components, like in biolog-
ical cells. In contrast, large N, stabilizes the homoge-
neous state and much stronger interactions are necessary
to have many unstable modes. On the one hand, this
suggests that linear stability analysis is inadequate to in-
vestigate multiphase coexistence. On the other hand, the
result implies that such multicomponent systems have an
enormous parameter regime where multiple states are lo-
cally stable, enabling controlled transitions. For instance,
biological cells could use active processes to form or dis-
solve droplets by crossing thermodynamic barriers [27].
To answer such questions and engineer such systems, a
detailed understanding of the geometry of phase space,
preferably for realistic interactions (e.g. including higher-
order interactions [32]), would be helpful. Our scaling
relations, and particularly the numerical method to de-
termine coexisting phases, will guide future research in
this direction.

The source code for this article is openly available from
github XXX.
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The stability of the homogeneous state is given by the eigenvalues of the Hessian of the free energy in Eq. (1),
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FIG. Al. Phase count differs from number of unstable modes in liquids with with identical interactions
and symmetric composition. A homogeneous mixture is unstable for interactions Y above the spinodal (blue line). In
contrast, phase separation is energetically favorable for x above the binodal (orange line). The black line shows the analytical
approximation given by Eq. (A5).

with 4,5 € [2, N.]. Note that this is a (N, — 1)-dimensional matrix since we removed the dependency on ¢, using

Nc
¢1 =1- Zizg B

Stability and coexisting phases with identical interactions and symmetric composition

With identical interactions, x;; = X(1 — d;;), and symmetric composition, ¢; = 1/N, the free energy density, given
by Eq. (1) reads

N, —1
2N

f= Y—InN,. (A2)
Similarly, the Hessian given by Eq. (A1) simplifies to 9% f/0¢;0¢; = (;; + 1)(Ne — x). The homogeneous state is
unstable when the Hessian is no longer positive definite, leading to

X > Ne; (AS)

see the blue line in Fig. Al.

For the coexisting phases in equilibrium, we focus on the simples state that the mixture might separate into. Due
to permutational symmetry, we assume that each one of the candidate coexisting phases enriches one component with
volume fraction ¢, = 1 — (N, — 1)¢;, while all other components have the same volume fraction ¢. We will show
below that this assumption is reasonable for sufficient large x. In this case, the free energy density reads

(Nc _ 1)(Nc B 2)
2

f(¢1) = (Ne — 1)X¢nor + X6 + ¢nlngp + (Ne — 1)y In ¢y . (A4)
Note that Eq. (A4) reduces to Eq. (A2) when ¢, = ¢ = 1/N.. Since all coexisting phases have the same free energy
density due to permutational symmetry, the coexisting phases are energetically favored over the homogeneous state
if the minimal value of Eq. (A4) is lower than that of the homogeneous state given by Eq. (A2). Fig. Al shows the
results from a numerical minimization of Eq. (A4) compared to Eq. (A2).

To obtain an analytical approximation of the minimal interaction strength necessary for phase separation, we note
that with ¢ — 40, the free energy f(¢) — 0, while its derivative df/d¢; — —oo. Using the mean value theorem, we



then conclude that Eq. (A4) will have a minimum lower than Eq. (A2) when f given by Eq. (A2) is positive, implying

2N,
)‘<>N_1lnNC7 (A5)
C

which is Eq. (4) in the main text.
We further consider the volume fraction of the dilute components in these coexisting phases, which minimizes
Eq. (A2). The dilute fraction ¢) that minimizes f satisfies the equation

o 1 (Ne) (Ne)
X_I_N(w(ln[l—(Nc—l)qS* }_m@ ) (A6)

EkNC)

Assuming that ¢ is much smaller that 1/N., we obtain

Vo) o WINe(x = 1) —1]
* Ne(x —1)—1 "’

(A7)

where W (r) is the Lambert W function, which satisfies W (r)e" (") = 7. When y > In N, the equation above can be
further simplified to
(Ne) X232 o=x (A8)

which is independent of N.. Note that Eq. (A8) also shows that the assumption ¢£Nc) < 1/N, is valid when ¥ > In N..

