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INVERSE IMAGES OF A POSITIVE CLOSED CURRENT
FOR A HOLOMORPHIC ENDOMORPHISM OF A COMPACT KAHLER MANIFOLD

TAEYONG AHN

ABSTRACT. In this paper, we prove that for a given surjective holomorphic endomorphism f of a
compact Kéhler manifold X and for some integer p with 1 < p < k, there exists a proper invariant
analytic subset E for f such that if S is smooth in a neighborhood of E, the sequence d,," (f™)*(S -
as) converges to 0 exponentially fast in the sense of currents where d,, denotes the dynamical
degree of order p and as is a closed smooth form in the de Rham cohomology class of S.

1. INTRODUCTION

Let (X,w) be a compact Kahler manifold of complex dimension k > 2 such that [, w* = 1. Let
f: X - X be a surjective holomorphic map. For 0 < s < k, the dynamical degree d; of order s
of f is the spectral radius of the pull-back operator f* acting on the Hodge cohomology group
H**(X,C). It is known that d; itself is an eigenvalue of f* on H**(X,C). An inequality due to
Khovanskii, Teissier and Gromov ([13]], [32]) implies that the function s — log ds is concave on
0 < s < k. In particular, there are integers p and p’ with 0 < p < p’ < k such that

do < <dy=-=dy>->d

We always have dy = 1. The last dynamical degree dy, is also called the topological degree of f
because it is equal to the cardinality of f~!(x) for a generic point z in X. We call d, the main
dynamical degree of f.

The aim of this paper is to study the dynamics of a holomorphic endomorphism on a compact
Kahler manifold by proving the following theorem:

Theorem 1.1. Let (X,w) be a compact Kdhler manifold of dimension k > 2 and f : X - X a
surjective holomorphic endomorphism. Let 1 < p < k be an integer such that d,_; < dy. Then, there
exists a proper analytic subset E invariant under f such that for a positive closed (p, p)-current S
smooth in a neighborhood of E, we have

d,"(f"*)" (5 -as) >0

exponentially fast in the sense of currents where «g is a smooth closed form of bidegree (p, p) in the
de Rham cohomology class of S.

The equidistribution of inverse images of an analytic subset or a positive closed current under
holomorphic/meromorphic endomorphisms has been much studied on complex projective space
P*. To list a few, [34],[30] for k = 1; for general k£ > 2 and p = k, [28], [8], [21]; for £ = 2 and
p =1, [26],[27] (see also [33]); for general k > 2, [29],[36l,[371,0331,[171,[38] (see also [35]);
for 1 <p <k, see [11, [2], [41], [3]

However, it has not been much studied on compact Kahler manifolds. For a meromorphic map
and for p = k, see [14]]. For a holomorphic endomorphism, in [5], non-pluripolar products were
considered. For a holomorphic automorphism, see [22], [9]. Notice that our theorem works for
general bidegrees and also for holomorphic automorphisms as well.

In [1]], the following was proved:
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Theorem 1.2. Let f : P*¥ — P* be a holomorphic endomorphism of degree d > 2. Let TP denote the
Green (p,p)-current associated with f on P*. Then there is a proper invariant analytic subset E for f
such that d™P"( f™)*(S) converges to TP exponentially fast in the sense of currents for every positive
closed (p,p)-current S of mass 1 which is smooth near FE.

One important property of a holomorphic endomorphism f of P* is that the graph of f~! is
a holomorphic correspondence. Intuitively, if a point is not in the Julia set, its forward images
accumulate near the attracting set under iteration. So, if a point is not trapped in the attracting
set, iterates push its inverse images away from the attracting set to the boundary of the Fatou
set. Since f~! is a holomorphic correspondence, once the initial current has no mass on the
attracting set, then its inverse images never have mass on the set due to the work in [18]. The
condition in Theorem[I.2]is a sufficient condition that if the initial current has no mass on the set,
then there is no mass charged on the attracting set and therefore, all the mass move towards the
Julia set. Theorem [1.2]is a quantitative explanation about it. Technically, this property appears
in the availability of the Lojasiewicz type inequality as in Lemma 3.3 in [1]. Then, using the
Lojasiewicz type inequality, we can control the influence from the set F, which appears in the
Holder continuity of the quasi-potential of f,(w).

On a general compact Kahler manifold, Lemma 4.7 in [15] guarantees that the same is true
and motivates us to generalize the work in [[1] to general compact Kidhler manifolds.

Lemma 1.3 (Lemma 4.7 in [15]). Let f be a surjective holomorphic map from X to X. Then f~!
is a holomorphic correspondence.

However, there are many differences between projective space and compact Kdhler manifold.
Firstly, general compact Kahler manifolds may not have many automorphisms and therefore, it is
not clear that positive closed currents can be approximated by smooth positive closed currents.
Secondly, the Green potential may not be negative. In addition, the cohomology groups of a
general compact Kahler manifold are not simple compared to those of a complex projective space.
Lastly, the existence of the Green current is not clear. These are the main difficulties for the work
to be done on general compact Kdhler manifolds.

To resolve these obstacles, the following strategy is used. For the lack of symmetry, we quantify
the approximation theorem of positive closed currents introduced by Dinh-Sibony in [16] and
[22] so as to control the C''-norm of approximating smooth closed currents. Compared to the
case of P¥, approximating smooth closed currents may not be positive. So, we need additional
estimates in the form of (semi-)regular transforms. In this work, we use the Green potential
kernel induced from the work by Bost-Gillet-Soulé in [7]. In general, the Green potential is not
negative and therefore, we had to extend the estimates for the Green quasi-potential in [20] and
[1] to (semi-)regular transforms of positive closed currents. Since the cohomology groups may
be complicated, the mass of a positive closed current may not behave as nicely as in the case
of P* and so, we normalize the inverse image of a positive closed current with the dynamical
degree. Since the existence of the Green current is not clear, we rather observe the current S - ag
instead of S and later in Section [9] we consider sufficient conditions for the Green current to
exist. Summarizing the discussion in Section [9] we obtain the following:

Theorem 1.4. Let (X,w) be a compact Kdhler manifold of dimension k > 2and f : X - X a
surjective holomorphic endomorphism such that that d,—; < d, and d, is a simple eigenvalue of
f*: HPP(X,C) - HPP(X,C) and that other eigenvalues of f* on H?"P(X,C) have modulus strictly
less than dy,. Then, the limit T, := limy,— o d," (™) w? exists and there exists a proper analytic subset
E invariant under f such that for every positive closed (p,p)-current S smooth in a neighborhood of
E, we have

& (f™)*S - esTy



exponentially fast in the sense of currents where T, = lim,, ., d," (f")*w?, {-} denotes the de Rham

™) (S}t 7)
(T )

cohomology and p is the order of the main dynamical degree, cg =

In particular, if the action of f is simple on

(5,1°)
(WP T7)"

cohomology class, and cg = lim,,_o

Corollary 1.5. Assume f and E as in Theorem Then, if an analytic subset H of pure codimen-
sion (p,p) does not meet E, then

d;"(f") [H] > enT)
exponentially fast in the sense of currents where [ H| denotes the current of integration on H and

() {[H]Awr P}
dp{Ty p-{wkP}

CH = limn_,oo

The condition in Theorem [I.4] means a version of hyperbolicity so that there is only one maxi-
mally increasing direction in cohomology and all the others are decreasing directions. If X = P*,
then ds = d° and Theorem implies Theorem [1.2]

One remark is that while our primary interest is on holomorphic endomorphisms, Theorem[1.1]
applies to holomorphic automorphisms as well. Based on the proof, if f is a holomorphic auto-
morphism of X, then E = @, which means that every positive closed current satisfies Theorem[L.1l
One representative example of this is a holomorphic automorphism of a compact Kiahler manifold
with positive entropy. Concerning Theorem [1.4] in the case of holomorphic automorphisms, [9]
obtained finer results without speed of convergence. See also [22].

Another remark is that in this context, it is reasonable to consider a version of the Dinh-Sibony
conjecture in the following sense and our work partially answers the non-intersecting case.

Question 1.6 (See Conjecture 1.4 in [19]). Let (X,w) be a compact Kdhler manifold of dimension
k>2and f: X - X a surjective holomorphic endomorphism with simple action on cohomol-
0gy. Let p be the order of the main dynamical degree and T* the associated Green currents. Then
dy"(f")*[H] converges to cyT™ for every analytic subset H of X of pure dimension k - p which is
<([fp],’g__>>. Here, H is generic if either HNE = @ or codim H N & = p + codim & for

any irreducible component £ of every totally invariant proper analytic subset of X.

generic, where cyy =

Notation. We denote by ®,, and ¥,, the hypersurface of the critical points and that of the critical
values of f", respectively for n = 1,2,---. For an analytic subset V' of X, [V ] means the current of
integration over V' and multi, V means the multiplicity of V' at z € V' as an analytic subset. For a
positive closed current R, v(z, R) means the Lelong number R at x € X.

The distance dist(-,-) on a compact Kdhler manifold means the distance with respect to the
natural metric associated with the Kahler form. For a set A ¢ X and a constant ¢ > 0, the 6-
neighborhood Ay of A denotes the set of points = € X such that dist(z, A) < . The norms || - ||,
|- llce and || - ||za (OF ||« |oo,r> | - |co,r @nd | - | o, for a subset U of X) of a function or a form
are the norms of the function or the sum of the usual corresponding norms of its coefficients (on
U) with respect to a fixed finite atlas of X, respectively.
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2. PRELIMINARIES

2.1. Currents. For the basics of currents, we refer the reader to [10]. In this section, we intro-
duce some notations that we will use.



Let s be an integer such that 1 < s < k. If S is a positive or negative (s, s)-current on X, we

define the mass of S by
IS] = 1(S,057)]
Let ¢ denote the cone of positive closed (s, s)-currents on X, %, the real vector space generated
by €, and 2° the space of currents S € Z, such that {S} = 0 in H**(X,R). The duality between
the cohomology groups implies that if S is a current in %5, its mass depends only on the class {S'}
in H%*(X,R). We define the *-norm | - |« on Z; by
[S]l+ = min(|.S™] + [ S7]),

where the minimum is taken over S* € %, such that S = S* - S~. A subset in %, is said to be
*-bounded if it is bounded with respect to the *-norm. We will consider the following *-topology
on Z, and 2. We say that S,, converges to S in %, if S, - S weakly as currents and if the set
{|ISn|l+} is bounded. Note that if we restrict the *-topology to a *-bounded subset of Zs, then
it coincides with the usual weak topology on the space of currents. According to [22]], smooth

forms are dense in Z, and 2° with respect to the *-topology. We denote by 7, and .@? the subsets
of smooth forms in &, and 22, respectively.

