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Starting from the assumption that saturation of plasma turbulence driven by temperature-gradient instabilities
in fusion plasmas is achieved by a local energy cascade between a long-wavelength outer scale, where energy is
injected into the fluctuations, and a small-wavelength dissipation scale, where fluctuation energy is thermalized
by particle collisions, we formulate a detailed phenomenological theory for the influence of perpendicular flow
shear on magnetized-plasma turbulence. Our theory introduces two distinct regimes, called the weak-shear and
strong-shear regimes, each with its own set of scaling laws for the scale and amplitude of the fluctuations and for
the level of turbulent heat transport. We discover that the ratio of the typical radial and poloidal wavenumbers of
the fluctuations (i.e., their aspect ratio) at the outer scale plays a central role in determining the dependence of the
turbulent transport on the imposed flow shear. Our theoretical predictions are found to be in excellent agreement
with numerical simulations of two paradigmatic models of fusion-relevant plasma turbulence: (i) an electro-
static fluid model of slab electron-scale turbulence, and (ii) Cyclone-base-case gyrokinetic ion-scale turbulence.
Additionally, our theory envisions a potential mechanism for the suppression of electron-scale turbulence by per-
pendicular ion-scale flows based on the role of the aforementioned aspect ratio of the electron-scale fluctuations.

I. INTRODUCTION

The quest for controlled fusion as a viable and sus-
tainable energy source has been a long-standing scientific
and engineering challenge. The performance of magnetic-
confinement-fusion devices, such as tokamaks, is often limited
by the presence of turbulent fluctuations that lead to enhanced
transport and energy losses. Understanding and controlling
turbulence in magnetized plasmas is therefore crucial for the
success of future fusion reactors. One important aspect that
has attracted considerable attention is the impact of sheared
flows on the turbulence [1–15]. Such sheared flows can ei-
ther be externally imposed on the turbulent fluctuations as part
of the plasma equilibrium, or be self-generated by the turbu-
lence in the form of quasistatic large-scale fluctuations known
as zonal flows [16–23]. Sheared flows can modify the size and
shape of the fluctuations, and thus have a direct impact on the
transport properties of the plasma.

Despite the absence of a rigorous theory of the saturation
of turbulence in magnetized plasmas, it is still possible to de-
velop phenomenological models that, at least in some regimes,
capture its essential features and allow us to make falsifiable,
qualitative, and sometimes even quantitative, predictions for
the dependence of important turbulent properties, like the heat
and particle diffusivity, on the relevant plasma parameters.
Such models are often reminiscent of the original theory of
hydrodynamic turbulence by Kolmogorov [24], which posits
a local energy cascade from the outer (or injection) scale —
where energy is injected into turbulent fluctuations either by
external forcing or by linear instabilities — through the iner-
tial range, where the nonlinear interactions dominate the dy-
namics and pass the energy injected at large scales down to
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dissipative ones [25–30]; the energy of the fluctuations is then
thermalized at these small scales, heating the plasma. The rate
at which this cascade removes energy from the outer scale de-
termines the overall turbulent amplitude and, when that is not
externally imposed, the outer scale itself; in turn, the fluctu-
ation amplitude and outer scale determine the transport. An
imposed or self-generated sheared flow plays a nontrivial role
in all of this.

In this article, we consider the effects of an imposed perpen-
dicular flow shear on saturated electrostatic gyrokinetic (GK)
turbulence. We first give a short recap of some relevant fea-
tures of the GK framework in §II, and then, in §III A, remind
the reader of the standard results for saturation of such tur-
bulence based on a local-energy-cascade phenomenology. In
§III B, we proceed to develop a phenomenological theory of
the effect of flow shear on the saturated turbulent state. The
effect of this shear is to suppress the turbulent fluctuations and,
in turn, the turbulent heat flux according to a certain scaling
with the size of the shear. Depending on the magnitude of
the imposed flow shear in comparison with the “natural” (i.e.,
that in the absence of shear) rate of energy injection into the
fluctuations, we distinguish weak-shear (§III B 1) and strong-
shear (§III B 2) regimes, each with its own scaling laws for
the dependence of the turbulent transport on the shear. To
verify our theoretical predictions, in §IV, we present numer-
ical results from a simple electrostatic fluid model of turbu-
lence driven by the electron-temperature-gradient (ETG) in-
stability (§IV A) and from gyrokinetic simulations of turbu-
lence driven by the ion-temperature-gradient (ITG) instability
(§IV B). Then, in §V, we discuss the transport of momentum
in the electrostatic fluid model, before finally summarizing and
discussing our results in §VI.
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II. GYROKINETICS

We consider turbulent fluctuations in magnetized plas-
mas that satisfy the GK ordering 𝑘⟂𝜌𝑠 ∼ 𝑘∥𝐿 ∼ 1 and
𝜔∕Ω𝑠 ∼ 𝜌𝑠∕𝐿 ≪ 1, where 𝑘⟂ and 𝑘∥ are the typical perpen-
dicular and parallel (to the mean magnetic field) wavenum-
bers, 𝜌𝑠 and Ω𝑠 are the Larmor radius and frequency of the
charged particles of species 𝑠, 𝜔 is the inverse time scale as-
sociated with the turbulent fluctuations, and 𝐿 is the length
scale of variation of the plasma equilibrium. Under this or-
dering, we expand the distribution function for each species
into equilibrium and fluctuating parts 𝑓𝑠 = 𝑓0𝑠 + 𝛿𝑓𝑠 to ob-
tain the GK equation that governs the dynamics of the fluctu-
ations.1 With the additional assumption that the plasma beta
𝛽𝑠 ≡ 8𝜋𝑛0𝑠𝑇0𝑠∕𝐵2

0 is small, 𝑛0𝑠 and 𝑇0𝑠 being the equilibrium
density and temperature of species 𝑠, respectively, we can ne-
glect the fluctuations of the magnetic field, leading to
(

𝜕
𝜕𝑡

+ 𝒖 ⋅ 𝜕
𝜕𝑹𝑠

)(
ℎ𝑠 −

𝑞𝑠 ⟨𝜙⟩𝑹𝑠

𝑇0𝑠
𝑓0𝑠

)
+𝑤∥𝒃0 ⋅

𝜕ℎ𝑠
𝜕𝑹𝑠

+ 𝒗𝑑𝑠 ⋅
𝜕ℎ𝑠
𝜕𝑹𝑠

+ 𝒗𝐸 ⋅ 𝜕
𝜕𝑹𝑠

(
𝑓0𝑠 + ℎ𝑠

)
=
∑
𝑠′

⟨𝐶𝑠𝑠′⟩𝑹𝑠
, (1)

where the perturbed distribution function of species 𝑠 is

𝛿𝑓𝑠(𝒓,𝒘) = ℎ𝑠(𝑹𝑠, 𝜀𝑠, 𝜇𝑠) −
𝑞𝑠𝜙(𝒓)
𝑇0𝑠

𝑓0𝑠, (2)

𝑹𝑠 = 𝒓 − 𝒃0 ×𝒘∕Ω𝑠 is the gyrocenter, 𝒘 = 𝒗 − 𝒖 is
the peculiar velocity, 𝜀𝑠 = 𝑚𝑠𝑤2∕2, 𝜇𝑠 = 𝑚𝑠𝑤2

⟂∕2𝐵0,
𝜙 is the perturbed electrostatic potential, 𝑓0𝑠 is the
equilibrium Maxwellian distribution with density 𝑛0𝑠and temperature 𝑇0𝑠, 𝒖 is the equilibrium plasma flow
(same for all species, see [31]), the magnetic drifts are
𝒗𝑑𝑠 = (𝒃0∕2Ω𝑠) × (2𝑤2

∥𝒃0 ⋅ 𝛁𝒃0 +𝑤2
⟂𝛁 ln𝐵0), the perturbed

𝑬 × 𝑩 drift is 𝒗𝐸 = (𝑐∕𝐵0)𝒃0 × 𝛁⟨𝜙⟩𝑹𝑠
, 𝒃0 is the unit vector

parallel to the mean magnetic field, 𝑞𝑠 is the charge of species
𝑠, 𝐶𝑠𝑠′ is the linearized Fokker-Planck operator for collisions
between particles of species 𝑠 and 𝑠′, and ⟨…⟩𝑹𝑠

denotes the
standard gyroaverage. A comprehensive derivation of the
GK equations can be found in, e.g., Abel et al. [31] or Catto
[32]. Note that the theoretical analysis presented in §III does
not depend on a particular coordinate system, i.e., the precise
choice of radial, poloidal, and parallel coordinates, labelled 𝑥,
𝑦, and 𝑧, respectively, will be irrelevant.

1 Throughout this article, we use “GK” to refer to what is commonly known as
“local, 𝛿𝑓 gyrokinetics”. Here “local” specifies that we are integrating (1) in
a domain of perpendicular size that is infinitesimal in comparison with the
length scale of the variation of the plasma equilibrium, and so the gradients
associated with that equilibrium are taken to be constant; “𝛿𝑓” means that
we only consider the evolution of small-amplitude fluctuations over times
that are short compared to the transport (i.e., equilibrium-variation) time
scale, with the equilibrium therefore assumed constant in time.

The nonlinear-advection and linear-drive terms in (1) are

𝒗𝐸 ⋅
𝜕ℎ𝑠
𝜕𝑹𝑠

= 𝑐
𝐵0

𝒃0 ⋅ (𝛁𝑥 × 𝛁𝑦)
{
⟨𝜙⟩𝑹𝑠

, ℎ𝑠
}
, (3)

𝒗𝐸 ⋅
𝜕𝑓0𝑠
𝜕𝑹𝑠

= − 𝑐
𝐵0

𝒃0 ⋅ (𝛁𝑥 × 𝛁𝑦)
𝜕 ⟨𝜙⟩𝑹𝑠

𝜕𝑦
𝜕𝑓0𝑠
𝜕𝑥

, (4)

respectively, where {𝑓, 𝑔} = (𝜕𝑥𝑓 )(𝜕𝑦𝑔) − (𝜕𝑦𝑓 )(𝜕𝑥𝑔). The
nonlinear term (3) expresses the advection of the perturbed
distribution function by the perturbed𝑬×𝑩 flow, while the lin-
ear term (4) represents the injection of free energy by the radial
gradients of the equilibrium (via the advection of that equilib-
rium by the perturbed flows). The electrostatic GK equation
is closed by the quasineutrality condition:

∑
𝑠
𝑞𝑠∫ d3𝒘 𝛿𝑓𝑠 = 0, (5)

where the velocity integral is evaluated at fixed 𝒓.
Finally, fluctuations that evolve according to (1) can be

shown to satisfy a free-energy conservation law [31] of the
form

d𝑊
d𝑡 = 𝐼 −𝐷, (6)

where the free-energy density 𝑊 in a plasma of volume 𝑉 is
given by

𝑊 =
∑
𝑠 ∫

d3𝒓
𝑉 ∫ d3𝒘 𝑇0𝑠𝛿𝑓 2

𝑠
2𝑓0𝑠

. (7)

The dissipation 𝐷 in (6) arises due to particle collisions and is
a sink of free energy. Its precise form will not be needed here.
The free-energy injection rate 𝐼 depends on the gradients of
the equilibrium distribution 𝑓0𝑠 and can be written as2

𝐼 = −
∑
𝑠

[
Γ𝑠𝑇0𝑠

(
𝜕 ln 𝑛0𝑠
𝜕𝑥

− 3
2
𝜕 ln 𝑇0𝑠
𝜕𝑥

)
+𝑄𝑠

𝜕 ln 𝑇0𝑠
𝜕𝑥

]
,

(8)
where we have defined the flux of particles Γ𝑠 and the heat (or
energy) flux 𝑄𝑠 due to species 𝑠 as

Γ𝑠 ≡∫
d3𝒓
𝑉 ∫ d3𝒘 (𝒗𝐸 ⋅ 𝛁𝑥)𝛿𝑓𝑠, (9)

𝑄𝑠 ≡∫
d3𝒓
𝑉 ∫ d3𝒘 (𝒗𝐸 ⋅ 𝛁𝑥)

𝑚𝑠𝑣2

2
𝛿𝑓𝑠. (10)

In the most general case, 𝐼 depends on both fluxes, and can be
estimated as

𝐼 ∼
Γ𝑠𝑇0𝑠
𝐿𝑛𝑠

∼
𝑄𝑠
𝐿𝑇𝑠

, (11)

2 Strictly speaking, (8) contains another injection term that is associated with
the radial gradient of the projection of the mean flow 𝒖 along the mean
magnetic field. We are ignoring this (see also footnote 5).
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where no additional orderings have been imposed on the den-
sity 𝐿−1

𝑛𝑠
≡ −𝜕𝑥 ln 𝑛0𝑠 and the temperature 𝐿−1

𝑇𝑠
≡ −𝜕𝑥 ln 𝑇0𝑠

gradients, viz., 𝐿𝑛𝑠 ∼ 𝐿𝑇𝑠 ∼ 𝐿. In this work, we consider
only temperature-gradient-driven instabilities in cases where
Γ𝑠 = 0, and so our main focus will be on 𝑄𝑠. Nevertheless, the
arguments presented in §III are readily generalizable to cases
where the injection of energy is dominated by the particle flux
rather than the heat flux.