We next show that for sufficient high value of ¥ it is optimal for the system with identical interactions and symmetric
composition to separate into phases which each enrich one component. In the case of identical interactions and average
volume fractions, the coexisting states in equilibrium must have the same free energy density, which can be proved
by contradiction: Assuming coexisting states have different free energy energies in equilibrium, there must exist one
of the coexisting states that have the lowest free energy density. Suppose such phase has a volume fraction vector
¢ = [p1,¢P2...¢n.], then a new collection of phases can be constructed by permuting the vector. Since all the
interactions are identical, these phases share the same free energy density, while the average volume fractions must be
symmetric, meaning that the collection itself becomes a valid candidate of the coexisting state. Since this collection
has lower free energy density than the original coexisting states, the initial assumption of equilibrium is violated.
Taken together, for identical interactions and average volume fractions, all coexisting states must have the same free
energy density in equilibrium.

As the result of equal free energy density, the composition of the coexisting phases must be the local minimizer of
the free energy function, otherwise a new set of coexisting phases with lower free energy can be found. Therefore, the
compositions must satisfy df/9¢; = 0, leading to

—X¢; + In ¢; = constant (A9)

for i =1,2... N., where the constant is the same across different 7. Since the function —y¢ + In ¢ can at most have
two piecewise monotonic domains in (0, 1), the equation above can only have at most two solutions, meaning that
each component can either be dilute or concentrated, while all the dilute components share the same composition ¢,
and all the concentrated components share the same composition ¢y,.

Suppose the system would phase separate into phases that enrich K components with volume fraction ¢y, then in
each phase N, — K components are dilute and share the volume fraction ¢, satisfying K¢y, + (N. — K )¢ = 1. Similar

to Eq. (A6), we denote by ¢ = qS&NC) the volume fraction that minimizes the free energy, which satisfies

_ hl ngh — 111 ¢l
U, (A10)
In the limit ¢ < 1, we find
1 -
¢£NL) ~ Ee_KX . (All)

Since the right hand side decrease monotonically with K for xy > 0, the dilute components become more dilute
for large K. For sufficient large value of y, the enriched components will take over the vast majority of the phase
(¢n ~ K1), making these enriched components themselves a subsystem with K components with equal interactions



and almost the same total volume fraction as the original one. This subsystem will undergo phase separation since the
homogeneous state is more prone to phase separation for fewer components; see Fig. Al. Taken together, the system
prefers to enrich one component in each phase since the concentrated components would otherwise phase separate
from each other. Intuitively, in the identical interactions and symmetric compositions case, all components dislike
each other and they just prefer to separate from the others when possible. States that enrich two components are not
preferred since there are no other factors, e.g. higher-ordered interactions, to stabilize them [32].

Relation between number of unstable modes and composition with identical interactions

We here consider the number of unstable modes averaged over the entire phase diagram for identical interactions,
Xij = X(1 — d;5). The Hessian given by Eq. (A1) can be simplified and rewritten in matrix form,

(1 Ne 1 "
H =diagq — — x +|——x)uu, (A12)
¢'L' i=2 ¢1
where wu is a all-one vector in N, — 1 dimensions. Denote the rank-n leading minor of H by H,,,
1 (A |
H, = diag { - } + ( — > wul (A13)
¢i i=2 (bl

with n =1,2... N, — 1 and u,, is a all-one vector in n dimensions. Making use of Cauchy interlacing theorem, the
number of negative eigenvalues of H can be obtained by calculating the number of sign changes in the sequence

det Hy,det Hy,...,det Hy, 1 , (A14)
where det H is defined to be 1. Using the Weinstein-Aronszajn identity, det H, can be calculated,

1 n A_l - n+1 -1 n+1
det H, = ( — X) det diag {Q_lx} det | I + unufdiag {¢1_1X}
é1 b1 —X o; —X

1=2 =2
‘H@ ><Zl> A1)

We here assume qb;l = x since we are interested in the average behavior over the entire phase diagram, where the
points violating this condition have zero measure. Since the number of negative eigenvalues is invariant under any
proper rotation, we can also require that sequence

1 1 1

— X T T Xoees T
1 02 ON,

decreases monotonically. Comparing Eq. (A14) and Eq. (A15) with Seq. A16, we obtain that the number of sign
changes in Seq. A14 can only be either the number of negative elements in Seq. A16, denoted by N_, or one less,

—X (A16)

N_ — 1, since the term ZZV:H 1/((;5;1 — x) can at most change the sign once itself and cancel the sign changes of
Hfi“l (o; - X) once. We thus obtain the relationship between N, and N_ given in the main text.

Numerical algorithm for finding coexisting phases

There are multiple challenges for determining equilibrium coexisting states in multi-component mixture: First, the
optimization problem is high-dimensional. Second, different types of constrains, such as incompressibility and volume
conservation, need to be satisfied. In addition, it is generally difficult to conclude whether the obtained coexisting
states are the true equilibrium or metastable states.