We will also work on the space of L' functions which can be written as a difference of two
quasi-plurisubharmonic functions on X. On that space, we will use the DSH-norm which will be
denoted by | - |psi and defined by

| Flose == 1f s + [ dd® £

There are also some other natural norms and distances on %, which are closely related to the
weak topology. For o > 0, if S and S’ are currents in Z;, we define
ISle-o = sup [(S,o)| and  dista(S,5") = S - e
[l ca<t
where the supremum is taken over the set of the smooth test (k - s,k — s)-forms ¢ on X with
l¢llce < 1. Observe that | - |c-= S| - |+ for every a > 0.

Thanks to the standard theory of interpolation between Banach spaces, we have

Proposition 2.1 (Section 2.1 in [20]). Let o and o’ be strictly positive real numbers with o < /.
Then on any *-bounded subset of Zs, the topology induced from dist,, or from dist,s coincides with
the weak topology. Moreover, on any *-bounded subset of Z,, there is a constant c, o > 0 such that

distes < disty < cq o [distar ]

In particular, a function on a *-bounded subset of 9, is Holder continuous with respect to dist, if
and only if it is Holder continuous with respect to dist.

2.2. (semi-)regular transforms. We recall (semi-)regular transforms of currents in [22].

Consider the compact Kdhler manifold X := X x X. Let m; : X -— X denote the canonical
projection on its factor for ¢ = 1,2. Then, wy = mjw + mjw is a natural Kihler form on X. Let
7 : X > X be the blow-up of X along the diagonal submanifold A in X = X x X and let A := 77 1(A)
denote the exceptional hypersurface. We define II; := 7; o for ¢ = 1,2. Then, II; and its restrcition
to A are both submersions for i = 1,2. By a theorem of Blanchard in [6], X is a compact Kihler
manifold. We fix a Kéhler form ws on X x X throughout the article. For later use in Section [3]
we assume that ws is normalized as follows. The current 7. ([A] A w%‘l) has support in A and is
a positive closed current of bidimension (k, k). Hence, by the support theorem, ., ([A] A wA b
is a positive constant multiple of [A]. By multiplying a proper positive constant to ws, we may
assume that 7, ([A] A wA H=[A]



Definition 2.2. Let 0 < q < k be an integer. Let Q be a form of bidegree (q,q) on X which is smooth
outside A and such that

10| ~logdist(,A) and |vQ|< dist(-, )"

near A. Let s be an integer such that k — q < s < k. A linear mapping £ on the space of currents of
bidegree (s,s) on X to the space of currents (s +q—k,s +q—k) on X defined by

Z9(8) = (Il2). (I (5) A Q)
is called a semi-regular transform of bidegree (q — k,q — k) associated with the form Q.

If Q is smooth, then the transform < is said to be regular. If Q is positive, then the transform
£9 is said to be positive. If Q is closed, then the transform £< is said to be closed.

Here, |Q| and |V Q| mean the sum of the coefficients of Q and the sum of the estimates of their
gradients with respect to a fixed finite atlas of X, respectively.

Remark 2.3. A positive semi-regular transform maps positive currents to positive currents. A closed
semi-regular transform £< maps closed currents to closed currents and satisfies £ (dd"S) =
ddc.£2(S) for every current S.

Young’s inequality (or the Holder inequality) gives the following proposition.

Proposition 2.4. [Lemma 2.1 in [16] or Proposition 2.3.2 in [21]]] Any semi-regular transform
can be extended to a linear continous operator from the space of currents of order 0 to the space of
L™k _forms. It defines a linear continuous operator from the space of L*-forms, > 1, to the space
of L% -forms where o' is given by (o) ' +1=a '+ (1+1/k) Vifa<k+land o/ = o if > k + 1.
It also defines a linear continuous operator from the space of L*°-forms to the space of C'-forms.

2.3. Superpotentials. For the superpotential on a compact Kéhler manifold, we refer the reader
to [22]. See also [20] for the theory on complex projective space.

Let 8 = {f1,-, Bn. } with hy = dim H**(X,R) be a fixed family of real smooth closed (s, s)-
forms such that the family of classes {3} := {{S1},---,{Bn. }} is a basis of H**(X,R). We can also
find another family 8* = {87, 3, } of real smooth closed (k - s,k — s)-forms so that {3*} :=
{{B7},-+{B;.}} is a basis of H*"*¥5(X,R) and is the dual basis of {3} with respect to the
cup-product -.

Let R be a current in 2;__,, and Uy a potential of R, that is, a (k — s,k — s)-current such that
dd°Ugr = R. Adding to Uy, a suitable combination of ;s allows us to assume that (Ug, 5;) = 0 for
i=1,-, hs. We say that Uy is S-normalized.

Definition 2.5. Let 3 and (3* be given families of real smooth closed forms of bidegree (s,s) and
(k- s,k —s) as above, respectively. Let S be a current in Ys. The $-normalized superpotential %s of
S is the following function defined on smooth forms R in @£_S+1 by

Us(R) :=(S,Ug),

where Upg is an 3-normalized smooth potential of R. We say that S has a bounded superpotential if
Us is bounded on each +-boudned subset of 7)) _.,. We say that S has a continuous superpotential
if %s can be extended to a continuous function on 9 _ . Here, the topology is with respect to the
norm | - || c-o for some « > 0. In this case, the extension is also denoted by %s and is also called a
superpotential of S. We say that S has a Holder continuous superpotential if %s is continuous and
Hélder continuous on 2y __,, with respect to the norm | - | c-o for some a > 0.




Remark 2.6. The definition of the 8-normalized superpotential %s of S is independent of the choice
of B*. If S belongs to 27, the notion of superpotential is independent of the choice of the family j.
So, when we are dealing with superpotentials of currents S € 9°, we will not specify the families 3
and B*.

We recall the Green potential kernel and the Green potential of S for S € .@2 in [22], which are
useful in computing superpotentials.

The integration on the diagonal submanifold A of X defines a positive closed (k, k)-current
[A]. By the Kiinneth formula, we have a canonical isomorphism

HRF(x,C)~ Y H"™(X,C)® H"(X,C).
0<i<k
Then, [A] is cohomologous to a smooth real closed (k, k)-form aa which is a finite combination
of forms of type 7 (¢) A5 (¢") where ¢ and ¢ are closed forms on X of bidegree (i, k—i) and (k-
i,1), respectively. So, aa satisfies dyaa = dyaa = 0. Replacing aa (z,y) by [aa(z,y)+aa(y,2)]/2,
we may assume that aa is symmetric, i.e. invariant under the involution (z,y) — (y,x) where
(z,y) denotes the coordinates of X.

According to [7], there is a real smooth closed (k — 1,k — 1)-form n on X such that 7*(aa)

— —

is cohomologous to [A] A 1, where [A] is the positive closed (1,1)-current of integration on A.

Hence, 7. ([A] A7) is cohomologous to aa and therefore to [A]. Since the map (z,y) - (y,z)
induces an involution on X, we can also choose n symmetric with respect to this involution.

Let ax be a real closed (1,1)-form on X, which is cohomologous to [A]. We can choose
ax symmetric. There is a quasi-plurisubharmonic(g-psh for short) function u on X such that
dd°u = [A] - ax. This function is necessarily symmetric. Subtracting from u a constant, we may
assume that u < —2.

Choose a real smooth (k -1,k - 1)-form d5 on X such that dd®0s = 7" (aa) — ag A where an,
az and 7 are as above. We can choose d5 to be symmetric. Let Z% be the semi-regular transform
associated with the form K := un - d3. The following result was obtained in Proposition 2.1 in
122].

Proposition 2.7. Let S be a current in 9° with s > 1. Then Us := % (S) is a potential of S, that
is, dd°Ug = S in the sense of currents. Moreover, we have

[Us] Lo < cf Sl
for some constant ¢ > 0 independent of S.

We will call Us := .#%(S) the Green potential of S. Notice that K is not necessarily positive.
There exists a constant mg > 0 such that n +m wa%‘l and o3 +m ng‘l are both strictly positive.

We define the forms K, to be

K, :=u(n+ mng“‘Efl) - (mng“gl) and K_:= u(mngl) ~ (0 + mngl).

Both K, are strictly negative and X = #%+ - #K-_ In particular, the transforms . %+ associated
with the forms K, are negative.

3. REGULARIZATION OF POSITIVE CLOSED CURRENTS

The regularization of positive closed currents in this section was introduced in [16] and [22].
The main purpose of this section is to study its quantitative aspects.



Let u be the g-psh function on X in Subsection 2.3l Let y be a smooth convex increasing
function on Ru {-oo} such that x(¢) =t for¢t >0, x(t) =-1fort <-2and 0 < x’ < 1. For f € C, we
define

Xo(t) = x(t —loglf]) +log|f| and wg:=xp(u).

Then, ug = ujg and uy decreasingly converges to u as || - 0. Let mz > 0 be sufficiently large so
that mzws — ay is positive. Then, we have

ddug = (xp o u)du A du+ (xp o u)ddu = —(xg o u)ax > -mzwsg.

So, for # € C, the smooth closed (1,1)-current ax + dd“ug can be written as a difference of two
smooth positive closed (1,1)-currents as ay + ddug = (mzws + ddug) — (mzws — ag)-

—_

Recall that 7, ([A] A wg‘l) =[A]. Let 6 € C be such that |#| < 1. For notational convenience, we
write

e k-1 B o) A1 e k-1
$6+ o Z(mwaﬁ—dd ue)/\u.),a2 7 g(mwa aA)/\wx and = g(aA+dd ue)/\wx ‘

Then, we obviously have % = £ - ¢~ and %, = id on smooth forms (see [16} p.486]). The
transforms .%,", ¢~ and .%j are all positive closed and of bidegree (0, 0).

Our regularizing kernel (ax + ddug) A w?l is slightly different from the one in [22] but it
works in the same way in [22, Lemma 2.4.6]. Also, in [22] Lemma 2.4.6], we do not actually
need the closedness of a smooth current. So, we get the following lemma.

Lemma 3.1. Let ¢ be a smooth form of bidegree (k — s,k — s). Then, for every 6 € C, £(p) is
smooth and

|26(0) = #lleo <l

where ¢ > 0 is a constant independent of ¢ and 6.

From [22], Lemma 2.4.1], we can deduce the following lemma. The constant ¢ > 0 below comes
from the description of the support of dd“uy in terms of 6 in the lemma.

