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The problem of light waves interaction with charged particles becomes more and more complex
starting with the case of plane waves, where the analytical solution is well known, to more natu-
ral, though more complicated situations which include focused or structured laser beams. Internal
structure may introduce a new degree of freedom and qualitatively change the dynamics of inter-
acting particles. For certain conditions, namely for the dilute plasma, description of single-particle
dynamics in the focused structured laser beams is the first step and may serve as a good approx-
imation on the way of understanding the global plasma response. Moreover, the general problem
of integrability in complex systems starts from consideration of the integrals of motion for a single
particle. The primary goal of this work is an understanding of the physics of the orbital angu-
lar momentum (OAM) absorption by a single particle in a focused structured light. A theoretical
model of the process, including solutions of Maxwell equations with the required accuracy and a
high-order perturbative approach to electron motion in external electromagnetic fields, is developed
and its predictions are examined with numerical simulations for several exemplary electromagnetic
field configurations. In particular, it was found that for the particles distributed initially with the
azimuthal symmetry around the beam propagation direction, the transferred OAM has a smallness
of the fourth order of the applied field amplitude, and requires an accurate consideration of the
temporal laser pulse envelope.

I. INTRODUCTION

Electromagnetic interaction between structured light
and charged particles in vacuum may result in particle
acceleration, i.e. momentum and energy transfer, which
under certain conditions appears to be irreversible. For
that, the light wave should at least be sufficiently differ-
ent from a slow-varying plane wave, see, e.g. [1]. In this
general context, a similar question may be posed concern-
ing the transfer of the light orbital angular momentum
(OAM): how effective it occurs when a structured light
wave interacts in vacuum with a single charged particle,
and how effective it is in average for a particle ensemble
with a given distribution.

This question was addressed recently within different
frameworks. In [2–4], the OAM transfer is considered
numerically for different model configurations of laser
beams interacting with individual charged particles in
free space. Paraxial and slowly varying envelope approxi-
mations were used to prescribe the electromagnetic fields,
and specific cases of linear, circular and radial polariza-
tions with and without spatio-temporal coupling were
considered. Transferred energy, momentum and angu-
lar momentum dependence on duration, amplitude and
other parameters were studied in some certain cases. In
Ref. [5], numerical simulation of the action of the OAM
laser beam on free electrons is presented for the case of su-
perposition of a linearly polarized Laguerre-Gaussian and
Gaussian modes, the OAM transfer is estimated based on
the results of the perturbation theory. An importance of
the accurate use of the paraxial and slowly varying tem-
poral envelope approximations in numerical simulations
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is discussed in [6] based on consideration of a conserved
integral of motion for the special case, when the circu-
lar polarization and orbital momentum in the beam have
opposite directions, so that there is no dependence on
the angle in the phase. The necessity of corrections to
the lowest order approximations both in numerical sim-
ulations and analytics is demonstrated.

More complicated, though less detailed studies of the
OAM beam interaction with plasmas, were mainly per-
formed with the use of large-scale 3D particle-and-cell
simulations. In Refs. [7, 8], generation of magnetic fields
in dilute plasma was observed and explained as a result
of an OAM transfer from the laser beam to electrons.
There, radial and linear polarizations were considered,
showing effective OAM transfer for moderate relativistic
intensities. Analysis with the use of simplified electro-
magnetic fields showed the importance of the longitudi-
nal particle motion for the OAM transfer. Magnetic field
was also observed in plasma in Ref. [9] via OAM transfer
from two beating Laguerre-Gaussian beams to charged
particles. There, a fluid model of the interaction was de-
veloped to describe formation of azimuthal currents in
the plasma.

In case of dissipative processes, the magnetic field gen-
eration, originating from angular momentum absorption
of a circularly polarized laser beam, is demonstrated the-
oretically in [10]. Circularly polarized beams were re-
placed by linearly polarized beams with OAM in Ref.
[11]. For intense relativistic beams with different po-
larizations, including linearly and circularly polarized
Laguerre-Gaussian modes, Ref. [12] studies magnetic
field generation and dissipative effects in plasma.

Although there is a common conclusion that the OAM
transfer from a structured light wave to electrons may be
both possible and effective, still, it is not clear if this is al-
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ways a single-particle effect or certain nonlinearities orig-
inated from collective or dissipative effects are required.
It was observed in several studies [3, 7], that the indi-
vidual electrons are absorbing positive or negative light
OAM depending on their spatial position, even for def-
inite OAM sign in the incident wave, but the net gain
appears to be much less. The detailed consideration for
the analytically attainable special case, predicting no net
OAM gain after interaction [6], supported the conclusion
that the total OAM transfer is a very delicate process.

In this work, a general problem of OAM transfer from
a structured light wave to an ensemble of charged par-
ticles is considered for moderate intensities of the inci-
dent light. It may be a rarefied plasma, consisting of
ions and electrons, which are interacting with an incident
light much stronger than between themselves, which re-

quires ωp ≪ ω0, where ωp =
√

4πnee2

me
is the plasma

frequency, ne is the electron density, e and me are the
electron charge and mass respectively, ω0 is the charac-
teristic light frequency, e.g. the main carrier frequency
of the laser wave. The particles are considered initially
cold with the temperature T ≪ (eE0)

2/meω0, where E0

is the electric field amplitude. This condition means that
the work, performed by the laser wave during one period
is small compared to the thermal energy of the electrons,
and allows to treat electrons as being at rest before the
interaction. Electrons, being the lighter particles, are pri-
marily affected by the light, so the OAM transfer would
be analyzed having in mind namely the wave-electron in-
teraction, but of course all the results are valid for any
charged particles.

First, a perturbation theory on the field strength for
arbitrary fields is developed up to the fourth order, to
obtain a nonzero net absorbed OAM in case of homo-
geneous distribution of the particles. Then, assuming a
focused laser beam, an approximate description of the
structured wave within the paraxial and the slow tem-
poral dependence approximations is represented. Using
this description, several certain configurations are con-
sidered in details, including comparison with numerical
single-particle calculations. Closer to the end, general
discussion and conclusions are presented.

II. ANALYTICAL MODEL

Electron motion in arbitrary electromagnetic fields E
and H is described by the equation

dp

dt
= −e

(
E+

v

c
×H

)
(1)

with initial conditions{
r (t → −∞) = r0,

v (t → −∞) = 0,
(2)

where p = meγv is the electron momentum, γ =

1/
√
1− v2

c2 is the Lorentz factor, r0 is the electron ini-

tial position, c is the speed of light and E = E(r, t) and
H = H(r, t) are the laser electric and magnetic fields
respectively, satisfying Maxwell equations in vacuum∇×E = −1

c

∂H

∂t
, ∇×H =

1

c

∂E

∂t
,

∇ ·H = 0, ∇ ·E = 0.
(3)

x

y

z

r⟂
φ

Electrons

Laser wave

FIG. 1: The interaction scheme and the coordinate sys-
tem. The z axis coincides with the laser propagation axis
and particles are distributed isotropically in the trans-
verse plane xy for every value of z.

The schematic setup of the interaction is presented in
Fig. 1. In the following part of the paper a perturbation
theory of angular momentum transfer from electromag-
netic wave to charged particles is developed.

A. Particle motion in electromagnetic wave

Consider formally a low intensity regime a0 ≲ 1, where
a0 = eE0

meω0c
is the dimensionless amplitude of the field,

E0 is the amplitude of electric field. The electromagnetic
wave is assumed to be finite, E(r, t → ±∞) = H(r, t →
±∞) = 0. In frames of the perturbation theory on a0,
the coordinates and velocities of the particle may be ex-
pressed in the form{

r = r(0) + r(1) + r(2) + . . . ,

v = v(0) + v(1) + v(2) + . . . ,
(4)

where r(0) and v(0) are the unperturbed coordinate and
velocity, r(n) ∼ an0 and v(n) ∼ an0 . According to the
initial conditions (2) r(0) = r0, v

(0) = 0.