In a previous publication [11], we already designed an efficient algorithm to obtain coexisting states by exchanging
components between compartments, guided by thermodynamic properties such as osmotic pressure and chemical
potential. To achieve high performance, the constraint of volume conservation was relaxed, making it difficult to
uniformly sample the entire phase diagram, which was highlighted in ref. [10]. To circumvent these challenges, we



here design an improved method based on a free energy optimization strategy inspired by polymeric field theories,
where the volume conservation is automatically guaranteed by introducing conjugate fields.

The equilibrium coexisting states can be obtained by optimizing the average free energy density given by Eq. (2)
in the main text over all possible phase counts and phase compositions. To allow different phase counts, we consider
an ensemble of M abstract compartments as proposed in ref. [11], where M is much larger than the number of
components N.. To alleviate the problem of negative volume fractions during the relaxation dynamics and conserve
the average volume fractions, we extend the free energy of Eq. (2) into the form

M 1 N N¢ Ng N M
F=2Im |52 X ™ol = S wlMelm L, (Z o) _ 1) - himQi + ”(Z T — 1), (A17)
m=1 i, 4 i i m
with
M
Qi = Z Jm exp (—wE”)) . (A18)

Here, J,,, are the relative volumes of the compartments, wgm) are the conjugate variables of ¢Z(»m), and &, and n are the

Lagrangian multipliers for incompressibility of each compartment and compartment volume conservation, respectively.
Consequently, the extremum of Eq. (A17) with respect to &(x) corresponds to incompressibility,

m

% 7

if x (% o™ — 1>J -0 = %gﬁ(m) =1 (A19)

the extremum with respect to 7 corresponds to conservation of the total volume of all compartments,

8f M M
%KZJm—1=0 = ;szl, (A20)

m

(

%

(m)

and the extremum with respect to w ™) defines the relationship between (/)l(-m) and w; 7,

of (m) bi (m) _ m) i (m)
8w£m) < —=¢; JIm + 0. exp (—wi ) Im =0 = o, = 0. exp (—wi ) . (A21)

By inserting Eqs. (A19)—(A21) into Eq. (A17), Eq. (2) is recovered except for a constant, which has no influences on
thermodynamics. To optimize the free energy density given by Eq. (A17), we obtain the self-consistent equations

Ne
1=3 o™ (A22a)
M
1= Tn (A22b)
) _ Di ()
o =g, P ( Wi ) (A22¢)
N
™ =3 8" + (A22d)
J
N, N, N
1 - m m - m m - m m
—n= §inj¢§. ¢! )_ng )1 )+€m<Z¢§ )_1> +Z¢’( ) (A220)
3 ? K3 )
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Accordingly, we design the following iterative scheme

Q"™ = Z exp ( ) I (A23a)

5 = Q(ﬁz S exp ( Z(m)) (A23b)
Q"
1 N, N,
bm =37 S w™ =3 el (A23c)
¢ i i,j
1 NC NC NC
o = =3 Z X o™ ol 3 wi™Mei™ — ¢, (Z o™ — 1) g™ (A23d)
M
BN (A23e)
N
W™ =3 ™ 4 (A23f)
J
T = I ) — (A23g)

where the asterisk denotes the output of the iteration. In order to improve numerical stability, we adopt the simple
mixing strategy,

w(m),new _ (m) Fa (w(m)* Z(m)) (A24a)

(3

Jj(m)new _ J:n +8 (J:n _ Jm)' (A24b)

Here o and 8 are two empirical constants, which are usually chosen near 1073. We note again that in such iteration
scheme the problem of negative volume fractions is relieved. However, there is no guarantee that J,,, is always positive.
Although the algorithm does not suffer from negative J,,, negative J,, implies that the system might be outside of
the allowed region on the tie hyperplane. To alleviate this, we always use [ smaller than «, and adopt a killing-and-
revive strategy to correct the worst cases: Once J,, is found to be negative at certain m, e.g. mg, the corresponding
compartment is considered “dead” and is going to be revived by resetting J,,, to its initial value. Concomitantly, J,,
will be renormalized while the corresponding wng) will be redrawn from random distributions. The same scheme is
used to initialize the simulation, i.e., all compartments are considered “dead” at the beginning of the simulation.