Lemma 3.2. Let 6 € C* be sufficiently small. Then, there exist constants c,cy > 0 independent of 0
such that for any subset U of X and for any form S with C*-coefficients and suppS € U, Z(S) is
C* with compact support in U, such that

—~+dd° fc;l
1%()lcn o, = 12T () 1 0, < 2l Sl o

Proof. The uniform norm estimate is quite straightforward. So, we omit it and focus on the
estimate of its gradient. Since S has C'! coefficients, we have

g(a5+ddcu6)/\w§’l (S) _ (Hg)*(HT(S) A (O‘Z + ddCUQ) A w'%_l)

= (m2)« (77 (S) Ao ((ax + ddug) /\w?l)).

According to [22, Lemma 2.4.1], there exists a constant ¢ > 0 such that the support of 7, ((ax +
ddug) A wfgl) is in (A).p for all s with sufficiently small |f]. Also, notice that the support
of 7.(dd‘ug) is away from A. By use of a partition of unity, we may assume that the support
of S and the support of .%(S) belongs to the same coordinate neighborhood. Let P ¢ X be
point. Let (x,y) = (%1, 2k, y1, - Yk ) € X x X be local coordinates in a neighborhood of a point
(P, P) € X x X such that (0,---,0,0,---,0) corresponds to (P, P). Let P’ be a point in the support
of Z(S) and y' = (y1,-, ;) its coordinates.



Let v = (v, ---,vk) e C* be such that |v1|? + -~ + |[ug|? = 1. Then, we consider the form of
[(W2) (71 (S) Ame((ag +ddug) AwE™)) (Y + hw)
= (m2)« (7] (9) A e ((ag +ddug) AwE)) (Y]
=7 / [(71 (S)(z) A e ((ax + ddug) /\w ))(ac y' + hv)
-1 (9) (@) Ame((ag +ddug) AwE™)) (z,y")]
Note that since S has C'! coefficients,
Jim + f (75 (S) (@ + ho) A, ((ax +ddug) Awk ™)) (@,y)

- 77 () (@) Ame((ag +ddug) Awg ™)) (@,y")]
is a continuous form whose uniform norm is bounded by || S| -1 up to a constant multiple inde-

pendent of §. Indeed, this is just the transform of the derivative of S in the direction of v, which
is a continuous form. So, it is enough to estimate

M’ f (71 (S)(x + hv) A ((ax + ddug) /\w ))(ac y')
-1 (8)(x) A ((ag +ddug) /\wA "Nz, y + b))

=7 / (71 (S)(x + hv) A ((ax + ddug) /\w ))(x y')
-m () (x + hw) A ((ax + ddug) /\wA N+ hv,y + ho)]

3.1 2/[(771 (S)(z + hv) /\[m((aA+ddcu@)/\w M,y
- ((ax + ddug) /\w "Nz + v,y + h)]]

for all h with sufficiently small |4| and show that this quantity is bounded by | S|+ up to a constant
independently of #. The first equality comes from the change of the variable x — x — hv inside the
integral. Since S is bounded, it suffices to consider the estimate of

L[ ((a + ddug) Awk™))(z,1) = (a5 + ddug) Ak ) (o + oy + )]

After shrinking the neighborhood of (P, P) if necessary, we change variables (z,y) - (z,y — x)
and denote by z = y — x. Then, in the neighborhood of (P,0), A = {z = 0} and the operator
(m2). is the integration with respect to the z-variable. Since the support of 7, (dduy) is away
from A, it is enough to consider the case where one of z;’s is not equal to 0. Without loss
of generality, we only consider the open set z; # 0. Then, once again, we change variables
(z, z) (x,21,29/71,, 2k/2z1) in that neighborhood. We denote by w; = z; and w; = z;/z; for
i =2,---, k. With respect to the coordinates (z,w), the above quantity becomes

(3.2) }11[((0% +ddug) /\w H(z,w') - ((ag +dd ug) /\w Nz + hw,w')]

where w] = y] - 21 and w] = (v, — z;)/(y] — z1) for ¢ = 2,--- k. With respect to the coordinates
(z,w), the function u can be written as u = log |w1| + ¢ for a smooth function ¢ of z and w. Then,
we have

ddug = dd°[xg(u)] = xy (w)d(log |wi| + ¥) A d°(log |w1] + 1) + xp(u)dd®(log |wy| + ).
Hence, as h — 0, we get some extra derivatives of ¢) and yy(u) with respect to x, which are
bounded independently of §. So, by the argument used in [22, Lemma 2.4.1], |(3.2)| is bounded

by 1/|0|? up to a constant multiple independent of . Given y’, due to the smallness of the support
of dd°(az + dd‘ug)), we integrate the bounded integrand on |z; - yj| < ¢/|f| for some ¢’ > 0



independent of 6, which gives us a value of order |9|* and cancels the factor 1/|0|>. So, the value
|3.ID| is bounded by | S| up to a constant multiple independent of § and S. O

The above two lemmas imply the following:

Proposition 3.3. Let ¢ be a smooth test form of bidegree (k — s,k — ). Then, | ZF*2(¢) - ¢]
converges to 0 as 6 — 0.

Proof. It is enough to observe that

k+1

Ly () - = ZO Lo( L5 (9) - L3 ()

and that | £} ()| is uniformly bounded by ||¢[ 1 up to a constant independent of ¢ and i =
0,---,k + 1. Then, a previous lemma completes the proof. O
For S € 9,, we define
Spi= Lyo-025(S) = LF2(S).

Proposition [2.4] implies that Sy is a current with C*-coefficients. According to [16], Sy belongs
to the same cohomology class as S does. This regularization is essentially the same as the one in
[16] but slightly different from the one in [22]. Since currents in &, are of order 0, Proposition
implies the convergence Sy — S in the sense of currents

Corollary 3.4. For each current S € 9, the sequence (Sp) of C'-smooth currents converges to S in
the sense of currents.

Note that Sy is not positive in general. However, the regularization Sy can be written as Sy =
Zi(—1)Sgn(ﬁvl"'7ﬁvk+2)ﬁ71 0--0.%; 1+2(S) where .7 ; is either .Z" or £~ and sgn(.% 1,+, %} k+2)
is the number of indices .7 ; such that .%; ; = #~. Then, Sy can be written as

Sp =S5 - S,
where S are positive closed currents of bidegree (s,s). Indeed, S; (or Sy) is just the sum of
terms (—1)%82(Zi1Zik2) & 1 0.0 % 1 ,9(S) with even (or odd) sgn. Proposition 2.4 implies that
Sz are of C'-coefficients. We give C'-estimates of S in terms of 6.

Proposition 3.5. There exists a constant cqeg > 0 such that for all § with sufficiently small |0| and
forall S € €;, we have

551 < creglSI and  |S5llor < cregl6]” CH2E2 5.

Lemma 3.6. Let S be a current in 6s. Then for all § € C* with sufficiently small |6|, the current
T (S) is smooth and we have

| LT (S) o < o] R 5]

where ¢ > 0 is a constant independent of S and 6.

gddcug Aw.

Proof The first assertion is from the observation that the support of dduy is away from A. So,
we consider the second assertion. We have
LN (S) = (T1o). (T (S) A ddCug A wh™)
= (m2)« (77 (S) A (ddug) A m(wfi)kfl).
For the support of dd°uy does not intersect A. We estimate 7, (ddug) A (wg)k‘l.

Since X is compact and all the derivatives of uy are uniformly bounded outside a neighborhood
of A, it suffices to estimate in a neighborhood of a point (P, P) € A ¢ X x X for a point P € X. Let
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(z,y) = (x1,, 2k, Y1, Yr) € X x X be local coordinates in a neighborhood of a point (P, P) ¢
X x X. After shrinking the neighborhood of (P, P) if necessary, we make a change of variables
(z,y) -» (x,y — z) and denote by z = y — x. Then, in the neighborhood, A = {z = 0} and the
operator (79), is the integration with respect to the z-variable.

Since the support of 7, (ddug A wA ~1) is away from A, it is enough to estimate the C''-norm of
T (ddug /\wA 1Y in a sector & of the form |z1| < € and |z;| < 2|21| where z = (z1,--, 2 ). Here, for
simplicity, we _]USt take ¢ = 1. We apply the same arguments to other sectors.

The following is a slight modification of [22 Lemma 2.4.1]. We again make a change of vari-
ables wy = z; and wj = z;/z for j > 2 so that (z,w;,ws, -, wy) becomes the natural coordinates
of 71(6) c X x X and A = {w; = 0}.

As in the proof of [22] Lemma 2.4.1], the support of dd“uy sits inside {c;|0| < |w1|} for some

constant ¢; > 0 independent of 6. As previously, with respect to the coordinates (z,w), the
function u can be written as u = log |w;| + ¢ for a smooth function ¢ of x and w. Then, we have

ddug = dd°[xg(u)] = x4 (w)d(log [w] + 1) A d*(log [wi] + ) + xp(u)dd® (log [wi| + ).

Observe that 7, (dd“ug) is obtained from replacing wy, -+, wy by 21, 22/21,++, 21/ 21. S0, we have

7. (ddug) = xp (u)d(log |21 | + ¥(w, 21, 20/ 21, -+, 21/ 21) ) Ad°(log|z1| + ¥(x, 21, 22/ 21, 2k [ 21))

+ xg(u)dd®(log |21| + ¥ (x, 21, 22/ 21, 21/ 21))-

Also, each component of wfgl is of the form C'(z,w)dzr A dZj A dwpr A dwy where C(z,w) is
a smooth function of z and w, and dx; A dZj A dwp A dwy: is the wedge product of dxq, -, day
and dwy, -+, dwy, of bidegree (k -1,k —1). Again, m, (w%l) is obtained from replacing wy, -, wy,
by 21, 22/21,++, 21/ 21. By direct computations, we have

i~ Ti 1 i
d(y ): d(yi — i) - %o Qd(yl 1)
Y1 -1 Y1 -1 (y1—z1)

for each i = 2,--- k. After changing coordinates back to (x,y) from (z,z), each coefficient of
. (wg)* ! is of the form (y1—21) ™ (71 -71) " C' (2, y1 -1, (ya—22) [ (y1-21), -, (yh —2x) [ (Y1 -21))
where 0 < [,l’ < k-1and C’ is a smooth function of z,y1 —x1, (y2 —x2)/(y1 — 1), (yx — Sﬂk)/(y1 -
z1). The support of ddug lies in {c;|6] < |21]}. The C'-norm of each coefficient of ,(ws) k-1
with respect to y is bounded by |§|~2**! up to a positive constant multiple independent of §. The
proof of [22, Lemma 2.4.1] implies that the C''-norm of the coefficients of ddug on its support is
bounded by |#|~3 up to a positive constant multiple independent of 6. So, we get

