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Abstract. The numerical solution of problems in nonlinear magneto-
statics is typically based on a variational formulation in terms of mag-
netic potentials, the discretization by finite elements, and iterative solvers
like the Newton method. The vector potential approach aims at mini-
mizing a certain energy functional and, in three dimensions, requires
the use of edge elements and appropriate gauging conditions. The scalar
potential approach, on the other hand, seeks to maximize the negative
coenergy and can be realized by standard Lagrange finite elements, thus
reducing the number of degrees of freedom and simplifying the implemen-
tation. The number of Newton iterations required to solve the governing
nonlinear system, however, has been observed to be usually higher than
for the vector potential formulation. In this paper, we propose a method
that combines the advantages of both approaches, i.e., it requires as few
Newton iterations as the vector potential formulation while involving
the magnetic scalar potential as the primary unknown. We discuss the
variational background of the method, its well-posedness, and its efficient
implementation. Numerical examples are presented for illustration of the
accuracy and the gain in efficiency compared to other approaches.

1 Introduction and motivation

The equilibrium distributions of the magnetic fields generated by an imposed
current density js = curlhs in a nonlinear magnetically isolated medium satisfy

∂bw(b) +∇ψ = hs in Ω, (1)

divb = 0 in Ω (2)

b · n = 0 on ∂Ω. (3)

Here b is the magnetic flux density, hs the source field, and ψ the magnetic
scalar potential. The magnetic field intensity h = ∂bw(b) is obtained as the
derivative of the magnetic energy density w(b) = w(b, x), which describes the
local nonlinear material response [16] and may in general depend on the spatial
position. The first equation thus amounts to the decomposition h = hs−∇ψ and
Ampere’s law curlh = js can be recovered by application of the curl operator.
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Vector potential formulation

The magnetic Gauß law (2) can be satisfied by representing b = curla in terms
of a magnetic vector potential. The remaining equations can then be restated as

curl(∂bw(curla)) = js in Ω (4)

a× n = 0 on ∂Ω. (5)

We tacitly assumed that the boundary ∂Ω is simply connected and further ap-
plied the curl operator to (1) as before. Hence (4) amounts to Ampere’s law
stated in terms of the magnetic vector potential. The weak formulation of this
problem is well-suited for analysis and discretization by H(curl)-conforming fi-
nite elements [12, 15], and the resulting nonlinear systems can be solved ef-
ficiently by Newton-type methods [7]. Appropriate gauging is required to en-
sure the uniqueness of the vector potential on the continuous and the discrete
level [1, 10].

Scalar potential formulation

Let w∗(h) = supb{⟨h,b⟩−w(b)} denote the convex conjugate coenergy density.
This allows to recast the material law h = ∂bw(b) in inverse form b = ∂hw∗(h).
Using h = hs−∇ψ, which also encodes Ampere’s law, and invoking the magnetic
Gauß law (2) then leads to the nonlinear scalar potential formulation

div(∂hw∗(hs −∇ψ)) = 0 in Ω (6)

b · n = 0 on ∂Ω. (7)

The weak form of this problem is again well-suited for the analysis of the problem.
H1-conforming finite elements can now be used for the systematic discretization
and Newton-type methods can be employed for the iterative solution of the
resulting nonlinear systems. We refer to [8,12] for details and further information.

Remark 1. In three space dimensions, the scalar potential approach achieves the
same approximation order with much fewer degrees of freedom and, addition-
ally, avoids the need for a complex gauging procedure. The two formulations
mentioned above, however, involve different nonlinear functions and the vector
potential approach seems to require fewer Newton iterations in typical cases [5].

Outline of the main results

We start from the mixed formulation (1)–(3), but instead of treating (1) in strong
form, like in previous works [6,12], we here use the weak form of this constraint
and keep the scalar potential term ∇ψ in (1) in strong form. The magnetic Gauß
law (2), on the other hand, is treated weakly. Then b can be approximated by
discontinuous finite elements which allows to eliminate this variable locally. A
key point of our approach is to do this only after linearization, i.e., in the solution
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of the linear saddle point problems arising from the Newton iteration. Overall, we
obtain a method that uses the same linearization ∂bw(b) of the energy density
as the vector potential formulation, while the linear systems to be solved in every
step of the Newton iteration are of the same structure and can be solved at the
same cost as those of the scalar potential formulation. In summary, this leads to
a modified scalar potential formulation with reduced computational cost.

