
EXTENDED GALERKIN NEURAL NETWORK APPROXIMATION
OF SINGULAR VARIATIONAL PROBLEMS WITH ERROR

CONTROL

MARK AINSWORTH∗ AND JUSTIN DONG†

Abstract. We present extended Galerkin neural networks (xGNN), a variational framework
for approximating general boundary value problems (BVPs) with error control. The main contribu-
tions of this work are (1) a rigorous theory guiding the construction of new weighted least squares
variational formulations suitable for use in neural network approximation of general BVPs (2) an
“extended” feedforward network architecture which incorporates and is even capable of learning sin-
gular solution structures, thus greatly improving approximability of singular solutions. Numerical
results are presented for several problems including steady Stokes flow around re-entrant corners and
in convex corners with Moffatt eddies in order to demonstrate efficacy of the method.

Key words. partial differential equations, a posteriori error estimate, neural networks

AMS subject classifications. 35A15, 65N38, 68T07

1 Introduction Neural network methods for approximating the solutions of
partial differential equations (PDEs) have seen a surge of interest in recent years
[8, 13, 18, 24] including extensions to inverse problems [17, 18], learning solution op-
erators [14, 15] of PDEs, and even complementing existing numerical methods, e.g.
by learning finite difference stencils [4] and guiding adaptive mesh refinement [23].
Despite impressive results that are often reported, many current techniques have not
yet been set on a firm theoretical foundation and the prospective user may be wary
of adopting approaches where critical decisions may be made on the basis of the
numerical approximation.

In our previous work [1] we aimed to develop effective techniques for using neural
networks to approximate the solutions of PDEs which are, crucially, supported by a
rigorous theory of convergence and the provision of a computable a posteriori error
estimator for the error in the resulting approximation. The approach in [1] gives an
iterative procedure in which the networks are successively enriched until the error,
estimated using the a posteriori error estimator, meets a desired tolerance. Examples
presented in [1] showed the approach to be effective for second and fourth order self-
adjoint elliptic PDEs while the application to a singularly-perturbed elliptic system
with boundary layers was presented in [2].

One purpose of the current work is to describe an extension of the Galerkin neural
network approach in previous work [1, 2] to quite broad classes of non-self-adjoint
and/or indefinite problems of the general form{

L[u] = f in Ω

B[u] = g on ∂Ω,
(1.1)

where L and B are linear differential operators. The only assumption needed is the
the rather mild condition that the problem is well-posed in the sense that it admits
a unique solution that depends continuously on the data using appropriate norms.

∗Division of Applied Mathematics, Brown University (mark ainsworth@brown.edu).
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

(dong9@llnl.gov).

1

ar
X

iv
:2

40
5.

00
81

5v
1

 [
m

at
h.

N
A

]
 1

 M
ay

 2
02

4

mailto:mark\protect _ainsworth@brown.edu
mailto:dong9@llnl.gov

2 M. AINSWORTH AND J. DONG

Under this condition, we show that our previous results extend to the more general
scenario given in (1.1) including the provision of a computable a posteriori error
estimator based on using least square formulation. While least squares formulations
have featured in previous work using neural networks to approximate PDEs in a
somewhat ad hoc fashion – e.g. mean-squared error (MSE) or L2 norm as a loss
metric – we argue that the least squares formulation is dictated by the properties of
the underlying continuous problem (1.1) rather than the whim of the user if one wishes
to obtain a rigorous convergence theory. Ad hoc choices of formulation correspond
to a BVP which may not be uniquely solvable or for which there is no continuous
dependence on the data. We shall demonstrate in this work that the use of such
formulations can result in nonphysical solutions (see Examples 3.2 and 3.5)

The universal approximation property of neural networks is often cited as the
driving force behind adopting them for traditional scientific computing tasks. This
means that neural network based approaches are applicable to broad classes of prob-
lems in which solutions may exhibit widely varying behaviour. Nevertheless, in many
common applications such as computational fluid dynamics and solid mechanics, solu-
tions of (1.1) exhibit characteristic features such as boundary layers and singularities
even when the data is smooth. Such features generally result in a degradation in the
rate of convergence of traditional methods, such as standard finite element methods.
In principle, neural network approaches are capable of approximating such features
at least as well as adaptive finite element methods [20] provided that the network is
trained appropriately. In practice, the training of networks is often a bottleneck in
the approach with the net result that the overall rate of convergence that is achieved
falls short of what is theoretically possible.

The second purpose of the current work is to show how knowledge of the char-
acteristic features of the solution to a given PDE can be naturally incorporated into
our approach to improve rate of convergence. Some traditional methods such as ex-
tended finite element methods [22] and generalized finite element methods [21] utilize
prior knowledge of these features. More recent work has explored the use of tailored
functions to supplement deep neural networks in specific examples, such as [3] which
utilizes boundary layer functions in conjunction with feedforward networks to learn
simple boundary layers in a singularly-perturbed problem. In the current work, we
demonstrate how extended Galerkin neural networks can be used to both incorporate
and learn singular solution features. Unifying theory is provided which demonstrates
that the size of the networks needed to resolve a particular solution with extended
Galerkin neural networks depends only on the smooth, non-characteristic, part of the
solution which is more easily approximated using standard feedforward architectures,
thus resulting in greatly improved approximation rates. Numerical examples show
that the proposed method can be highly effective for problems exhibiting singularities
and features such as eddies.

The rest of this work is structured as follows. In Section 2.1, we present the
extended Galerkin neural network framework, including presentation and analysis of
a least squares variational formulation for a very general class of PDE as well as the
enriched neural network architecture of xGNN. We describe in Sections 3-4 how the
preceding theory can be applied to several interesting applications, including Stokes
flow in polygonal domains. Conclusions follow in Section 5.

2 Extended Galerkin neural networks (xGNN) We first give a brief sum-
mary of the basic Galerkin neural network framework for symmetric and positive-
definite problems in Section 2.1 following [1]. We then demonstrate how to rigorously

EXTENDED GALERKIN NEURAL NETWORKS 3

extend this approach to non-symmetric and/or indefinite and negative-definite prob-
lems in Section 2.2 as well as enrich the neural network approximation space with
known solution structures in Section 2.3. Collectively, we refer to these advancements
as extended Galerkin neural networks (xGNN).

2.1 The basic Galerkin neural network framework The basic Galerkin
neural network framework [1] considers the prototypical variational problem

u ∈ X : a(u, v) = F (v) ∀v ∈ X,(2.1)

where a is assumed to be a symmetric positive-definite, continuous, and coercive
bilinear form with respect to (X, ||·||X) which defines an energy norm |||·||| := a(·, ·)1/2,
and F is assumed to be continuous. Given an initial approximation u0 ∈ X to (2.1),
the goal of the Galerkin neural network is to iteratively construct a finite-dimensional
subspace Sj := span{u0, φNN

1 , . . . , φNN
j } such that the basis function φNN

i satisfies

φNN
i = argmax

v∈V σ,C

n(i),Li
∩B

⟨r(ui−1), v⟩,(2.2)

where

⟨r(ui−1), v⟩ = F (v)− a(ui−1, v)

is the weak residual in the current approximation ui−1, B is the closed unit ball in
X, and V σ

n,L, n
(i) ∈ NL is the set

V σ
n,L :=

{
v ∈ X : v(x) = (σ ◦TL ◦ . . . σ ◦T1(x)) · c, Ti(t) := t ·W(i) + b(i)

W(i) ∈ Rni−1×ni , b(i) ∈ R1×ni , c ∈ RnL×1, x ∈ R1×d
}
,(2.3)

with the convention that the data x has dimension R1×d and n0 = d. The set V σ
n,L

describes the realizations of a multilayer feedforward neural network with depth L,
widths n, and activation function σ. The set V σ,C

n(i),Li
denotes functions in V σ

n(i),Li
with

bounded parameters:

V σ,C
n,L :=

{
v ∈ V σ

n,L :
L∑

i=1

||W(i)||∞ + ||b(i)||∞ + ||c||∞ ⩽ C

}
.(2.4)

The notion of bounded network parameters is a technical necessity to ensure existence
of φNN

i . However, in practice, we observe as in [1] that the parameters corresponding
to φNN

i are uniformly bounded and thus, no clipping of the parameters is necessary
to ensure boundedness. Once the basis function φNN

i is known, one generates a new,
Galerkin approximation ui using the finite-dimensional space Si as follows:

ui ∈ Si : a(u, v) = F (v) ∀v ∈ Si.(2.5)

One can show [1] that the basis function φNN
i approximates the normalized error

φi := (u − ui−1)/|||u − ui−1||| in the current approximation and thus the subspaces
Sj may be viewed as augmenting the initial approximation u0 with a sequence of
increasingly finer-scale error correction terms. If the network used to approximate
φi is sufficiently rich, then the approximation ui is exponentially convergent in the

4 M. AINSWORTH AND J. DONG

number of basis functions generated, and one can also show that the objective function
⟨r(ui−1), φ

NN
i ⟩ (i.e. weak residual) is an a posteriori estimator of the energy error

|||u− ui−1|||.
One can thus generate an approximation ui such that |||u − ui−1||| ⪅ tol for a

given tolerance tol by checking whether ⟨r(ui−1), φ
NN
i ⟩ < tol after φNN

i is gener-
ated. In the affirmative case, we assume that the energy error is within the desired
tolerance and terminate the subspace generation procedure. Otherwise, we generate
another basis function until the desired tolerance is reached.