In the first order

dp(1)

dt
= −mecω0

E0
a0E (r0, t) . (5)
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The solution of the equation of the first order is

p(1) = mev
(1) = −mecω0

E0
a0

t∫
−∞

dt′E (r0, t
′) ,

r(1) = −cω0

E0
a0

t∫
−∞

dt′
t′∫

−∞

dt′′E (r0, t
′′) .

(6)

The gained momentum of a particle in the first order is

p(1) (t∞) = −mecω0

E0
a0E (ω = 0, r0) = 0, (7)

where the notation ”t∞” ≡ ”t → ∞” is used and E(ω, r)
is the Fourier component of the electric field. It is as-
sumed that the electromagnetic pulse has no constant
part and hence a particle does not gain momentum in
the first order. Assuming the same for double integra-
tion over time, obtain

r(1) (t∞) = 0, (8)

the validity of this assumption is discussed in more details
in Section IV.

According to (7), angular momentum in the first order
on a0 is not gained by a particle,

L(1) = r0 × p(1) −−→
t∞

0. (9)

In the second order perturbation theory

dp(2)

dt
= me

dv(2)

dt
= −mecω0

E0
a0×

×
((

r(1) · ∇0

)
E (r0, t) +

v(1)

c
×H (r0, t)

)
, (10)

where ∇0 = ex
∂

∂x0
+ ey

∂
∂y0

+ ez
∂

∂z0
is the del operator,

taken with respect to the initial position of the particle
r0.

To obtain general expressions for arbitrary electromag-
netic fields, consistent with the Maxwell equations, the
perturbation theory uses the relations between the elec-
tric and magnetic field components. For∇0×v(1), taking
into account that ∇×E = − 1

c
∂H
∂t one obtains

∇0 × v(1) = −cω0

E0
a0

t∫
−∞

∇0 ×E (r0, t
′) dt′ =

=
ω0

E0
a0

t∫
−∞

∂H (r0, t
′)

∂t′
dt′ =

ω0

E0
a0H (r0, t) , (11)

and substituting H = E0

ω0a0
∇0 × v(1) into (10)

d

dt

(
p(2) −me

(
r(1) · ∇0

)
v(1)

)
= −me

2
∇0

(
v(1)

)2
.

(12)

The gained momentum in the second order after interac-
tion then reads

p(2) (t∞) = −me

2
∇0

∞∫
−∞

(
v(1)

)2
dt, (13)

where it is assumed that ∂
∂xi

v(1)(t∞) → 0. The parti-
cle displacement in the second order perturbation theory
then reads

r(2) =

t∫
−∞

dt
(
r(1) · ∇0

)
v(1)−

− 1

2

t∫
−∞

dt′
t′∫

−∞

dt′′∇0

(
v(1)

)2
. (14)

The second-order absorbed angular momentum is

L(2) = r0 × p(2) + r(1) × p(1). (15)

Introduce cylindrical coordinates (r⊥, φ, z) with r⊥ and
φ being the transverse distance and the azimuthal angle
respectively, i.e. x = r⊥ cosφ, y = r⊥ cosφ. Axis z is
chosen in such a way that it coincides with the axis of
propagation of the electromagnetic wave, see Fig. 1 and
Section II B for further details related to the fields. The
longitudinal component of the angular momentum after
interaction reads

L(2)
z (t∞) = r0p

(2)
φ (t∞) = −me

2

∂

∂φ0

∞∫
−∞

(
v(1)

)2
dt, (16)

where r0 ≡ (r⊥0, φ0, z0) ≡ (r0, φ0, z0). After averaging
over the azimuthal angle

⟨L(2)
z (t∞)⟩φ0

≡
2π∫
0

ρ(r0, z0)L
(2)
z (t∞)dφ0 = 0, (17)

where the distribution function of the initial coordinates
of the particles ρ(r0, z0) is considered to be symmetric
about the laser propagation axis, i.e. it does not depend
on the initial angle of the particle φ0. For instance, the
distribution function for an isotropic plasma cylinder is
ρ(r0, z0) = 1/(πR2h) for r0, z0 that are inside the cylin-
der and 0 otherwise, where R is the radius and h is the
height of the cylinder respectively.

As it follows from (17), for the plasma, which is
isotropic transversely to the wave propagation direction,
there is no net angular momentum gain up to the second
order of the perturbation theory on a0; to describe the
angular momentum transfer higher orders of perturba-
tion theory are required.
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The third order perturbation theory gives for the momentum

dp(3)

dt
= −mecω0

E0
a0×

×
((

r(2) · ∇0

)
E (r0, t) +

1

2
r(1)α r

(1)
β

∂2E (r0, t)

∂r0αr0β
+

v(2)

c
×H (r0, t) +

v(1)

c
×
(
r(1) · ∇0

)
H (r0, t)

)
, (18)

or after some algebra,

d

dt

(
p(3) −me

(
r(2) · ∇0

)
v(1) − me

2
r(1)α r

(1)
β

∂2v(1)

∂r0α∂r0β
+mev

(2)
α ∇0r

(1)
α −me

((
r(1) · ∇0

)
v(1)α

)
∇0r

(1)
α

)
=

= −me

2
∇0

(
∇0 ·

(
r(1)

(
v(1)

)2))
. (19)

Then a particle after interaction gains the momentum

p(3) (t∞) = −me

2
∇0

∇0 ·
∞∫

−∞

r(1)
(
v(1)

)2
dt

 , (20)

where it is additionally assumed that ∂
∂xi

r(1)(t∞) → 0. The absorbed angular momentum in the third order of the
perturbation theory may be represented as

L(3) = r0 × p(3) + r(1) × p(2) + r(2) × p(1). (21)

This value may appear to be non-zero for certain particles, but for isotropic plasma it again vanishes after averaging

L(3)
z (t → ∞) = −me

2

∂

∂φ0

∇0 ·
∞∫

−∞

r(1)
(
v(1)

)2
dt

 −−−−→
⟨... ⟩φ0

0. (22)

In the fourth order of the perturbation theory the particle momentum reads

dp(4)

dt
=

mecω0

E0
a0

((
r(3) · ∇0

)
E (r0, t) + r(1)α r

(2)
β

∂2E (r0, t)

∂r0α∂r0β
+

1

6
r(1)α r

(1)
β r(1)γ

∂3E (r0, t)

∂r0α∂r0β∂r0γ
+

v(3)

c
×H (r0, t)+

+
v(2)

c
×
(
r(1) · ∇0

)
H (r0, t) +

v(1)

c
×
((

r(2) · ∇0

)
H (r0, t) +

1

2
r(1)α r

(1)
β

∂2H (r0, t)

∂r0α∂r0β

))
. (23)

This expression may be represented as

d

dt

(
p(4) −me

(
r(3) · ∇0

)
v(1) −mer

(1)
α r

(2)
β

∂2v(1)

∂r0α∂r0β
− me

6
r(1)α r

(1)
β r(1)γ

∂3v(1)

∂r0α∂r0β∂r0γ
+

+mev
(3)
α ∇0r

(1)
α −me

((
r(2) · ∇0

)
v(1)α

)
∇0r

(1)
α − me

2
r(1)α r

(1)
β

∂2v
(1)
γ

∂r0α∂r0β
∇0r

(1)
γ +

+
me

2c2

(
v(1)

)2
v(1)α ∇0r

(1)
α +me

(
r(2)∇0

)((
r(1) · ∇0

)
v(1)

))
=

=
me

8c2
∇0

(
v(1)

)4
− me

2
∇0

(
r(1)α r

(1)
β v(1)γ

∂2v
(1)
γ

∂r0α∂r0β

)
− me

2
∇0

(
v(2)

)2
+me

d

dt

((
r(2) · ∇0

)
v(2)

)
, (24)

where it is taken into account, that ∇ · r(1) = 0, since ∇ · E (r0, t) = 0. The angular momentum, gained by a single
particle in the fourth order reads

L(4) = r0 × p(4) + r(1) × p(3) + r(2) × p(2) + r(3) × p(1). (25)
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After averaging its longitudinal component over the azimuthal angle, at t → ∞ it becomes

⟨L(4)
z (t∞)⟩φ0

= me⟨
(
r0 ×

(
r(2) · ∇0

)
v(2)

)
z
+
(
r(2) × p(2)