III. NONLINEAR SATURATION

Magnetized-plasma turbulence exhibits a broad range of
different saturation mechanisms, and so a universal theory of
turbulent saturation under the influence of flow shear is not
feasible. Instead, here we focus on one particular type of sat-
urated state, viz., that for which the following two assump-
tions hold: (i) there is a scale separation between the energy-
injection scale (the outer scale), where linear instabilities in-
ject free energy into the fluctuations, and the dissipation scale,
where fluctuations lose energy to dissipative effects (viz., ulti-
mately, particle collisions); and (ii) the transfer of energy be-
tween these scales is realized by a local (in scale) energy cas-
cade. This allows us to define the inertial range as the range
of scales between the outer and dissipation scales where the
local energy cascade takes place. Let us revisit the current
understanding of how such an energy cascade determines the
properties of the saturated turbulence.

A. Outer scale, free-energy cascade, and turbulent heat flux

The form of the GK nonlinearity (3) implies that the non-
linear time 𝜏nl at poloidal scale 𝑘𝑦 satisfies

𝜏−1nl ∼ Ω𝑠𝜌
2
𝑠𝑘𝑥𝑘𝑦𝜑, (12)

where𝜑 is a measure of the characteristic amplitude of the nor-
malized electrostatic potential 𝜑 ≡ 𝑞𝑠𝜙∕𝑇0𝑠 at scale 𝑘𝑦, and 𝑠
is any reference particles species. In (12), the radial scale 𝑘𝑥 is
an implicit function of 𝑘𝑦, viz., at each 𝑘𝑦, the turbulent fluctu-
ations have a typical radial scale 𝑘𝑥 that depends on 𝑘𝑦. With
this in mind, (12) can also be written as

𝜏−1nl ∼ Ω𝑠𝜌
2
𝑠𝑘

2
𝑦𝜑, (13)

where we have defined the fluctuation aspect ratio at scale 𝑘𝑦as  ≡ 𝑘𝑥∕𝑘𝑦. This aspect ratio will play a critical role in
the theory of sheared turbulence laid out in §III B. Note that
the precise definition of 𝜑 is not important because the phe-
nomenological theory that is to follow predicts only scalings;
nevertheless, to make things specific, one possible such defi-
nition is

𝜑2 ≡ ∫|𝑘′𝑦|>𝑘𝑦
d𝑘′𝑦 ∫

+∞

−∞
d𝑘′𝑥 ∫

d𝑧
𝐿∥

|𝜑𝒌′⟂
|2, (14)

where 𝜑𝒌⟂ is the two-dimensional spatial Fourier transform of
𝜑 in 𝑥 and 𝑦, i.e., in the plane perpendicular to the equilibrium

magnetic field, and 𝐿∥ is the parallel size of the integration
domain of (1) (assumed finite). By Parseval’s theorem, the
contributions to the free energy (7) at each scale are propor-
tional to the squared amplitude of the fluctuations, and so, in
view of (2) and (5), to 𝜑2.

If 𝑘𝑥 ∼ 𝑘𝑦 ∼ 𝑘⟂ (i.e.,  ∼ 1) is satisfied throughout the
inertial range, (12) implies that the free-energy flux 𝜀 through
scale 𝑘⟂ satisfies3

𝜀 ∼ 𝜏−1nl 𝑛0𝑠𝑇0𝑠𝜑
2 ∝ 𝑘2⟂𝜑

3, (15)
where d∕d𝑡 ∼ 𝜏−1nl in the inertial range because the dynamics
there are dominated by the nonlinear effects. Assuming a lo-
cal, constant-flux cascade, viz., that 𝜀 is constant throughout
the inertial range, and using (12), we conclude that

𝜑 ∝ 𝑘−2∕3⟂ ⟹ 𝜏−1nl ∝ 𝑘4∕3⟂ (16)
in the inertial range. The assumption that  ∼ 1 in the iner-
tial range is motivated by the fact that the nonlinearity in (1)
is isotropic in the perpendicular plane. However, this is not a
sufficient condition for  ∼ 1. For example, reduced mag-
netohydrodynamic (RMHD) turbulence, whose nonlinearity
is also isotropic in the plane perpendicular to the mean mag-
netic field, is known to have fluctuations that are anisotropic in
the perpendicular plane and whose anisotropy depends on the
scale, thus introducing a nontrivial scale-dependent factor into
the RMHD version of (12) [33–37]. Nevertheless, assuming
 ∼ 1 in the inertial range is not unreasonable, and it agrees
with our numerical observations reported in §IV.

Assuming that the rate of energy injection is determined by
the linear-instability growth rate 𝛾𝒌 and that the latter satisfies
𝛾𝒌 ∝ 𝑘𝑦,4 the inertial-range nonlinear rate (16) has a steeper
dependence on 𝑘𝑦 than the injection rate. The outer scale will
then be the scale at which the rates of nonlinear mixing and
linear injection balance [27, 29, 30]:

(
𝜏o

nl
)−1 ∼ 𝛾o. (17)

Here and in what follows, the superscript “o” denotes quanti-
ties associated with the outer scale. The inertial range is thus
located at 𝑘𝑦 > 𝑘o

𝑦, where the nonlinear interactions dominate
the linear injection rate (see figure 1).

3 In general, (6) implies that 𝜀 ∼ 𝐼 . However, the free-energy flux need not
equal the injection rate exactly. One such example is the fluid model of ETG
turbulence described in §IV A, whose free-energy-injection mechanism re-
lies on finite collisional dissipation due to the nature of the linear instability
and thus a certain order-unity fraction of 𝐼 is directly dissipated at the outer
scale (see [30]).

4 Note that, for every 𝑘𝑦, there may be many unstable modes. For instance,
in the “slab” geometry, where the linear modes are parameterized by the
radial 𝑘𝑥 and parallel 𝑘∥ wavenumbers, there exists a broad spectrum of
unstable modes for any given 𝑘𝑦. The relation 𝛾𝒌 ∝ 𝑘𝑦 does not refer to the
growth rate of one particular mode (in the slab case, that would be a mode
with fixed 𝑘𝑥 and 𝑘∥), but rather to the growth rate of a mode that is chosen
by maximizing the growth rate with respect to 𝑘𝑥 and 𝑘∥ at that particu-
lar 𝑘𝑦. This relation is exact for long-wavelength electrostatic instabilities
with 𝑘⟂𝜌𝑠 ≪ 1, where the outer scale of GK turbulence often resides. In
this limit, (1) asymptotes to the electrostatic drift-kinetic equation, and, in
the slab geometry, 𝛾𝒌 ∝ 𝑘𝑦 follows from the scale invariance of drift kinet-
ics [30].
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log 𝑘𝑦

𝛾𝒌 ∝ 𝑘𝑦

𝜏−1nl ∝ 𝑘4∕3
𝑦

⊢inertial range→

𝑘o
𝑦

𝛾o

FIG. 1. An illustration of the relationship between the nonlinear mix-
ing rate 𝜏−1nl , the energy-injection rate 𝛾𝒌, and the location of the outer
scale, where 𝜏−1nl ∼ 𝛾𝒌. The scaling 𝜏−1nl ∝ 𝑘4∕3

𝑦 is a consequence of
the local energy cascade and is thus valid only in the inertial range
𝑘𝑦 > 𝑘o

𝑦 (see the discussion in §III A).

1. Heat flux

Assuming that the heat flux 𝑄𝑠 is dominated by contribu-
tions from the outer scale, we can estimate it, in view of its
definition (10), as follows:

𝑄𝑠 ∼ 𝑄o
𝑠 ∼ 𝑛0𝑠𝑇0𝑠𝑣th𝑠𝑘o

𝑦𝜌𝑠
(
𝜑o)2 . (18)

This is justified as long as the spectrum of the fluctuations
decays sufficiently quickly in the inertial range; specifically,
we require the fluctuation amplitudes to decay faster than
𝑘−1∕2⟂ , which is readily satisfied by (16). We also assume that
the phase relationship between 𝜑 and 𝛿𝑓𝑠 does not introduce
any nontrivial factors — technically, (18) is an upper bound
for (10). Using (13) and (17), we can rewrite (18) as

𝑄𝑠
𝑛0𝑠𝑇0𝑠𝑣th𝑠

∼
(
𝛾o
Ω𝑠

)2 1
(𝑘o

𝑦𝜌𝑠)3(o)2
. (19)

Therefore, in order to determine 𝑄𝑠, we need to know the
energy-injection rate 𝛾o (or equivalently 𝜏o

nl), the poloidal
wavenumber 𝑘o

𝑦, and the fluctuation aspect ratioo at the outer
scale. If 𝛾o ∼ 𝛾𝒌o , where 𝛾𝒌o is the growth rate at the outer
scale, then only two of 𝛾o, 𝑘o

𝑦, and o are independent. Thus,
we require additional assumptions. There are multiple ways to
proceed.

In the absence of flow shear, Barnes et al. [27] posit (i) that
the outer scale is governed by the “critical balance” of 𝛾o
and (𝜏o

nl)
−1 with the parallel-streaming rate across the plasma

connection length, 𝜔o
∥ ∼ 𝑣th𝑠∕𝑞𝑅, (ii) that the outer-scale

fluctuations are isotropic, o ∼ 1, and (iii) that the energy-
injection rate is given by a simple estimate of the growth rate of
temperature-gradient-driven instabilities, 𝛾o ∼ 𝑘o

𝑦𝜌𝑠𝑣th𝑠∕𝐿𝑇𝑠 .Combined with (19), (i)–(iii) imply
𝑄𝑠

𝑛0𝑠𝑇0𝑠𝑣th𝑠
∼
(𝜌𝑠
𝑅

)2 ( 𝑅
𝐿𝑇𝑠

)3
𝑞. (20)

Note that Barnes et al. [27] studied ion-scale turbulence, which
amounts to setting 𝑠 = 𝑖 in the above arguments.

A modification of these results, backed by some experimen-
tal [38] and numerical [39] evidence, is to replace assumption
(ii) in the arguments by Barnes et al. [27] by a “grand critical
balance”

𝛾o ∼ (𝜏o
nl)

−1 ∼ 𝜔o
∥ ∼ 𝜔o

𝑑,𝑥 (21)
between all the aforementioned rates and the radial magnetic-
drift frequency 𝜔o

𝑑,𝑥 ∼ 𝑘o
𝑥𝜌𝑠𝑣th𝑠∕𝑅 at the outer scale. This

implies
o ∼ 𝑅

𝐿𝑇𝑠
, (22)

which, together with (19), results in the following scaling for
the heat flux:

𝑄𝑠
𝑛0𝑠𝑇0𝑠𝑣th𝑠

∼
(𝜌𝑠
𝑅

)2 𝑅
𝐿𝑇𝑠

𝑞. (23)

In the rest of this paper, we consider the influence of mean
flow shear on the saturated state. We will not discuss the de-
tails of how the outer scale is determined in the case of zero
imposed flow shear, but assume that the system does indeed
have a well-defined, zero-shear saturated state, that the outer-
scale nonlinear rate is governed by (13) and (17), and that (19)
is a good estimate for the heat flux. Thus, our arguments will
hold regardless of whether the zero-shear outer scale is cho-
sen à la Barnes et al. [27], through a grand critical balance, or
otherwise.

B. Perpendicular flow shear

For the remainder of this article, we assume an equilibrium
shear flow in the direction perpendicular to the mean magnetic
field and with a linear profile: 𝒖 = 𝛾𝐸𝑥𝒚̂, where 𝛾𝐸 is the shear-
ing rate.5 In the presence of such a flow, the GK equation (1) is
no longer homogeneous in 𝑥. For brevity, we henceforth drop
the species subscript from the heat flux 𝑄.

To understand the effect of flow shear on the fluctuations,
it is instructive to consider a patch of turbulence in which
the magnetic field can be considered locally constant and ori-
ented along the 𝑧-direction; i.e., this patch is approximated as
a “slab”. One can then perform a coordinate transformation
from the original (laboratory) frame to the so-called shearing
frame [41, 42]:

𝑡′ = 𝑡, 𝑥′ = 𝑥, 𝑦′ = 𝑦 − 𝑥𝛾𝐸 𝑡, 𝑧
′ = 𝑧. (24)

5 In general, a pure perpendicular linear shear is not realistic: e.g., 𝒖 is purely
toroidal in axisymmetric devices, and hence has a component parallel to the
mean magnetic field [31]. For certain equilibria, the radial gradient of the
parallel component of the mean flow can act as a source of energy, resulting
in the so-called parallel-velocity-gradient (PVG) instability [40–42]. Here
we assume that there is no PVG instability (or at least that it is irrelevant for
the saturated state, which is reasonable if the shear is not too large [9, 27])
and ignore the shear in the parallel velocity.
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The substitution of (24) into the GK equation (1) eliminates
the radially inhomogeneous advection term 𝒖 ⋅𝛁 at the cost of
introducing an inhomogeneity in time via the 𝜕𝑥 derivatives.
Consequently, the laboratory-frame radial wavenumber 𝑘𝑥 of
a fluctuation advected by the mean flow, i.e., of a fluctuation
with a given fixed wavenumber 𝒌′ in the shearing frame, sat-
isfies

𝑘𝑥 = 𝑘′𝑥 − 𝑘′𝑦𝛾𝐸 𝑡
′. (25)

Crucially, the nonlinear interactions (3) and the linear drive (4)
have the same form in both the laboratory frame and the shear-
ing frame; therefore, (25) captures completely the effects of
flow shear in the shearing frame. Equation (25) tells us that
the shearing action of the perpendicular flow, which results
in a “tilting” of the eddies [14], is equivalent to a “drift” in
Fourier space of the radial wavenumber 𝑘𝑥 of the turbulent
fluctuations.