The training procedure for learning φNN
i consists of a standard gradient-based

step to update the hidden parameters W and b in conjunction with the least squares
solution of the linear system

Ac = F

Ajk = a(σ(x ·Wj + bj), σ(x ·Wk + bk))

Fj = L(σ(x ·Wj + bj))− a(ui−1, σ(x ·Wk + bk))

(2.6)

in order to update the activation coefficients c. For ease of notation, we consider only
the case when L = 1 in (2.6) while noting that the linear system for L > 1 differs
only in that σ(x ·Wj + bj) will be replaced by the corresponding more complicated
expression for the jth component of σ ◦ TL ◦ . . . σ ◦ T1(x). The notation Wj and
bj are shorthand for W[:, j] and b[1, j], respectively. The linear system in (2.6)
corresponds to the orthogonal projection of the error u − ui−1 onto the subspace
Φ := span{σ(x ·Wj + bj)}nj=1.

Altogether, given a parameter initialization (W,b, c), we update the parameters
by the rules

W←W +∇W

[
⟨r(ui−1), v⟩
|||v|||

]
(2.7)

b← b+∇b

[
⟨r(ui−1), v⟩
|||v|||

]
(2.8)

c← argmin
c∈Rn

||Ac− F||ℓ2 .(2.9)

2.2 Extension to non-self-adjoint and non-positive-definite problems
The framework described in Section 2.1 considers self-adjoint, positive definite bound-
ary value problems whose variational formulation naturally gives rise to a bilinear form
a(·, ·) that is symmetric positive-definite. Here, we extend the approach to a more
general boundary value problem with the strong form{

L[u] = f in Ω

B[u] = g on ∂Ω,
(2.10)

where L : X → V and B : X → W are linear differential operators, f ∈ V, and
g ∈ W for appropriate Hilbert spaces V,W, and X . We shall defer discussion of how
to interpret (2.10) as a variational problem until (2.12).

The operator L corresponds to the differential equation posed over the domain Ω
while B corresponds to the boundary conditions on the domain boundary ∂Ω. In order
to maintain generality, we aim to impose as few requirements on these operators as
possible beyond what is necessary for the problem (2.10) to be well-posed. A minimal
requirement is that the operators should be bounded in the sense that there exists

EXTENDED GALERKIN NEURAL NETWORKS 5

a positive constant C such that ||L[v]||V ⩽ C||v||X and ||B[v]||W ⩽ C||v||X . In
addition, we shall assume that the problem is well-posed in the sense that it admits
a unique solution u ∈ X that depends continuously on the data f and g:

||u||X ⩽ C(||f ||V + ||g||W)(2.11)

for some constant C > 0.
These assumptions are rather mild and encompass a broad range of boundary

value problems that typically arise in physical applications including problems that
are non-self-adjoint or which are not positive-definite. Examples will be given later.
In order to apply the Galerkin neural network framework described in Section 2.1, we
formulate (2.10) in the form (2.1) where the bilinear and linear forms correspond to
the following least squares formulation of (2.10):

u ∈ X : aLS(u,v) = FLS(v) ∀v ∈ X .(2.12)

where, for a given δ ⩾ 1, we define

aLS(u,v) = (L[u],L[v])V + δ(B[u],B[v])W(2.13)

and

FLS(v) = (f ,L[v])V + δ(g,B[v])W .(2.14)

Variational formulations such as (2.12) are employed in least squares finite element
methods [7] often with a reduction of the PDE to first order. In the current work, we
make no such conversion to first-order systems but note that this conversion is fully-
compatible with the proposed method. The operator aLS : X ×X → R is symmetric
positive-definite regardless of the structure of L. Moreover, if the operators L and
B satisfy the above assumptions, then the boundary value problem (2.10) can be
expressed in the variational form (2.12):

Theorem 2.1. Suppose there exist constants C1, C2 > 0 such that

||L[v]||V ⩽ C1||v||X and ||B[v]||W ⩽ C2||v||X(2.15)

for all v ∈ X , and that for all f ∈ V and g ∈ W, problem (2.10) admits a unique
solution u ∈ X that depends continuously on the data

||u||X ⩽ C3(||f ||V + ||g||W)(2.16)

for some constant C3 > 0. Then the bilinear form aLS is continuous and coercive, and
the linear form LLS is continuous in the sense that there exist constants C1, C2, C3 > 0
such that

aLS(u,v) ⩽ C1||u||X ||v||X , C2||v||2X ⩽ aLS(v,v) and FLS(v) ≤ C3||v||X

for all u,v ∈ X . Consequently, (2.12) is uniquely solvable.

Proof. Using the Cauchy-Schwarz inequality and continuity of L and B immedi-
ately shows that the bilinear form will be continuous,

aLS(u,v) ⩽ ||L[u]||V ||L[v]||V + δ||B[u]||W ||B[v]||W
⩽ (C2

1 + δC2
2)||u||X ||v||X .

6 M. AINSWORTH AND J. DONG

Fig. 1: Errors with respect to the number of basis functions for δ = 1, W = L2(∂Ω),
and the sequence of problems m = 2, 4, 8, 16.

Likewise,

FLS(v) ≤ (C1||f]||V + δC2||g||W) ||v||X .(2.17)

Similarly, from (2.16) we obtain ||v||X ⩽ C(||L[v]||V+ ||B[v]||W) forv ∈ X and deduce
that the bilinear form is coercive:

||v||2X ⩽ 2C2
3 (||L[v]||2V + ||B[v]||2W) ⩽ 2C2

3aLS(v,v).

We conclude the preceding discussion with a simple example that demonstrates
the necessity of choosing V and W so that the aLS-energy norm is norm equivalent
to || · ||X .

Example 2.2. Consider a Poisson equation with exact solution given by the har-
monic function um(r, θ) = rm sin(mθ) in the unit circle. For a fixed m ∈ N, a
straightforward computation reveals that

||um||H2(Ω) ∝ m3/2, ||um||Hs(∂Ω) ∝ ms,

and thus we have the ratio

δ||um||Hs(∂Ω)/||um||H2(Ω) ∝ δms−3/2.(2.18)

The case W = L2(∂Ω) of the boundary penalization in (2.11) corresponds to s = 0,
andm−3/2 → 0 asm→∞ which implies that the constant C2 in Theorem 2.1 becomes
vanishingly small. Indeed, the estimate (2.11) for the Poisson equation reads [11]

||u||H2(Ω) ⩽ C(||f ||L2(Ω) + ||g||H3/2(∂Ω)),

which indicates that the H2(Ω) formulation of the Poisson equation based on (2.12)
requires the choices W = H3/2(∂Ω), V = L2(Ω), and X = H2(Ω).

EXTENDED GALERKIN NEURAL NETWORKS 7

Fig. 2: Errors with respect to the number of basis functions for several choices of
penalty parameter δ = mα.

One practical problem with choosing W to be of fractional order is the difficulty
of evaluating the H3/2-norm. For the present example where the true solution has
the form rm sin(mθ), we take advantage of (2.18) and replace the H3/2-norm by a
weighted L2-norm, i.e. ||um||H3/2(∂Ω) = m3/2||um||L2(∂Ω). This is equivalent to taking

W = L2(∂Ω) and penalty parameter δ = (m3/2)2 = m3. Of course, this approach will
not be possible in general but will suffice for the current example.