)
z
⟩φ0

∣∣∣
t∞

=
〈(

r(2)(t∞) · ∇0

)
L(2)
z (t∞)

〉
φ0

, (26)

which is not zero in general. For the subsequent analysis, obtain here also the expression for the particle energy up
to the fourth order of the perturbation theory

mec
2γ =

mec
2√

1− v2/c2
≈ mec

2 +
me

2

((
v(1)

)2
+ 2

(
v(1) · v(2)

)
+ 2

(
v(1) · v(3)

)
+
(
v(2)

)2)
+

3me

8c2

(
v(1)

)4
. (27)

After the interaction ends, the first non-vanishing contribution to the total kinetic energy gain is also of the fourth
order

mec
2 (γ − 1) |t∞ ≡ ε|t∞ ≈ ε(4) (t∞) =

me

2

(
v(2) (t∞)

)2
. (28)

Gather the obtained expressions for the momentum, the
angular momentum, the average angular momentum and
the energy gained by particles in the main non-vanishing
order of the perturbation theory on a0:

p(2) (t∞) =− me

2
∇0

∞∫
−∞

(
v(1)(r0, t)

)2
dt,

L(2)
z (t∞) =− me

2

∂

∂φ0

∞∫
−∞

(
v(1)(r0, t)

)2
dt,

⟨L(4)
z (t∞)⟩φ0 =

〈(
r(2)(r0, t∞) · ∇0

)
L(2)
z (r0, t∞)

〉
φ0

,

ε(4) (t∞) =
me

2

(
v(2)(r0, t∞)

)2
.

(29)
These expressions represent the central result of the

work, they will be used to analyze some certain cases
of interaction of the structured light waves with charged
particles. Note that up to this moment, the perturba-
tion theory on the wave amplitude a0 was presented, the
order of this perturbation theory is designated with the
upper-right number in round braces. The perturbation
theory on a0 does use Maxwell equations, there are no
approximations made for the fields. However, to proceed
with certain cases, analytical expressions for the struc-
tured light, represented in the next section, are required.

B. Approximate description of a structured
electromagnetic wave

As it is explained in Ref. [13], electromagnetic fields
in vacuum can be prescribed via boundary conditions
for the transverse electric or magnetic field components.
The results in this section are presented for the boundary
conditions defined for the magnetic field. Similar results
may be obtained using the electric field boundary con-
ditions by substitution E → −H, H → E which follows
from the symmetry of Maxwell equations.

Consider the wave equation for the magnetic field(
∆− 1

c2
∂2

∂t2

)
H̃(r, t) = 0, (30)

where Ẽ = Ẽ(r, t) and H̃ = H̃(r, t) are the complex

representations of E and H, so that E = Re
[
Ẽ
]
, H =

Re
[
H̃
]
. With ξ ≡ t − z/c as the new time variable the

wave equation reads(
∆− 2

c2
∂2

∂ξ∂z

)
H̃(r, ξ) = 0. (31)

Performing the frequency and transversal Fourier trans-
formations

H̃(r⊥, z, ξ) =

∫
dωdk⊥

(2π)
3 H(ω,k⊥, z)e

i(ωξ−k⊥r⊥), (32)

where r⊥ ≡ xex + yey, k⊥ ≡ kxex + kyey, obtain that
H(ω,k⊥, z) satisfies(

∂2

∂z2
− 2i

ω

c

∂

∂z
− k2

⊥

)
H(ω,k⊥, z) = 0. (33)

The two independent solutions are forward and backward
propagating waves; the forward propagating wave is de-
fined as

H(ω,k⊥, z) = H(ω,k⊥, 0)e
iω

(
1−
√

1−
k2
⊥c2

ω2

)
z/c

, (34)

where the condition ω2/c2−k2
⊥ > 0, limiting values of the

wave vector for the propagating components, arises. The
multiplier H(ω,k⊥, 0) is determined with the boundary
condition placed at z = 0

H(ω,k⊥, 0) =

∫
dξdr⊥H̃⊥

∣∣∣
z=0

e−i(ωξ−k⊥·r⊥),

ω2/c2 − k2
⊥ > 0. (35)
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The general forward propagating solution reads

H̃ =∫
ω2/c2−k2

⊥>0

dωdk⊥

(2π)
3 H(ω,k⊥, 0)e

i(ωξ−k⊥·r⊥+(ω/c−kz)z),

(36)

where kz = ω
c

√
1− k2

⊥c2

ω2 . As it follows from (36), the

evanescent components of the boundary condition should
be dropped, as long as they produce evanescent parts
of the solution. Hence the general forward propagating
electric and magnetic fields may be written in the form

Ẽ =

∫
dωdk⊥

(2π)
3 E(ω,k⊥, 0)e

i(ωξ−k⊥·r⊥+(ω/c−kz)z),

H̃ =

∫
dωdk⊥

(2π)
3 H(ω,k⊥, 0)e

i(ωξ−k⊥·r⊥+(ω/c−kz)z),

(37)

where explicit specification of area of integration ω2/c2−
k2
⊥ > 0 is omitted.
Transverse and longitudinal components of the elec-

tric and magnetic fields at focal points are not indepen-
dent. As independent parameters of the general forward
propagating solution one may choose e.g. the transverse
components of the magnetic field, determined with the
boundary condition for the transverse components. Lon-
gitudinal component of the magnetic field and the electric
field components may be obtained from Maxwell equa-
tions, which in the new variables read

divH̃ =
1

c

∂H̃z

∂ξ
,

rotH̃ =
1

c

[
ez

∂H̃

∂ξ

]
+

1

c

∂Ẽ

∂ξ
,

(38)

so that

Hz(ω,k⊥, 0) = −k⊥ ·H⊥(ω,k⊥, 0)

kz
,

E(ω,k⊥, 0) = −ck×H(ω,k⊥, 0)

ω
.

(39)

The integration in (37) may be carried out approximately
with the expansion of the exponent with the assumption
of a slow temporal dependence and slow dependence in
the transverse direction

e
iωz/c−iω

√
1−

k2
⊥c2

ω2 z/c
= ei

ck2
⊥

2ω0
z
∑
n,m

(ω − ω0)
nk2m

⊥
n!m!

×

× ∂n

∂ωn
∂m

∂(k2
⊥)

m e
iω

(
1−
√

1−
k2
⊥c2

ω2 − c2k2
⊥

2ω0ω

)
z/c
∣∣∣∣∣ω=ω0
k⊥=0

, (40)

where ω0 is the main carrier frequency of the electromag-
netic wave. Note that according to the paraxial approx-
imation, one has to consider characteristic values to be

k⊥ ∼ w−1
0 , z ∼ w2

0/λ0, where w0 is the beam waist ra-
dius and λ0 is the beam wave length, which means that
ck2

⊥z/ω0 ∼ 1 and has to be retained in the exponent in
(40).

For transversely wide beams with the characteristic
beam waist radius w0, where the characteristic trans-
verse wave-vector k⊥ ∼ w−1

0 , the paraxial approximation

is defined by expansion on
k2
⊥c2

ω2 , i.e. the order of the
paraxial approximation is defined by m, see e.g. [14]. In
this framework, the condition ω2/c2 − k2

⊥ is neglected in
the integration, because it leads to exponentially small
corrections.

For long enough oscillating waves, considered here and
in the case of a slow temporal change of the field ampli-
tude with a characteristic time τ the condition τ ≫ 1/ω0

leads to a sharp peak at ω = ω0 in the field spectrum.
Then, the approximate expressions for the electromag-
netic field may be obtained [15] as an expansion of the
factor ei(ω/c−kz)z near the peak of the spectrum in (37),
the order of the temporal expansion is denoted here by
n.