2 Preliminaries

Let Ω ⊂ R3 be a bounded Lipschitz domain and simply connected. Standard
notation for Lebesgue and Sobolev spaces is used throughout the text; see [13]
for details. We write ⟨a, b⟩ for the scalar product in R3 and ⟨a, b⟩Ω =

∫
Ω
⟨a, b⟩ dx

for the L2-scalar product on Ω. We further assume that w : R3 × Ω → R is
piecewise smooth in the first argument and smooth in the second with strongly
monotone and Lipschitz continuous derivative, i.e.,

⟨∂bw(x,b)− ∂bw(x,b
′),b− b′⟩ ≥ γ|b− b′|2, (8)

|∂bw(x,b)− ∂bw(x,b
′)| ≤ L|b− b′| (9)

for all x ∈ Ω and b,b′ ∈ R3 with uniform constants L, γ > 0. We will not
mention the spatial dependence explicitly in the remainder of the manuscript.
As a final assumption, we require hs ∈ H(curl;Ω) and set js = curlhs.

Well-posedness and equivalence

For completeness of the presentation, let us summarize some basic facts about
the well-posedness and mutual connections of the different formulations.

Lemma 1. Under the above assumptions, the problem (1)–(3) has a unique so-
lution (b, ψ) and h = hs − ∇ψ satisfies curlh = js. Moreover, ψ is also the
unique solution of (6)–(7) and any a solving (4)–(5) also satisfies b = curla.

The main arguments to prove existence of a unique solution for the scalar po-
tential equation can be found in [8]. The remaining details are left to the reader.

Discrete mixed problem

Let Th be a tetrahedral mesh ofΩ satisfying the usual regularity properties [3,13].
We will make use of the finite element spaces

Qh = Pp−1(Th)d and Vh = Pp(Th) ∩H1(Ω)/R, (10)

consisting of all vector-valued piecewise polynomials of degree ≤ p − 1 and all
continuous piecewise polynomials of degree ≤ p having zero average, respectively.
We further denote by ⟨a, b⟩h =

∑
T ⟨a, b⟩T,h an approximation of the standard

L2-scalar product ⟨a, b⟩Ω obtained by a local quadrature rule applied on ev-
ery element. This quadrature rule is assumed to have positive weights and to
integrate polynomials of degree ≤ 2p− 2 exactly.

For the discretization of (1)–(3), we then consider the following method.
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Problem 1. Find bh ∈ Qh and ψh ∈ Vh such that

⟨∂bw(bh),b
′
h⟩h + ⟨∇ψ′

h,b
′
h⟩h = ⟨hs,b

′
h⟩h ∀bh ∈ Qh (11)

⟨bh,∇ψh⟩h = 0 ∀ψ′
h ∈ Vh. (12)

With similar arguments as for the continuous problem, we obtain the following.

Lemma 2. Under the above assumptions, Problem 1 admits a unique solution.

Proof. Let us note that (11)–(12) corresponds to the first-order optimality con-
dition for the constrained minimization problem

min
bh∈Qh

Jh(bh) := ⟨w(bh), 1⟩h − ⟨hs,bh⟩h (13)

s.t. ⟨bh,∇ψ′
h⟩h = 0 ∀ψ′

h ∈ Vh.

Under our assumptions, the functional Jh to be minimized is strictly convex and
coercive. This guarantees the existence of a unique solution bh ∈ Qh. The exis-
tence of a unique discrete Lagrange multiplier ψh follows from the compatibility
of the discretization spaces; see [2] for related results in the linear case. ⊓⊔

Scalar and vector potential formulations

For later reference let us briefly mention the basic form of the discretization
schemes for the other approaches mentioned in the introduction. The approxi-
mation for the scalar potential problem reads: Find ψh ∈ Vh such that

⟨∂hw∗(hs −∇ψh),∇ψ′
h⟩h = 0 ∀ψ′

h ∈ Vh. (14)

The existence of a unique solution again follows by standard arguments [8]. In
our numerical tests, we also compare to a discretization of the vector potential
formulation, which reads: Find ah ∈Wh such that

⟨∂bw(curlah), curla′h⟩h = ⟨hs, curla
′
h⟩h ∀a′h ∈Wh. (15)

Here Wh ⊂ H0(curl;Ω) is an appropriate sub-space of edge elements incorporat-
ing the required gauging conditions. The existence of a unique discrete solution
can then again be established by well-known arguments [9].