Let us consider introducing flow shear into a system that,
in its absence, would reach a saturated state by establishing
a local energy cascade. As discussed in §III A, the transport
properties (e.g., the radial heat flux 𝑄) of such a system are
dominated by the fluctuations at the outer scale. The lifetime
of these fluctuations is given by the outer-scale nonlinear time,
which, according to (17), is 𝜏o

nl(0) ∼ 𝛾o(0)−1, where we will
use the notation 𝛾o(𝛾𝐸) to denote the dependence of outer-scale
quantities on the flow shear, so 𝛾o(0) is the outer-scale injec-
tion rate in the absence of it. We shall distinguish two dif-
ferent regimes of sheared turbulence: a weak-shear regime
with 𝛾𝐸 < 𝛾o(0) and a strong-shear regime with 𝛾𝐸 > 𝛾o(0).
This distinction is motivated by the so-called “quench” rule
[3, 22, 43, 44], according to which flow shear is able to sup-
press the energy injection associated with some linearly unsta-
ble modes only if the shearing rate is comparable to the growth
rate of those modes. If this is true, the flow shear should be
unable to stifle energy injection at the outer scale if 𝛾𝐸 < 𝛾o(0),
and so the outer-scale injection rate should remain independent
of 𝛾𝐸 in the weak-shear regime, i.e., 𝛾o(𝛾𝐸) ≈ 𝛾o(0). In con-
trast, in the strong-shear regime, we expect that the injection
rate will be modified by the presence of the flow shear.

Let us analyze the physics of both regimes, starting with the
weak-shear one.

1. Weak-shear regime

Let us consider more carefully the influence of flow shear
on the outer scale in the case 𝛾𝐸 < 𝛾o(0). As just discussed,
in this regime, the outer-scale-injection and nonlinear-mixing
rates should remain approximately the same as those at 𝛾𝐸 = 0,
viz.,

𝜏o
nl(𝛾𝐸)

−1 ∼ 𝛾o(𝛾𝐸) ∼ 𝛾o(0) ∼ 𝜏o
nl(0)

−1. (26)
Assuming that the injection rate 𝛾o is determined by the linear
growth rate at the outer scale,6 and that the latter is (at least

6 Strictly speaking, linear modes in the presence of flow shear are often only
transiently growing, so 𝛾o(𝛾𝐸 ) should be interpreted as the transient growth

approximately) only a function of 𝑘𝑦,7 we conclude that the
poloidal wavenumber of the outer-scale eddies is also set by
its value at 𝛾𝐸 = 0 and independent of 𝛾𝐸 in the weak-shear
regime, viz.,

𝑘o
𝑦(𝛾𝐸) ∼ 𝑘o

𝑦(0). (27)
However, the assumption that 𝛾𝒌 is only a weak function of
𝑘𝑥 means that one cannot make a similar statement about the
radial wavenumber 𝑘o

𝑥(𝛾𝐸). Indeed, approximating the lifetime
of the outer-scale fluctuations as equal to the nonlinear mixing
time 𝜏o

nl, the wavenumber drift (25), together with (26) and
(27), suggests that

𝑘o
𝑥(𝛾𝐸) ∼ 𝑘o

𝑥(0) + 𝑘o
𝑦(0)𝜏

o
nl(0)𝛾𝐸

∼ 𝑘o
𝑥(0)

[
1 +

𝛾𝐸
o(0)𝛾o(0)

]
, (28)

where o(0) = 𝑘o
𝑥(0)∕𝑘

o
𝑦(0) is the fluctuation aspect ratio at

the outer scale at 𝛾𝐸 = 0. Therefore,
𝑘o
𝑥(𝛾𝐸)
𝑘o
𝑥(0)

∼
o(𝛾𝐸)
o(0) ∼ 1 +

𝛾𝐸
𝛾c
, (29)

where we have introduced the critical shearing rate

𝛾c ≡ o(0)𝛾o(0). (30)
Then, (19) implies that the radial turbulent heat flux satisfies

𝑄(𝛾𝐸)
𝑄(0)

∼
[
o(0)
o(𝛾𝐸)

]2
∼ 1

(1 + 𝛾𝐸∕𝛾c)2
, (31)

where 𝑄(0) is the heat flux at 𝛾𝐸 = 0. Note that at no step lead-
ing to (31) did we use any formulae from §III A that relied on
isotropy, which would otherwise have restricted us to o ∼ 1.

Expressions (30) and (31) predict that the transport prop-
erties in the weak-shear regime are determined by the ratio
of the radial and poloidal wavenumbers of the outer-scale ed-
dies, o(0) = 𝑘o

𝑥(0)∕𝑘
o
𝑦(0). If the unsheared fluctuations have

o(0) ∼ 1, then (30) implies that 𝛾c ∼ 𝛾o(0). As the weak-
shear regime is characterized by 𝛾𝐸 < 𝛾o(0), (29) implies that
o(𝛾𝐸) ∼ o(0) ∼ 1, and thus 𝑄(𝛾𝐸) ∼ 𝑄(0) throughout the
weak-shear regime. In other words, if the unsheared turbu-
lence has o(0) ∼ 1 at the outer scale, shearing it with any
𝛾𝐸 < 𝛾o(0) will not reduce the turbulent transport by more
than an order-unity amount — an unsurprising outcome.

rate at early times [42, 45]. We also note that a shear in the equilibrium
magnetic field can introduce nontrivial effects, e.g., traveling exponentially
growing modes [41] or nonexponentially growing Floquet modes [46, 47],
which can have a significant impact on the saturation, e.g., they may lead to
a degenerate saturated state [48]. Our analysis depends only on the injection
rate being a function solely of the poloidal wavenumber, while the precise
relationship between the injection rate and the linear growth rate is outside
of the scope of the current work.

7 This assumption can be made weaker: we will only need 𝛾𝒌 to be approxi-
mately independent of 𝑘𝑥 for 𝑘𝑥 < 𝑘𝑦.



6

However, due to the nature of the underlying linear in-
stabilities, it is, in fact, often the case that the outer-scale
eddies in temperature-gradient-driven turbulence are radially
elongated. Such eddies, often called “streamers”, are a well-
documented feature of this type of turbulence, especially in its
electron-scale variety [8, 49–53]. A turbulent state dominated
by streamers satisfies o(0) ≪ 1, and so 𝛾c ≪ 𝛾o(0). In this
case, (29) implies that the outer-scale aspect ratio increases
linearly with the flow shear due to the tilting of the eddies,
viz.,

o(𝛾𝐸) ∼ o(0) + 𝛾𝐸
𝛾o(0) . (32)

Furthermore, (31) predicts that the heat flux will be suppressed
if 𝛾c ≲ 𝛾𝐸 ≪ 𝛾o(0). In particular, for intermediate values of
the shearing rate that satisfy 𝛾c ≪ 𝛾𝐸 ≪ 𝛾o(0), (32) becomes

o(𝛾𝐸) ∼
𝛾𝐸

𝛾o(0) , (33)
and so, by (31),

𝑄(𝛾𝐸) ∝ 𝛾−2𝐸 . (34)
If the shear is increased further, (32) implies that, at the

transition from the weak- to the strong-shear regime, where
𝛾𝐸 ∼ 𝛾o(0), the outer-scale aspect ratio is o(𝛾𝐸) ∼ 1, and so,
by (31), the heat flux has been reduced by a large factor:

𝑄[𝛾o(0)]
𝑄(0)

∼
[
o(0)

]2 ≪ 1. (35)
A cautious reader may have spotted a potential clash be-

tween having o(0) ≪ 1 at the outer scale and the theory of
the energy cascade laid out in §III A: there, we assumed that
the fluctuations in the inertial range had  ∼ 1, yet the iner-
tial range must connect to the outer scale, where now  ≪ 1.
There are two possible resolutions to this problem: (i) the scal-
ing arguments presented in §III A are, in fact, unchanged if the
inertial range inherits the aspect ratio at the outer scale, i.e., if
𝑘𝑥∕𝑘𝑦 is a scale-independent, even if numerically small, num-
ber below the outer scale, or (ii) there exists a transition region
below the outer scale, wherein the dependence of 𝑘𝑥 on 𝑘𝑦 is
faster than linear so that 𝑘𝑥 gradually increases to match 𝑘𝑦at some smaller scale, below which the scalings from §III A
become valid. Our numerical results, presented in §IV A, are
consistent with option (ii). In appendix A, we develop a simple
theory for the transition region.

Finally, let us mention that, while here we shall consider
only cases where  ≲ 1, this is not necessarily satisfied in
all instances of fusion-relevant turbulence. For example, the
large-temperature-gradient environment of the pedestal has
been shown numerically to give rise to poloidally elongated
turbulent fluctuations with  ≫ 1 [54, 55]. As discussed in
§III A 1, the “grand critical balance” (21) leads to poloidally
elongated eddies at large temperature gradients, as per (22).
Recent numerical and analytical work by Nies et al. [39] sug-
gests that such behavior may indeed be consistent with strongly
driven ion-temperature-gradient turbulence in axisymmetric
toroidal geometry. Here, leaving the reader cognizant of
these recent developments, we shall nevertheless focus on the
case  ≲ 1.

log 𝑘𝑦

𝛾𝒌 ∝ 𝑘𝑦

𝜏−1nl ∝ 𝑘4∕3
𝑦

⊢inertial range→

𝑘o
𝑦(0) 𝑘o

𝑦(𝛾𝐸)

𝛾o(𝛾𝐸)
𝛾o(0)

shear-suppressed
eddies

FIG. 2. A qualitative illustration, analogous to figure 1, of the effect of
strong flow shear 𝛾𝐸 ≫ 𝛾o(0), leading to the time-scale balance (36)
determining the outer scale. In this regime, 𝛾o(𝛾𝐸) ∼ 𝛾𝐸 .

2. Strong-shear regime

In the strong-shear regime, defined by 𝛾𝐸 > 𝛾o(0), the flow
shear is strong enough to affect energy injection at the outer
scale. In particular, it is no longer possible to excite fluctua-
tions at wavenumbers where the growth rate is 𝛾𝒌 ≲ 𝛾𝐸 [3, 43].
To compensate for this, the outer scale must adjust to match the
shearing rate. Thus, we propose that, for 𝛾𝐸 ≫ 𝛾o(0), the outer
scale will be governed by the balance of nonlinear, injection,
and flow-shear rates:

𝜏o
nl(𝛾𝐸)

−1 ∼ 𝛾o(𝛾𝐸) ∼ 𝛾𝐸 , (36)
as illustrated in figure 2. As always, the lifetime of turbulent
eddies at the outer scale is set by the nonlinear time; (25) then
implies that o(𝛾𝐸) ∼ 1 throughout the strong-shear regime.
Assuming that the linear growth rate is 𝛾𝒌 ∝ 𝑘𝑦, we expect that

𝑘o
𝑦 ∝ 𝛾𝐸 . (37)

This is intuitively clear: stronger flow shear pushes turbulence
towards smaller (and thus faster) scales since the larger (and
slower) eddies are more strongly affected by the shear. Conse-
quently, (19), together with (36) and (37), implies

𝑄(𝛾𝐸) ∝ 𝛾−1𝐸 (38)
in the strong-shear regime 𝛾𝐸 > 𝛾o(0).

The outer-scale balance (36), and thus the scaling (38), can-
not be satisfied for arbitrarily large values of flow shear be-
cause the linear growth rate 𝛾𝒌 is bounded by some 𝛾max, nor-
mally found at much larger wavenumbers than those associ-
ated with the dominant energy injection.8 For 𝛾𝐸 ≳ 𝛾max, the
system is no longer able to sustain the turbulent fluctuations
because the shearing rate 𝛾𝐸 cannot be matched by the rate of
energy injection at any scale. Therefore, we expect a sharp
cutoff in the fluctuations’ amplitude, and thus in the heat flux,
as 𝛾𝐸 becomes comparable to 𝛾max. Figure 3 summarizes the
expected dependence of the heat flux on 𝛾𝐸 in both regimes.

8 The existence of such 𝛾max can be proven rigorously in some cases, e.g.,
ion-temperature-gradient-driven turbulence with adiabatic electrons [56].
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log 𝛾𝐸

log𝑄
𝑄(0)

𝛾max

𝑄 ∝ (1 + 𝛾𝐸∕𝛾c)−2

𝑄 ∝ 𝛾−1𝐸

𝛾c 𝛾o(0)

∝
[
o(0)

]2

(i) (ii)

(a)

log 𝛾𝐸

log𝑄
𝑄(0)

𝛾max

𝑄 ∝ 𝛾−1𝐸

𝛾c ∼ 𝛾o(0)
(i) (ii)

(b)

FIG. 3. A qualitative diagram of the heat flux 𝑄 as a function of the flow shear 𝛾𝐸 in the case of (a) o(0) ≪ 1 and (b) o(0) ∼ 1. In each
case, there are two distinct regimes. (i) For 𝛾𝐸 < 𝛾o(0), we have the weak-shear regime (§III B 1), where, in the o(0) ≪ 1 case, we find
𝑄(𝛾𝐸) ∝ (1+ 𝛾𝐸∕𝛾c)−2 [see (31)]. In contrast, if o(0) ∼ 1, the flow shear is unable to affect significantly the fluctuations at the outer scale and,
consequently, the heat flux is approximately independent of 𝛾𝐸 . (ii) For 𝛾o(0) < 𝛾𝐸 < 𝛾max, the system is in the strong-shear regime (§III B 2),
where the outer-scale injection rate is determined by the flow shear, viz., 𝛾o(𝛾𝐸) ∼ 𝛾𝐸 . Here o(𝛾𝐸) ∼ 1 at the outer scale, regardless of o(0),
and 𝑄(𝛾𝐸) ∝ 𝛾−1𝐸 . Finally, the fluctuations, and hence the heat flux, are completely suppressed at 𝛾𝐸 ≳ 𝛾max.