[(2) (7 (S) A (ddug) Ao (wy) ™))l s 101725

where the inequality < means < up to a constant multiple independent of S and 6. O

Proof of Proposition[3.5] The first estimate is from the same argument used in [16, Theorem

1.1]. We consider the second inequality. Without loss of generality, we may assume that S
_ k c k-1

is a positive closed (p,p)-current on X. Notice that .%; = £™"%"“x + £""0"%" and ¥~ -

_ k-1

RN .,2”‘1 7! Hence, Si’s are the sum of (k+2)-times comp051t10ns of PN poei

or 25" The terms containing only either LM% or LOTE T gre independent of 4. So,

c k-1
the dominating part of the operator is (.de uorvx Yo(k+2) and the previous lemma implies the
desired estimate. O

Lemma 3.7. Let S be a positive current of bidegree (p,p). There exists a constant ¢ > 0 such that for
all 0 with sufficiently small |0|, we have

|26" () <c@+10D[S] 127 (S <clS| and | ZL(F)]. <c(2+10D]S]



11

where the constant ¢ > 0 is independent of S and 6.
Proof. From Lemma [3.1] we get
(L5 (9),w"P) = (Z(S) + £7(8), 0 P) = (S, Zy(W"P) +. 27 (")) < (1 + 165
and
(L7(8),w" ) = (5,27 (")) < ||
for some ¢’ >0 and ¢’ > 0. Using the definition of the *-norm, we get the last inequality. O

Lemma 3.8. Let Sy and S; are positive currents of bidegree (s1,s1) and (s2, $2) such that s;+s9 =k
and suppS; NnsuppSy = @. Then, for all § with sufficiently small |0|, we have

(51,.29(82)) = 0.

Proof. [22, Lemma 2.4.1] implies that the support of 7, ((az + ddugy) A wfgl) uniformly shirinks

toAasf—0. O

Lemma 3.9. Let Sy and S, are positive currents of bidegree (s1,s1) and (so, $2) such that s;+s9 =k
and suppS; NsuppSy = @. Then, we have

[(S1,.27(59))| s dist(suppSi, suppS2)* Sy | - | Sa -
The inequality < means < up to a constant multiple independent of S1 and Ss.

Proof. The support of 77 (S1) Am5(S2) is away from A. On its support, Lemma 3.1 in [16] implies
that

k : 2-2k
Hﬂ'*w’x\n oo, supp7y (S1)A75(S2) S dlSt(SuppSh SuppSQ) :

Since S; and S, are positive, the mass of 7 (S1) A 73 (S2) is bounded by |S1| - [|S2]|. O

4. ANALYTIC (SUB)MULTIPLICATIVE COCYCLES

The notion of analytic (sub)multiplicative cocycles was first introduced by Favre [24], [25] and
further studied by Dinh [12] and Gignac [31].

Let Z be an irreducible compact complex space of dimension [/, not necessarily smooth. Let
g:Z — Z be an open holomorphic map.

Definition 4.1. [Definition 1.1 in [12]] A sequence {x,} of functions k, : Z — (0,00) for n > 0
is said to be an analytic submultiplicative (resp., multiplicative) cocycle (with respect to g) if for all
m,n >0 and forall z € Z,
(1) &, is upper-semicontinuous (usc for short) with respect to the Zariski topology on Z and
Kn > Cp for some constant c,; > 0, and

(2) Emin(2) < En(2) - km(g™(2)) (resp., =).
Definition 4.2 (Introduction in [12]).

Kn(2) = wer;a}l}(cz) En(w).

Observe that k_,, is usc in the Zariski sense. The following theorem is the key in this section.

Theorem 4.3. [Theorem 1.2 in [12]] The sequence {(n,n)l/"} converges to a function ~_ defined
over Z with the following properties: for all § > infy k_, the set {k_ > §} is a proper analytic subset
of Z, invariant under g and contained in the orbit of {x, > 6"} for all n > 0. In particular, r_ is usc
in the Zariski sense.
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The above notions and related properties work well on compact Kihler manifolds and so we
will adopt the settings used in [1]. From now on, we assume the hypotheses of Theorem [1.1l
Then, f is a finite-to-one map and by the open mapping theorem between complex spaces, f is
open.

4.1. Local multiplicity of f". For each n € N, define u,(x) to be the local multiplicity of f"
at z € X. Then, {u,} is an analytic multiplicative cocycle with respect to f. By Theorem [4.3]
the limit function p- with minx pu— = 1 exists for the sequence {u,}. Since X is compact and
p— is usc in the Zariski sense, there exists a constant d; > 0 such that dy = maxx p—. Since the
topological degree of the map f is dj, u1(x) < di, for all z € X and therefore, by (2) of Definition
BT, (pn(z))™ < dy and dy < dy.

If d; > 1, then we define E) == {u_ > d;\7} for 1 <\ < dy.

4.2. Multiplicity of the analytic subset defined by the set of critical values of f”. For nota-
tional convenience, we denote {(x,y) := v(x,ddlog|y|) for a point x € X and a holomorphic
function ¢ : X - C where v(z,dd"log|p|) denotes the Lelong number of the current dd®log || at
x € X. Then, by the chain rule, we have &(x, Jgmn) = {(x, Jn) +&(x, Jgm o f7) for any x € X and
for any m,n € N and also the following proposition:

Proposition 4.4 (See Remark 3 in [23]; for a sharper version, see also [35]]). For any x € X and
for any m,n > 0, the following inequality holds:

§(@, Jpm o f1) < (2k =1+ 26(2, Jpn)) - (" (2), Jym).

For each n € N, we define p, () := 2k -1 + 2{(x, J4») on X, where J;» denotes the Jacobian
determinant of f". Then, the above proposition implies that {4/, } is an analytic submultiplicative
cocycle with respect to f (see Section 3 in [26]). Hence, by Theorem [4.3] the limit function p’
exists for {y,, }. We have minx p” = 1. Since u” is usc in the Zariski sense, there exists a constant
d'; > 0 such that d; = maxx p’.

If &} > 1, we define E}, := {u_ > d}()\’)*l} for 1 < \" < d}. The sets E and EY, are proper
analytic subsets of X invariant under f.
Lemma 4.5 (Lemma 2.6 in [1]]). Assume that df,d} > 1. Let E\ and E!, be defined for A\ and \

with1l<X<dfand 1<\ < d}, respectively. Let E := E\ u E},. Then, E is invariant under f and
there exists ng € N such that for every m €N,

df ngm
(1) peppm(x) < (7) forx e W, ;N E;
k dl ngm
i - i\ < v E
(2) multi, ¥, m = v(2, [Vnym]) < congm ~) v forx eV, m\E,
where ¢y denotes the number of the irreducible components in the hypersurface W, of the critical
values of f.

5. HOLDER CONTINUITY

In this section, we collect the Holder continuity properties of some functions and some super-
potentials which will be used to prove Theorem [1.l

Definition 5.1. Let K and « be positive constants. Let U be an open subset of X. A continuous map
g: X - Ris said to be (K, «)-Holder continuous on U if for every x,y € U, we have

lg(z) = g(y)| < Kdist(z,y)".

Let X and f: X — X be as in Theorem[I.Il Let E be an analytic subset invariant under f and
0 > 1 a real number such that ;_; < d on X \ E. As a corollary to [21, Proposition 4.2], we obtain
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Corollary 5.2 (Corollary 4.4 in [21]). There are an integer Ng and a constant cg > 1 such that if
0 <t < 11isa constant and if z,y are two points in X with dist(z, F) > t and dist(y, E') > t, then we
can write

fﬁl(x) = {'Ila "-,xdk} and fﬁl(y) = {yl,'--aydk}
with dist(z;,y;) < cpt NP dist(z, y) 0.

Let wy be a smooth closed (1,1)-form in {f.(w)}. Then, there exists a q-psh function us: X —
R such that f,(w) —wy = dd°uy. The function uy is unique up to a constant. By adding a proper
constant, we may assume that uy < —1. We can investigate the Holder continuity property of u;
outside the set E.

Lemma 5.3. Assume that s > 0 be a sufficiently small real number. Then, uy is (cys™V2,57)-Hélder
continuous on X \ E for some ¢y > 0 independent of s where N, is a constant in Corollary 5.2

Lemma 5.4. Let g : X — R be a continuous function. Let K, « and 6 be positive real numbers.
Assume that |0| be sufficiently small. Let Wy and W3 be two neighborhoods of E such that Wy € W
and (Wf)y ¢ Wy. Assume that g is (K, a)-Holder continuous on Wy. Then, there exists a smooth
function § defined in a neighborhood of WY to R such that

2(k+1)

[l < 8 and g - Floowvy < KO

where the constant ¢ > 0 is independent of K, «, 6, W1 and Wh.

Proof. We first consider the following local case. Denote by B and B’ two balls in a cooridnate
chart with center at 0 and of radii 1 and 2, respectively. Let K, « and 6 be positive real numbers.
Let E c C* be an analytic subset, and V and W two open neighborhoods of E such that W¢ c
(We¢)g c V¢ and that BNW # @ in order to avoid triviality. Let g : B’ — R be a continuous function
which is (K, «)-Holder continuous on B/ \ V.

Let g, denote the restriction to the set B\ W of the standard regularization by convolution of
g. Then, ges : BN W — R becomes a desired smooth function. More precisely, let ¢ : C*>Rbea
smooth function such that supp ¢ € {|z| < 1}, 1(z) > 0 for all z € C¥, ¥)(z) = (|2]), 1 is decreasing
in |2| and [« 1(2)d\(2) = 1 where X denotes the standard Lebesgue measure on C*. Then, gy is
defined by

des(@) = [ ol =n)lf]e(u/0)dA)
Since the support of ¥ (y/0) sits inside {|y| < ||}, for any z ¢ B - W,
@) ~gres(@)| = | [, (0(@) =g = )OI 0 (/0)aAw)|
< [ o lo(e) =gz =)o (w/8)dA()

< [ KB o) < [ Ko e(/o)d) < Ko
yeCF yeCF
For the second argument, we use the change of variables. This is also standard.
gres (@)= [ ola=nlol*0@/0)iAw) = [ gl v (( - 2)/8)dA().
yeC zeC
Since ¢ is smooth, we have
lgeeclcz s suplgl - 162D bl

Observe that the constants involved in the inequalites other than K, «, 6 and supp |g| are some
constants related to 1. So, for a fixed g : B’ - R, we get the same inequalities for different K, o,
6,V and W as long as W€ c (WW¢)y c V¢ holds and ¢ is (K, «)-Holder continuous on B’ \ V.
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Now, we consider the general case. At each point x( € X, we take an open neighborhood U,
and a coordinate chart ¢, : U,, - C* such that B’ c ¢,,(Uy,). This can be always achieved by
scaling ¢,. Then, we let B, = ¢;}(B) and B, := ¢,}(B’). Since X is compact, we can find a
finite cover (B;);-1....n out of (Bg,)zex- Let (x;);-1,... n be a partition of unity subordinated to
the cover (B;);-1,.. N.