We first fix δ = 1, which corresponds to the case of L2-penalization of the bound-
ary conditions, and consider the sequence of PDEs corresponding to m = 2, 4, 8, 16
in order to demonstrate the gradual loss of coercivity for this problem. Figure 1
shows the error in various metrics for the Galerkin neural network method with
formulation (2.12). For m = 2, 4 the L2 boundary penalization is sufficient since
||um||L2(∂Ω), ||um||H3/2(∂Ω) = O(1). However, for larger m we begin to observe re-
duced coercivity and the rate of convergence of the errors in all metrics.

Next, we fix m = 16 and consider the choice δ = mα for α = 0, 1, 2, 3, 4, 5 in order
to demonstrate the effect of boundary penalization in different norms. Figure 2 shows
the analogous results for this set of experiments. We observe that the error in the
energy norm ||| · ||| := aLS(·, ·)1/2 decreases monotonically regardless of the choice of
α due to the guarantee of ui being the best approximation to u from Si. For α = 0, 1
(L2(∂Ω) and approximate H1/2(∂Ω) boundary penalization, respectively), the errors
in every metric are slow to converge. It is in this regime that the loss of coercivity
is strongest. Rates improve for α = 2 (approximate H1(∂Ω) boundary penalization)
and are optimal for α = 3 (approximate H3/2(∂Ω) boundary penalization). On the
other hand, the overpenalization corresponding to α = 4, 5 (approximate H2(∂Ω) and
H5/2(∂Ω) boundary penalization, respectively) results in a loss of convergence and in
particular, the clear loss of norm equivalence between ||| · ||| and || · ||Hk(Ω), k ∈ N.

The above example illustrates the importance of using the correct norms that arise
in the well-posedness of the problem. In practice, the presence of fractional norms
presents difficulties but is possible using techniques such as those in [19]. However,
generally speaking their computation is impractical and we instead utilize the highest

8 M. AINSWORTH AND J. DONG

Fig. 3: Extended neural network architecture for extended Galerkin neural networks.

possible integer Sobolev norm whose order is close to the order of the desired Sobolev
norm. For instance, the H1(∂Ω) penalization in Figure 2 still performs quite well
when compared to the optimal H3/2(∂Ω) penalization.

2.3 Extended neural network architectures In what follows, we assume
that the solution u ∈ X admits a representation of the form

u(x) = u∞(x) + uΨ(x;λ), uΨ(x;λ) :=

m∑
i=1

cλ,iΨ(x;λi),(2.19)

where u∞ is the portion of the solution with high regularity and uΨ the portion
with low regularity of the form

∑
i cΨ,iΨ(·;λi). The solutions of many classical PDEs

exhibit well-known structures Ψ(x;λi), where λ is a parameter that depends on the
specific form of the domain, boundary conditions, and coefficients of the PDE. For
instance, for the Poisson equation, the singular part of the solution near corners of
a polygonal domain is a sum of terms of the form Ψ(r, θ;λ) ∝ rλi sin(λiθ), where λi
depends on the interior angle at the corner. If such knowledge-based functions are
available, then it makes sense for them to be incorporated into the Galerkin neural
network framework. We shall exhibit the benefits of doing so in Section 3. The
extended Galerkin neural network approach we shall describe in this section gives
the flexibility to incorporate this problem-specific knowledge into the basic Galerkin
neural neural method.

For a given Φ ∈ X , let

V Φ
m := {v : v(x) =

m∑
i=1

cλ,iΦ(x;λi), cλ ∈ Rm},(2.20)

and, as in the basic Galerkin neural network in Section 2.1, we define the set of
realizations whose parameters are bounded:

V Φ,C
m := {v ∈ Ṽ Φ

m : ||(λ, cλ)||Λ := ||cλ||∞ + ||λ||∞ ⩽ C}.(2.21)

We then apply the Galerkin neural network framework in Section 2.1 using the aug-
mented space V σ,C

n,L ⊕ V Φ,C
nλ

and seek

φNN
i = argmax

v∈V
σ,C1
n,L

⊕
V

Φ,C2
nλ

∩B

⟨r(ui−1), v⟩.(2.22)

EXTENDED GALERKIN NEURAL NETWORKS 9

In order to ensure the existence of φNN
i , we require that the choice of Φ results in a

continuous mapping from the parameter space (λ, cλ) into the set V Φ,C
m .

Lemma 2.3. Let

Λ := {λ ∈ Rnλ , cλ ∈ Rnλ : ||(λ, cλ)||Λ := ||cλ||∞ + ||λ||∞ ⩽ C} .

Suppose the mapping N : (Λ, || · ||Λ)→ (V Φ,C
nλ

, ||| · |||) defined by

N (λ, cλ) =

nλ∑
i=1

cλ,iΦ(·;λi)

is continuous. Then V Φ,C
nλ

is compact in (X , ||| · |||).
The resulting function φNN

i is then the sum of a neural network function φNN
σ,i ∈

V σ,C
n,L and a function φNN

Φ,i ∈ V Φ,C
nλ

belonging to the “knowledge-based” space. If the
parameters λ are unknown in advance, then one possibility is to learn them during
the training step in a similar manner to W and b:

λ← λ+∇λ

[
⟨r(ui−1), v(·;λ)⟩
|||v(·;λ)|||

]
.(2.23)

The corresponding coefficients c and cλ are updated simultaneously by solving the
following least squares system

[c; cλ] = argmin
c∈Rn,cλ∈Rnλ

||A[c; cλ]− F||ℓ2(2.24)

for an appropriate matrix A and vector F, and the approximation ui is obtained from
the space of extended basis functions SΦ

i := {u0/|||u0|||, φNN
σ,1 , φ

NN
Φ,1 , . . . , φ

NN
σ,i , φ

NN
Φ,i }:

ui ∈ SΦ
i : a(u, v) = F (v) ∀v ∈ SΦ

i .(2.25)

The solution may be written as a sum of smooth and singular parts ui = uσ,i + uΦ,i,
where

uσ,i := cσ,0
u0
|||u0|||

+

i∑
j=1

cσ,jφ
NN
σ,j , uΦ,i :=

i∑
j=1

cΦ,jφ
NN
Φ,j .(2.26)

The effectiveness of the extended Galerkin neural network approach depends on
the universal approximation properties of the neural networks as in the case of the
basic Galerkin neural network approach. The following result, proved in [1] for the
basic Galerkin neural network, is directly applicable to problems whose solutions take
the form (2.19). The width n appearing in Proposition 2.4 will depend on both the
smooth and singular parts of the solution.

Proposition 2.4. Let 0 < ε < 1 be given. Then there exist n(ε, u∞ + uΦ −
ui−1) ∈ N and C(ε, u∞ + uΨ − ui−1) > 0 such that if n ⩾ n(ε, u∞ + uΨ − ui−1) and
C ⩾ C(ε, u∞+uΨ−ui−1), then φ

NN
i given by (2.2) satisfies |||φi−φNN

i ||| ⩽ 2ε/(1−ε).
By way of contrast with the extended Galerkin neural network approach, the

width n depends only on the high regularity part of the solution. Thus, we expect the
width of the network required to approximate φNN

i to a given tolerance to be smaller
than that required in Proposition 2.4 (see e.g. Section 3.1, Example 3.3).

The basis function φNN
i satisfies the following approximation property.

10 M. AINSWORTH AND J. DONG

Proposition 2.5. Suppose that the following property holds: For each ε > 0,
there exists nλ(ε,

∑m
j=1 cΨ,jΨ(·;λi)) ∈ N and C(ε,

∑m
j=1 cΨ,jΨ(·;λi)) > 0 and φ̃Φ ∈

Ṽ Φ
nλ

such that

|||
m∑
j=1

cΨ,jΨ(·;λi)− φ̃Φ||| ⩽ ε.(2.27)

Then given u0 ∈ (X , ||| · |||) and Li ∈ N, for each ε > 0 there exists n(i)(ε, u∞ −
uσ,i−1) ∈ NLi , C1(ε, u∞ − uσ,i−1) as well as n

(i)
λ (ε, uΨ − uΦ,i−1) ∈ N, C2(ε, uΨ −

uΦ,i−1) > 0, and φNN
i := φNN

σ,i + φNN
Φ,i ∈ V

σ,C1

n(i),Li
⊕ V Φ,C2

n
(i)
λ

defined by (2.22) such that

|||φi − φNN
i ||| ⩽ ε.(2.28)

Proof. We partition the error by φi = φσ,i+φΦ,i, where φσ,i := (u∞−uσ,i−1)/|||u−
ui−1||| and φΦ,i := (uΨ − uΦ,i−1)/|||u − ui−1||| and first demonstrate that there ex-
ists a function φ̂ ∈ V σ

n(i),Li
⊕ V Φ

nλ,i
∩ B such that |||φi − φ̂||| ⩽ ε. Applying the

universal approximation theorem for multilayer feedforward networks [10] yields the
existence of n(ε, u∞ − uσ,i−1) ∈ NLi and φ̃σ ∈ V σ

n(i),Li
such that |||φσ,i − φ̃σ||| < ε/4.