𝐿⟂∕𝜌⟂ 𝐿∥
√
𝜎∕𝐿𝑇 𝑛⟂ 𝑛∥ 𝜈⟂𝜌4𝑒∕𝜔⟂𝜌4⟂ 𝛾̂max

Sim1 100 50 341 31 5 × 10−4 6.3 × 102

Sim2 100 50 683 43 1 × 10−4 1.1 × 103

Sim3 70 40 191 31 5 × 10−4 4.1 × 102

Sim4 40 30 191 31 5 × 10−5 4.9 × 102

TABLE I. A summary of the simulation parameters used in §IV A.
The simulation domain is taken to be “square” with 𝐿𝑥 = 𝐿𝑦 = 𝐿⟂and 𝑛𝑥 = 𝑛𝑦 = 𝑛⟂, where 𝑛𝑥, 𝑛𝑦, and 𝑛∥ are the number of resolved
(i.e., after dealiasing — see appendix B) Fourier modes in the 𝑥, 𝑦,
and 𝑧 coordinates, respectively. The last column shows the maximum
growth rate 𝛾max normalized according to (48).

IV. NUMERICAL RESULTS

To test the validity of the theory presented in §III B, we con-
sider two different models of turbulence. The first (§IV A) is
a two-fluid model that captures the dynamics of electrostatic
fluctuations of density and electron temperature in a straight
magnetic field. This turbulence is driven by the collisional
slab ETG (sETG) instability [29] on scales between the ion
and electron gyroradii. While this model is extremely sim-
ple, even simplistic, the benefit of using it is that its saturation
mechanism has already been investigated in great detail and
has been shown to conform to the picture of a local energy
cascade outlined in §III A [30]. Therefore, it is a prime can-
didate for confirming the validity of the theory laid out in this
paper. For our second set of simulations (§IV B), we employ
the GK code GENE [50, 57] to perform gyrokinetic flux-tube
simulations of ITG-driven turbulence. This is a much more
realistic model of plasma turbulence, and the “Cyclone base
case” used here is a setup that has been extensively studied in
the literature ([58–68] constitute a small sample) — it is thus
a natural testbed for any theory aspiring to tokamak relevance.

A. Fluid ETG turbulence

In this section, we report numerical simulations in a triply
periodic domain of size 𝐿𝑥, 𝐿𝑦, and 𝐿∥ in 𝑥, 𝑦, and 𝑧, respec-
tively, of the following collisional slab ETG model [30]:

d
d𝑡

𝛿𝑛𝑒
𝑛0𝑒

+
𝜕𝑢∥𝑒
𝜕𝑧

= 0, (39)
𝜈𝑒𝑖
𝑐1

𝑢∥𝑒
𝑣th𝑒

= −
𝑣th𝑒
2

𝜕
𝜕𝑧

[
𝛿𝑛𝑒
𝑛0𝑒

− 𝜑 +
(
1 +

𝑐2
𝑐1

)
𝛿𝑇𝑒
𝑇0𝑒

]
, (40)

d
d𝑡

𝛿𝑇𝑒
𝑇0𝑒

−
𝑐3𝑣2th𝑒
3𝜈𝑒𝑖

𝜕2

𝜕𝑧2
𝛿𝑇𝑒
𝑇0𝑒

+ 2
3

(
1 +

𝑐2
𝑐1

) 𝜕𝑢∥𝑒
𝜕𝑧

= −
𝜌𝑒𝑣th𝑒
2𝐿𝑇

𝜕𝜑
𝜕𝑦

, (41)

where the “convective derivative”
d
d𝑡 =

𝜕
𝜕𝑡

+ 𝛾𝐸𝑥
𝜕
𝜕𝑦

+
𝜌𝑒𝑣th𝑒
2

(𝒛̂ × 𝛁𝜑) ⋅ 𝛁 + 𝜈⟂𝜌
4
𝑒∇

4
⟂ (42)

includes the mean flow shear, the nonlinear advection by the
perturbed 𝑬 × 𝑩 drift, and hyperviscous dissipation. Ap-
pendix B describes some important details of the numerical
implementation of the flow-shearing term 𝛾𝐸𝑥𝜕𝑦. The electron
density is related to the electrostatic potential 𝜑 ≡ 𝑒𝜙∕𝑇0𝑒 by
quasineutrality (5) combined with the assumption of adiabatic
ions:

𝛿𝑛𝑒
𝑛0𝑒

= −
𝑍𝑇0𝑒
𝑇0𝑖

𝜑, (43)

where 𝑍 = 𝑞𝑖∕𝑒, 𝑞𝑖 being the ion charge. The numerical co-
efficients 𝑐1, 𝑐2, and 𝑐3 arise from the physics of collisions
and depend on 𝑍: e.g., for 𝑍 = 1, 𝑐1 ≈ 1.94, 𝑐2 ≈ 1.39,
and 𝑐3 ≈ 3.16, in agreement with [69]. We used 𝑍 = 1 and
𝑇0𝑖 = 𝑇0𝑒 for all simulations reported here. Finally, the elec-



8

10−1 100 101 102 103


̂E

10−3

10−2

10−1

100

Tim
e-a

ver
age

dQ̂
(
 E
)∕
Q̂
(0
)

Q ∝ (1 + 
E∕
c)−2

Q ∝ 
−2E

Q ∝ 
−1E

(a)

Sim1
Sim2
Sim3
Sim4

100 101 102


̂E

10−1

100

k�
⟂ k ∝ 
E

(b)

koy(
̂E)�⟂
kox(
̂E)�⟂

FIG. 4. (a) Time-averaged, saturated radial turbulent heat flux, normalized to its value at zero flow shear, as a function of normalized flow
shear 𝛾̂𝐸 [normalized per (48)] for the sets of simulations detailed in table I. The data from all four sets overlays due to the scale invariance
of (39)–(41). The black dashed and dash-dotted lines show the theoretical predictions (31) and (38), respectively, where, for the former, the
curve is plotted using 𝛾̂c ≈ 39, found by fitting to the data presented here. The vertical black dotted line marks the approximate shearing rate
𝛾̂𝐸 ≈ 100 where the system transitions from the weak- to the strong-shear regime. The values of 𝛾𝐸 ≈ 𝛾max are shown using vertical dotted lines
of the same color as the data points for each respective set of simulations. (b) The outer-scale wavenumbers 𝑘o

𝑥(𝛾𝐸) and 𝑘o
𝑦(𝛾𝐸), defined as those

that maximize (50) and (51), respectively, for the Sim1 set of simulations. The dashed line indicates a linear dependence on the flow shear,
𝑘 ∝ 𝛾𝐸 . The left vertical dotted line is the same as in panel (a) and marks the location 𝛾𝐸 ≈ 100 where the system transitions from the weak-
to the strong-shear regime. In the former, 𝑘o

𝑦 is (approximately) pinned to 𝑘o
𝑦(0) but 𝑘o

𝑥 increases linearly with 𝛾𝐸 . In the strong-shear regime,
𝑘o
𝑥 ∼ 𝑘o

𝑦 ∝ 𝛾𝐸 . The right vertical dotted line indicates the value of flow shear that is equal to the largest growth rate 𝛾max, where the outer scale
𝑘o
𝑦 reaches, at least approximately, the scale of the most unstable mode 𝑘𝑦,max𝜌⟂ ≈ 3.7. Note that, at low 𝛾𝐸 , (50) is sometimes maximized at

𝑘𝑥 = 0. In those cases, represented by the hollow triangles, we have set 𝑘o
𝑥𝜌⟂ to the box scale 2𝜋𝜌⟂∕𝐿𝑥 ≈ 0.063.

tron heat flux (10) can be expressed using the Fourier ampli-
tudes of the fluctuations as follows:

𝑄 = 3
2
𝑛0𝑒𝑇0𝑒𝑣th𝑒

∑
𝒌

𝑖𝑘𝑦𝜌𝑒𝜑
∗
𝒌
𝛿𝑇𝑒,𝒌
𝑇0𝑒

. (44)

Together, (39)–(41) and (43) form an asymptotic model de-
rived in an electrostatic, collisional limit of GK in a straight
and uniform magnetic field with 𝒃0 = 𝒛̂ [30]. They describe
the electrostatic dynamics of fluctuations on perpendicular and
parallel scales that satisfy

𝑘∥𝐿𝑇 ∼
√
𝜎, 𝑘⟂𝜌⟂ ∼ 1, 𝜌⟂ ≡

𝜌𝑒
𝜎
𝐿𝑇
𝜆𝑒𝑖

, (45)

where 𝐿−1
𝑇 ≡ −𝜕 ln 𝑇0𝑒∕𝜕𝑥 is the electron-temperature gra-

dient, 𝜆𝑒𝑖 is the electron-ion mean free path, and 𝜎 is a for-
mal scaling parameter that is arbitrary provided it satisfies
𝛽𝑒 ≪ 𝜎 ≪ 1. The fact that this parameter is arbitrary is a
consequence of the scale invariance of the model [30]. This
implies a particular scaling of the heat flux with the square of
the normalized parallel system size, viz.,

𝑄 ∝

(
𝐿∥

√
𝜎

𝐿𝑇

)2

. (46)

Similarly, any intrinsic time scales in (39)–(41) (e.g., the outer-
scale injection rate 𝛾o) can be shown to be proportional to the
inverse square of the normalized parallel box size. The nu-
merical results for the (electron) heat flux 𝑄 and any relevant
rate 𝛾 (e.g., 𝛾𝐸 , 𝛾𝒌, 𝛾o, etc) can, therefore, be presented in terms
of the following normalized quantities:

𝑄̂ ≡

(
𝐿𝑇

𝐿∥
√
𝜎

)2
𝑄

(𝜌⟂∕𝜌𝑒)𝑄gB𝑒
, (47)

𝛾̂ ≡

(
𝐿𝑇

𝐿∥
√
𝜎

)−2
𝛾
𝜔⟂

, (48)

where 𝑄gB𝑒 = 𝑛0𝑒𝑇0𝑒𝑣th𝑒(𝜌𝑒∕𝐿𝑇 )2 is the gyro-Bohm heat flux
and

𝜔⟂ = 𝜌𝑒𝑣th𝑒∕2𝜌⟂𝐿𝑇 (49)
is the value of the electron drift frequency at 𝑘𝑦𝜌⟂ = 1. A
direct consequence of the scale invariance of (39)–(41) is that
𝑄̂ must be independent of 𝐿𝑇 and the perpendicular box size
(in any direction, provided 𝐿𝑥 and 𝐿𝑦 are sufficiently large);
therefore, it is a function of 𝛾̂𝐸 only. Note that all of the afore-
mentioned scalings are valid only when the hyperviscous cut-
off is far from the outer scale, i.e., when 𝜈⟂ is small enough
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and so does not upset the scale invariance of the outer-scale
quantities.

In the absence of flow shear, the nonlinear saturated state
of (39)–(41) has been investigated extensively, and exhibits
a critically balanced local energy cascade [30]. Therefore,
(39)–(41) with 𝛾𝐸 ≠ 0 should give rise to the kind of turbu-
lence that is described by the theory laid out in §III. Here, we
show data from four sets of simulations where we varied 𝛾𝐸while keeping all other parameters fixed, as detailed in table I.

Figure 4(a) shows the dependence of 𝑄̂ on 𝛾̂𝐸 for these simu-
lations. The agreement with figure 3 is evident. The predicted
scaling of the heat flux in the weak-shear regime (31) holds
very well up to 𝛾̂𝐸 ≈ 100. This is followed by a swift tran-
sition to the strong-shear scaling (38). Recall that the theory
of §III B 1 predicts that the transition between the two regimes
should occur at 𝛾𝐸 ∼ 𝛾o(0), where the energy-injection rate
at the outer scale 𝛾o(0) is approximately the linear-instability
growth rate 𝛾𝒌 at the outer scale. Using the outer-scale esti-
mates presented in figure 4(b), we find that 𝑘o

𝑦(0)𝜌⟂ ≈ 0.3.
Solving the linear dispersion relation for (39)–(41) for Sim1
at 𝑘𝑥 = 0, 𝑘𝑦𝜌⟂ = 0.35 and substituting 𝑘∥𝐿𝑇 ∕

√
𝜎 = 2𝜋∕50

for the box-sized mode in the parallel direction, we obtain an
approximation of the normalized outer-scale injection rate of
𝛾̂o(0) ∼ 𝛾̂𝒌 ≈ 70, consistent with the numerically observed
transition at 𝛾̂𝐸 ≈ 100.9

Figure 4(b) shows that 𝑘o
𝑥(𝛾𝐸) and 𝑘o

𝑦(𝛾𝐸) are consistent with
the behavior of the outer scale predicted in §III B. As 𝛾𝐸 is in-
creased, 𝑘o

𝑦 stays roughly constant until 𝑘o
𝑥 catches up with it,

whereafter the system transitions into the strong-shear regime
where 𝑘o

𝑥 and 𝑘o
𝑦 remain comparable and both increase linearly

with 𝛾𝐸 , as predicted in §III B 2. This behavior persists until
𝑘o
𝑦 reaches (approximately) the poloidal wavenumber at which

the linear growth rate is maximal. For 𝛾𝐸 larger than 𝛾max, the
turbulence is completely suppressed. This behavior is also vi-
sually confirmed by figure 5, where we show real-space snap-
shots from simulations with different flow shear.