Notice that on each B, the Euclidean metric and the metric induced from X are equivalent.
So, there exists a constant ¢; > 1 such that c;-ldist(m, y) <|v -yl < cjdist(z,y) for z,y € B]. So, we
apply the above model case with 6 replace by c]’-lﬁi and with V =Wy n B]’- and W =Wy n B]’- and
denote by g; ; the resulting function g,¢, on B;. Then, the desired function g; is obtained by

N
gi = Z XjYi,j-
j=1
O

Now, we consider the Holder continuity of some superpotentials. Since f is not just a holomor-
phic correspondence but a holomorphic map, f*(«) is smooth whenever « is smooth. Hence, we
can apply the same argument in the proof Lemma 5.4.3 in [20] and we get the desired Holder
continuity.

Lemma 5.5. Let 1 < s < k be an integer. The superpotential of f.(w®) — ay,(,s) admits Holder
continuous superpotentials, where ay, () is a real closed smooth (s, s)-form in { f.(w®)}.

Proof. We know that f,(w) admits Holder continuous quasi-potentials. Then, by [22, Proposi-
tion 3.4.2], we have the Holder continuity of superpotentials of [f,(w)]’. Then, since f,(w') <
[f.(w)]’, the domination principle in [[15, Theorem 1.1] implies that the superpotential of f, (w')
is Holder continuous. 0

6. PROOF OF THEOREM [1.1]

Since E is invariant under f, without loss of generality, it suffices to prove the theorem with f
replaced by some power f/ of it. We first find F and then a good iterate fVs of f. For notational
convenience, we will write operators L := d,' f*, A := d;!, f. on %, Dj_p.1, respectively. Note
that since the set of indeterminacy is empty, (f")* = (f*)". So, L"(-) = d,"(f")*(-) on Z,.

Recall the two constants dy and d} associated with f introduced in Section[4l We first consider
the case of d¢ > 1 and d} > 1 and then other cases later.

6.1. dy >1 and d} > 1. We define a non-negative integer ngy, such that

d
de <2
! (ds—l

Let 1 < p <k be an integer such that d,,_; < d,. We denote d :=d,/d,-;.

Ndyn
) forall 1 <s<p.

We can find a sufficiently large N; € N so that for every n > Ny,
(40K> cgn)Bramk < dt,

where cy is the number of the irreducible components in the hypersurface ¥, of the critical values
of f as in Section[4l

Recall the definition of the dynamical degree. There exists a N, € N such that for every n > N,
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Let c,, > 0 be a constant such that for every integer 1 <1 <k, —¢p,[|¢[loow! < © < €] @] sow! holds
for every smooth (/,7)-form . Then, if n > N,, we have

(17(8).47) = (L") P < e (3) s

for every current S € ¢, where ag is a smooth closed form in {S}. In the same way, if n > Ny

(A"(R), ™) = {(A"(ar), &™) < e (g)n oo
for every current R € 6),_,.1 where ar is a smooth closed form in {R}.
Then, take N = N; + N, and we can choose 1 < A < d; such that
(40K2cy NY VO gl a0y g
Further, we can also choose 1 < \ < d} such that

de\F (d] 1 (8 k) . _
6.1) 1< (Tf) (A—{) < (40k2cy N)™N ldgf; R O A COR

For such 1 < A < df and 1 < X' < d}, let £ := E\ u EY| where E) := {u_ > dyA"'} and EY, :=

di\k d ngNj
{p" > d}()\’)fl} as in Section[4l For each j € N and for § = cyngNj ((Tf) )\—’j) , Lemma [4.5]
implies
(D ,u,nENj(:U)<(T) <dforzxeW,, nj\E;
d\E d’ ngNj
(2) multi, ¥, nj = v(z, [Ynynj]) <conpNj ((Tf) )\—J:) =dforzeV, nj\E,

where cy denotes the number of the irreducible components in the hypersurface ¥, of the critical
values of f.

We look into the relationship between ¢ and d which is a crucial condition for the proof. From
(6.1) and 40k%cy N > 3, we get

2 2 dy g d} ne 2 [ (9 g d} net Nj(8k)™1
40k25 = (40k2cynpN ) (7) 7 < (40K2cq Ny (7) oy < ENIGRT

Hence, we take Ny = ngynngeN. Since F is invariant under f, it is invariant under fNr. We
replace f by 7, A by AN and X' by (). Also Wy is replaced by Wy, which will be denoted

by V. By the definition, the dynamical degree d; is replaced by dévf for 0 < s <k, and dy and d}
are replaced by djcvf and d}Nf . Then, we may assume that f : X — X satisfy Condition (M)

(1) poq(x)<dforxeV \ Eand
(2) multi,V<éfor X eV\FE

de\* (d]
where § = cgngygnneN (Tf) ()\—]:) But note that we keep cy from the replacement, and that

Ndyn, N and N are unchanged. The number cyngynne N will play the role of an upper bound of
the number of irreducible components in ¥ Ny After the replacement, we have

(6.2) (40k26)%F < @3/4
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and the mass estimate as follows:

N¢n

" 5an " 5 I
(63) ") <en(5) " lasle and A <en(5) larle

for S € ¢, and for R € €j,_p1.

Now, we prove the statement of Theorem[I.]l Let S € %), be a current such that S has a smooth
representation in a neighborhood of E. Let ¢ be a smooth test form of bidegree (k- p, k—p). Our
goal is to show

[(L™(8) = L™ (), 9)| = |[%in(5-a5)(dd°p)| < c| | c2p"  forallneN

for some constants ¢ > 0 and 0 < p < 1 independent of . Similarly to ¢,,, we can find a constant
¢! > 0 such that for any ¢, ¢/ o] c2w*P*! + ddy is a positive form. We can write

dd°p = (&), | Pl 2w P+ ddop) = €], o] 2w P
So, we will estimate %jn(s_q)(RR) for smooth R ¢ ‘@,gfp .1 such that R = R, — R_ where R, are
smooth currents in %j,_,.1 with | R, | < 1.

To this end, we define some sequences (s, ;, €54, tn,; below) for computational purposes which
will be used in splitting X into three regions. Roughly speaking, the first region is a neighborhood
of a subset of V' \ E, the second one a neighborhood of F, and the last one the complement of the
two sets. The following two lemmas will be used to find an appropriate size of the neighborhood
of a subset of V \ F and E.

Below was induced from a Lojasiewicz type inequality in [1]]. See also [29] and [21]. It is
of local nature, and so it is valid in our case as well. Let ay be a closed smooth (1,1)-form
cohomologous to the current of integration [V']. Then, we can find a unique g-psh function ¢y
over X such that supy ¢y = 0and dd°py = [V]-ay. Let Ey = VnE. Then, from our construction,
forall z € V \ Ey, multi,V < ¢ from (2) of Condition (M).

Lemma 6.1 (See Lemma 3.3 in [1]]). There are constants C, A > 0 such that for x € X,
dlogdist(z, V) + Clogdist(x, Ey) - A < py(x) <logdist(z, V) + A.

Lemma 6.2 (See Lemma 3.1 in [21]). There is a constant my > 1 such that for every subset A and
Bof X,

dist(f77(A), f7(B)) >m} dist(A, B)  for every j > 0.
In particular, if f(B) ¢ B,
dist(f77(A), B) >m}’dist(A, B)  for every j > 0.

For the moment, let £ > 0 be a sufficiently small positive real number so that ¢ < m}l. Later,
this number will be precisely defined in terms of n. We define the following sequences of real
numbers and currents forne Nand 1 <i < n.

o sni=e",
_ 6nC(4k+NE)(4Ok26)6ki and
b tn,i = 5n,i(10k)_1:
o Rn,O = R and Rn,i = (A(Rn,ifl))en’i.

® Eny
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where the subscript means the regularization in Section[3l The constant C > 0 is from Lemma[6.1]
and the constant Ng is from Corollary[5.2l Then, following [20] and [1]], we can expand

(Upn(s-ag)» B) = (LUpn-1(5-0g) R) = " {Upn-1(5-ag), A(R))
= d_1<UL"‘1(Sfas)’ A(Rmo) - Rn,1> + d_1<UL"‘1(Sfas)’ Rn,1>
= d" N Upn1(5-ag)s AMBno) = Bnt) + > (Upn-2(5-ag), A(Bn1))
=d"Upn-1(5-ag), MRno) = Rn,1)
+ et diZ<UL"*i(S—aS)’ A(Rnﬂ',l) - Rn,i>
+t d_n<US—ozst(Rn,n—1) - Rn,n) + d_n<US—aszn,n>
where the potentials are assumed to be the Green potentials. Here, the pairings in the above
make sense since the Green potentials are currents of order 0 and A(R,,;)’s admit continuous

superpotentials for all n € N and for all 1 <i <n as R, ;’s have C'-coefficients. Since the operator
A and the regularizing operators are linear, we need to estimate
€Y d_i<ULn—i(S_aS),A(Rnﬂ',l) - R, ;) for smooth R € €},_p,1 with |R||.c <1and fori=1,--n,
and
(2) d"™(Us-ag,Rnrn) for smooth R € ‘@,gfp .1 such that R = R, — R_ where R, are smooth
currents in 6j_p+1 With |Ry e < 1.
Suppose that whenever ¢ > 0 is sufficiently small, then (1) < e and (2) < nd™/ 4(—log e) for all
integers n and ¢ with 1 < i < n where the inequality is independent of n and i. (These estimates
of (1) and (2) will be proved in Section[7land Section[8l) Then, from the expansion, we have

(Upn(5-as)> R)| § 6ne + nd"/*(~loge)

for all sufficiently small € > 0. We take ¢ = d~™ and let n — oo. Then, p = d'/® proves the statement
for the case of dy > 1 and d} > 1.