Expansion of the electromagnetic field leads to a se-
ries in powers of small parameters related to the inverse
beam waist radius λ0/w0 ≪ 1 and inverse beam duration
(ω0τ)

−1 ≪ 1, which may be represented in form

H(r, t) =
∑
n,m

H{n,m}(r, t), (41)

where the first (bold) superscript represents the order of
the temporal expansion, i.e. the expansion on the inverse
beam duration (ω0τ)

−1 and the second superscript rep-
resents the order of the paraxial expansion, i.e. expan-
sion on the inverse beam waist radius λ0/w0. In general,
temporal and paraxial expansions may be carried out in-
dependently, i.e. leaving only n or only m summation
in (41). For the paraxial expansion only, up to the forth
order of k2

⊥ one obtains

ei(ω/c−kz)z ≈ ei
ck2

⊥
2ω z ×

×
(
1 + i

c3k4
⊥

8ω3 z + i
c5k6

⊥
16ω5 z + . . .

)
, (42)

which corresponds in the used notations to the paraxial
expansion

H(r, t) = H{0} +H{1} +H{2} + . . . , (43)

where only the second index in (41) is left.
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In the same way, the expansion near ω0, i.e.

ei(ω/c−kz)z ≈ e
iω0z/c−iω0

√
1−

k2
⊥

ω2
0
z/c

×

×

(
1 + i

(
1− ω0√

ω2
0 − c2k2

⊥

)
z (ω − ω0)

c
+

+

(
ic3k2

⊥

z (ω2
0 − c2k2

⊥)
3/2

−

−

(
1− ω0√

ω2
0 − c2k2

⊥

)2
 z2(ω − ω0)

2

2c2
+ . . .

 , (44)

provides the temporal expansion

H(r, t) = H{0} +H{1} +H{2} + . . . . (45)

Similar expressions may be presented for the electric field
components.

To take into account both the temporal and paraxial
corrections in a few low orders, the exponent ei(ω/c−kz)z

in (37) may be expanded in powers of λ0/w0 ≪ 1 and
(ω0τ)

−1 ≪ 1 as

ei(ω/c−kz)z ≈

ei
ck2

⊥
2ω0

z

(
1 + i

c3k4
⊥

8ω3
0

z − i(ω − ω0)
ck2

⊥
2ω2

0

z + . . .

)
. (46)

The first term corresponds to the lowest order paraxial
approximation and the constant envelope, the second re-
lates to the first non-vanishing correction to the lowest
order paraxial approximation with the constant envelope
and the third one corresponds to the temporal corrections
taking into account the time variations of the envelope
in the lowest order paraxial approximation. From (39)
and (46) one can see, that the the transverse components
of electromagnetic field are expanded in even powers of
λ0/w0 and longitudinal in odd powers of λ0/w0.
Having in mind a possibility of a general analysis, con-

sider the electromagnetic fields as a linear combination
of modes 

H =
∑
i

H(i),

E =
∑
i

E(i),
(47)

which will be later specified for several certain examples.
The boundary condition for transverse components in the
(x, y) plane is defined for the magnetic field as

H
(i)
⊥

∣∣∣
z=0

= H
(i)
0⊥ (r⊥, t) , (48)

where z = 0 is the focal plane. Consider here sufficiently

mildly focused beams, so that for the chosen H
(i)
0⊥ (r⊥, t)

no evanescent components appear.
For the main goal of this work, it is enough to con-

sider the light-particle OAM absorption in the first non-
vanishing order of the interaction parameters, defined

according to the expansion (41). So, the paraxial ap-
proximation λ0/w0 ≪ 1 and the approximation of a

slowly varying temporal envelope (τω0)
−1 ≪ 1, are as-

sumed. The boundary conditions in the focal plane are
chosen for convenience in the complex form, so that

H
(i)
x,y = Re

[
H̃

(i)
x,y

]
:

H̃(i)
x

∣∣∣
z=0

= E0g (t) e
iω0tH(i)

0⊥ (r⊥) ,

H̃(i)
y

∣∣∣
z=0

= −iσ(i)H̃(i)
x

∣∣∣
z=0

,
(49)

where g (t) is a common slow temporal envelope, E0 is the

common field amplitude and H(i)
0⊥ (r⊥) = H(i)

0x(r⊥)ex +

H(i)
0y (r⊥)ey is an arbitrary function. The used setup (49)

represents a superposition of co-propagating along z axis
circularly (σ(i) = ±1) or linearly (σ(i) = 0) polarized
beams.
The function H(i)

0⊥ (r⊥) may be expressed in terms
of the eigenfunctions of the paraxial wave equation upl,
which are defined as [16]

upl (r, φ, z) = Cpl
1

w (z)
×(

r
√
2

w (z)

)|l|

exp

(
− r2

w2 (z)

)
L|l|
p

(
2r2

w2 (z)

)
×

exp

(
−ilφ− i

r2z

w2 (z)
+ i (2p+ |l|+ 1) tan−1 (z)

)
, (50)

where r = r⊥/w0 and z = z/zR with zR =
πw2

0

λ0
be-

ing the Rayleigh length, are the dimensionless transverse

radius and longitudinal coordinate, Cpl =
√

2
π

p!
(p+|l|)! is

the normalization constant, w (z) =
√
1 + z2, L

|l|
p is the

generalized Laguerre polynomial.
The basis for the boundary conditions is formed by the

functions upl(r, φ, z = 0) ≡ Upl(r, φ). Then the expan-

sion of H(i)
0⊥ (r⊥) reads

H(i)
0α (r⊥, φ) =

∞∑
p=0

∞∑
l=−∞

a
(i)
plαUpl (r, φ) , (51)

where

a
(i)
plα =

∫
rdrdφH(i)

0α (r⊥, φ)U
∗
pl (r, φ) , (52)

and α = x or y.
Substituting the boundary condition (49), expanded

in terms of Upl, to (35), integrating over ξ, introducing
the angle between k⊥ and x-axis, such that k⊥ · r⊥ =
k⊥r⊥ cos(θ − φ), and integrating over the azimuthal an-
gle φ, one obtains (A2), using the representation of the
Bessel function (A1). There, gω =

∫
dξg (ξ) e−iωξ is the

Fourier transform of the envelope. Then, integrating over
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r and using the identity (A3), one obtains

H(i)
α (ω,k⊥, z = 0) =

= E0gω−ω0πw
2
0

∑
p,l

a
(i)
plαi

2p+|l|Upl

(
k⊥w0

2
, θ

)
. (53)

The lowest order approximation of the solution then
takes form

H̃{0,0}
α = E0g (ξ)

∑
i

∑
p,l

a
(i)
plαupl (r, φ, z) e

iω0ξ, (54)

where the first (bold) index in H̃
{0,0}
α corresponds to the

order of expansion on (ω0τ)
−1 and the second to the

order of expansion on λ0/w0. Introducing

H{0,0}
α (r) =

∑
i

∑
p,l

a
(i)
plαupl (r, φ, z) , (55)

such that H{0,0}
α (r)

∣∣∣
z=0

= H0α (r⊥) ≡
∑
i

H(i)
0α (r⊥), the

lowest order approximation may be represented in the
form

H̃
{0,0}
⊥ = E0g (ξ)H{0,0}

⊥ (r) eiω0ξ. (56)

The first correction corresponding to the finite pulse du-
ration

H̃
{1,0}
⊥ =

E0

ω0
g′ (ξ) iz

∂H{0,0}
⊥
∂z

eiω0ξ, (57)

As one can see, this correction term is zero at the focal
point, which is in agreement with the boundary condition
(49).

The first non-vanishing contribution to the longitudi-
nal component of the magnetic field is

H̃
{0,1}
⊥ = E0g (ξ)H{0,1}

z (r) eiω0ξ, (58)

whereH{0,1}
z = −i c

ω0
∇⊥·H{0,0}

⊥ . The first non-vanishing
correction to the transverse components corresponding to
the paraxial approximation is

H̃
{0,2}
⊥ =

cE0

ω0
g (ξ)

z

2i

∂2H{0,0}
⊥

∂z2
eiω0ξ, (59)

which is zero at the focal point. The next corrections
and expressions for the electric field components are pre-
sented in Appendix A 2.

In what follows, the general approximate expressions
are presented for the momentum, energy, and the or-
bital angular momentum (OAM), absorbed by uniformly
ditributed electrons from the mildly focused laser pulse
of a sub-relativistic intensity. These general expressions
are derived in the frames of the perturbation theory de-
veloped on the field amplitude a0, the paraxial parame-
ter λ0/w0 and the adiabatic parameter of the laser pulse
(ω0τ)

−1, aiming the accurate consideration of the main
non-vanishing contributions. The calculations show, that
for the OAM absorption, it is enough to consider the
fourth order on a0, the first order on (ω0τ)

−1 (the first
correction to the main order) and the main order of the
paraxial approximation.