The outer-scale wavenumbers shown in figure 4 are defined
as those that maximize the (steady-state) poloidally and radi-
ally averaged heat fluxes, defined respectively as

⟨𝑄⟩𝑦(𝑘𝑥) ≡ 3
2
𝑛0𝑒𝑇0𝑒𝑣th𝑒

∑
𝑘𝑦,𝑘∥

𝑖𝑘𝑦𝜌𝑒𝜑
∗
𝒌
𝛿𝑇𝑒,𝒌
𝑇0𝑒

, (50)

⟨𝑄⟩𝑥(𝑘𝑦) ≡ 3
2
𝑛0𝑒𝑇0𝑒𝑣th𝑒

∑
𝑘𝑥,𝑘∥

𝑖𝑘𝑦𝜌𝑒𝜑
∗
𝒌
𝛿𝑇𝑒,𝒌
𝑇0𝑒

, (51)

where 𝜑𝒌 and 𝛿𝑇𝑒,𝒌 are the three-dimensional Fourier ampli-
tudes of the fields. The ratio of the heat flux at the transi-
tion to that at zero flow shear is found to be approximately
𝑄(0)∕𝑄(𝛾̂𝐸 = 100) ≈ 13, which, according to (31), would re-

9 Given the discussion in footnote 4 on page 3, we must mention that this 𝑘∥maximizes the growth rate at the given 𝑘𝑦. The reader might also wonder
why we consider 𝑘𝑥 = 0 given that the outer-scale radial wavenumber is not
zero. Since 𝑘𝑥 enters the linear dispersion relation only via the hyperviscous
dissipation, the growth rate is virtually independent of 𝑘𝑥 at these scales.

FIG. 5. Snapshots of 𝜑 and 𝛿𝑇𝑒∕𝑇0𝑒 in the (𝑥, 𝑦) plane for Sim1 sim-
ulations with four different values of 𝛾𝐸 , as specified in the side la-
bels on the right-hand side. For each snapshot, the amplitudes are
normalized to lie in the range [−1, 1], with the values in this interval
corresponding to colors between dark blue and dark red, respectively.
The second row corresponds to the weak-shear regime (i) from fig-
ure 3(a), where the flow shear is too weak to influence the saturated
state significantly. The third row also corresponds to the weak-shear
regime, with 𝑘o

𝑦(𝛾𝐸) pinned to 𝑘o
𝑦(0) but with 𝑘o

𝑥(𝛾𝐸) increased by the
influence of the flow shear, which here clearly manifests itself as the
tilting of the eddies. In this case, the structures have a similar size in 𝑦
to those in the first- and second-row panels, but a shorter length scale
in 𝑥 due to being sheared. The third row shows the saturated state in
the strong-shear regime (ii) of figure 3(a), where the flow shear has
manifestly pushed the outer scale to much shorter wavelengths.



10

FIG. 6. Radial localization of turbulent perturbations at very large
values of flow shear. Taken from a Sim4 simulation with 𝛾̂𝐸 = 540,
which is just over the largest growth rate 𝛾̂max ≈ 493. The simulation
has achieved a steady state with time-averaged normalized heat flux
𝑄̂(𝛾𝐸)∕𝑄̂(0) ≈ 4 × 10−7, which is why it is not visible in figure 4.

quire o(0) ≈ 0.4, consistent with 𝑘o
𝑥∕𝑘

o
𝑦 ≈ 0.3 as seen in fig-

ure 4 at low values of flow shear. Given the remarkably good fit
for 𝑄 as a function of 𝛾𝐸 , the small discrepancy is likely due to
our estimates of 𝑘o

𝑥 and 𝑘o
𝑦 via (50) and (51) being an imperfect

measure of the outer scale. For instance, (50) fails to produce
a nonzero estimate for 𝑘𝑥 if 𝛾𝐸 is too low or zero. Note that the
scale invariance of the fluid system implies that the streamer
aspect ratio o(0) of (39)–(41) is not a function of any of the
parameters of the system; i.e., it is just an order-unity (albeit
measurably, and consequentially, smaller than unity) constant,
so it is not possible to perform a scan in o(0).

For values of 𝛾𝐸 comparable to, or larger than, the maximum
growth rate 𝛾max, the turbulence is strongly suppressed, as ex-
pected. However, this occurs in a surprising and nontrivial
way — turbulence becomes radially localized into disjoint tur-
bulent patches (see figure 6). This localization is reminiscent
of the formation of coherent structures called “ferdinons” in
sheared ITG turbulence [22, 70, 71]. Despite their qualitative
similarities, the localized ETG structures reported here differ
in a number of ways from the ITG ferdinons observed in simi-
lar fluid simulations by [22]: the former are three-dimensional
structures (i.e., require a nonzero 𝑘∥) that drift radially in the
absence of magnetic drifts, while the latter exist in two dimen-
sions and depend on the poloidal magnetic drift for their radial
motion. The radial localization of sheared turbulence through
formation of coherent structures appears to be a universal phe-
nomenon, whose detailed investigation is the subject of our
ongoing work that falls outside the scope of this paper.

B. Gyrokinetic ITG turbulence

We now explore the validity of our theory for plasma
turbulence in axisymmetric toroidal geometry. Using the
GK code GENE, we performed numerical flux-tube simula-
tions of ITG-driven turbulence with modified adiabatic elec-
trons [72] in a Cyclone-base-case (CBC) [58, 59] geom-
etry with normalized magnetic shear 𝑠̂ = 0.796, safety
factor 𝑞0 = 1.4, and inverse aspect ratio 𝜖 = 0.18.

We focus on two values of the ion-temperature gradi-
ent, 𝑅∕𝐿𝑇𝑖 = 10 and 𝑅∕𝐿𝑇𝑖 = 14, box sizes correspond-
ing to the smallest wavenumbers 𝑘𝑥,min𝜌𝑖 = 1.6 × 10−2 and
𝑘𝑦,min𝜌𝑖 = 6.25 × 10−3, 𝑛𝑥 = 288 radial modes, 𝑛𝑦 = 256
poloidal modes for𝑅∕𝐿𝑇𝑖 = 10 and 𝑛𝑦 = 512 for𝑅∕𝐿𝑇𝑖 = 14,
𝑛𝑧 = 16 parallel grid points, and velocity-space resolution
𝑛𝑣 = 32 (parallel velocity), 𝑛𝜇 = 8 (magnetic moment). We
performed scans of the equilibrium perpendicular flow shear
𝛾𝐸 , with parallel flow shear turned off. Note that the tem-
perature gradients that we consider are significantly above the
nominal CBC value of 𝑅∕𝐿𝑇𝑖 = 6.92. This is done to ensure
that the system is strongly driven and far from any marginal
states where other physics, e.g., zonal flows, could be setting
the saturated fluctuation levels.

Figure 7 shows the dependence of the heat flux and poloidal
outer-scale wavenumber on the shearing rate. The strong-
shear scaling 𝑄 ∝ 𝛾−1𝐸 (38) is followed reasonably well for
both values of the ion-temperature gradient. Also, the de-
pendence of 𝑘o

𝑦 on 𝛾𝐸 is approximately linear, as expected
from (37). Note that (37) is only an asymptotic scaling, and
for 𝛾𝐸 close to 𝛾o(0), we have 𝑘o

𝑦(𝛾𝐸) − 𝑘o
𝑦(0) ∝ 𝛾𝐸 . To calcu-

late 𝑘o
𝑦 for figure 7(b), we used the GK equivalent of (51), i.e.,

we approximated 𝑘o
𝑦 by the 𝑘𝑦 that has the largest contribution

to the heat flux.
According to the theory presented in §III B 2, the strong-

shear regime should end at 𝛾𝐸 ∼ 𝛾max. Indeed, for both val-
ues of 𝑅∕𝐿𝑇𝑖 , the 𝑄 ∝ 𝛾−1𝐸 dependence lasts roughly up to
𝛾𝐸∕𝛾max ≈ 1.5, after which the heat flux is sharply suppressed.
Note the absence of the weak-shear scaling (31) — this is ex-
pected because the unsheared (𝛾𝐸 = 0) ITG turbulence in this
case has o(0) ∼ 1. Consequently, the heat flux is (approxi-
mately) constant in the weak-shear regime and the dependence
of 𝑄 on 𝛾𝐸 resembles figure 3(b).

1. Bistability of high-shear states

At large values of flow shear 𝛾𝐸 > 𝛾max, i.e., beyond the
strong-shear regime, we find that the system can saturate at (at
least) two different levels of heat transport. Figure 8 shows
the time traces of the turbulent heat flux for 𝑅∕𝐿𝑇𝑖 = 14
and four different values of 𝛾𝐸 , where, for each value of the
flow shear, the simulations were initialized either with small-
amplitude noise or with data from a saturated 𝛾𝐸 = 0 simula-
tion. For 𝑎𝛾𝐸∕𝑐𝑠 ≤ 1, the saturated state is found to be inde-
pendent of the initial conditions. In contrast, a simulation with
𝑎𝛾𝐸∕𝑐𝑠 = 1.3 initialized with a small-amplitude noise (cor-
responding to the rightmost point in figure 7) saturates with
a time-averaged radial heat flux that is nearly two orders of
magnitude smaller than one obtained by restarting it from an
already saturated high-amplitude state. Similar bistability in
gyrokinetic turbulence with mean flow shear has been reported
by Christen et al. [48]. The physics of this phenomenon, as ob-
served in the simulations presented in figure 8, falls outside of
the range of validity of the theory presented in §III because, at
least in the case investigated here, it happens only at 𝛾𝐸 > 𝛾max,
where the assumption of a balance between the rates of shear-
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FIG. 7. (a) The time-averaged, saturated-state, radial turbulent heat flux and (b) the outer-scale poloidal wavenumber 𝑘o
𝑦, respectively, nor-

malized to their values at 𝛾𝐸 = 0, as a function of the flow shear for two different values of the ion-temperature gradient (see §IV B for other
relevant numerical parameters). The black dashed line corresponds to the trend 𝑄 ∝ 𝛾−1𝐸 , while the blue and red dashed lines are linear fits for
𝑘o
𝑦 as a function of 𝛾𝐸 for each temperature gradient. The vertical dotted lines correspond to 1.5𝛾max for each of the simulations. The flow shear

is normalized to 𝑎∕𝑐𝑠, where 𝑎 is the minor radius and 𝑐𝑠 is the ion sound speed.
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FIG. 8. Radial turbulent heat flux versus time for 𝑅∕𝐿𝑇𝑖 = 14 and
four different values of 𝛾𝐸 , as labeled in the title of each panel. The
blue lines are time traces from simulations initialized with small-
amplitude noise, while the red ones represent simulations restarted
from a saturated 𝛾𝐸 = 0 run.

ing and energy injection (36) is not expected to hold. We note,
however, that the appearance of localized, coherent structures,
like those seen by Ivanov et al. [22], van Wyk et al. [70, 71],
and also shown here in figure 6, can naturally lead to a degen-
erate saturated state. Indeed, if the saturated state is a collec-

FIG. 9. Snapshots of the electrostatic potential in the perpendicu-
lar plane from the saturated high-transport (left) and low-transport
(right) states with 𝑅∕𝐿𝑇𝑖 = 14 and 𝑎𝛾𝐸∕𝑐𝑠 = 1.3, whose heat-flux
time traces are shown in blue and red, respectively, in the bottom
right panel of figure 8.

tion of localized structures, then volume-averaged turbulent
quantities, like the heat flux, are proportional to the number
of structures in the simulation domain [70]. If these struc-
tures happen to be well localized and non-interacting (or only
weakly interacting), then their number in the simulation do-
main is not necessarily uniquely determined, but can be a func-
tion of the initial conditions and/or of the perpendicular box
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size. The turbulent fluctuations in the low-transport saturated
state displayed in figure 9 show signs of spatial localization
(as opposed to those in the high-transport state), even if not
quite as obviously as they do in the ETG turbulence shown in
figure 6.

V. MOMENTUM TRANSPORT

We have thus far focused on the influence of imposed flow
shear on the turbulent heat transport. In sheared systems, an-
other important quantity of interest is the turbulent transport of
momentum, which is crucial for driving and maintaining equi-
librium differential rotation in fusion experiments. Such rota-
tion is typically achieved using neutral beams that deposit both
energy and momentum into the plasma. The profiles of tem-
perature and equilibrium flow are then determined by the tur-
bulent heat diffusivity and turbulent viscosity, which are usu-
ally larger than their collisional counterparts. The simplifying
choice of a purely perpendicular flow made in §III B means
that we are unable to describe all of the relevant physics: e.g.,
we are missing the effect of the parallel-velocity-gradient in-
stability, which can be the main driver of transport at high 𝛾𝐸[9, 10] (see also footnote 5). Nevertheless, the theory derived
in §III B makes numerically falsifiable predictions for the mo-
mentum transport of turbulence with imposed flow shear. Let
us investigate them here.