6.2. df =1 or d} = 1. In these cases, we get either £ = @ or E' = @. We will consider only the
case of dy = 1 and d} = 1. For the other two cases can be easily deduced. It is enough to find a

good iterate fVs of f so that we can apply the previous argument. Let d := dy/d,-1. Choose a
sufficiently large N; € N so that for every n > N1, we have

(40k?cyn)®F < d".
Then, as in the case of d¢ > 1 and d} >1,wecanfind 1< A<dand0< )\ <1 so that
k
1 i -
be (%) ( Y) < (40k2cy Ny )N a®R)

As in the case of d; > 1 and d} > 1, there exist constants c,, > 0 and N> € N such that

n

(E(8), ) < e (2) fasle and (A (R)wP ) < e (2) fanl

for every n > N, where S € €, and R € ¢, are currents, and ag and ap are smooth closed
forms in the same cohomology class as .S and R, respectively. Let N = N7 + No.

For such 1 < A< d and 0 < )" <1, as remarked in the above, we have F := g and the arguments
in Lemma [4.5]imply that for some large enough ny € N, we have

d ngN
@D) N—nEN($)<(X) <dforxeV,, N;

1

ngN
y) =dforzeV¥,, N,

d k
(2) multi,¥,,,n < congN ((X)
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b d\" 1
where § = C\anN((X) Y
the hypersurface W; of the critical values of f. We replace f by f¥/ where N; := ngpN. Then,
with these multiplicity conditions, our arguments in the case of d; > 1 and d} > 1 work in the
same way and give us the desired conclusion. Note that in this case, we have F = @, we only need
to compute on W,,; 1 and W), ; 3 and that every positive closed current of bidegree (p,p) satisfies

Theorem [1.11 O

ngN
) and cy denotes the number of the irreducible components in

We end this section with a lemma about some estimates related to the currents R, ;, which
were not needed in the case of P¥ due to the simplicity of its cohomology.
N ..
Lemma 6.3. Let C), = 2¢regCm (%) ! Let R e Ck-p+1 be a smooth current. Then, for all positive
integers n and i such that 1 < i < n, the current R, ; can be expressed R,,; = R}, ; - R, ; where R, ,
are smooth positive closed (k —p+ 1,k — p + 1)-currents such that

M R,

) -6k?
o1+ Ry iler < IR er (Cr)’ (Hen,j) and
j=1

@) Ry,

i-1 6k
[ Bl < [Rle (G’ (Ham) :

J=1

Proof. We prove by induction. When i = 1, Then, R, 1 = (A(R))Z , - (A(R))Z ,. Proposition [3.5]
and the estimates (6.3) prove it. So, we may assume that it is true for i — 1 with i > 2. Denote by
Tni = [ Ry ilor + | R, ;o1 - Then, from Section[3] we have

Rni= (AR 0))2,, + (MR 00)e,, — (MR )z, - (AR, 0))E
and define
RZ,Z- = (A(R;,z‘fl));,i + (A(Rr_m?l));n,i and R, ;= (A(Rﬁ,ifl));l,i + (A(Rﬁ,pl));ﬂ,i-
From Proposition [3.5] and the estimates (6.3), we have

< regei [ACRE )] < crogem (2] 28 IR
reg€n, i n,i-1)] S CregCm 1 €nyi [ n,i—l”Clv

[CXCF) i e

respectively and thus by the triangle inequality, we get

5 Nf *6]62
Tni < 2CregCm 1 Eni Tnyi-1-

For the mass estimate, we have
<R, -0))2, |+ IA (R, 21))z, | < creg (AR, -0+ TA(RS 1))

5\ Vs
SCregcm Z Tn,i-1-

The same is true for R ;. So, we proved for i as desired. O

+
HRn,z

7. ESTIMATES OF d™“(Upn-i(5-ag)s A Rni-1) = Rn,i)

We start by constructing two sequences of cut-off functions playing the role of smoothing out
the boundary of the neighborhoods of E' and a subset of V' \ E, on each of which the currents
L"(S - ag) and f,(w*P*1) have different analytic properties.
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Lemma 7.1 (See Lemma 2.2.6 in [20]). Let x : Ru{-oo} — R be a convex increasing function such
that ' is bounded. Then, for every DSH function ¢, x(¢) is DSH and

Ix(¢)psu S 1+ |¢[psu-

In particular; inf [Ty || is bounded by ||x'||eo inf |T~|, where Ty and T* are positive closed currents
such that dd“x(¢) = Ty =T, and dd°p =T -T~ and inf is taken over such T, ’’s and T"’s, respectively.

The following is a basic regularization lemma. We can get it through patching the locally
regularized functions on each coordinate chart by use of a partition of unity.

Lemma 7.2. Let E be the analytic subset as above. There are constants sy > 0 and 0 < rg < 1
such that for all 0 < s < sq, there exists a smooth function x¥ : X — R such that x£ = 1 on
E,.s suppx? € Ey and | xF|c2 § 1/s% where the inequality S means < up to a constant multiple
independent of s.

The following crucial lemma is induced from Lemma [6.1l The argument in [1, Lemma 7.3]
is of local nature and so it works in our case as well. This is one of the two places where the
multiplicity assumption comes to play. The other is the Holder continuity of u; where uy is a
function such that f,(w) —wy = dduy.

Lemma 7.3 (Lemma 7.3 in [1]). Let n and i be positive integers such that 1 <i < n. Let s,t be two
k+2

positive real numbers such that %r%ﬂsn,i <5< 28y, and %tm <t< 2tn7i(26+1) for sy ity with
sufficiently small € > 0. Then, there is a function xs;: X - Rwith 0 < x,; <1, such that x,+ =1 on
Vi Eg, supp(xst) € Vysiajn1 N Brgs, and |xst|psu < ¢ max {1,9s72}, where ¢, > 0 is a constant
independent of s, t, and ¢, i, n in the definition of s, ;, ty .

We define

o E —
Xn,i,1 = (1 - XSn,i/TE) Xsn,i7tn,i? Wn,i,l = ‘C(éfl/Q)—l N Esn’i?
n,i
Y ) -
Xn,i,2 = XSn,z’/TE’ Wn,z,Q = Esnyi/rE and

Xn,i,3 = 1= Xnil= Xni2 = (1 - XSEM/TE) (1= Xsnitni)s Waisz=X~(Vi,, UE).
Then, we have

Xn,i,1 = 1on ‘/tn’i N Esn’i/rE’ Supp(Xn,i,l) < n,i,1s
Xni2=1lonFEs ., supp(Xn,2) € Wh,i2 and

Xn,i,3=1on X\ (Vt(6+1/2)—1 U Es)a supp(Xn,i,3) € Whi3
and we can write

. 3 .
A" (Upn-i(s-as) MRnic1) = Rug) = D d" (XnyijUpLn-i(S-ag)s M Rnjic1) = Rni)
j=1

each of which will be estimated below.

7.1. Estimate of d’i(xn7z~71ULn_i(S_aS),A(Rm—_l) - Ry;) in W, ;1. In this region, we use the
Holder continuity of quasi-potentials of f, (w).

For notational convenience, we will use the following notation throughout this subsection. Let
6 € C be a constant. Later, § will be chosen to be ¢,, ; with sufficiently small . Let ©; be a smooth
positive closed (, k)-form on X, which equals either (mzwz +dd“uy) nwghor (mpwg—ag)Awg
for j = 1,---,k + 2 so that its associated positive closed semi-regular transform .#®; of bidegree

(0,0) coincides with either & or £~ for j = 1,k + 2. Let x" := ijl y in Lemma [7.2] for
ET‘E S
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j =1, k+2. We also denote by . = £®10...0 % for 0 < m < k + 2. Notice that .£™ is
positive and closed, and that it may depend on 6.

Differently from [11]], we cannot use the negativity of Urn-i(g_q)- See [7]. So, not only do we
need to estimate integrals of the form (. ; 1.Z2%(S), f. (W*P*1)) and (x;,;1-L42(S), fo(WFP)),
but also those of the form (x,, ;1L (S), L™ (f.(WFP*1))) and (X122 (S), L™ (fr(WFP))).
By the continuity of the (semi-)regular transformation and the superpotential of f,(w*P*!), we
may assume that S is smooth positive and closed.

Since the proof of [20, Lemma 2.3.7] is of local nature, it gives the following.

Lemma 7.4. Let S € 6, be a smooth current. For all sufficiently small t > 0, we have
fv LP(G) AL (W) S @0 | L7 (W) oo | S
t
The inequality < means < up to a constant multiple independent of t, 6, ® and S.

The proof is similar to the proof of Lemma 2.3.7. But X is different from P* in that X is not
homogeneous.

Proof Here since S, w*P*!

J R T (e e L N e | N B O R

012 Dl [ ] g™ D @[t 0)

Y

and ® are smooth and positive, we can write

Since X is compact, it is enough to prove the estimate in a coordinate neighborhood B c X.
So, we prove that

-/yGVmB [fmex\{y} T (wgl) (z,y) A 5(5'3)] AWFP(y) St

Let B.(4t) denote the ball of radius 4t centered at some z € V' n B. By shrinking B, we may
assume that B, (4t) lies in the coordinate chart when ¢ > 0 is sufficiently small. We estimate

[yeBZ(zxt) [fmex\{y} T (ng) (z,y) A S(:v)] A w"“‘l’”(y)_

By the representation of a flat current in terms of a vector field and a Radon measure (or one
might think of it as a version of the Radon-Nikodym theorem), we may write it as

fmeX (fyeBz(z;t)\{y} [¥s(z) 2. (w’gl) (z.y)] A kapﬂ(y)) du(z).

Here, Ug(y) is actually a (k — p)-vector field with |¥s(y)||e < 1 and [\Ifs(y) T (wg‘%‘l) (m,y)]

is actually a form in z smooth except y and the singularity is at most dist(x,y)2>"2* and one

might think of x as the trace measure of S. Hence, [y du can be bounded in terms of |S].
Since |[Vs(y)|o < 1 and wi;é is smooth, the inner integral is bounded by a constant multiple of

[(Z‘ T=k—p€1(y)) J s (wfgl) (z, y)] (in Federer’s notation) and further bounded by the following
uniformly with respect to y.

2-2k el 12\k o 42
dd Ste.
ﬁz(4t) |x| ( |x| )

So, the arguments using the Lelong number and the Abel transform in [20, Lemma 2.3.7] com-
plete the proof. O

Next, we modify [1}, Proposition 7.6] to prove the following:
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Lemma 7.5. Let n and i be positive integers such that 1 < i < n. Let | be an integer such that
0<l<k-p+1. Let st be two positive real numbers such that %rﬁ;p_l”sm < s < 2s,,; and
2

$tni<t< 2(tn) B P ith sufficiently small € > 0. Then, we have

L) AL (fo(w) AP S [L™ (PP oo | B oo s oo 2D NE,

‘ ViNEs

where 3 = (2(k +1)(20 + 1))~'6~'. The inequality < means < up to a constant multiple independent
ofn, i, s, t, 6, ®, S and «ag.