3 Iterative solution algorithm

For the iterative solution of (11)–(12), we consider a Newton method with line
search. Every step of this iteration has the form

(bn+1
h , ψn+1

h ) = (bn
h, ψ

n
h) + τn(δbn

h, δψ
n
h) (16)



A modified reduced scalar potential approach 5

with increments (δbh, δψh) ∈ Qh × Vh determined by the linearized systems

⟨∂bbw(bn
h)δb

n
h,b

′
h⟩h + ⟨∇δψn

h ,b
′
h⟩h = −⟨∂bw(bn

h) +∇ψn
h − hs,b

′
h⟩h (17)

⟨δbn
h,∇ψ′

h⟩h = −⟨bn
h,∇ψh⟩h. (18)

for all test functions b′
h ∈ Qh and ψ′

h ∈ Vh. With standard results about linear
saddlepoint problems [2], one can show the following result.

Lemma 3. For any given (bn
h, ψ

n
h) ∈ Qh×Vh, the system (17)–(18) has a unique

solution (δbn
h, δψ

n
h) ∈ Qh × Vh. Moreover, if ⟨bn

h,∇ψ′
h⟩h = 0 for all ψ′

h ∈ Vh,
then one also has ⟨δbn

h,∇ψ′
h⟩h = 0 for all ψ′

h ∈ Vh.

Remark 2. Together with an appropriate line search strategy, one can now es-
tablish global convergence of the iteration (16)–(17) using well-known arguments
from nonlinear optimization. In our numerical tests, we use Armijo backtrack-
ing [11], which allows to guarantee sufficient decay in the energy (13) in every
step. If assuming the initial choice b0

h = 0, global linear convergence with a
mesh-independent convergence rate follows from the arguments in [7]. Similar
results can also be proven for the other discretization strategies discussed above.

4 Efficient realization of the Newton step

In every step of the proposed iterative method, a linearized discrete saddle point
problem (17)–(18) has to be solved. On the algebraic level, it has the form(

A B⊤

B 0

)(
db
dψ

)
=

(
f
g

)
(19)

To avoid misunderstanding, we use slightly different notation for the coordinate
vectors (db, dψ) than for the corresponding functions (δbn

h, δψ
n
h). Due to our

assumptions, the matrix A can be shown to be positive definite, and since the
finite element space Qh carries no continuity properties, it has a block-diagonal
structure. One can thus efficiently assemble the Schur complement system

BA−1B⊤dψ = BA−1f − g (20)

whose system matrix S = BA−1B⊤ corresponds to the stiffness matrix of a
standard finite element discretization for the Poisson problem. In particular, it
has the same properties as that of the discretized and linearized scalar potential
problem (14). In a second step, one can determine the second component

db = A−1(f −B⊤dψ), (21)

which can again be computed efficiently, since A−1 is still block diagonal. In
summary, the Newton-update (db, dψ) can be computed with a computational
effort comparable to that of the standard scalar potential formulation.
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5 Numerical results

To illustrate our theoretical results, we now present some computational tests in
which we compare the proposed methods with the standard scalar- and vector
potential formulations. As a test problem, we use Problem 13 of the Compumag
TEAM suite [4]. The geometry for this problem consists of a coil surrounded by
steel plates; see Figure 1 for a sketch.

Fig. 1. Bird’s eye view of the geometry of TEAM problem 13. Pink volumes are the
steel plates; the green area is the coil. The ambient air box is hidden.