To approximate φΦ,i, we need only approximate uΨ and uΦ,i−1. By (2.27), we

can find ñλ(ε, uΨ) ∈ N and φ̃Ψ ∈ Ṽ Φ
ñλ

such that |||uΨ − φ̃Ψ||| < ε/4, and since

uΦ,i−1 ∈ ⊕i−1
j=1V

Φ

n
(j)
λ

there exists η ∈ V Φ∑i−1
j=1 n

(j)
λ

such that |||uΦ,i−1 − η||| = 0. Setting

φ̃Φ := φ̃Ψ + η, we have |||φΦ,i − φ̃Φ||| < ε/4. Additionally, setting φ̃ := φ̃σ + φ̃Φ, we
have |||φi− φ̃||| ⩽ ε/2 and, by the reverse triangle inequality, |||φ̃|||−1 ∈ (−ε/2, ε/2).

We next demonstrate that the normalization of φ̃ = φ̃σ + φ̃Φ, which we shall
define by

φ̂ :=
φ̃σ + φ̃Φ

|||φ̃σ + φ̃Φ|||
,

is also an adequate approximation to φi. By the triangle inequality, we have

|||φi − φ̂||| ⩽ |||φσ,i − φ̃σ|||+ |||φΦ,i − φ̃Φ|||+ |||φ̃−
φ̃

|||φ̃|||
|||

⩽ ε/2 +
1

|||φ̃|||
|||(|||φ̃||| − 1)φ̃||| ⩽ ε.

Choose C1 := ||θ̂||NN and C2 := ||(λ̂, cλ̂)||Λ where θ̂ and (λ̂, cλ̂) are the parameters
corresponding to the realizations φ̃σ/|||φ̃σ + φ̃Φ||| and φ̃Φ/|||φ̃σ + φ̃Φ|||, respectively.
Additionally, choose n(i) so that n

(i)
j ⩾ nj for 1 ⩽ j ⩽ Li and choose n

(i)
λ ⩾ m +∑i−1

j=1 n
(j)
λ .

It remains to show that φ̂ is sufficiently close in norm to the maximizer φNN
i . The

argument does not differ from the corresponding proof for the basic Galerkin neural
network framework in [1]. For completeness, we summarize the argument here. Since
φNN
i is the maximizer of ⟨r(ui−1), ·⟩ = a(u− ui−1, ·), we have a(φi, φ

NN
i) ⩾ a(φi, v)

for all v ∈ V σ,C1

n(i),Li
⊕ V Φ,C2

n
(i)
λ

∩B and

|||φi − φNN
i |||2 = |||φi|||2 − a(φi, φ

NN
i) + |||φNN

i |||2

⩽ |||φi|||2 − a(φi, φ̂) + |||φ̂|||2 = |||φi − φ̂|||2 ⩽ ε2.

EXTENDED GALERKIN NEURAL NETWORKS 11

We obtain the following result demonstrating the convergence of the extended
Galerkin neural network.

Corollary 2.6. The approximation ui given in (2.25) satisfies the estimate

|||u− ui||| ⩽ |||u− u0||| ·min {1, ε}i .(2.29)

Moreover, if ε < 1, then each φNN
i satisfies1

⟨r(ui−1), φ
NN
i ⟩ ⩽ |||u− ui−1||| ⩽

1

1− ε
⟨r(ui−1), φ

NN
i ⟩.(2.30)

Proof. The proof of (2.29) follows from [1, Proposition 2.6]. The upper bound of
(2.30) follows from the fact that∣∣⟨r(ui−1), φ

NN
i − |||u− ui−1|||

∣∣ ⩽ |||u− ui−1||| · |||φNN
i − φi||| = ε|||u− ui−1|||

while the lower bound follows from the observation that ⟨r(ui−1), φ
NN
i ⟩ := a(u −

ui−1, φ
NN
i) ⩽ |||u− ui−1|||.

3 Applications We consider several indefinite and non-self adjoint boundary
value problems and present well-posed least squares variational formulations for each
of them. All hyperparameters for each example are provided in Appendix B. Of
particular interest to us are problems whose solutions contain singular features, for
instance due to low-regularity data or nonconvex domain corners.

As a motivating example, consider the incompressible stationary Stokes flow in
velocity-pressure form given by the boundary value problem

−∆u+∇p = f in Ω

div u = g in Ω

u = uD on ∂Ω,

(3.1)

where Ω ⊂ R2 is a bounded and connected polygonal domain, u is the fluid velocity,
and p the fluid pressure. To ensure solvability of (3.1), we require the compatibility
condition

´
Ω
g dx = −

´
∂Ω

uD · n ds.
The most natural variational formulation associated with (3.1) is to seek (u, p) ∈

H1
0(Ω)× (L2(Ω)/R) such that{

(∇u,∇v)Ω − (p,div v)Ω = (f ,v)Ω + (uD,v)∂Ω

(div u, q)Ω = (g, q)Ω
(3.2)

for all (v, q) ∈ H1
0(Ω)× (L2(Ω)/R). Formulation (3.2) is not SPD and thus we must

use (2.12) in conjunction with Galerkin neural networks. However, if Ω contains
nonconvex corners, then u /∈ H2(Ω) and p /∈ H1(Ω), and the spaces X , V, and W
must be chosen carefully to account for the reduced regularity.

3.1 Poisson equation We demonstrate the construction of a well-posed weighted
least squares variational formulation for the Poisson equation:{

−∆u = f in Ω

u = g on ∂Ω.
(3.3)

We consider the case where Ω is a polygon with vertices {x(i)}Mi=1.

12 M. AINSWORTH AND J. DONG

Fig. 4: The true solution u(r, θ) = rλ sin θ (left) and approximate solutions obtain
using Galerkin neural networks and (3.5) with β = 0 (middle) and β = 1 (right).

3.1.1 Regularity and variational formulation The following a priori esti-
mate is a result of Kondrat’ev [11].

Theorem 3.1. [11] Suppose f ∈ L2
β(Ω) and g ∈ H3/2

β (∂Ω). Then (3.3) admits

a unique solution u ∈ H2
β(Ω) and

||u||H2
β(Ω) ⩽ C(||f ||L2

β(Ω) + ||g||H3/2
β (∂Ω)

),

for some C > 0 independent of u, f , and g, where

||u||
H

3/2
β (∂Ω)

:= inf
U |∂Ω=u

||U ||H2
β(Ω).

The spaces Hs
β(Ω) are weighted Sobolev spaces defined by

Hs
β(Ω) :=

{
u :

M∏
i=1

r
β−s+|α|
i Dαu ∈ L2(Ω), 0 ⩽ |α| ⩽ s

}
,(3.4)

Fig. 5: Example 3.2: for β = 0, the errors u− ui−1 and learned basis functions φNN
i .

EXTENDED GALERKIN NEURAL NETWORKS 13

Fig. 6: Example 3.2: for β = 1, the errors u−ui−1, learned basis functions φNN
i , and

L2- and energy norm errors.

where ri is the local radial coordinate centered at vertex x(i). In what follows, we will
commonly use (·, ·)β,Ω to denote the L2

β(Ω) inner product. We propose the weighted
least squares variational formulation given by

u ∈ H2
β(Ω) : (∆u,∆v)β,Ω + (u, v)

H
3/2
β (∂Ω)

= −(f,∆v)β,Ω + (g, v)
H

3/2
β (∂Ω)

∀v ∈ H2
β(Ω).(3.5)

Example 3.2. We consider the case of the true solution u(r, θ) = rλ sin θ for λ =
1/4 in the domain Ω = (−1, 1)2\(−1, 0)2. In this case, f /∈ L2(Ω) but f ∈ L2

β(Ω)
for β > 1 − λ. We demonstrate that if β = 0 in (3.5), then the approximation
obtained is incorrect and does not converge to the true solution. Figure 4 shows the
approximation using 8 basis functions.