Consider the fluid ETG model described in §IV A, wherein
we have imposed a mean flow in the poloidal 𝑦 direction that
varies along the radial 𝑥 direction. This flow then allows the
plasma to have nonzero radial transport of poloidal momen-
tum, defined, similarly to (10), as

Π ≡
∑
𝑠
𝑚𝑠 ∫

d3𝒓
𝑉 ∫ d3𝒘 (𝒗𝐸 ⋅ 𝛁𝑥)(𝒘 ⋅ 𝛁𝑦)𝛿𝑓𝑠. (52)

It can be shown (see appendix C) that, in the fluid model de-
scribed in §IV A, (52) becomes

Π = −
𝑛0𝑒𝑇0𝑒𝜌2𝑒

2 ∫
d3𝒓
𝑉

𝜕𝜑
𝜕𝑦

𝜕
𝜕𝑥

[(
1 +

𝑍𝑇0𝑒
𝑇0𝑖

)
𝜑 −

𝛿𝑇𝑒
𝑇0𝑒

]
.

(53)
As expected, Π is written as the sum of the Reynolds stress of
the 𝐸×𝐵 flow and a diamagnetic stress [22, 73, 74]. Note that
Π itself is of no relevance to the dynamics of the fluctuations as
it does not enter (39)–(41) at all, unlike𝑄, which is responsible
for the injection of energy, as per (7).

Just like we did for the heat flux 𝑄 in §III A 1, we can esti-
mate Π as

Π ∼ 𝑛0𝑒𝑇0𝑒𝑘
o
𝑥,tilt𝑘

o
𝑦𝜌

2
𝑒(𝜑

o)2, (54)
where

𝑘o
𝑥,tilt(𝛾𝐸) ≡ 𝑘o

𝑥(𝛾𝐸) − 𝑘o
𝑥(0) ∼ 𝑘o

𝑦(𝛾𝐸)𝜏
o
nl(𝛾𝐸)𝛾𝐸 . (55)

Using 𝑘o
𝑥,tilt instead of 𝑘o

𝑥 in (54) is necessary because, in the
absence of flow shear, the GK equation (1) obeys the symmetry
(𝑥, 𝑦, 𝑧) ↦ (−𝑥, 𝑦,−𝑧), 𝑤∥ ↦ −𝑤∥, 𝜙 ↦ −𝜙, ℎ𝑠 ↦ −ℎ𝑠,(56)

𝛾c 𝛾o(0) 𝛾max

Π ∝ 𝛾𝐸
(1+𝛾𝐸∕𝛾c)2

Π ∼ const

∝ o(0)

log 𝛾𝐸

logΠ

FIG. 10. A qualitative diagram of the momentum flux Π vs. flow
shear 𝛾𝐸 in the fluid ETG model (see figure 4 for a similar diagram
for the heat flux 𝑄). The indicated ratio between the plateau in the
strong-shear regime and the peak of Π at 𝛾𝐸 = 𝛾c formally holds when
o(0) ≪ 1.

under which Π ↦ −Π and so the time-averaged Π must vanish
if 𝛾𝐸 = 0 [14, 75, 76]. Thus, only the part of 𝑘𝑥 associated with
the eddy tilting contributes to the momentum flux.10

Using (13) and (17), we write (54) as
Π

𝑛0𝑒𝑇0𝑒
∼

𝛾𝐸𝛾o

Ω2
𝑒

1
(𝑘o

𝑥𝜌𝑒)2
∼

𝛾𝐸𝛾o

Ω2
𝑒

1
(o𝑘o

𝑦𝜌𝑒)2
. (57)

In the weak-shear regime (§III B 1), where 𝛾𝐸 < 𝛾o(0), the lin-
ear and nonlinear times at the outer scale are given by (26),
and the fluctuation aspect ratio at the outer scale satisfies (29),
we find

Π(𝛾𝐸)
Π(0)

∝
𝛾𝐸

(1 + 𝛾𝐸∕𝛾c)2
. (58)

Note that if o(0) ∼ 1, i.e., if the turbulence is isotropic in
the absence of flow shear, then 𝛾c ∼ 𝛾o(0) and Π is (approxi-
mately) proportional to 𝛾𝐸 in the weak-shear regime, unlike 𝑄,
which would be constant in this case [see figure 3(b)]. In the
strong-shear regime (§III B 2), where 𝛾𝐸 > 𝛾o(0), the fluctua-
tions satisfy o(𝛾𝐸) ∼ 1, and (36) and (37) hold, we find

Π(𝛾𝐸) ∝ 𝛾0𝐸 , (59)

10 A careful reader may spot another issue, which is also resolved by using
𝑘𝑥,tilt instead of 𝑘𝑥. Recall the discussion after (18), where we justified
estimating 𝑄 via its value at the outer scale by arguing that the contri-
butions from smaller scales decay with increasing 𝑘𝑦. If we were to es-
timate naïvely the contribution Π(𝑘𝑦) to Π from scale 𝑘𝑦 in the inertial
range as Π(𝑘𝑦) ∝ 𝑘𝑥𝑘𝑦𝜑

2, the inertial-range spectrum (16) would imply
Π(𝑘𝑦) ∝ 𝑘2∕3𝑦 , leading one to believe that the integral (52) is dominated by
the small-scale end of the inertial range rather than by the outer scale. This
argument is, however, incorrect. In the inertial range, as 𝑘𝑦 increases, the
nonlinear time decreases according to (16), limiting the effect of the flow
shear and thus decreasing Π(𝑘𝑦). To capture this, the correct estimate is
Π(𝑘𝑦) ∝ 𝑘𝑥,tilt𝑘𝑦𝜑

2, where 𝑘𝑥,tilt ∼ 𝑘𝑦𝜏nl𝛾𝐸 ∝ 𝑘−1∕3𝑦 in the inertial range.
This then leads to Π(𝑘𝑦) ∝ 𝑘−2∕3𝑦 , and so Π is dominated by the contribu-
tions are the outer scale.
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i.e., the momentum flux is independent of the imposed flow
shear (see figure 10). Crucially, in both regimes,

Π
𝑄

∝ 𝛾𝐸 . (60)

This can also be seen directly from (19) and (57), which imply
Π𝑣th𝑒
𝑄

∼
𝛾𝐸
𝛾o 𝑘

o
𝑦𝜌𝑒, (61)

and so (60) follows immediately if 𝛾o ∝ 𝑘o
𝑦, as we have as-

sumed throughout §III B. If we define the normalized turbulent
viscosity 𝜈 and diffusivity 𝜒 as

𝜈 ≡ Π
𝑛0𝑒𝑚𝑒𝛾𝐸

, 𝜒 ≡ 𝑄
𝑛0𝑒𝑇0𝑒𝐿−1

𝑇

, (62)

then the turbulent Prandtl number is

Pr = 𝜈
𝜒

= Π
𝑄

𝑣2th𝑒
2𝛾𝐸𝐿𝑇

. (63)

According to (60), this is independent of 𝛾𝐸 . This prediction
is consistent with previous GK studies of turbulent transport
in sheared turbulence [9, 10].

Figure 11(a) shows the values of turbulent heat and momen-
tum flux from the Sim1 and Sim2 sets of simulations, detailed
in table I. There is good agreement with the weak-shear scal-
ing (58). According to (58), Π should peak in the weak-shear
regime at 𝛾𝐸 = 𝛾c = o(0)𝛾o(0). For the Sim1 and Sim2
simulations, whose data is presented in figure 11, the transi-
tion to the strong-shear regime happens at 𝛾o(0)∕𝜔⟂ ≈ 0.04,
where 𝜔⟂ is given by (49) (see also figure 4). As discussed
in §IV A, we find that, numerically, o(0) ≈ 0.4, which gives
𝛾c∕𝜔⟂ ≈ 0.016, consistent with the observed peak in Π at
𝛾𝐸∕𝜔⟂ ≈ 0.01. However, the prediction that Π should be con-
stant in the strong-shear regime is not observed, likely due to
finite-hyperviscosity effects and the finite extent of the iner-
tial range. Our theory does not take into account the finite
value of hyperviscosity necessary to achieve a saturated state
numerically. Since Π is a higher-order Fourier-space moment
of the fluctuation spectrum than 𝑄, it is more sensitive to the
spectrum at high 𝑘, where hyperviscous effects matter. These
effects become more important as 𝛾𝐸 increases and the iner-
tial range shortens (see also figure 12 in appendix A). As fig-
ure 11(a) shows, the simulations with lower hyperviscosity
(Sim2) have a weaker dependence of Π on 𝛾𝐸 in the strong-
shear regime, consistent with the hypothesis that the hypervis-
cous cutoff is responsible for the discrepancy with the theoret-
ical prediction (59). Figure 11(b) shows that the numerically
measured Prandtl number is weakly dependent on 𝛾𝐸 , varying
only by about a factor of two over a range for 𝛾𝐸 of nearly three
orders of magnitude, before decreasing at large 𝛾𝐸 where hy-
perviscous effects become important.

The nonmonotonic weak-shear dependence (58), which has
a local maximum at 𝛾𝐸 = 𝛾c, implies that, for the same value
of Π, two distinct values of 𝛾𝐸 , and so of 𝑄, are possible. This
suggests that sheared anisotropic turbulence may be prone to
transport bifurcations similar to those discussed by Highcock
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FIG. 11. (a) Radial flux of poloidal momentum in the fluid ETG
model (53) as a function of 𝛾𝐸 from simulation sets Sim1 and Sim2
(see table I). The black dashed line is the best-fit line of the form
(58) to the data up to 𝛾𝐸∕𝜔⟂ = 0.04 (denoted by the vertical dotted
line), where the system transitions from the weak- to the strong-shear
regime (see also figure 4). (b) Prandtl number, defined as (63) for the
same simulations as in panel (a).

et al. [9, 45] and Parra et al. [77]. Of course, our oversimplified
model of electron-scale turbulence cannot be applied directly
to any experimental studies. However, our theory suggests that
if experimentally relevant turbulence is dominated by stream-
ers, transport bifurcations might exist.

VI. SUMMARY AND DISCUSSION

Starting from the standard picture of turbulent saturation via
a local energy cascade (§III A), we have developed a theory for
the effect of mean perpendicular flow shear on temperature-
gradient-driven turbulence in fusion plasmas. As argued in
§III B, it is meaningful to distinguish two different regimes de-
pending on the ratio of the shearing rate 𝛾𝐸 to the rate 𝛾o(0) of
energy injection in the corresponding system with zero flow
shear.

In the weak-shear regime, defined by 𝛾𝐸 < 𝛾o(0), the
poloidal outer scale and the energy-injection rate remain ap-
proximately the same as when 𝛾𝐸 = 0, but the radial outer scale
decreases with increasing 𝛾𝐸 (29), due to the tilting of turbu-
lent eddies by the shear. The extent to which the flow shear is
able to suppress the turbulent transport in this regime is linked
to the aspect ratio of the outer-scale fluctuations at zero flow
shear, o(0) = 𝑘o

𝑥(0)∕𝑘
o
𝑦(0). We find that turbulence with

o(0) ∼ 1 is largely unaffected by flow shear unless the shear
is comparable to, or larger than, 𝛾o(0). In contrast, heat trans-
port in streamer-dominated turbulence witho(0) ≪ 1, which
is often encountered in fusion-relevant contexts, is shown to
be strongly suppressed by flow shear even at 𝛾𝐸 ≪ 𝛾o(0) as
long as 𝛾𝐸 ≳ 𝛾c, where the critical shearing rate 𝛾c (30) is
smaller than 𝛾o(0) by a factor of o(0). This reflects the intu-
itive notion that radially elongated fluctuations should be more
susceptible to sheared poloidal flows.

At 𝛾𝐸 > 𝛾o(0), the system is in the strong-shear regime,
where the outer scale is determined by the balance between the
shearing, energy-injection, and nonlinear mixing rates (36),
and the outer-scale perpendicular wavenumbers grows propor-
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tionally to 𝛾𝐸 . Turbulence in the strong-shear regime is found
always to have 𝑘o

𝑥 ∼ 𝑘o
𝑦, even if it was dominated by streamers

at 𝛾𝐸 = 0. This is due to the shear-induced tilting of the tur-
bulent fluctuations, which forces them to have o(𝛾𝐸) ∼ 1 in
this regime.

Our theoretical predictions for the dependence of the ra-
dial turbulent heat flux on the rate of perpendicular flow shear,
(31) and (38), are confirmed to hold over a range of four or-
ders of magnitude for the flow shear in idealized fluid ETG
simulations (§IV A). Additionally, GK flux-tube simulations
of ITG turbulence have demonstrated that our theory applies
to more realistic models of plasma turbulence as well (§IV B).
These two models are paradigmatic cases of turbulence with
o(0) ≪ 1 and o(0) ∼ 1, respectively.

In addition to the heat-flux scalings, in §V, we utilize our
theory to predict the dependence of momentum flux on flow
shear in the fluid ETG simulations. While not directly appli-
cable to more realistic numerical simulations due to the re-
striction of purely perpendicular flow shear, our results sug-
gest that streamer-dominated turbulent transport might exhibit
transport bifurcations.