For this estimate, we need an auxiliary lemma. Lemma [5.3] and (1) of Condition (M) imply
that u; is Holder continuous on X and that uy is (c;sV&,67!)-Hélder continuous in X \ E.

Lemma 7.6. Under the assumptions of Lemma [Z.5) for any 1 < j < m, we have
‘ f Xs,t.iﬂq)(s) A gel(”_gej_Q (Zej_l ((1 B XE,j—l)gej(XE,j$®j+1(XE,j+1"'
KL (fulw) T A dd (R Pup) AW T)))))) )| @] S s GO

where .  is the cut-off function in Lemmal[Z.3] The inequality < means < up to a constant multiple
independent of n, i, s, t, 8, ® and S.

Proof.
S S 2 £ (1) 2 (P
WL (L) nddt (3 Pup) n Wt TE)) ))))-)
_ -/X (1 _ XE,jfl) g@j& (g@j&(___g@l (Xs,tvg@(s)) )) A ggj(XEJg@jﬂ(...
XE,m—l (g@m (f*((A))l_l A dd€ (XE,k+2uf) /\wk—p—l+1)) ))

The currents (1 _ XE,j—l) 91 (gej_z (_”361 (X&tiﬂ@(s)) )) and &I ¢Oin (...XEﬂTb—l(gem
(f* (W) A dde (XE’k+2uf) A wk‘p‘l”) )) have disjoint support and the distance between them is

bounded below by (%r E)k+2 s. Further, from Lemma (3.7 and Lemma[7.4] we see that the mass of
the current (1 - XEvj‘l).Zef—l (.Z@J'-? (---.Zel (xs,:Z%(S)) ) is bounded by |® oo || S 23/ 20+1)
up to a constant multiple independent of n, i, s, ¢, 6, ® and S. Note that u; is Holder continuous
and y¥**? is smooth on X. So, in the sense of currents, we may write

ddc (XE,]CJrQuf) — d(XE,kJrQ +Uf) A dc (XE,]CJrQ +Uf) _ dXE,kJrQ A dCXE,k+2 _duf /\dcuf
+ ufddCXE,k+2 + XE,]CJerdcuf.

The first three terms are positive or negative currents and the last two terms can be written as a
difference of positive currents of mass under control. Using Stokes’ theorem, we have

‘fXd(XE,k+2+uf) A d (XE,k+2+uf) A w1 2 ‘fX(XE’kJrQJFUf)/\ddC (XE,k+2+uf) Akl

< C(Sip\wl * 1) (™o # 17 @)1 +1)

where ¢ > 0 is a constant independent of n, i, s, ¢, #, ® and S. The second and third terms
can be treated in the same way. By Lemma([3.7, the current x %7 7+ (.. Bt ((£Om (£, (w)!™! A
dd(x®**2u ) A whPI*1))...) can be written as a finite sum of positive or negative currents, the
mass of each of which is bounded by s2 up to a constant multiple independent of n, 3, s, t, §, ®
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and S. By Lemma [3.8/and Lemma

‘[X&tg@(s) Ag@l("'bg/ﬂ@j—Q(cg/ﬂ@j—lig((l _XEJfl)gj(XE,jgﬁl('“

XE',mfl (z@m (f*(W)Fl A dd€ (XE',k+2uf) /\wk*p*l"’l)) ))))) < H(I)Hoo||sHsf2kt3/(25+1)

The inequality < means < up to a constant multiple independent of n, i, s, £, 6, ® and S. O

Proof of Lemmal([Z.5] Our proof is by induction. Observe that | S| = |(S, wk‘pﬂ = |(a5,wk‘p>| <
¢m |as|,, and therefore, Lemma [7.4] proves the case [ = 0. So, we assume that the statement is
true for [ - 1 with [ > 1. Let x,; is the cut-off function in Lemma([7.3] Then, from the positivity of
the integrand, we have

$¢(S) A L™ (f*(w)l /\wk—p—l+1) < / Xs,tfq)(s) 7 (f*(w)l A wk—p—l+1)

ViNEs
7.1) - f Xot L () A L™ (Fo(w) ™ Ay Awk P

(7.2) + f Xs,tiﬂcp(s) NL™ (f* (W)l*1 Addus A wk7p7l+1) )
Since w is a Kédhler form, the bound of the integral (Z.1)) is obtained from the induction hypothesis.

n\Bi-
2D 5 2w, 19 s (rims) ¢ NE (027
We only need to estimate the integral (Z.2). This is the part that we should be careful when
-N
compared to the works in [20] and [1]. We know that u; is (Cf (rE(%rE)mg s) o ,5—1)-

Holder continuous on X \ E |
re(57e)

(X\E 1 k+3 ) nE | w3 = @ with Wy = E,, w3 and Wy = E |
(zre) "s), Tre(zre) s (37m)" s re(37m)
implies that we can find a smooth function 7, defined in a neighborhood X \ E(

k+3 from Lemma 5.3 For a sufficiently small v > 0 so that

ks, Lemma [5.4]

)k+ss such that

1
2"E
_NE

k+3
_ —2(k+1) o~ 2 5
1532 x s, <ey and |us - o H°°’X\E(%TE)‘”3S <chey (V“E (27°E) s) Y

(375

where ¢y > 0 is the constant in Lemma [5.4] and is independent of s. We define

Uy = XE,k+2uf + (1 _XE,IHQ)@,Y.
Then, (Z.2) is equal to the sum
(7.3) f X5t ZP(S) A LT (fo(w) ™ Addovy AP
7.4) + f X5t L2 (S) AL (fu(W) T Adde (uyp —vy) AWPPTHLY.
The integral (Z.3) is equal to the sum
(7.5) / Xst: L2 (S) A L™ (f* (W)t Adde (XE’k+2qu) A wk_p_l”)
(7.6) b [ Xa () AL (£u() T A dd (1= PE)T) Ak

We can write the integral (Z.5) as below:
(]ED _ i f Xs,tgq)(s) /\391(‘”3@]-—2 ($®j-1( (1 _ XE’j_l)gej (XE,jgeﬁ-l (
j=1

WL (L @) nddt (3 Pup) a Wt ) ))))-).



23
Notice that x#™dd (x¥**2u;) = dd® (x*"**?uy) is used in the very last line. Then, Lemma
implies that

Z3D] $ [ @0 |57/ 20+)

since |75 [ 2 x5 < ey 2D and [y Bk | o2 s 572, the induction hypothesis implies

(%TE)IHSS
— _1)_ _IN\Bi-
|@| < 7‘2(1”1)5_2 . ”q)”OO ”aS”oo (T,ES) 2(k+l-1)-Ng (t(5+1/2) 1) -1

and therefore, we get

|| < Hq)Hoo HaSHoo,Y—Q(k+1)s—2(k+l)—NE (t(6+1/2)_1 )ﬁl‘l

Since ¥™ is closed, we have
@A = [ ddxoen 2 (S) L™ ((ur=v,) f(w)' " nk 7).

Observe that

Uf—Vy = (1 - XE’k+2) (uf - U~“/) and Huf - 73;/”007)(\E(1 )k+3 S S_NE7
§TE S

671

Since |xstpsy S 572, we can find two positive closed (1,1)-currents s, such that ¥3, - J;, =
ddxs and ||[9%,|| s s72. Hence, since 9%, ®, S, f.(w), w are all positive and closed, a cohomo-
logical argument gives us

TB < 2uy - 0], 1o ( [ 02,8257 (8) n 2™ (£ () neh 7))
= 2[ug - vy, 1®] (f Ve 1 el (as) A L™ (W' A wk—p—l+1))

= 2fug = 1@ frsle fog [ f 92en 25 (@) 227 (7))

_ 51 -1 _ 51 _o_
$ 257090 @ s o 572 5 1@ s o057V

We take v = @R+ (25+1)76" "D Then from the above, we have

|Z3)] $ [P0 s 7*2(k+1)8*2(k+l)fNE (t(5+1/2)—1 )51—1

_2(k+1)
$ P ]oo s S_Q(k"'l)_NEt(2(k+1)(26:1))l6l*1+(2(k+1)(26+1))1l*161*1(6+1/2) <[P oo s o s 2(k+D)=Ngyf

and
_ 1
D5 |2 [as] o sV 572 5 @] s 572 NECEEDEDT < D)o [as],, s~ VE,
Combining these two gives the estimate of (Z.2]), which proves the desired statement for [. O

Remark 7.7. In the above proof, from the relationship between s, ; and t,, ;, our choice of v satisfies
the desired smallness for the argument if € > 0 is sufficiently small. So, our proof works.

We consider (xn,i1-2"®(9),£™ (f. (w*P*1))). Recall the definition of u, in the beginning of
Section[3l For all 7 € C \ {0} with sufficiently small |7| < 1, we have

(log|r|-1) +(u—u;)<u<0
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and therefore,
(log|r| - 1).2%(8) + £ )®(5) < #“®($) <0 and

(108 7] = 1) (Xor 0 L7 (), L (£ () # (o, 207D (S), 2™ (o (7))
(7.7)
< (Xt L0 (9), L™ (fo (WFP1))) <0

The first term containing (log|7| - 1).2®(S) can be deduced from the previous estimate and
u — u, is also negative and has support in a small neighborhood of A. The estimate about the
second term is essentially the same as Lemma 2.3.9 and Lemma 2.3.10 in [20].

Lemma 7.8. We have
(22, 2m ()| 5 |2 ()] el ST
The inequality < means < up to a positive constant multiple independent of 6, S and 7.
Proof From the negativity of .Z(*~*7)®(S), we have
(). 2 (W) | (@ 2 ().t

k-p+1

Since w is smooth, so we have

<g(u—u7—)<b(s)7wk7p+l> _ f

. —u, (I) * S * k*p+1 .
XxX\ATr [(u—u)®]Amy( )A7r2(w )

Since we will not use the closedness, by disintegration as in Lemma|[7.4] we can write it as

Us(y) 2[(u-u)®])(z,y) AP (2) | duly)
yex L Joexqy)

in terms of Federer’s notation. Note that the form WUg(y) o [7.[(u — u,)®]] has a singularity of
—|® | codist (2, )2 ?* log dist(x, ) and its support lies inside a ball with center at y and of radius
ct where ¢ > 0 is a uniform constant independent of 7 and one might think of x as the trace
measure of S. Hence, [, du can be bounded in terms of |S|. Since |¥g| < 1, the integrand
Jeexwqyy ¥s(y) 2 [me[(u = ur)®]] A 75 (wF7*1) is bounded by a uniform constant multiple of

712|®| . So, it is proved. -

Lemma 7.9. For every integer [with 0 <l <k —p+ 1, we have

1
S 2™ (WEP )| L 1@ oo s oo 7] 2GR0

‘f g(ufuq—)@(s)/\gm (f*(w)l/\wk—p—lJrl)

The inequality < means < up to a positive constant multiple independent of 6, S, ag and .