We observe spurious oscillations of the approximation near x = 0 when β = 0
which are largely removed when β = 1. Figures 5-6 show the true errors u−ui−1 and
basis functions φNN

i for β = 0 and β = 1, respectively. We observe that in the β = 0
case, the learned basis functions contain many high frequency modes not present in
the corresponding error functions. In the β = 1 case, the basis functions take on large
values near x = 0 and correctly identify the presence of error the approximation of
the singularity, but convergence is still slow.

14 M. AINSWORTH AND J. DONG

Fig. 7: Example 3.3: for β = 4/3, the approximate solutions ui and learned basis
functions φNN

i .

3.1.2 Knowledge-based functions Suppose Ω contains a single corner of in-

terest x(0) with interior angle α(0). For instance, the L-shaped domain (−1, 1)2\(−1, 0)2
contains a nonconvex corner with angle α(0) = 3π/2 at the origin. Solutions of (3.3)
in such a domain have the well-known structure

u(x, y) =
∑
λj

cλj
rλj sin(λjθ) + u∗(x, y),(3.6)

where u∗ ∈ H2(Ω) and λn are the eigenvalues of the operator pencil corresponding to
the Laplacian operator [12]. The eigenvalues are given by

λj =
jπ

α(0)
, j = 1, 2, 3,

Example 3.3. We consider the problem with homogeneous Dirichlet boundary
condition in the domain Ω = (−1, 1)2\(−1, 0)2 and data f = 1. This problem was
already considered in [1] for which the usual H1 variational formulation of the Poisson
equation was utilized. Nevertheless, this problem demonstrates many of the explemary
singular features we wish to approximate and serves as an excellent example for how
to utilize knowledge-based functions in the Galerkin-neural network framework.

While there is no closed form solution to this problem, we provide the value of
the a posteriori error indicator ⟨r(ui−1), φ

NN
i ⟩ for each basis function learned as well

as the basis functions φNN
i themselves, which provide a function representation of

the error u − ui−1. Figure 7 shows the first several basis functions using a standard
feedforward neural network for learning each basis function. We observe that the
approximation converges quite slowly near x = 0 and the basis functions φNN

i show
that the magnitude of the pointwise error is large in the vicinity of the singularity.

Next, we repeat the simulation, this time with an augmented neural network ar-
chitecture. Namely, we compute φNN

i according to (2.22) with Φ(r, θ;λ) = rλ sin(λθ).

EXTENDED GALERKIN NEURAL NETWORKS 15

Fig. 8: Example 3.3: for β = 4/3 and singular neural network architecture, the
approximate solutions ui and learned basis functions φNN

i .

Since the eigenvalues are known, we simply take λj = 2j/3 and nλ = 20. However,
we shall demonstrate in Section 4 how Galerkin neural networks may be used to ap-
proximate the values of λ when they are unknown. Figure 8 shows the analogous
results to Figure 7. We observe significantly faster convergence and the approximate
pointwise errors decrease steadily from O(10−2) to O(10−5). Additionally, we note
that the singularity is clearly captured correctly by the knowledge-based functions.

3.2 Stokes flow The next application we consider is the incompressible steady
Stokes flow (3.1).

3.2.1 Regularity and variational formulation Schwab and Guo proved the
following result in [9] for a polygonal domain Ω.

Theorem 3.4. [9] Suppose f ∈ L2
β(Ω), g ∈ H1

β(Ω), uD ∈ H
3/2
β (∂Ω), and´

Ω
g dx = −

´
∂Ω

uD · n ds. Then (3.1) admits a unique solution (u, p) ∈ H2
β(Ω) ×

H1
β(Ω)/R and

||u||H2
β(Ω) + ||p||H1

β(Ω) ⩽ C(||f ||L2
β(Ω) + ||g||H1

β(Ω) + ||uD||H3/2
β (Ω)

)(3.7)

for some C > 0 independent of u, p, f , g, and uD.

16 M. AINSWORTH AND J. DONG

Most notable is that (3.4) suggests that the residual of the incompressibility equa-
tion in (3.1) should actually be taken in the H1

β norm, which leads to the continuous

and coercive formulation: seek (u, p) ∈ H2
β(Ω)×H1

β(Ω)/R such that

(−∆u+∇p,−∆v +∇q)β,Ω + (div u,div v)H1
β(Ω) + (u,v)

H
3/2
β (∂Ω)

= (f ,−∆v +∇q)β,Ω + (g,div v)H1
β(Ω) + (uD,v)H3/2

β (Ω)

for all (v, q) ∈ H2
β(Ω)×H1

β(Ω)/R. For ease of notation, we setX := H2
β(Ω)×H1

β(Ω)/R
endowed with the norm ||(v, q)||X := (||v||2

H2
β(Ω)

+||q||2
H1

β(Ω)
)1/2 and define the bilinear

operator B : X ×X → R by

B((u, p), (v, q)) := (−∆u+∇p,−∆v +∇q)β,Ω(3.8)

+ (div u,div v)H1
β(Ω) + (u,v)

H
3/2
β (∂Ω)

and the linear operator L : X → R by

L((v, q)) := (f ,−∆v +∇q)β,Ω + (g,div v)H1
β(Ω) + (uD,v)H3/2

β (Ω)
.(3.9)

3.2.2 Knowledge-based functions Many features of interest in the Stokes
flow develop in the corners of Ω, including singularities at reentrant corners and eddies
in convex corners that are driven by the far-field flow. In these cases, the solution
structure is well-known. Noting that the velocity is the curl of the streamfunction ψ,
u = ∇⊥ψ, and that the streamfunction satisfies a biharmonic equation, the stream-
function takes the form

ψ(x, y) =

M∑
j=1

χ(r(j))
∑
λ
(j)
n

c
λ
(j)
n
rλ

(j)
n Ψ

λ
(j)
n
(θ(j)) + ψ∗(x, y),(3.10)

where (r(j), θ(j)) are the local polar coordinates centered at x(j), {λ(j)n } are the eigen-
values associated with the operator pencil of the biharmonic operator at vertex x(j)

and Ψ
λ
(j)
n

are the corresponding generalized eigenfunctions, χj ∈ Cs(Ω̄) is a cutoff

function centered at x(j), and ψ∗ ∈ H4(Ω). The corresponding velocity and pressure
solutions are derived from (3.10). See Appendix A for full details.

For λ ̸= 0, 1, 2, the eigenvalues of the biharmonic operator pencil at x(j) are given
implicitly by [6]

sin2((λ− 1)αj)− (λ− 1)2 sin2(αj) = 0,(3.11)

where αj is the interior angle of x(j). The eigenfunctions [6] are given by

Ψλ(θ) = A sin(λθ) +B cos(λθ) + C sin((λ− 2)θ) +D cos((λ− 2)θ),(3.12)

with the constants A,B,C,D chosen so that Φ satisfies suitable boundary conditions.
In the case when αj ⪅ 146◦, solutions of (3.11) are complex and we replace rλnΨλn

(θ)
by Re[rλnΨλn(θ)] in (3.10). Interestingly, complex eigenvalues are associated with
infinite sequences of eddies in the flow due to disturbances in the far field. This
behavior is described mathematically by, for instance

Re(ra+ib cos((a+ ib)θ)) = ra cos(b log r) cos(aθ) cosh(bθ).

One can show, as in [16], that each successive eddy decays exponentially in magnitude.
Thus, Stokes flows in polygonal domains must be resolved to a very high degree of
accuracy in order to adequately capture these eddies.

EXTENDED GALERKIN NEURAL NETWORKS 17

Fig. 9: Channel with triangular cavity for Example 3.5. The rectangle channel is
described by (−2, 2)× (0, 2) while the triangular cavity has vertices at (−1, 0), (1, 0),
and (−3, 0).

Example 3.5. Let Ω be the channel with triangular cavity as shown in Figure 9.
The flow takes a parabolic profile prescribed at the inflow and outflow. Namely, the
boundary conditions are

u1(x, y) =

{
y(2− y), x = −2 or 2

0, else,
u2(x, y) = 0.

We specify f = 0 and g = 0, in which case 2div ϵ(u) = ∆u. At the reentrant
corners, we expect a singularity to manifest in both the velocity and pressure. At
the bottom corner, we expect infinitely cascading eddies driven by the channel flow.
As described in Section 3.2.2, we shall supplement the standard feedforward network
with Ψ(r, θ;λ) = χ(r)Re[rλΨλ(θ)] in the bottom corner and Ψ(r, θ;λ) = χ(r)rλΨλ(θ)
at the reentrant corners. The exact values of λ are λ = 1.58223 in the reentrant
corners and λ = 7.56813 + 3.37941i in the bottom corner. Precise details may be
found in Appendix A. As with Example 3.3, we shall demonstrate in Section 4 how
these values of λ may be approximated using Galerkin neural networks in the event
that they are unknown.