There exists a body of work on the suppression of turbu-
lence by flow shear that is based on “decorrelation theories”
[78–82] stemming from Dupree [83] or the equivalent deriva-
tion by Zhang and Mahajan [81]. There are some parallels
that can be drawn between these theories and our approach:
e.g., the definition of the normalized flow shear 𝑊 by Zhang
and Mahajan [80] and Hatch et al. [82] includes the crucial
influence of the fluctuation aspect ratio and can be mapped
to 𝛾𝐸∕o(𝛾𝐸)𝛾o(0) in our notation. However, the derivation
of our theory, as presented in §III B, is not related to these
decorrelation theories and produces different scalings for the
dependence of the heat flux on 𝛾𝐸 . For example, the functional
dependence (31), borne out by the numerical results presented
in §IV A, is not reproduced by these theories. While the decor-
relation theory by Zhang and Mahajan [80] has been claimed
to be applicable to some GK simulations [82], we are (at this
stage) unable to draw any conclusions about the more general
applicability either of decorrelation theories or of the theory
presented in §III B.

One possible application of the theory of sheared streamer-
dominated turbulence described in §III B 1 is in the description
of multiscale interactions in magnetized-plasma turbulence.
Gyrokinetic theory and numerical analysis point to the exis-
tence of linear instabilities and turbulent fluctuations at two
disparate perpendicular scales, viz., the gyroradii of the main
ion species 𝜌𝑖 and of the electrons 𝜌𝑒, often referred to as the
“ion” and “electron” (perpendicular) scales, respectively. By
virtue of the difference in the ion and electron masses, these
two scales are well separated, viz., 𝜌𝑒∕𝜌𝑖 ∼

√
𝑚𝑒∕𝑚𝑖 ≪ 1.

Furthermore, the GK ordering implies that the growth rate of
electron-scale instabilities satisfies 𝛾𝑒 ∼ 𝑣th𝑒∕𝐿, while that of
the ion-scale instabilities is 𝛾𝑖 ∼ 𝑣th𝑖∕𝐿, where 𝐿 is some ap-
propriate measure of the size of the device. Therefore, the fluc-
tuations at these two spatial scales also occur on well-separated
time scales: 𝛾𝑖∕𝛾𝑒 ∼

√
𝑚𝑖∕𝑚𝑒 ≪ 1. Nevertheless, numer-

ically expensive GK simulations with enough resolution to
span both ion and electron scales have shown that ion-scale tur-

bulence can suppress electron-scale fluctuations [84–87], and
experimental results in support of this hypothesis have been
reported [88].

One possible mechanism for this suppression is that the tur-
bulent ion-scale 𝑬 × 𝑩 flows shear away the electron-scale
perturbations. However, if we assume that the electron-scale
fluctuations satisfy 𝑒 ∼ 1, this could not happen: the time
scale associated with the ion-scale 𝑬 ×𝑩 shear is 𝛾𝑖, while the
growth rate of the electron-scale instabilities is 𝛾𝑒 ≫ 𝛾𝑖, so, by
the quench rule, 𝛾𝑖 is too small to suppress the electron-scale
turbulence.11

The theory of weakly sheared turbulence proposed in
§III B 1 offers a possible alternative explanation. Simulations
of electron-scale turbulence indicate that turbulence at those
scales is dominated by radially elongated streamers, and, ac-
cording to our theory, the ion-scale𝑬×𝑩 shear will be relevant
for shearing these streamers if they have 𝑒 ≪ 1. In partic-
ular, if 𝑘𝑦,𝑒𝜌𝑒 ∼ 1 but 𝑘𝑥,𝑒𝜌𝑖 ∼ 1, i.e., if the ETG streamers
have a radial size comparable to the scale of ion fluctuations,
then the critical shear rate 𝛾c,𝑒 for ETG turbulence (30) would
be of the order of the ion-scale fluctuating 𝑬 × 𝑩 shear. Such
an ordering would put the ion-scale shearing rate in the weak-
shear regime for the ETG streamers, where (31) holds, with 𝛾𝐸now representing the value of the flow shear that electron-scale
fluctuations experience from the ion-scale ones. Therefore, the
influence of this flow shear would be nonnegligible, despite
the naïve argument that might lead one to presume otherwise.
Numerical experiments have indeed shown that the inclusion
of ion-scale zonal flows (flux-surface-constant, poloidal 𝑬×𝑩
shear flows) in ETG simulations can drastically reduce the lev-
els of electron-scale turbulence and transport, even though the
ion-scale zonal-flow shear is much smaller than the growth
rate of electron-scale instabilities [85]. Whether this mech-
anism for ITG suppression of electron-scale fluctuations is in-
deed realized in multiscale plasma turbulence appears to be a
promising subject for future work.
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Appendix A: Isotropization of streamer-dominated turbulence
in the inertial range

Here we develop the theory of the transition range between
a streamer-dominated outer scale with o ≪ 1 and an inertial
range with  ∼ 1, in the weak-shear regime, as promised in
§III B 1. To be more specific, the transition range is a poloidal-
scale range 𝑘o

𝑦(𝛾𝐸) ≲ 𝑘𝑦 ≲ 𝑘T
𝑦 , wherein the fluctuations’ as-

pect ratio increases from (𝑘o
𝑦) ≪ 1 at the outer scale to

(𝑘T
𝑦 ) ∼ 1 at the end of the transition range, located at a new

scale 𝑘𝑦 ∼ 𝑘T
𝑦 . Note that, by definition, free-energy injection

by the linear instability is negligible at all scales below the
outer scale.

First, let us show that radial wavenumbers below the outer
scale cannot be determined by the tilting of the eddies by the
flow shear, i.e., that 𝑘𝑥 must be determined by nonlinear ef-
fects (with a boundary condition 𝑘𝑥 = 𝑘o

𝑥 at the outer scale).
Consider the simpler case ofo(0) ≪ 1 turbulence in the pres-
ence of a flow shear of intermediate strength 𝛾c ≪ 𝛾𝐸 ≪ 𝛾o(0).
In this case, the radial wavenumber at the outer scale is given
by (28):

𝑘o
𝑥(𝛾𝐸) ∼ 𝑘o

𝑦(0)𝜏
o
nl(0)𝛾𝐸 . (A1)

Now suppose that (A1) holds beyond the outer scale, viz., that
𝑘𝑥 ∼ 𝑘𝑦𝜏nl𝛾𝐸 (A2)

for 𝑘𝑦 > 𝑘o
𝑦. Combining (A2) with the definition of the non-

linear time (12) and assuming that the free-energy flux (15)
is constant below the outer scale, we find that, for the scales
where (A2) holds,

𝜏−1nl ∝ 𝛾2∕5𝐸 𝑘4∕5𝑦 ∝ 𝑘4∕5𝑦 . (A3)
However, beyond the outer scale, the nonlinear mixing rate
must increase faster with 𝑘𝑦 than the injection rate 𝛾𝒌 ∝ 𝑘𝑦,
which (A3) does not. Therefore, the assumption that (A2)
holds beyond the outer scale contradicts the very definition of
the outer scale that we adopted in §III A.

Instead, let us suppose that, due to nonlinear mixing beyond
the outer scale, the radial wavenumbers corresponding to the
poloidal wavenumbers in the range 𝑘o

𝑦(𝛾𝐸) ≲ 𝑘𝑦 ≲ 𝑘T
𝑦 satisfy

𝑘𝑥
𝑘o
𝑥
∼

(
𝑘𝑦
𝑘o
𝑦

)1+𝜆

. (A4)
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FIG. 12. Panels (a)–(d) shows the spectra (A9)–(A12), as indicated
in the legend at the bottom, for the four simulations shown in fig-
ure 5(a)–(d). All panels show an inertial-range spectrum that agrees
with the predicted ∝ 𝑘−7∕3

⟂ scaling, shown as a black dashed line. In
panel (a), where 𝛾𝐸 = 0 and the transition range is widest, we also
show the predicted transition-range scalings in the case 𝜆 = 2 of the
spectrum with 𝑘𝑥 and 𝑘𝑦 in blue and red dashed lines, respectively,
with the exponents labeled accordingly.

The parameter 𝜆 is a measure of the tendency of the nonlinear
mixing to “isotropize” (or “anisotropize” if 𝜆 < 0) the turbu-
lent fluctuations with increasing 𝑘𝑦.12 This can also be ex-
pressed as

(𝑘𝑦)
o ∼

(
𝑘𝑦
𝑘o
𝑦

)𝜆

. (A5)

If 𝜆 > 0, the transition region ends at (𝑘T
𝑦 ) ∼ 1, so (A5)

gives us

𝑘T
𝑦 ∼

𝑘o
𝑦

(o)1∕𝜆
≫ 𝑘o

𝑦. (A6)

12 Notice that, as discussed in §III B 1, one possibility is that the outer-scale
aspect ratio o(0) is inherited by the inertial-range cascade in the sense that
 in the inertial range is independent of 𝑘𝑦, i.e., it is scale invariant. In the
analysis above, this corresponds to 𝜆 = 0. In this case, the transition range
is, in fact, the entire inertial range,  is scale-invariant by (A5), and the
spectra (A7) and (A8) agree with (16).

https://www.csd3.cam.ac.uk
https://www.dirac.ac.uk
mailto:PublicationsManager@ukaea.uk
mailto:PublicationsManager@ukaea.uk
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Inside the transition region, the expression for the nonlinear
time (13) and the assumption of constant free-energy flux (15)
jointly imply

𝜑
𝜑o ∼

(
𝑘𝑦
𝑘o
𝑦

)−2∕3 − 𝜆∕3

. (A7)

Therefore, the 𝑘𝑦 spectrum in the transition range must be
steeper than the inertial-range spectrum (16). Using (A4), we
can recast (A7) in terms of the radial wavenumbers:

𝜑
𝜑o ∼

(
𝑘𝑥
𝑘o
𝑥

)−2∕3 + 𝜆∕3(1+𝜆)
, (A8)

which is shallower than the inertial-range spectrum (16).
We do not know how to determine 𝜆 theoretically but we can

confirm numerically that the above arguments are sound and
that 𝜆 > 0. In figure 12, we show the spectra of 𝜑 and 𝛿𝑇𝑒∕𝑇0𝑒from the ETG fluid model discussed in §IV A for the four Sim1
simulations with varying flow shear presented in figure 5. As
a proxy for the dependence of 𝜑 and 𝛿𝑇𝑒∕𝑇0𝑒 on 𝑘𝑥 and 𝑘𝑦, we
are using the following averages:

⟨|𝜑|2⟩𝑥(𝑘𝑦) ≡
∑
𝑘𝑥,𝑘∥

|𝜑𝒌|2, (A9)

⟨|𝜑|2⟩𝑦(𝑘𝑥) ≡
∑
𝑘𝑦,𝑘∥

|𝜑𝒌|2, (A10)
⟨||||

𝛿𝑇𝑒
𝑇0𝑒

||||
2
⟩

𝑥

(𝑘𝑦) ≡
∑
𝑘𝑥,𝑘∥

|||||
𝛿𝑇𝑒,𝒌
𝑇0𝑒

|||||

2

, (A11)
⟨||||

𝛿𝑇𝑒
𝑇0𝑒

||||
2
⟩

𝑦

(𝑘𝑥) ≡
∑
𝑘𝑦,𝑘∥

|||||
𝛿𝑇𝑒,𝒌
𝑇0𝑒

|||||

2

. (A12)

Note that (A9)–(A12) differ from (14) by a factor of 𝑘𝑥 or 𝑘𝑦.
Thus, the expected scalings that follow from (A7) and (A8) are

⟨|𝜑|2⟩𝑥 ∼

⟨||||
𝛿𝑇𝑒
𝑇0𝑒

||||
2
⟩

𝑥

∝ 𝑘−7∕3 − 2𝜆∕3
𝑦 , (A13)

⟨|𝜑|2⟩𝑦 ∼
⟨||||

𝛿𝑇𝑒
𝑇0𝑒

||||
2
⟩

𝑦

∝ 𝑘−7∕3 + 2𝜆∕3(1+𝜆)
𝑥 . (A14)

Figure 12(a) shows that the fluid-ETG spectra obtained from
solving (39)–(41) with 𝛾𝐸 = 0 are roughly consistent with
𝜆 = 2. Increasing the value of the flow shear reduces the as-
pect ratio, as expected, and flattens the 𝑘𝑦 spectrum to approx-
imately match the 𝑘𝑥 one. Unfortunately, because the aspect
ratio o(0) cannot be varied in the fluid model, we are unable
to vary the size of the transition range and its small span in
wavenumbers limits our ability to measure 𝜆 numerically and
to verify the transition-range theory laid out above with any
greater accuracy. Nevertheless, our numerical results are con-
sistent with it.

Appendix B: Numerical implementation of the fluid model

The numerical results presented in §IV A are obtained by
solving (39)–(41) in the shearing frame

𝑡′ = 𝑡, 𝑥′ = 𝑥, 𝑦′ = 𝑦 − 𝑥𝛾𝐸 𝑡, 𝑧
′ = 𝑧, (B1)

instead of the laboratory frame (𝑥, 𝑦, 𝑧). By using a pseudo-
spectral algorithm and solving for the evolution of Fourier
modes in (𝑥′, 𝑦′, 𝑧′), we impose triply periodic boundary con-
ditions in the shearing frame. The linear terms in the equations
are integrated using an implicit Crank-Nicolson method, while
the nonlinear ones are integrated explicitly using the Adams-
Bashforth three-step method. This code is a modification of
that developed and used by Ivanov et al. [22, 23] and Adkins
et al. [30].