Material laws. In the air and the coil, the magnetic response is modeled by
the linear material relation b = µ0h, where µ0 is the vacuum permeability. This
corresponds to w(b) = 2

2µ0
|b|2 respectively w∗(h) =

µ0

2 |h|2. For the steel plates

we us an isotropic nonlinear relation w(b) = w̃(|b|). Then w̃′(|b|) = |h| can
be obtained from the B-H data provided in [4, Figure 3]. The functions w̃(|b|)
and w̃′′(|b|) which are required to compute w(b) and ∂bbw(b) for the nonlinear
iteration can then be obtained by integration resp. differentiation. Validity of the
conditions (8)–(9) can be guaranteed explicitly by this procedure. The setup of
the coenergy density w∗(h) = w̃∗(|h|) is done in a similar manner. The solution
of our test problem is depicted in Figure 2.

Implementation. We conduct a series of numerical tests using the vector and
scalar potential formulations and the method proposed in this paper. Results for
different mesh sizes h and polynomial degree p are presented. Since singularities
occur at material interfaces, we refine the mesh towards the respective faces and
edges using local mesh sizes hf = 2−3 ·h and he = 2−4 ·h. The global mesh size is
chosen as h = 2−k, k = 2, 3, . . .. The corresponding meshes are generated inde-
pendently from each other. All tests were implemented in Netgen/Ngsolve [14].
The same nonlinear solution strategy, i.e. a Newton method with Armijo line
search, was used for all methods with the same parameters and stopping tol-
erances. The linear systems arising in every Newton step were solved with the
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Fig. 2. Solution to the magnetostatic problem using our mixed approach. Black arrows
depict the direction of the current in the coil. Scalar value is the magnitude of the b-
field. (computed using Netgen/NGSolve and displayed using PyVista.

conjugate gradient method with Jacobi preconditioner. Again, the same toler-
ances were used for stopping these iterations.

Numerical results. In Table 1, we report on the iteration numbers of the non-
linear solver required for the different methods and for different choices of the
excitation current, the mesh sizes h, and the polynomial degrees p. We observe
that in general, the iteration numbers are more or less independent of the dis-
cretization parameters; see [7] for explanation. The two energy-based methods
(left, right) require only about 7–8 iterations to reach the desired tolerance, while
the scalar potential formulation (middle), which is based on the coenergy func-
tional, requires approximately twice as many. This is in perfect agreement with
the observations made in [5]. Let us note that, for the same mesh and polynomial
order, the vector potential formulation has about 3–6 times as many degrees of
freedom as the corresponding scalar potential formulation, and in our computa-
tions, the solution of the linear systems, therefore, takes 3–6 times longer. For
the proposed modified scalar potential approach, the linear solves can be done
at the same complexity as for the standard scalar potential formulations. The
number of Newton iterations, and hence also the total computational complexity,
is reduced by about one half.
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1000 ampere-turns

h p = 1 p = 2 p = 3 p = 4

2−2 8 | 9 | 8 6 | 14 | 8 7 | 13 | 8 7 | 15 | 8
2−3 8 | 12 | 8 6 | 16 | 7 7 | 15 | 8 7 | 14 | 8
2−4 9 | 15 | 7 7 | 19 | 8 7 | 16 | 8 7 | 15 | 8
2−5 7 | 17 | 7 7 | 16 | 8 7 | 20 | 8 7 | 19 | 8
2−6 7 | 15 | 7 7 | 23 | 7 7 | 22 | 8 8 | 18 | 9

3000 ampere-turns

h p = 1 p = 2 p = 3 p = 4

2−2 8 | 13 | 8 9 | 18 | 7 8 | 16 | 9 8 | 16 | 9
2−3 8 | 14 | 8 9 | 13 | 8 8 | 18 | 8 8 | 16 | 8
2−4 8 | 12 | 8 8 | 14 | 7 8 | 15 | 8 8 | 20 | 8
2−5 9 | 17 | 7 8 | 21 | 7 8 | 27 | 8 8 | 21 | 8
2−6 8 | 21 | 7 8 | 21 | 8 8 | 20 | 8 8 | 20 | 8

Table 1. Number of iterations for the vector potential formulation, the scalar potential
approach, and the proposed modified scalar potential approach (left to right).
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