We first demonstrate the importance of choosing the Sobolev weight parameter β
appropriately. In contrast with Example 3.2, this example contains smooth data f and
g and continuous data uD. Figure 10 shows the approximated velocities and pressures
for β = 0. We shall use φNN

1,i , φNN
2,i , and qNN

i to denote the ith basis functions for
the velocities and pressure, respectively. The resulting velocity and pressure fields in
Figure 10 show that even after learning six basis functions, the flow is nonphysical;
we expect a near constant velocity u1 along the x-direction in the channel. Figure 10
also shows the analogous results for β = 5/3. Despite not adequately capturing the
singularities and the expected sequence of eddies, the approximate solutions do not
exhibit spurious oscillations and the behavior in the channel is as expected.

We fix β = 5/3 next and approximate the solution using six basis functions
learned by extended Galerkin neural networks. We remarkably observe that with
the supplemental activation functions, i.e. φNN

1,i , φ
NN
2,i , q

NN
i ∈ V σ

n,L ⊕ V Φ
nλ

, both the
singular features at the reentrant corners and the eddies in the cavity are captured
accurately. In fact, as Figure 11 shows, we are able to capture infinitely many eddies.
The basis functions used to approximate the velocities and pressures are shown in
Figure 12.

Finally, when β is too large, the solution space contains functions which may have
worse singular behavior than the true solution due to the strong damping effect of rβ

18 M. AINSWORTH AND J. DONG

Fig. 10: Example 3.5: velocity and pressure with β = 0 (top) and β = 5/3 (bottom)
in (3.8).

Fig. 11: Example 3.5: velocity and pressure with β = 5/3 in (3.8) and basis functions
learned from extended neural network with knowledge-based functions.

on the singularities. In particular, the bilinear operator B may admit as arguments
functions with far stronger singularities than those of the true solution. We show the
results for β = 4 in Figure 13.

4 Extended Galerkin neural networks with learning of knowledge-based
functions In the numerical examples in Section 3, we approximated the solutions
from the set V σ

n,L ⊕ V Φ
nλ

, where V Φ
nλ

denotes the span of knowledge-based functions

EXTENDED GALERKIN NEURAL NETWORKS 19

Fig. 12: Example 3.5: velocity and pressure basis functions with β = 5/3 in (3.8) and
basis functions learned from extended neural network with knowledge-based functions.

Φ(x;λ):

V Φ
nλ

:= {v : v(x) =

nλ∑
i=1

cλ,iΦ(x;λi), cλ ∈ Rnλ}.

We utilized exact known values of λ when including these functions in the approxi-
mation space. However, in many applications some information about the structure
of Φ may be known while the parameters λ may be unknown or difficult to compute
exactly. In this section, we demonstrate how extended Galerkin neural networks may
be applied to the previously studied examples in order to approximate λ.

4.1 Poisson equation We revisit Example 3.3 in which the knowledge-based
functions took the form

Φ(r, θ;λ) = rλ sin(λθ).

The exact values of λ are given by 2/3, 4/3, . . . , 2j/3, We focus only the smallest
value of λ which describes the asymptotic behavior of Φ and note that the feedforward
part of the neural network, V σ

n,L, is capable of approximating the smoother behavior
of Φ for larger values of λ.

Example 4.1. We again consider the L-shaped domain Ω = (−1, 1)2\(−1, 0)2 with
data f = 1 and homogeneous Dirichlet boundary conditions. Each Galerkin neural
network basis function is obtained according to (2.22) with λ being a trainable pa-
rameter. The initial value of λ is drawn from the uniform distribution U(0, 1). Figure

20 M. AINSWORTH AND J. DONG

Fig. 13: Example 3.5: velocity and pressure basis functions with β = 4 in (3.8) and
basis functions learned from extended neural network with knowledge-based functions.

Fig. 14: Example 4.1: training of λ1 and over several runs with initialization λ ∼
U(0, 1).

14 shows how λ1 changes value during the backpropagation step of training over 20
independent runs. In each case λ1 moves toward the true value of 2/3.

4.2 Stokes flow around a nonconvex corner

Example 4.2. Analogous to Example 4.1, we demonstrate how to learn the knowledge-
based functions for the Stokes flow around a nonconvex corner. We consider the cir-
cular sector domain Ω = {(r, θ) : 0 < r < 1, 0 < θ < π+α(0)}, α(0) = arccos(1/

√
10)

EXTENDED GALERKIN NEURAL NETWORKS 21

Fig. 15: Eigenvalue training progress for Example 4.2 with initialization λ ∼
U(λexact − 1/3, λexact + 1/3).

with f = 0 and g = 0. The boundary condition for the velocity is given by

u(θ) =

[
− 1

2α(0) θ
2 + θ

−2α(0)−1
4(α(0))2

θ3 + θ2 + θ

]
.

This example may be viewed as a localized BVP with artificial boundary conditions.
We approximate the solution to this example using a feedforward network aug-

mented with the knowledge-based function Φ(r, θ;λ) = rλΨλ(θ), where Ψλ is given
in Appendix A for the velocity and pressure. We initialize λ away from its true value
as in Example 4.1 in order to demonstrate that the true eigenvalue of the singular
part of the Stokes operator may also be learned by the neural network. Importantly,
the singular-behavior of the solution at the origin should be localized with a cutoff
function, namely in (2.20) we take

Ṽ Φ
m :=

{
v : v(x) =

m∑
i=1

cλ,iχ(r)Φ(x;λi), cλ ∈ Rm

}
,

where χ is a C2 cutoff function satisfying χ(r) = 1 for r < r0, χ(r) = 0 for r > r1.
Figure 15 shows the training progress of λ over 30 trials with λ initialized accord-

ing to the uniform distribution U(λexact− 1/3, λexact +1/3). We observe that in each
trial, λ converges to the true value.

4.3 Stokes flow in a convex corner induced by disturbance at a large
distance

Example 4.3. We now demonstrate how to learn the knowledge-based functions
for the Stokes flow in a convex corner induced by flow at a large distance. The
localized domain Ω is the triangular wedge with vertices (1, 0), (−1, 0), and (−3, 0).
The boundary condition for the velocity is a homogeneous Dirichlet condition along
the diagonal edges of the wedge and u(x, y) = [(1− x)(1+ x), 0]T along the top edge.
We again specify f = 0 and g = 0.

We approximate the solution to this example using a feedforward network aug-
mented with knowledge-based function Φ(r, θ;λ) = Re[rλΨλ(θ)]. Here, λ is assumed
to be an unknown complex number of the form λ = ξ+ iζ. A cutoff function is again
used to isolate the behavior of Φ to a region around the origin. We initialize ξ and
ζ away from their true values in order to demonstrate that the correct behavior may
be learned by the augmented feedforward neural network.

22 M. AINSWORTH AND J. DONG

Fig. 16: Eigenvalue training progress for Example 4.3 with initialization ξ ∼ U(ξexact−
1/2, ξexact + 1/2) and ζ ∼ U(ζexact − 1/2, ζexact + 1/2).

Figure 16 shows the training progress of λ over 50 trials with ξ and ζ initialized
according to the uniform distributions U(ξexact − 1/2, ξexact + 1/2) and U(ζexact −
1/2, ζexact+1/2), respectively. Remarkably, we observe that the correct eddy behavior
is obtained and the values of ξ and ζ are learned to within about 0.005%.

5 Conclusions We have presented the extended Galerkin neural network frame-
work for approximating a general class of boundary value problems, including those
with low-regularity features. This framework utilizes a simple least squares vari-
ational formulation alongside an enriched feedforward neural network architecture.
We demonstrate that this approach ensures norm equivalence of the induced energy
norm with the norm of the solution space and demonstrate the repercussions when
this norm equivalence is lost as is the case when standard least squares approaches
based on the L2 norm are used. Moreover, we have demonstrated the clear advantage
of utilizing knowledge-based functions in the network architecture and have shown
that xGNN can easily learn these functions.

6 Acknowledgments J.D. thanks the National Science Foundation Graduate
Research Fellowship for its financial support under Grant No. 1644760. This work
was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344; LLNL-JRNL-
859911. M.A. gratefully acknowledges the support of National Science Foundation
Grant No. DMS-2324364.