Our approach for dealing with the time-dependent ra-
dial derivatives arising from (B1) differs from the usual
spectral remapping scheme that was first proposed by
Hammett et al. [92] for the GK code GS2 and that forms the
basis of the implementation of equilibrium flow shear in many
modern gyrokinetics codes, e.g., stella [93, 94], GKW [95],
and GENE [96], the latter being used for the numerical simu-
lations presented in §IV B. While this remapping algorithm is
fairly robust, the approximations that it makes can, in some
cases, lead to unphysical results [97]. Even though steps
can be taken to improve the algorithm [97, 98], the simplic-
ity of (39)–(41) allows us to take a different, both simpler
and more robust, approach. We consider a fixed (𝑘′𝑥, 𝑘

′
𝑦)grid of shearing-frame wavenumbers, which corresponds to

continuously drifting laboratory-frame radial wavenumbers
𝑘𝑥 = 𝑘′𝑥 − 𝛾𝐸𝑘′𝑦𝑡 that are periodic (in time) on the interval
−𝐾𝑥 ≤ 𝑘𝑥 ≤ 𝐾𝑥, where 𝐾𝑥 ≡ 𝜋𝑁𝑥∕𝐿𝑥, 𝐿𝑥 is the radial box
size, and 𝑁𝑥 is the “padded” number of radial wavenumbers.
By ensuring that 𝑁𝑥 ≥ ⌊3𝑛𝑥∕2⌋, where 𝑛𝑥 is the number of
resolved radial wavenumbers, we eliminate aliasing issues in
the pseudo-spectral method by zeroing out all modes with
|𝑘𝑥| > 𝑘𝑥,max ≡ 𝜋𝑛𝑥∕𝐿𝑥 — this is the standard “2∕3 rule”
[99]. For example, the simulations in the Sim2 set (see table I)
have 𝑛𝑥 = 683 and 𝑁𝑥 = 1024.

This scheme leads to a minor complication that is not en-
countered if one uses the remapping algorithm instead. To
understand this, consider that, even in the presence of flow
shear, the fluctuation amplitudes peak near 𝑘𝑥 = 0 and are
suppressed at large |𝑘𝑥| because the dissipation terms (whether
physical or numerical) are determined by the laboratory-frame
wavenumber 𝑘𝑥, not by the shearing-frame one 𝑘′𝑥. Thus, the
appropriate choice for a Galerkin truncation, required by any
pseudo-spectral algorithm, should be based on the laboratory-
frame wavenumbers. This laboratory-frame truncation, along
with the necessary zero padding for dealiasing, is illustrated
in figure 13(a) in the case of zero flow shear. However, for
𝛾𝐸 ≠ 0, we wish to solve the equations in terms of 𝑘′𝑥 rather
than 𝑘𝑥. To do this, we assign a laboratory-frame 𝑘𝑥 to each
𝑘′𝑥 using

𝑘𝑥 = 𝑘′𝑥 − 𝛾𝐸𝑘
′
𝑦𝑡 +

2𝜋𝑁𝑥𝑚
𝐿𝑥

, (B2)
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𝑘′𝑥

FIG. 13. (a) Typical fluctuation amplitudes of sheared turbulence
with 𝑘𝑦 = 𝑞 for some fixed 𝑞 (note that the spectrum does not
peak at 𝑘𝑥 = 0 if 𝛾𝐸 ≠ 0) as a function of the laboratory-frame ra-
dial wavenumber 𝑘𝑥. The shaded regions indicate the zero padding
needed for dealiasing. The vertical solid and vertical dashed lines de-
note ±𝐾𝑥 and ±𝑘𝑥,max, respectively. Two radial wavenumbers, 𝑘1 and
𝑘2, are shown, together with 𝑘3 = 𝑘1+𝑘2 into which they couple non-
linearly. (b) The same fluctuation amplitudes as in (a), but now trans-
formed to the shearing frame using (B2), while keeping the padded re-
gion fixed to the outer 1∕3 of the wavenumbers in the shearing frame.
(c) Same as (b) but with 𝑘𝑥 made periodic on [−𝑘𝑥,max, 𝑘𝑥,max] and
computed via (B3) instead. The fluctuation amplitudes with 𝑘𝑦 = 2𝑞
are shown in red. Here, 𝑘1 and 𝑘2 are the same two modes as in panel
(a) that couple nonlinearly into 𝑘3 (shown in red as the correspond-
ing poloidal wavenumber is 𝑘𝑦 = 2𝑞). However, in this version of
dealiasing, their sum falls into the dealiased region. (d) The correct
way to represent the fluctuations in the shearing frame using (B2) and
zeroing out modes with |𝑘𝑥| > 𝑘𝑥,max. We are showing the same two
wavenumbers 𝑘1 and 𝑘2 as before. They couple nonlinearly to modes
with (𝑘𝑥, 𝑘𝑦) = (𝑘3, 2𝑞), whose fluctuation amplitudes and dealiased
regions are shown in red. In (c) and (d), to illustrate the correspon-
dence between modes with 𝑘𝑦 = 𝑞 and 𝑘𝑦 = 2𝑞, we have used the
exact same function of 𝑘𝑥 to represent fluctuation amplitudes at both
poloidal wavenumbers.

where 𝑚 is an integer chosen so that −𝐾𝑥 ≤ 𝑘𝑥 ≤ 𝐾𝑥. Fig-
ure 13(b) shows that using (B2) naïvely can (depending on how
much 𝑘𝑥 has drifted) bring physically meaningful small-|𝑘𝑥|modes into the region where the amplitudes are zeroed out to
avoid aliasing. Effectively, this naïve method offsets the inter-
val of resolved laboratory-frame modes so that, for any given
𝑘𝑦 ≠ 0, it is no longer centered around 𝑘𝑥 = 0. Therefore, this
approach does not work. One alternative is to consider instead
𝑘𝑥 that drifts periodically as

𝑘𝑥 = 𝑘′𝑥 − 𝛾𝐸𝑘
′
𝑦𝑡 +

2𝜋𝑛𝑥𝑚
𝐿𝑥

, (B3)

where now 𝑚 is chosen so that −𝑘𝑥,max ≤ 𝑘𝑥 ≤ 𝑘𝑥,max, i.e., the
radial wavenumbers drift periodically only within the physi-

cally resolved interval [−𝑘𝑥,max, 𝑘𝑥,max], instead of the larger
“padded” interval [−𝐾𝑥, 𝐾𝑥]. However, this method is not
suitable for calculating the nonlinear terms: as figure 13(c)
shows, it removes physically meaningful nonlinear couplings.
Similarly, one can also show that it also introduces aliasing-
like couplings between physically unrelated modes (e.g., one
can choose modes with 𝑘1, 𝑘2 > 0 that are nonlinearly coupled
to 𝑘1 + 𝑘2 − 2𝜋𝑛𝑥∕𝐿𝑥 < 0). The correct approach, which em-
ploys (B2) and dealiasing based on |𝑘𝑥|, is demonstrated in
figure 13(d). This requires keeping track of the laboratory-
frame 𝑘𝑥 and zeroing out modes based on it. Fortunately, this
is straightforward to do, and the additional overhead of having
to compute the inverse of the linear response, required for the
implicit Crank-Nicolson method, is negligible for the simple
fluid model.

Note that continuously drifting wavenumbers have one ex-
tra advantage over the remapping algorithm. A mode that has
been sheared so much that it reemerges at the other side of the
resolved wavenumber interval has necessarily passed through
the dealiased region. Thus, its amplitude is zero and so cannot
introduce any spurious fluctuations.

This algorithm is effectively the same as that used by Lith-
wick [100] (and attributed by him to Gordon Ogilvie) for sim-
ulations of hydrodynamic sheared flows.

Appendix C: Momentum flux in the fluid ETG model

We want to compute the radial flux of poloidal momentum,

Π ≡
∑
𝑠
𝑚𝑠 ∫

d3𝒓
𝑉 ∫ d3𝒘 (𝒗𝐸 ⋅ 𝛁𝑥)(𝒘 ⋅ 𝛁𝑦)𝛿𝑓𝑠, (C1)

in the fluid ETG model used in §IV A and §V. The details of
the derivation of the model can be found in Appendix B of
Adkins et al. [30]. Here we require only a few facts about the
limit in which this derivation was carried out.

First, the ion gyroradius is large, viz., 𝑘⟂𝜌𝑖 ≫ 1, which
allows us to neglect ℎ𝑖 in the ion distribution function 𝛿𝑓𝑖 given
by (2), so

𝛿𝑓𝑖 ≈ −𝑍𝑒𝜙
𝑇0𝑖

𝑓0𝑖. (C2)

This implies that the ion contribution to (C1) vanishes:

∫
d3𝒓
𝑉 ∫ d3𝒘 (𝒗𝐸 ⋅ 𝛁𝑥)(𝒘 ⋅ 𝛁𝑦)𝛿𝑓𝑖 ∝ ∫

d3𝒓
𝑉

𝜕𝜙
𝜕𝑦

𝜙 = 0.
(C3)

Secondly, the electron distribution function is expressed as
𝛿𝑓𝑒 = 𝜑𝑓0𝑒 + ℎ𝑒, (C4)

where 𝜑 = 𝑒𝜙∕𝑇0𝑒 and ℎ𝑒 is gyroangle independent at fixed
𝑹𝑒 = 𝒓 − 𝒛̂ ×𝒘∕Ω𝑒. Since the radial 𝑬 × 𝑩 velocity is

𝒗𝐸 ⋅ 𝛁𝑥 = −1
2
𝜌𝑒𝑣th𝑒

𝜕𝜑
𝜕𝑦

, (C5)
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(C1) becomes

Π = −1
2
𝜌𝑒𝑚𝑒𝑣th𝑒 ∫

d3𝒓
𝑉 ∫ d3𝒘 𝜕𝜑

𝜕𝑦
(𝒘 ⋅ 𝛁𝑦)ℎ𝑒, (C6)

where the contribution from the 𝜑𝑓0𝑒 part of (C4) has van-
ished. Evaluating (C6) is a standard GK calculation, which
we outline now.

Noting that the perpendicular part of 𝒘 is
𝒘⟂ = 𝑤⟂(cos 𝜃𝒙̂ − sin 𝜃𝒚̂), (C7)

where 𝜃 is the gyroangle, and that

𝒛̂ ×𝒘⟂ = −
𝜕𝒘⟂
𝜕𝜃

, (C8)

we find

∫ d3𝒘 𝒘⟂ℎ𝑒=∫ d3𝒘 𝒛̂ ×
𝜕𝒘⟂
𝜕𝜃

ℎ𝑒=−∫ d3𝒘 𝒛̂ ×𝒘⟂
𝜕ℎ𝑒
𝜕𝜃

.

(C9)
As ℎ𝑒 is independent of 𝜃 at fixed 𝑹𝑒, the last partial derivative
in (C9) (which is evaluated at fixed 𝒓) becomes

𝜕ℎ𝑒
𝜕𝜃

= 𝜕
𝜕𝜃

(
− 𝒛̂ ×𝒘

Ω𝑒

)
⋅
𝜕ℎ𝑒
𝜕𝑹𝑒

= −
𝒘⟂
Ω𝑒

⋅
𝜕ℎ𝑒
𝜕𝑹𝑒

. (C10)

Substituting (C10) into (C9), dotting by 𝛁𝑦, and making use
of

1
2𝜋 ∫

2𝜋

0
d𝜃 𝑤𝑖𝑤𝑗 =

𝑤2
⟂
2

(𝛿𝑖𝑗 − 𝑧̂𝑖𝑧̂𝑗) +𝑤2
∥𝑧̂𝑖𝑧̂𝑗 , (C11)

we find

∫ d3𝒘 (𝒘 ⋅ 𝛁𝑦)ℎ𝑒 = ∫ d3𝒘 𝑤2
⟂

2Ω𝑒

𝜕ℎ𝑒
𝜕𝑥

. (C12)

Then, using 𝑣th𝑒∕Ω𝑒 = −𝜌𝑒 and (C12), (C6) reduces to

Π =
𝜌2𝑒𝑚𝑒

4 ∫
d3𝒓
𝑉 ∫ d3𝒘 𝜕𝜑

𝜕𝑦
𝑤2

⟂
𝜕ℎ𝑒
𝜕𝑥

. (C13)

Finally, to lowest order in 𝑘⟂𝜌𝑒 ≪ 1, ℎ𝑒 is given by [30]

ℎ𝑒 =

[
𝛿𝑛𝑒
𝑛0𝑒

− 𝜑 +
𝛿𝑇𝑒
𝑇0𝑒

(
𝑤2

𝑣2th𝑒
− 3

2

)]
𝑓0𝑒, (C14)

where the density perturbation is given by (43). Therefore,
(C13) becomes

Π = −
𝑛0𝑒𝑇0𝑒𝜌2𝑒

2 ∫
d3𝒓
𝑉

𝜕𝜑
𝜕𝑦

𝜕
𝜕𝑥

[(
1 +

𝑍𝑇0𝑒
𝑇0𝑖

)
𝜑 −

𝛿𝑇𝑒
𝑇0𝑒

]

(C15)
to lowest order in 𝑘⟂𝜌𝑒 ≪ 1, which is exactly (53).
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