C. Analytical estimates for the energy, momentum
and angular momentum gained by a particle in a

structured wave

As it is shown below, the first order temporal cor-
rection provides a contribution to the average angular
momentum gain by electrons of the same order as the
constant amplitude approximation, and hence should be
considered in the calculations to obtain a correct expres-
sion for the average angular momentum gain. Magnetic
field accounting for the first order temporal correction
may be represented, according to (44) and (57) as

H = E0Re
{(

g (t− z/c)H{0} (r)+

1

ω0
g′ (t− z/c)H{1} (r)

)
eiω0(t−z/c)

}
, (60)

where both H{0} and H{1} are calculated with a de-
sired accuracy on the paraxial parameter λ0/w0. The
derivative of the envelope g′ (t− z/c) may be estimated
as g′ ∼ g

ω0τ
≪ g, which makes this term a small cor-

rection to the leading one. In addition, this condition
means that g(t − z/c) is a smooth function, compared
to eiω0(t−z/c), and we also consider g′(t − z/c) to be a
smooth function as well.
The spatial amplitudeH{0} is defined from the bound-

ary condition (49). The lowest order paraxial approxima-
tion for the transverse components is (55) and the lowest
order paraxial approximation for the transverse compo-
nents of H{1}(r) is defined as (57).
The electric field may be written in the similar form

as (60)

E = E0Re
{(

g (t− z/c)E{0} (r)+

1

ω0
g′ (t− z/c)E{1} (r)

)
eiω0(t−z/c)

}
, (61)

where E{0} and E{1} are the spatial amplitudes, defined
from the amplitudes of the magnetic field, which in a few
lowest orders of paraxial approximation are given by

E{0,0}
x (r) = H{0,0}

y (r)

E{0,0}
y (r) = −H{0,0}

x (r),

E{1,0}
⊥ (r) = iz

∂E{0,0}
⊥ (r)

∂z
,

(62)

see more details in the Appendix.
Substituting (61) into (29), in the main order of the

slowly varying envelope approximation one obtains

p(2) (t∞) = −mec
2 a

2
0

4
∇0

∣∣∣E{0}
∣∣∣2 τint,

L(2)
z (t∞) = −mec

2 a
2
0

4

∂

∂φ0

∣∣∣E{0}
∣∣∣2 τint,

ε(4) (t∞) = mec
4 a

4
0

32

(
∇0

∣∣∣E{0}
∣∣∣2)2

τ2int,

(63)



9

where τint ≡
∞∫

−∞
g2 (t) dt ∼ τ is the characteristic time of

the interaction.

In order to calculate the average gained angular mo-
mentum in the fourth order, one has to calculate r(2) and

L
(2)
z after the interaction with the laser. The lowest order

of r(2) arises from the second term in (14). At infinite
time it diverges into infinity, and should be regularized.
The regularization may be obtained as setting the last
moment of time to be T , assuming T → ∞ at the end
of calculations. Substituting the first term of (61) and
evaluating r(2) at high values of time T , one obtains

r(2)(T ) ≈ −c2
a20
4
∇0

∣∣∣E{0}
∣∣∣2 T∫

−∞

dt

t∫
−∞

g2(t′)dt′. (64)

The corresponding contribution to the average angular
momentum is

⟨L(4)
z (T )⟩φ0 ≈ mec

4 a
4
0

32

〈 ∂

∂φ0

(
∇0

∣∣∣E{0}
∣∣∣2)2 〉

φ0

×

τint

T∫
−∞

dt

t∫
−∞

g2(t′)dt′ = 0, (65)

which is a partial derivative with respect to φ0 and van-
ishes being averaged with the isotropic distribution func-
tion. This expression does not depend on T and the limit
T → ∞ may be applied.

The next contribution to average angular momentum
gain results from both terms in r(2) in (14). The first
one may be evaluated in the lowest order. In the second
term one has to consider correction to the slowly varying
envelope approximation.
The first term in the lowest order expansion in powers

of (ω0τ)
−1 reads

∞∫
−∞

dt′
(
r(1)(t′) · ∇0

)
v(1)(t′) ≈

≈ c2

ω0

a20
2
Re
(
i
(
E{0}∗ · ∇0

)
E{0} + E{0}

z E{0}∗
)
τint ≈

≈ − c2

ω0

a20
2

∂

∂xj0
Re
(
iE{0}

j E{0}∗
)
τint, (66)

where
(
∇ · E{0}) ≈ iE{0}

z in the lowest order was used.
The second term consists of two parts: the first one

arises from the action of ∇0 on g(t− z0/c), and the sec-
ond one from the correction to the slowly varying en-
velope approximation. This results in the two following
contributions to r(2) correspondingly

c
a20
4

∣∣∣E{0}
∣∣∣2 τintez (67)

and

−c
a20
8
∇0Re

(
E{0}E{1}∗

)
τint. (68)

Collecting the three terms (66), (67) and (68) together,

substituting to the expression (26) for ⟨L(4)
z ⟩φ0

and inte-
grating the first two of them by parts inside the averaging
one obtains

⟨L(4)
z (t∞)⟩φ0

=
mec

4

ω0

a40
8

〈{[1
4

(
∇0Re

(
E{0}E{1}∗

)
· ∇0

)
+

ω0

2c

∂
∣∣E{0}

∣∣2
∂z0

]
∂
∣∣E{0}

∣∣2
∂φ0

+

+
∂

∂xk0

(
∂

∂xj0
Re
(
iE{0}

j E{0}∗
k

) ∂
∣∣E{0}

∣∣2
∂φ0

)}〉
φ0

τ2int. (69)

For a Laguerre-Gaussian beam with a characteristic
transverse size w0 and the longitudinal size zR ∼ w2

0/λ0,
the expressions (63) and (69) may be estimated in the

main orders as ∣∣p(2)
⊥ (t∞)

∣∣ ∼ mec
2 a

2
0τint
w0

,

p(2)z (t∞) ∼ mec
3

ω0

a20τint
w2

0

,

L(2)
z (t∞) ∼ mec

2a20τint,

ε(4) (t∞) ∼ mec
4 a

4
0

w2
0

τ2int,

⟨L(4)
z (t∞)⟩φ0

∼ mec
4

ω0

a40τ
2
int

w2
0

.

(70)
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Note, that the transverse and the longitudinal charac-
teristic sizes are different, which makes estimations for
transverse and longitudinal momenta also to be differ-
ent.

The higher orders of the perturbation theory has the
∼ τ2int dependence, meaning formally that for later in-
teraction times the energy and OAM transfer becomes
more efficient. These estimates however actually require
that the forth order terms are less than the second or-
der ones, or, using the expressions for ⟨L(4)

z (t∞)⟩φ0
and

for L
(2)
z (t∞), that a20τint/w

2
0 ≪ ω0/c

2. This means that
for long pulses, for which τint ≳ ω0w

2
0/c

2a20, after the
moment of time t ∼ ω0w

2
0/c

2a20, the perturbation the-
ory fails. The obtained limitation for the interaction
time may be rewritten as ω0τint ≪ (w0/losc)

2
, where

losc = a0λ0 is the characteristic oscillation amplitude of
the electron in the wave.

Comparing the second and the forth-order expressions
for the transferred momentum in (70), one can see, that
l2oscω0τint/w

2
0 is the actual perturbation theory param-

eter for the expansion of gained electron values, which
counts for both the paraxial approximation and the slow-
varying envelope approximation, and means, that the
field amplitude a0 may be actually not too small for the
applicability of the obtained results. This is confirmed
by the examples presented in the next section.