This algorithm does not guarantee that the true equilibrium state is always found. We handle this problem by
launching many more compartments than the number of components, M > N.. In all our numerical results, the
number of compartments are at least M = 16 N.. We justified this choice by increasing number of compartments until
both the number and the compositions of unique coexisting states do not change. Under such setting, the equilibrium
coexisting states are prominently obtained.

Control parameters for average phase count with random interactions

In the main text, we showed that with identical interactions, the control parameters and the asymptotic rules for
both average number of unstable modes N, and average number of coexisting phases N, can be obtained analytically.
In contrast, for random interactions with zero mean, random matrix theories only grants us access to the control
parameter for Ny, but it does not directly reveal anything about Np. To infer the control parameter for Np, we
exploit connections between the results from the other three known cases. For simplicity, we assume vanishing mean
value of the random interactions in this section, unless specified otherwise.

To predict the scaling of Np with N, and o, we first recall the results for N, for random interactions. Ignoring the
sole outlier in the spectrum of the Hessian matrix given by Eq. (A1), the average number of negative eigenvalues is
approximately the number of eigenvalues of the interaction matrix y;; smaller than —1/¢; = —N,, when ¢, = 1/N.. It
has been shown that although in the case of asymmetric composition the eigenvalue spectrum will be expanded, but in
the limit of larger interaction variance, the shape of the spectrum is dominated by the random interaction matrix[24].
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In addition, since we focus on the average behavior over the entire phase diagram, we expect such spectrum expansion
has no preference for positive or negative values. Therefore, to find the control parameters, we check the situation
of symmetric composition and suppose the result generalizes to the average behavior over the entire phase diagram.
Denoting the eigenvalues of x;; by Ap with k =1,2... N; — 1, then N, can be roughly estimated by

Nu~ Ex. i < =1/ = Ex[60 > 1/(=\)] for xi; ~ N(0,0,) - (A25)

Since Ay, is distributed according to a semicircle law with radius 20, v/Ng, we set A\, = 20,+/N¢y, where « is a random
variable according to a semicircle law with unit radius. We thus obtain N, ~ Ey_[20,VNey < —1/¢;] = En_[—7 >
VN /o], indicating that N, is governed by the control parameter o, /v/N. when x;; ~ N(0,0,). However, even
though this derivation is only approximative, the literature [24] and our numerical data shown in Fig. 3(a) of the
main text suggest that the control parameter is still valid when N, is obtained for a uniform average over the entire
phase diagram.

Although Eq. (A25) provides no direct information about N,, it strikingly shares the same form as the relations
for N, for identical interactions y;; ~ N(x,0), allowing us to build a connection with N, by analogy. From Eq. (7)
and Eq. (9) in the main text, we obtain

Num En[¢i > 1/xX] = En.[¢; > 1/(=X)] for  xij ~ N(x,0) (A26a)

Np ~ En[¢i > 1/ exp(X)] = En.[¢i > 1/ exp(=Ap)] for xi; ~ N (x,0) , (A26Db)

since in the case of identical interactions the relevant eigenvalues are all equal to —Y. The only difference between
the unstable modes and the phase count in the equations above is that the negative eigenvalue —)\; is modified
to exp(—Ag). Inspired by this, we speculate that such a modification can also be applied to the case of random
interactions x;; = N (0, 0,). We thus propose

N, = En_[¢; > 1/ exp(—Ag)] for x5 ~N(0,0y) . (A27)

Since A\, = 20,v/Nc7, and the average value of ¢; is 1/N., we further propose that N, ~ En_[—In N, < —20,v/Nc7].
leading to the control parameter o,+/N./In N¢, which we verify numerically in the main text.

Deviation of the numerically estimated master functions

To confirm the scalings proposed in Eq. (10) in the main text, and the associated master functions shown in Fig. 4,
we calculate the relative standard deviations across the selected number of components. Fig. A2a shows that the
deviation between the true values of (N, + 1)/N. and the values predicted by the master function g, is below 5% in
the relevant parameter regime of repulsive interactions (y > 0). Fig. A2b shows that the deviation is even smaller
for the phase count N, /N, showing that it is incredibly well explained by the master function g, for positive y.
In both datasets, the relative deviation is higher in the lower left corner of the plot (¥ < 0 and small o). This is
expected since most cases exhibit a homogeneous system, so the number of unstable modes is close to 0, while number
of coexisting phases is close to 1. In these cases, the relative standard deviation degenerates to the standard deviation
of the 1/N., which is apparently high with respect to 1/N, itself.