Appendix A. Knowledge-based functions for Stokes flow.
Given a vertex x(i) of Ω with interior angle α(i), the solution of the Stokes flow in

the vicinity of x(i) is may be written into terms of the eigenfunctions of the operator
pencil of the Stokes operator [12]. It is simpler to first consider the streamfunction
ψ, which takes the form

ψ(r, θ) =
∑
λn

cλnRe
[
rλnΨλn(θ)

]
,

where for λn ̸= 0, Ψλn is given by the general form

Ψλn
(θ) := A1 cos((λn − 2)θ) +A2 cos(λnθ) +A3 sin((λn − 2)θ) +A4 sin(λnθ).

The coefficients Ai are chosen to satisfy the boundary conditions. The velocity may
be obtained from the streamfunction with the relation u = ∇⊥ψ while the pressure
may be obtained from the momentum equation ∇p = ∆u.

EXTENDED GALERKIN NEURAL NETWORKS 23

A.1 No-slip boundary conditions We shall first consider the simple case of
no-slip boundary conditions, i.e. u · n = ∂ψ/∂t = 0. In this case, we have

Ψλn(θ) := cos(λnα) cos((λn − 2)θ)− cos((λn − 2)α) cos(λnθ).(A.1)

In the case of complex eigenvalues, the streamfunction produces a sequence of infin-
itely cascading eddies, a qualitative discussion of which may be found in [16]. To the
best of our knowledge, an explicit derivation of the full corresponding eigenfunctions
of the eddies for the Stokes velocity and pressure does not exist in the literature.
Thus, the purpose of this section is to state the velocities and pressure corresponding
to the streamfunction rλnΨλn

(θ) assuming complex eigenvalues λn = ξn+ iζn. In this
case, we have

Re
[
rλnΨλn

(θ)
]
= Re[rλn]Re[Ψλn

(θ)]− Im[rλn]Im[Ψλn
(θ)]

from which the velocity components may be derived:[
u1(r, θ)
u2(r, θ)

]
=

∑
λn

[
∂
∂rRe[rλn]Re[Ψλn(θ)] sin θ +Re[rλn] ∂

∂θRe[Ψλn(θ)]
cos θ
r

− ∂
∂rRe[rλn]Re[Ψλn(θ)] cos θ +Re[rλn] ∂

∂θRe[Ψλn(θ)]
sin θ
r

]

+
∑
λn

[
− ∂

∂rIm[rλn]Im[Ψλn
(θ)] sin θ − Im[rλn] ∂

∂θIm[Ψλn
(θ)] cos θr

∂
∂rIm[rλn]Im[Ψλn

(θ)] cos θ − Im[rλn] ∂
∂θIm[Ψλn

(θ)] sin θ
r

]
.(A.2)

Here,

Re[rλn] = rξn cos(log(r)ζn), Im[rλn] = rξn sin(log(r)ζn)

Re[Ψλn
(θ)] = cos(ξnα

(i)) cos((ξn − 2)θ) cosh(ζnα
(i)) cosh(ζnθ)

+ sin(ξnα
(i)) sin((ξn − 2)θ) sinh(ζnα

(i)) sinh(ζnθ)

− cos((ξn − 2)α(i) cos((ξn − 2)θ) cosh(ζnα
(i)) cosh(ζnθ)

+ sin((ξn − 2)α(i)) sin(ξnθ) sinh(ζnα
(i)) sinh(ζnθ)

Im[Ψλn
(θ)] = − cos(ξnα

(i)) sin((ξn − 2)θ) cosh(ζnα
(i)) sinh(ζnθ)

− sin(ξnα
(i)) cos((ξn − 2)θ) sinh(ζnα

(i)) cosh(ζnθ)

+ cos((ξn − 2)α(i)) sin(ξnθ) cosh(ζnα
(i)) sinh(ζnθ)

+ sin((ξn − 2)α(i)) cos(ξnθ) sinh(ζnα
(i)) cosh(ζnθ)).

We note that (A.2) has been calculated to exactly satisfy a no-slip condition along
θ = ±α(i). The transformation θ 7→ θ − ϕ, ϕ ∈ R should be taken if necessary
depending on specific domain geometry.

Finally, to obtain the pressure corresponding to the streamfunctionRe[rλnΨλn(θ)],
it is straightforward to calculate ∂p/∂r and ∂p/∂θ from the momentum equations in
polar coordinates [5]:

−
(
∂2ur
∂r2

+
1

r

∂ur
∂r

+
1

r2

(
∂2ur
∂θ2

− 2
∂uθ
∂θ
− ur

))
+
∂p

∂r
= 0

−
(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

+
1

r2

(
∂2uθ
∂θ2

− 2
∂ur
∂θ
− uθ

))
+

1

r

∂p

∂θ
= 0

(A.3)

In (A.3), ur and uθ are the radial and azimuthal components of the velocity given by
ur(r, θ) := r−1∂ψ/∂θ and uθ(r, θ) := −∂ψ/∂r, respectively. Integrating ∂p/∂r and

24 M. AINSWORTH AND J. DONG

∂p/∂θ and equating constants yields

p(r, θ) = 4rξn−2

(
cos(ξnα

(i)) cosh(ζnα
(i)) (− sin((ξn − 2)θ) cosh(ζnθ)A(r)

− cos((ξn − 2)θ) sinh(ζnθ)B(r))+

sin(ξnα
(i)) sinh(ζnα

(i)) (sin((ξn − 2)θ) cosh(ζnθ)B(r)

− cos((ξn − 2)θ) sinh(ζnθ)A(r))

)
,(A.4)

A(r) := −(ξn − 1) cos(log(r)ζn) + ζn sin(log(r)ζn)

B(r) := ζn cos(log(r)ζn) + (ξn − 1) sin(log(r)ζn).

In the special case when λn ∈ R, we simply take ζn = 0 to arrive atu1(r, θ)u2(r, θ)
p(r, θ)

 =
∑
λn

 λnr
λn−1Re[Ψλn(θ)] sin θ − rλn ∂

∂θRe[Ψλn(θ)] cos θ
−λnrλn−1Re[Ψλn(θ)] cos θ + rλn−1 ∂

∂θRe[Ψλn(θ)] sin θ
4(λn − 1)rλn−2 cos(λnα

(i)) sin((λn − 2)θ)

 .(A.5)

A.2 Homogeneous Dirichlet boundary conditions For the boundary homo-
geneous Dirichlet boundary condition u = 0 used in the examples in Section 3, we
leave the constants Ai as unknowns to be determined during the least squares step
(2.6). In this case, the velocity corresponding to the streamfunction Re[rλnΨλn(θ)]
consists of four terms:[
u1(r, θ)
u2(r, θ)

]
=

4∑
i=1

Ai

{∑
λn

[
∂
∂rRe[rλn]Re[Ψi,λn

(θ)] sin θ +Re[rλn] ∂
∂θRe[Ψi,λn(θ)]

cos θ
r

− ∂
∂rRe[rλn]Re[Ψi,λn(θ)] cos θ +Re[rλn] ∂

∂θRe[Ψi,λn(θ)]
sin θ
r

]

+
∑
λn

[
− ∂

∂rIm[rλn]Im[Ψi,λn(θ)] sin θ − Im[rλn] ∂
∂θIm[Ψi,λn(θ)]

cos θ
r

∂
∂rIm[rλn]Im[Ψi,λn

(θ)] cos θ − Im[rλn] ∂
∂θIm[Ψi,λn

(θ)] sin θ
r

]}
.(A.6)

For ease of notation, we use Ψi,λn to denote the four component eigenfunctions

Ψ1,λn(θ) = cos((λn − 2)θ), Ψ2,λn(θ) = cos(λnθ),

Ψ3,λn(θ) = sin((λn − 2)θ), Ψ4,λn(θ) = sin(λnθ).

The real and complex components of Ψi,λn are given by

Re[Ψ1,λn
(θ)] = cos((ξn − 2)θ) cosh(ζnθ), Im[Ψ1,λn

(θ)] = − sin((ξn − 2)θ) sinh(ζnθ),

Re[Ψ2,λn
(θ)] = cos(ξnθ) cosh(ζnθ), Im[Ψ2,λn

(θ)] = − sin(ξnθ) sinh(ζnθ),

Re[Ψ3,λn
(θ)] = sin((ξn − 2)θ) cosh(ζnθ), Im[Ψ3,λn

(θ)] = cos((ξn − 2)θ) sinh(ζnθ),

Re[Ψ4,λn
(θ)] = sin(ξnθ) cosh(ζnθ), Im[Ψ4,λn

(θ)] = cos(ξnθ) sinh(ζnθ).