According to the arguments provided just above, al-
though the perturbation theory was developed under the
formal assumption of a low amplitude a0, a moderate
intensity regime of the interaction a0 ∼ 1 is considered
in the following part of the paper. At field amplitudes
a0 ∼ 1 the following estimates may be obtained

p(2)z (t∞) ∼ mec
3

ω0

τint
w2

0

,

ε(4) (t∞) ∼ mec
4 1

w2
0

τ2int,

(pz − ε/c)
∣∣∣
t∞

∼ mec
3

ω0

τint
w2

0

,

(71)

the first two are the consequence of (70) and the last one
does not depend on perturbation theory and may be ob-
tained from the analysis of integrals of motion. As it was
shown in Ref. [6], the growth rate of (pz−ε/c) is propor-
tional to the field amplitude and inversely proportional
to the square of the beam waist, which in the notations of
this work corresponds to the third estimate in (71). This
is a consequence of the weak dependence of the waves in
the paraxial approximation on z, which in the limiting
case of the plane waves leads to the conservation of a
quantity (pz − ε/c), which is becoming in this situation
an integral of motion. According to (71) in this regime

(pz − ε/c)
∣∣∣
t∞

∼ p(2)z

∣∣∣
t∞

. (72)

To make the analysis consistent, the energy scaling in
(72) should not be greater, than that for the momentum,

which is an omen, that higher orders of perturbation the-
ory should be considered for pz in this regime. Indeed, in
the frameworks of the paraxial and slowly varying tempo-
ral approximation for the discussed parameters the lead-
ing term in the expression for the fourth order longitudi-
nal momentum (24) may be estimated as ∼ mec

3 1
w2

0
τ2int

and has the form

p(4)z (t∞) = −me

2

∞∫
−∞

∂

∂z0

(
v(2)(t)

)2
dt, (73)

which after substituting of (61) becomes

p(4)z (t∞) = ε(4) (t∞) /c, (74)

due to the presence of z in the envelope function g(t −
z/c). This expression reminds the integral of motion pz−
ε/c for a charged particle in a plane wave.
As a result, the estimated values of the gained momen-

tum, energy and angular momentum for a0 ∼ 1, take
form

p⊥,theor = p
(2)
⊥ ,

pz,theor = p(2)z + ε(4)/c,

Lz,theor = L(2)
z ,

⟨Lz,theor⟩φ0 = ⟨L(4)
z ⟩φ0 ,

εtheor = ε(4),

(75)

where all the values are taken after the interaction at
t∞ and ⊥ stands for the transverse components of vec-
tors. It is possible, that these expressions turn to zero at
some laser field configurations. In these cases higher or-
ders of the perturbation theory or electromagnetic field
expansions are required. However, configurations with
non-zero values of these expressions definitely exist and
will be presented further.

III. SOME EXAMPLES FOR CERTAIN
POLARIZATION CASES

A. Circular polarization, one LG mode

Consider a circularly polarized Laguerre-Gaussian
beam, σ = ±1. Boundary condition (49) takes the form

H̃x

∣∣∣
z=0

= E0g (t) e
iω0t

upl√
2

∣∣∣
z=0

,

H̃y

∣∣∣
z=0

= −iσH̃x

∣∣∣
z=0

.
(76)

As long as upl depends on φ as ∼ e−ilφ, the boundary

condition depends on φ as H̃y

∣∣∣
z=0

= −iσH̃x

∣∣∣
z=0

∼ e−ilφ.

These relations between the components of the electro-
magnetic field apply to the solution of Maxwell equations
in the whole space, i. e. for the solution in the whole
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space H̃y = −iσH̃x ∼ e−ilφ. This leads to the follow-
ing dependence of the exact solution on φ in cylindrical
coordinates 

H̃r ∼ e−i(l+σ)φ

H̃φ = −iσH̃r ∼ e−i(l+σ)φ,

H̃z ∼ e−i(l+σ)φ.

(77)

Hence, the components of E{0} of the electric field (61)

are E{0}
r ∼ E{0}

φ ∼ E{0}
z ∼ e−i(l+σ)φ and

∂|E{0}|2
∂φ0

= 0.

Substituting this into (69) one obtains ⟨L(4)
z (t∞)⟩φ0

= 0,
which means that the angular momentum in average is
not transferred to electrons in the considered orders of the
perturbation theory and the paraxial and slowly varying
temporal envelope approximations.

B. Linear polarization, one LG mode

Consider a linearly polarized Laguerre-Gaussian beam,
σ = 0. The boundary condition (49) takes the form

H̃x

∣∣∣
z=0

= E0g (t) e
iω0tupl

∣∣∣
z=0

,

H̃y

∣∣∣
z=0

= 0.
(78)

In the lowest order of the paraxial approximation
∂|E{0,0}|2

∂φ0
= 0, and the angular momentum in average

is not transferred to electrons in the considered orders of
approximations.

C. Linear polarization, superposition of LG modes

Probably one of the most efficient angular momen-
tum transfer occurs in the configuration of electromag-
netic fields, represented by a superposition of Laguerre-
Gaussian modes with different azimuthal indexes, it pro-
vides a non-zero average gain of the angular momentum
already in the lowest orders of approximations considered
in this work.
Consider the case of linear polarization σ = 0, and a su-

perposition of Laguerre-Gaussian beams with azimuthal
indexes l ̸= m. The boundary conditions (49) then may
be written as

H̃x

∣∣∣
z=0

= E0g (t) e
iω0t

upl + uqm√
2

∣∣∣
z=0

,

H̃y

∣∣∣
z=0

= 0,
(79)

and in the lowest orders of the used approximations

E{0,0} =
upl + uqm√

2
ex. (80)

A single particle gains an angular momentum

L(2)
z (t∞) = −mec

2 a
2
0

4
(l −m)Re

(
iu∗

pluqm

)
τint. (81)

From this expression extreme values of gained angular
momentum follow to be

L
(2)
z,extr(t∞) = ±mec

2 a
2
0

4
(l −m)

∣∣upluqm

∣∣∣∣∣
φ0=0

τint. (82)

The expression for the average gained angular momen-
tum reads after integration over φ0

⟨L(4)
z (t∞)⟩φ0

= −mec
4

ω0
(l −m)

a40
64

Re

{
i

(
∂A

∂r0

∂B∗

∂r0
+

(l −m)2

r20
AB∗ + 2A

∂A∗

∂z0

)}
τ2int, (83)

where A = u∗
qmupl

∣∣∣
φ0=0

and B = iz0
2

(
u∗
qm

∂upl

∂z0
− upl

∂u∗
qm

∂z0

) ∣∣∣
φ0=0

. The average gained energy and longitudinal mo-

mentum read

⟨ε(4) (t∞)⟩φ0
= mec

4 a40
128

((
∂|upl|2

∂r0
+

∂|uqm|2

∂r0

)2

+ 2
∣∣∣∂ (uplu

∗
qm

)
∂r0

∣∣∣2)∣∣∣
φ0=0

τ2int, l ̸= m, (84)

⟨p(2)z (t∞)⟩φ0
= −mec

3

ω0

a20
8

∂
(
|upl|2 + |uqm|2

)
∂z0

∣∣∣
φ0=0

τint.

(85)
Consider some special cases.

• One can see that when l = m angular momentum
is not transferred in the used orders of approxima-
tions.

• If p = q, m = −l, both A and B become real and

the average angular momentum turns to zero. It
is a natural result, as far as such an electromag-
netic field configuration does not carry an angular
momentum.

• If one changes azimuthal indexes (l,m) to
(−l,−m), one can see that both A and B do not
change, and the average gained angular momentum
changes its sign which is also expected, because the
OAM of the field also changes its sign.
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To compare the obtained analytical estimates with nu-
merical results, which may with a limited numerical ac-
curacy provide both the electromagnetic fields and the
angular momentum gained by particles beyond the per-
turbation theory limitations, the interaction of electrons
with electromagnetic fields was studied with the PIC
code Smilei [17] in cylindrical geometry. To focus at the
single-particle effects, the interaction between the elec-
trons was not calculated. The use of the PIC code al-
lowed to optimize the simulation time and, what is more
important, to obtain the numerically calculated fields,
which contains all the paraxial and temporal corrections.