To validate our result further, we repeat the same procedure for determining the master functions using half the
component count N, everywhere. The respective deviations are very similar (compare Fig. A2 and Fig. A4), and
comparing Fig. A3 of the main text to Fig. 4 shows that the resulting master functions are very similar. Taken
together, this suggests that the master functions shown in Fig. A3 are reliable.

Linear regime of average unstable modes/coexisting phases count with respect to mean interaction

The master functions g, and g, shown in Fig. A3 in the main text were only estimated numerically. However, their
smooth behavior in the region of large o, and small x suggests that there is a simpler relationship in this region. To
obtain such a relationship, we investigate deviations from the line ¥ = 0 for small |x|.

For the unstable modes, (N, + 1)/N,, such relationship can be inferred again from random matrix theory. The
eigenvalues of the random interaction matrix are distributed according to the semicircle law with radius r = 20,/N..
Adding a mean value Y shifts the distribution by —y accordingly. Therefore, the normalized number of unstable
modes will increase roughly by 2ry/(mr?) = x/(7oyv/N:) when ¥ < 0,/ N, so ¥ leads to a linear correction of
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FIG. A2. Relative standard deviation of the numerically estimated master functions for N. € [16,32]. (a) Relative
standard deviation of number of unstable modes, o, /Ny, and (b) relative standard deviation of number of coexisting phases,
ox,/Np, as a function of two scaling variables (a) x/Nc and oy /v/Nc, and (b) X — In(Ne — 1) and o, v/Ne/In N, respectively.
Standard deviations are calculated for N. = 16, 20, 24, 28, 32.

(a) unstable modes (N, + 1)/N. (b) phase count I\_Ip/NC
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FIG. A3. Numerically estimated master functions for N. € [8,16]. Data are averaged over N. = 8,10,12,14, 16.
300-3000 random pairs of interaction matrices and compositions are drawn for each fixed N, ¥ and o,. Other elements are
the same as Fig. 4 in the main text.

(Ny + 1)/Ne. Fig. A5 shows that such a shift collapses the data for various y. Note that the shift x/(moy/Nc) can
be interpreted as the ratio between the control parameter for (N, +1)/N, in the identical interaction case, /N, and
that in the zero-mean random interaction case, o,/ VNG

We speculate that a similar linear relationship with respect to x holds for the phase count Z\_fp /N.. By comparing the
control parameters Y — In(N. — 1) and o,v/N./ In N., we conclude that the shift is proportional to ¥ In(N.)/(oyv/Ne).
We also include a fitting parameter A since we have little knowledge of the analytical form of g, in contrast to gy.
Fig. A6a shows that shifting the N, /N, data according to Ax In(N.)/(oyv/N.) collapses the data for various y over
a broad range. The fitting parameter is chosen to be 0.2, independent of N. (Fig. A6b). Note that these two linear
relationships indicate that in the large N, limit, the influences of mean interaction y is subtle, since both 1/(wo,v/N.)
and In N./+/N. are vanishingly small with large N, consistent with Fig. 4.
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FIG. A4. Relative standard deviation of the numerically estimated of master functions for N, € [8,16]. Standard
deviations are calculated for N. = 8,10,12,14,16. 300-3000 samples of random interaction matrices and compositions are
drawn for each fixed N, x and oy. Other elements are the same as Fig. A2.
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FIG. A5. Linear correction proportional to y collapses data of the number of unstable modes. (a) Shifted
normalized average number of unstable modes (orange-purple) and coexisting phases (green-blue) as a function of the scaled
standard deviation of the interactions for various mean interactions x at fixed component count N. = 16. The shift coefficient
k = 1/moyv/Ne. (b) Changes in the normalized average number of unstable modes (orange-purple) and coexisting phases
(green-blue) as a function of the scaled mean interactions for various component counts N, at fixed standard deviation of the
interactions, o, = 10.
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FIG. A6. Linear correction proportional to x collapses data of the number of coexisting phases. (a) Shifted
normalized average number of unstable modes (orange-purple) and coexisting phases (green-blue) as a function of the scaled
standard deviation of the interactions for various mean interactions x at fixed component count N. = 16. The shift coefficient
k = An N¢/oy/Nc, where ) is a fitting constant independent of N. (b) Changes in the normalized average number of unstable
modes (orange-purple) and coexisting phases (green-blue) as a function of the scaled mean interactions for various component
counts N, at fixed standard deviation of the interactions, o, = 10.
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