The pressure corresponding to Re[rλnΨλn
(θ)] is given by

p(r, θ) =

4∑
i=1

AiPi,λn(r, θ),(A.7)

where the four component eigenfunctions Pi,λn
are

P1,λn(r, θ) = 4rξn−2 (sin((ξn − 2)θ) cosh(ζnθ)A(r) + cos((ξn − 2)θ) sinh(ζnθ)B(r))

P3,λn(r, θ) = 4rξn−2 (− cos((ξn − 2)θ) cosh(ζnθ)A(r) + sin((ξn − 2)θ) sinh(ζnθ)B(r))

EXTENDED GALERKIN NEURAL NETWORKS 25

with P2,λn
(r, θ) = P4,λn

(r, θ) = 0 and A(r), B(r) as in (A.4).

Appendix B. Hyperparameters for numerical examples.

Parameter n(i) Li σ learning rate δ

20 · 2i−1 1 tanh((1 + i
4
)t) 0.001/1.1i−1 103

Table 1: General hyperparameters for learning φNN
i in all examples. Any example-

specific deviations from this configuration are provided in Tables B.1-B.5.

B.1 Example 2.2

training data
tensor-product Gauss-Legendre 128× 128 in Ω;

left Riemann sum 256 on ∂Ω

δ Variable. See Example 2.2 for details.

B.2 Examples 3.2-3.3

n
(i)
λ

2 n(i)/2

Φ rλ sin(λθ)

λ2 2j/3

training data
tensor-product Gauss-Legendre 128× 128 in each square
quadrant of Ω; Gauss-Legendre 128 on each edge of ∂Ω

B.3 Example 3.5

n
(i)
λ 5i in non-convex corners; 1 in convex corner

Φ Equations (A.6) and (A.7)

training data
tensor-product Gauss-Legendre 128× 128 in each square

quadrant of channel and rectangle enclosing triangular cavity
of Ω3; Gauss-Legendre 128 on each edge of ∂Ω

B.4 Example 4.1

n
(i)
λ 1

Φ rλ sin(λθ)

training data
tensor-product Gauss-Legendre 128× 128 in each square
quadrant of Ω; Gauss-Legendre 128 on each edge of ∂Ω

B.5 Examples 4.2-4.3

n(i) & n
(i)
λ 20 · 1.9i−1 & 1

Φ Equation (A.5) in 4.2; (A.2) and (A.4) in 4.3

training data
tensor-product Gauss-Legendre 128× 128 in each square
quadrant of Ω4; Gauss-Legendre 128 on each edge of ∂Ω

learning rate 0.003/1.1i−1

REFERENCES

2 Only for Example 4.1.
3The square quadrants are given by (−2, 0) × (0, 2) and (0, 2) × (0, 2) in the channel. For the

triangular cavity, a 128×128 Gauss-Legendre quadrature rule is generated in the rectangle (−1, 1)×
(−3, 0) and any node falling outside of the cavity has its weight set to 0.

4In Example 4.3, quadrature rule is generated in the rectangle (−1, 1)× (−3, 0) and any points
falling outside of Ω have their weights set to 0.

26 M. AINSWORTH AND J. DONG

[1] M. Ainsworth and J. Dong, Galerkin neural networks: A framework for approximating
variational equations with error control, SIAM Journal on Scientific Computing, 43 (2021),
pp. A2474–A2501.

[2] M. Ainsworth and J. Dong, Galerkin neural network approximation of singularly-perturbed
elliptic systems, Computer Methods in Applied Mechanics and Engineering, 402 (2022),
p. 115169.

[3] A. Arzani, K. W. Cassel, and R. M. D’Souza, Theory-guided physics-informed neural net-
works for boundary layer problems with singular perturbation, Journal of Computational
Physics, 473 (2023), p. 111768.

[4] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning data-driven discretizations
for partial differential equations, Proceedings of the National Academy of Sciences, 116
(2019), pp. 15344–15349.

[5] G. K. Batchelor, An introduction to fluid dynamics, Cambridge university press, 1967.
[6] H. Blum, R. Rannacher, and R. Leis, On the boundary value problem of the biharmonic

operator on domains with angular corners, Mathematical Methods in the Applied Sciences,
2 (1980), pp. 556–581.

[7] P. B. Bochev and M. D. Gunzburger, Least-squares finite element methods, vol. 166,
Springer Science & Business Media, 2009.

[8] M. Dissanayake and N. Phan-Thien, Neural-network-based approximations for solving partial
differential equations, Communications in Numerical Methods in Engineering, 10 (1994),
pp. 195–201.

[9] B. Guo and C. Schwab, Analytic regularity of stokes flow on polygonal domains in countably
weighted sobolev spaces, Journal of Computational and Applied Mathematics, 190 (2006),
pp. 487–519.

[10] K. Hornik, M. Stinchcombe, and H. White, Universal approximation of an unknown map-
ping and its derivatives using multilayer feedforward networks, Neural networks, 3 (1990),
pp. 551–560.

[11] V. A. Kondrat’ev, Boundary value problems for elliptic equations in domains with conical or
angular points, Trudy Moskovskogo Matematicheskogo Obshchestva, 16 (1967), pp. 209–
292.

[12] V. Kozlov, V. G. Maz’ya, and J. Rossmann, Spectral problems associated with corner sin-
gularities of solutions to elliptic equations, American Mathematical Soc., 2001.

[13] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE transactions on neural networks, 9 (1998), pp. 987–
1000.

[14] Z. Li, N. B. Kovachki, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anand-
kumar, et al., Fourier neural operator for parametric partial differential equations, in
International Conference on Learning Representations, 2020.

[15] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, Learning nonlinear operators
via deeponet based on the universal approximation theorem of operators, Nature Machine
Intelligence, 3 (2021), pp. 218–229, https://doi.org/10.1038/s42256-021-00302-5.

[16] H. K. Moffatt, Viscous and resistive eddies near a sharp corner, Journal of Fluid Mechanics,
18 (1964), pp. 1–18.

[17] S. Pakravan, P. A. Mistani, M. A. Aragon-Calvo, and F. Gibou, Solving inverse-pde prob-
lems with physics-aware neural networks, Journal of Computational Physics, 440 (2021),
p. 110414.

[18] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational physics, 378 (2019), pp. 686–707.

[19] S. A. Sauter and C. Schwab, Boundary element methods, Springer, 2011.
[20] C. Schwab, p-and hp-finite element methods: Theory and applications in solid and fluid me-

chanics, Clarendon Press, 1998.
[21] T. Strouboulis, K. Copps, and I. Babuška, The generalized finite element method, Computer

methods in applied mechanics and engineering, 190 (2001), pp. 4081–4193.
[22] N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for

three-dimensional crack modelling, International journal for numerical methods in engi-
neering, 48 (2000), pp. 1549–1570.

[23] J. Yang, K. Mittal, T. Dzanic, S. Petrides, B. Keith, B. Petersen, D. Faissol, and
R. Anderson, Multi-agent reinforcement learning for adaptive mesh refinement, arXiv
preprint arXiv:2211.00801, (2022).

[24] Y. Zang, G. Bao, X. Ye, and H. Zhou, Weak adversarial networks for high-dimensional
partial differential equations, Journal of Computational Physics, 411 (2020), p. 109409.

https://doi.org/10.1038/s42256-021-00302-5

	Introduction
	Extended Galerkin neural networks (xGNN)
	The basic Galerkin neural network framework
	Extension to non-self-adjoint and non-positive-definite problems
	Extended neural network architectures

	Applications
	Poisson equation
	Regularity and variational formulation
	Knowledge-based functions

	Stokes flow
	Regularity and variational formulation
	Knowledge-based functions

	Extended Galerkin neural networks with learning of knowledge-based functions
	Poisson equation
	Stokes flow around a nonconvex corner
	Stokes flow in a convex corner induced by disturbance at a large distance

	Conclusions
	Acknowledgments
	Appendix A. Knowledge-based functions for Stokes flow
	No-slip boundary conditions
	Homogeneous Dirichlet boundary conditions

	Appendix B. Hyperparameters for numerical examples
	Example 2.2
	Examples 3.2-3.3
	Example 3.5
	Example 4.1
	Examples 4.2-4.3

	References