In simulations, the numerical box consisted of 6000
cells in longitudinal direction and 1600 in radial direc-
tion with spatial resolution of 2.5 nm. The laser field
was injected from z = 0 boundary, with conditions (79)
placed at the boundary. The carrier laser frequency
was ω0 = 2.3 × 1015s−1, the beam waist radius was
w0 = 1.3 µm, the duration of the laser pulse τ = 2πn/ω0,
where n = 6 is the number of periods. The dimensionless
intensity used in the simulations was a0 = 1, the radial
indexes were p = q = 0 and three cases for azimuthal
numbers were considered: l = 0, m = 1; l = 1, m = 2;
and l = 1, m = 3. The common temporal envelope is cho-

sen to be g (t) = cos2
(

t−τ/2
τ π

)
when |t−τ/2| < τ/2 and

0 otherwise. In this case τint = 3
8τ . Absorbing bound-

ary conditions were set for the electromagnetic fields.
For better statistics, electrons were initialized at 2.5 µm
from the laser injection plane at given radial distances,
but with different randomly distributed angles. These
distances were defined as a set of fixed ten values from
r0 = 0 to r0 = 1.9 µm inside a thin disk with the axis
being that of the laser beam.

Figure 2 represents the extreme values of the gained
angular momentum after the interaction with three dif-
ferent beam configurations, the points are numerical re-
sults, the lines are drawn according to (82). Vertical axis
corresponds to maximum and minimum extreme values
of angular momentum, gained by particles, while hori-
zontal axis corresponds to the initial radial distance of
the particles from the beam axis.

As long as the maximum local intensity of a Laguerre-
Gaussian beam increases with the growth of the az-
imuthal index and its position shifts to larger radial dis-
tances, the maximum of the extreme value of the gained
angular momentum also shifts toward the higher values
of the initial distance from the beam axis with the growth
of the azimuthal index.

The average angular momentum transfer is an effect
of the forth order perturbation theory while the extreme
values of the gained angular momentum, indicating single
particles gain, appears to be nonzero already in the sec-
ond order. This leads to substantial statistical errors in
calculations of the average angular momentum gain even
when using a large amount of particles in the simulations.
The average angular momentum, gained by the particles
in the numerical simulations was calculated according to
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FIG. 2: Extreme values of gained angular momentum after the
interaction with (blue) l = 0, m = 0, (orange) l = 1, m = 2,

(green) l = 1, m = 3 beams as a function of initial distance of the
particle from the beam axis. Dots, triangles and squares represent
PIC numerical results, lines represent predictions of the model for

the corresponding beam configurations.

the following procedure

Lz(r0) ≡

Nr0∑
i=1

Lz,i

Nr0

, (86)

where Lz,i is the gained angular momentum of the i-th
particle, which initial distance from the beam axis in the
interval [r0, r0 +∆r0] and Nr0 is the number of particles
with initial coordinates in this interval. The error was
estimated according to the central limit theorem

∣∣∣Lz − ⟨Lz⟩φ0

∣∣∣ ∼
√

⟨(Lz − ⟨Lz⟩φ0)
2⟩φ0√

N
, (87)

where Lz stands for averaging over the ensemble of the
particles in the numerical simulations and ⟨. . . ⟩φ0 for the
averaging over analytical expressions.
As long as ⟨(Lz − ⟨Lz⟩φ0

)
2⟩φ0

= ⟨L2
z⟩φ0

− ⟨Lz⟩2φ0
<

⟨L2
z⟩φ0 and ⟨Lz⟩φ0 is of the forth order and therefore

may be considered negligible here compared to ⟨L2
z⟩

1/2
φ0 ,

the right hand-side may be estimated as

√
⟨(Lz − ⟨Lz⟩φ0

)
2⟩φ0

/N ∼
√

⟨
(
L
(2)
z

)2
⟩φ0

/N ∼∣∣∣L(2)
z,extr(t∞)

∣∣∣/√N ∼ mec
2a20τint/

√
N. (88)

Relative statistical error is then may be estimated as√
⟨(Lz − ⟨Lz⟩φ0

)
2⟩φ0

/N∣∣∣⟨L(4)
z ⟩φ0

∣∣∣ ∼ ω0

c2
w2

0

a20τint
√
N

, (89)
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FIG. 3: Average angular momentum, gained by electrons after
the interaction with l = 1, m = 3 beams as a function of initial
distance of the particle from the beam axis. Squares represent
PIC numerical results, solid line represents predictions of the
model, vertical lines represent value of the statistical error.
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FIG. 4: Average kinetic energy, gained by electrons after the
interaction with (blue) l = 0, m = 0, (orange) l = 1, m = 2,

(green) l = 1, m = 3 beams as a function of initial distance of the
particle from the beam axis. Dots, triangles and squares represent
PIC numerical results, lines represent predictions of the model for

the corresponding beam configurations.

which rises when amplitude a0 decreases. In the simu-
lation results shown below, these errors are not always
shown to make the plots readable, though their values
are sometimes considerable. The exemplary plot in Fig.
3 demonstrates the scale of the error bars for the case
l = 1,m = 3. Amount of the averaged over the initial
azimuthal angle quantities gained by electrons, such as
the energy, the longitudinal and the angular momentum
versus their initial radial distance from the axis of the
laser beam are shown in Figs. 4, 5, 6.

The presented plots demonstrate that the perturba-
tion theory allows a semi-quantitative description for the
angular momentum gain by particles even at relatively
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FIG. 5: Average longitudinal momentum, gained by electrons
after the interaction with (blue) l = 0, m = 0, (orange) l = 1,
m = 2, (green) l = 1, m = 3 beams as a function of initial

distance of the particle from the beam axis. Dots, triangles and
squares represent PIC numerical results, solid lines represent

predictions of the model for the corresponding beam
configurations, dashed lines represent predictions of the model

without fourth order perturbation theory.
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FIG. 6: Average angular momentum, gained by electrons after
the interaction with (blue) l = 0, m = 0, (orange) l = 1, m = 2,

(green) l = 1, m = 3 beams as a function of initial distance of the
particle from the beam axis. Dots, triangles and squares represent
PIC numerical results, lines represent predictions of the model for

the corresponding beam configurations.

high intensities, i.e. when a0 ∼ 1. As explained in the
previous section, the reason for this is probably that the
beam waist is large enough, i.e. w0/λ0 ≫ 1.

IV. DISCUSSION

As the presented analysis of the angular momentum
transfer shows, three parameters of the interaction are
essential: dimensionless field amplitude a0, relation of
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the period of laser oscillations to the laser pulse dura-
tion (ω0τ)

−1 and the relation of the laser wavelength to
the laser beam waist radius λ0/w0. In this work, all
these three parameters are considered as being small, i.e.
a0 ≪ 1, (ω0τ)

−1 ≪ 1 and λ0/w0 ≪ 1, which allows to de-
velop the perturbation theory based on expansion of the
calculated values in powers of these small parameters.
The relation between the parameters are not discussed,
as the solutions are obtained in the lowest orders, which
may provide a non-zero result. However, in general, es-
pecially, when the considered approximation gives a zero
gained orbital momentum, e.g. the considered case of a
single linearly polarized Laguerre-Gaussian beam, may
require further expansion in (ω0τ)

−1 or λ0/w0, depend-
ing on the relation between these parameters.

It is interesting to note once again, that, according to
the estimates (70), the obtained expansion actually de-
velops on the combination of these parameters, which at
the same time takes into account the amplitude of the
field, the beam waist, and the temporal behaviour. The
combination is the relation of the particle oscillation am-
plitude squared to the beam waist radius squared and
multiplied be the duration of the beam. This allows to
consider as a result the near-relativistic values of a0 ∼ 1
and obtain a good semi-quantitative agreement between
the analytical and the numerical results. It is also im-
portant, that the approximations used are not suitable
for short laser pulses, where e.g. the phase effects may
become important, as these effects break the symmetry
over the azimuthal angle and facilitate the average OAM
transfer.

Discussions concerning the absorbed angular momen-
tum in literature, usually start with defining a laser wave
with a good-defined OAM, which are Laguerre-Gaussian
beams. It is important however to take into account the
corrections to the lowest orders of the paraxial and the
slowly varying envelope approximations. Consider the
simulations parameters, discussed in the previous sec-
tion, and use the approximations for the electromagnetic
field, rather than the numerical solution of the Maxwell
with the algorithms provided by the PIC code. Namely,
take the first orders of the paraxial and the slowly vary-
ing envelope approximations. The equations of motion
were then solved numerically in a developed python code
for individual particles, distributed as in previous simu-
lations. In the first simulations consider the electromag-
netic field as

Hx = −Ey =E0g(t− z)Re

(
eiω0(t−z/c)upl + uqm√

2

)
Hy = Ex =0,

(90)
which is the main paraxial approximation and the main
envelope approximation for the boundary conditions
(79).
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FIG. 7: Average (a) kinetic energy, (b) longitudinal and (c) an-
gular momenta gained by electrons after the interaction with l = 1,
m = 3 beam as a function of initial distance of the particle from the
beam axis. Blue dots represent PIC code numerical results, orange
lines represent python code numerical results with the lowest or-
ders approximations. Green lines represent python code numerical
results with the first corrections to the lowest orders approxima-
tions.

The other considered simulation takes into account the
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corrections according to

H = E0Re
{(

g(t− z/c)
(
H{0,0} +H{0,1}+

H{0,2} +H{0,3}
)

+
1

ω0
g′(t− z/c)

(
H{1,0} +H{1,1}

))
eiω0(t−z/c)

}
E = E0Re

{(
g(t− z/c)

(
E{0,0} + E{0,1}+

E{0,2} + E{0,3}
)

+
1

ω0
g′(t− z/c)

(
E{1,0} + E{1,1}

))
eiω0(t−z/c)

}
,

(91)
where the first three terms of expansion in powers of
λ0/w0 and the first two terms of expansion in powers
of (ω0τ)

−1 are taken into consideration.

The obtained after numerical integration gained aver-
age values, i.e. the kinetic energy, the longitudinal and
the angular momentum of electrons are shown in Figs.
7. One can see, that the longitudinal momentum and
the angular momentum are rather different from the re-
sults, obtained with use of the PIC-calculated fields, if
only the leading (lowest) orders of the approximations
for the wave is used. Instead, the consideration of the
wave with the corrections (91) results in a much better
agreement between the values obtained with the use of
the PIC code. Moreover, it is quite interesting to note
that the gained momentum and angular momentum con-
siderably decrease when the corrections are taking into
account. So, the use of a rough approximation for the
electromagnetic fields may result in a substantial overes-
timation of the average gained quantities.

It is worth noting that within the used approach
for the angular momentum gain (69), it appears that
the first order correction of the slowly varying envelope
approximation may has the contribution of the order
mec

4a40τ
2
int/w

2
0ω0, which is the same as the contribution

of the previous orders. This is due to the fact that the
lowest order of this approximation turns to zero after
averaging over azimuthal angle φ0.

Interesting to note, that the condition (8), used to ob-
tain (26), is satisfied for the lowest orders of paraxial
and slowly varying approximations of the electromag-
netic fields arising from the boundary condition (49)

with g (t) = cos2
(

t−τ/2
τ π

)
when |t − τ/2| < τ/2 and

0 otherwise. When the envelope function is g(t) =
1√
2π

e−(t−t0)
2/2τ2

, this condition for the lowest orders of

paraxial and slowly varying approximations is satisfied

with exponential accuracy.
However, the condition (8) is not always satisfied, e.g.

for unipolar plane waves, such as E = E0e
−(t−z)2/2τ2

ex,

H = E0e
−(t−z)2/2τ2

ey. Such plane waves are not dis-
cussed in this paper.
Intensity of a Laugerre-Gaussian beam has a form of

several rings with a center on the axis of the beam and
radius ∼ w0. This allows one to assume that electrons
gain angular momentum mostly in the regions of these
rings and hence, form a solenoid with a characteristic
radius ∼ w0. According to the model of generation of the
magnetic field by a solenoid with charged current [7], the
magnetic field value may be estimated (in CGS units)

as H ∼ en0w0vφ/c ∼ en0c
3a4

0τ
2
int

ω0w2
0

. For the parameters,

normal for modern laser experiments, ω0 = 2.3×1015s−1,
w0 = 1.3 µm, τ = 12π/ω0, a0 = 1, n0 = 0.01 nc, where
nc is the critical plasma density, magnetic field may be
estimated as H ∼ 60 T .
It should be noted, that electrons mostly gain angu-

lar momentum of the opposite sign to that of the laser
beam. The direction of the rotation of the electrons cor-
responds to the generated magnetic field directed along
the laser beam propagation direction. This is an inter-
esting results, which also was observed in a full scale 3D
PIC simulations [7, 8].
In this work, no collective effects were considered. Of

course, the collective effects, as well as effects which de-
phase the particle motion in the wave, such as collisions,
ionization, radiation friction and others, may qualita-
tively change the interaction process, though it is easy
to find the conditions when the single-particle processes
dominate. What is actually done in the work is the ini-
tial step towards the understanding of the OAM transfer
from light waves to single particles, in situation when the
particle distribution is isotropic so that there is no ini-
tial axial asymmetry in the system except the laser wave
phase. The obtained important result is that indeed, in
this situation the OAM may be transferred to the parti-
cles, the process efficiency is growing with the increasing
of the field amplitude and decreasing the beam waist.
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Appendix A: Electromagnetic fields in paraxial and slowly varying envelope approximation

1. Table integrals

In calculation of the electromagnetic fields using the boundary condition at z = 0, the integration over angles φ
results in the Bessel function

2πisJs(z) = 2πi|s|J|s|(z) =

∫ 2π

0

dϕ exp[isϕ+ iz cosϕ] (A1)

with integer s,

Hα(ω,k⊥, z = 0) = 2πw2
0gω−ω0

E0

∑
p,l

aplαi
|l|e−ilθ

∫
rdrUpl(r, 0)J|l|(k⊥r⊥). (A2)

Using the following identity from [18] for an integral of Laguerre polynomials Ls
n(z) with Bessel functions Js(z)

(here n, s, a, b are parameters)

∞∫
0

xs+1e−bx2

Ls
n

(
ax2
)
Js(xy)dx =

(b− a)n

2s+1bs+n+1
yse

−
y2

4b Ls
n

(
ay2

4b(a− b)

)
(A3)

after integrating (A2) over r one obtains (53).

2. Expressions for the fields in terms of the used perturbation theory

Ẽ
{0,0}
⊥ = E0g (ξ)E{0,0}

⊥ eiω0ξ,

Ẽ
{1,0}
⊥ =

E0

ω0
g′ (ξ) iz

∂E{0,0}
⊥
∂z

eiω0ξ,

Ẽ
{0,2}
⊥ =

E0c

ω0
g (ξ)

(
z

2i

∂2E{0,0}
⊥

∂z2
− iex

(
∂H{0,1}

z

∂y
− ∂H{0,0}

y

∂z

)
− iey

(
∂H{0,0}

x

∂z
− ∂H{0,1}

z

∂x

))
eiω0ξ,

(A4)

H̃{0,1}
z = E0g (ξ)H{0,1}

z eiω0ξ,

H̃{1,1}
z =

E0

ω0
g′ (ξ) i

∂

∂z

(
zH{0,1}

z

)
eiω0ξ,

H̃{0,3}
z =

E0c

ω0
g (ξ)

(
z

2i

∂2H{0,1}
z

∂z2
− i

∂H{0,1}
z

∂z

)
eiω0ξ,

Ẽ{0,1}
z = E0g (ξ) E{0,1}

z eiω0ξ,

Ẽ{1,1}
z =

E0

ω0
g′ (ξ) i

∂

∂z

(
zE{0,1}

z

)
eiω0ξ,

Ẽ{0,3}
z =

E0c

ω0
g (ξ)

z

2i

∂2E{0,1}
z

∂z2
eiω0ξ,

(A5)
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where E{0,0}
⊥ = −ez ×H{0,0}

⊥ , H{0,1}
z = −i c

ω0
∇⊥ ·H{0,0}

⊥ , E{0,1}
z = −i c

ω0

(
∇⊥ ×H{0,0}

⊥

)
z
.
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