Proof. We prove it by induction. We have | S| = ‘(S, wk‘p)| = |(a5,wk‘p)‘ < ¢m |as| ., The previous
lemma corresponds to the case of [ = 0. Assume that it is true for [ — 1.

[ 2 S A 2™ () Ak
(7.8) = f LD (GY A L™ (fo(w) T Awp AwFTPTL
(79) + / g(U_UT)q)(S) N (f*(w)l_l AN ddCUf N wk—p—l+1) .

The estimate of (Z.8) comes from the induction hypothesis. Since u; is (K, dj')-Hélder con-
tinuous on X for some K > 0, we can use Lemma [5.4] to find a smooth function v, such that
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1
Jug =y < K~yY4% and vy | pe $ K|y 720D where v = |7|2@P'9 | Then, since 2™ is closed,

= _/X/T((U —ur)® AT (S) ATI; (2 (f*(w)l*1 Adduy /\wkfp’”l))
(7.10) = ./X"X(u - uT)<I> A HI(S) A dch; (zm ((uf _ U,Y) f*(w)l_l A wk—p—l+1))
(7.11) + fx’rx(“ ~ur)® AT (S) ATTS (L™ (fo(w)™h A dde(vy) AwFPTHL))

Since the *-norm of dd®(u — u,) is uniformly bounded independently of 7, we use cohomological
arguments to get an estimate of (Z.10) as follows:

@I = | [ dd (- ur) n @ AT (S) ATE (27 (g = 07) £ ()" 27 71))|

<| [y (maws + dd°u) A ATE(S) ATE (27 (g - v7) £2(@) " w7 0))

| g g =) A @ ATGS) AT (27 (0= 03) 1) st 7))

XxX

< 2fus vyl ‘fx’;y mzws A AT (S) AL (L™ (fu(w)' ! Awkp”l))’
= 2fuy - vy ‘L’ﬁ mzws AP AT (ag) ATI5 (L™ (wﬁfl ,\wk—p—lﬂ))‘

fA TN Aw%l AT (wP) A TI5 (L™ (wk_p))‘

s 20y = vy leel@loo s oo Joos 1| [

1
k- d YA
$ g~ vy | @0 sl 1L (WP ) ] 7H [ 8] o ] = [ @0 oo |70

The currents S, f.(w) and w are all positive and u — u, < 0. So, the induction hypothesis gives

Jor (=)@ AT () TG (27 (£ () st 7102))

(ZIID] S vyl

< |7|72(k+1) Hgm (wkfpvtl)

1
Hoo 1@ o [|vs]l o 7] 204421

—2(k+1) 1
= LW ) oo [ @0 s g, [0 20

2(k-1)
k—p+1 1, -1) E—-p+1 1
=L (WP ) oo @l evs oo [T % < [ L™ (W) oo | @ oo v oo 7] 24 4"

0

The current .Z*®(S) is negative and the current .Z™(f,(w"P*1)) is positive. If we take [ =
_5k—p+2/2
t

k-p+1landr=e' i , then the inequality (7.7), Lemma[7.5]and Lemma 7.9 give us
02 (Xn,1,1L"(9), L™ (f4 (WP ™))} 2 (st s L (), L™ (fu(w)* 7))

- 2
1ot Phepr2/
n

—Bh— 2 _Ak— §+1/2)71 Br-p+1 — _
> — [t Sl kN ((ORDTT L 2T | 2 ()@ o s o

2(4kdy, kPt
t76k7p+2/2 _ 1

n,t

N 2™ (@ ) oo |8 oo s oo

—4k— 2 _
% s o Ne a2 om (| @] s

if £ > 0 is sufficiently small. So, we get
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Lemma 7.10. Let n and i be positive integers such that 1 < i < n. Then, for all sufficiently small
e >0, we have

[ (12 (8), L™ (£ @ PN § 1L (@) oo [Pl s 57,5 B2

where By.1 = (2(k +1)(26 + 1))~k §-(+1) and the inequality S means < up to a positive constant
multiple independent of n, i, 6, S and ag.

Now, we are ready to estimate d*"(xn7i71ULn_i(S,aS),A(Rm_l) - Ry, ;). Recall Lemmal6.3l We
have Ry, ; = (A(R}, ;_1))Z,  + (AR, ;21))z, — (AR ;20))z,  — (A(R;, ;)2 fori>2. When i =1,

En,i

we simply remove terms containing R, ;. Due to Proposition 2.7, the Green potential kernel can
be written as £ = 2K+ — £ Therefore, |(xn,i1Upn-i(5-ag), AM(Rn,i-1) = Rn,)| is bounded
by the sum of |(x»i,1-2* (L"7(8)), A(RZ ;)| and [(xn,:1.25= (L"), (A(RE 1))z, ,)|- The
forms K, are negative and the current L"*(.S) is positive. When i > 2, each term can be estimated
by Lemma [7.5] Lemma [7.10 and Lemmal6.3] as below:

inaac € (£70) A (B )| = | fenaa 0SSR (L)) A ()|
1Rl ) [ (257 (279)) + 27 (273() A (47D
SRl (i (257 (27(9)) 4 257 (£774(9)) . £ ()72

SRS o 12" () oo s Ny P /2

. —6k2
-1
i— —4k-N 2
S| Rler (Cr) ! (1‘[) (L4 1flen) ™ s oosy i NE k]
j=1

n o _ 2 _4k-N +1/2
S (Con(1+ [ flen)F)" enl2h s th=Ney !

n,i-1 7nq

2 ¢\6k(i-1) (40k25)0k _19k2 ) —;
nenC(4k+NE)[(40k 5) (20k(2(k+1)(25+1)5)k+1 12k2) =i

S (Cn(1+[flle)®)
< (Cm(l + ”chl)k)"8nC(4k+NE)[(40k26)6k(i’1)((40k26)3k—12k2)—i] <e

for all sufficiently small € > 0. For i = 1, it can be done in the same way. Since the operation
(-);m, is the (k +2)-times compositions of either %, or .#~, and the real numbers ¢,, ; and ¢,,; are
sufficiently small compared to s, ; when € > 0 is small enough, we get
n—i + 4 n—1i — +
(i 2" (L77(9) (AR )] )| s IR sl | (a2 (L7709 (A (F7)) )

En,i En,i

SRl |<Xn,i,1$K+ (L"), (fulw) ) >| <&

En

in the same way as previously. All other terms can be computed in the same way. For the terms
containing «g, we can apply the same argument as well. Hence, we have

[(naa 2™ (279)) A (B )] 5 |(xnaa 2™ (277(9)) (A (RS i0))L )

for all positive integers n and ¢ such that 1 < ¢ < n and for all sufficiently small ¢ > 0. Here, the
inequality < means < up to a positive constant multiple independent of n, ¢ and S.

Se

J

Lemma 7.11. For all n and i be positive integers such that 1 < i < n and for all sufficiently small
e > 0, we have

‘(Xn,i,lUL”—i(Sfas)vA(Rn,i—l) - Rn2>| SE.

Here, the inequality < means < up to a positive constant multiple independent of n, i and S.
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7.2. Estimate of d*i(xngULn_i(S_as), A(Ryi-1) - Ry ;) in W, ; 0. We will use the property that
in Wy,i2, L"(S) is smooth.

Lemma 7.12. Assume that S € 9, is smooth in Egps for s > 0. Let @ be a smooth positive closed
current of bidegree (k- 1,k —1) on X. The currents x .ZUCI’(S) and xZ.£®(S) is C'. Furthermore,

Ixs 2 ($)ler 557 (S0 Eyz 15121 and
XS 2% (S)ler s ISleo k0 + 1512l
Here, the inequality < means < up to a constant multiple mdependent of s, S and ®.
Proof The same proof works for both. So, we only consider x”.#“®(S). We have
ud E cpud ud
L) =L (x5 S) 472 (1= 303 ) )

As in [22 Section 2.3], 7.(u®) is smooth outside A and its gradient satisfies |V, (u®)|
|®] 1 (dist(-, A))*~2%. Hence, we have

2 (x2ez ) f“‘l’( xS

<2|x e

1

s/r

SIxEllee Xz S| I1@lor < 57218 lw,m, 5 @]
C s/r

s/r

Let ¢ be a smooth test form on X. Then, we have
(2 (130 ) 8)o0) = (27 (1=l ) 8) x5e)
- o [, 0 EO A (1235 ) 8) O 1
Since dist (Suppxs ,Supp (1 x5 2 )) > (rit - 1) s, again according to [22] Section 2.3], we see

that the current x% [/X { }m(u@)(z,{) A ((1 - Xf/ﬂ )S) (5)] is smooth and
\12 E

Lemma 7.13. Let R € 9_,.1. Under the hypotheses in Lemma[Z.12} for a sufficiently small 6 > 0,
[(XFL%(9), R - (R)g)| 5 8" 20]| S| En |R|.|®]cr  and

E Sy DO A (1-x52)5) @] s+ 151, 1l
]

[(xEL*(9), R~ (R)o)| $ 5705 o, By |B] @]
Here, the inequality < means < up to a constant multiple independent of s, S, 6 and ®.
Proof. As previously, we consider the first estimate. The same applies to the second. We have
(s Z£2(S), R~ (R)g) = (X, £"(5) - (x £"*(5)) - R)-
Lemma [Z.12implies that y“.2%®(S) is a form with C' coefficients and Lemma [3.T implies
Ixs2 2 (S) = (x5 £“* (), s 81_2’“9(”5\\00,@% + 151 l®fcr-
Hence, we get the estimate. O
Corollary 7.14. Assume that S be as in Theorem [I.1] For all sufficiently small ¢ > 0, we have
|(Xn,i,2ULn-i(5-ag)s ABun,i-1) = Ra)| < (150, + las]eo))e-

Here, the inequality < means < up to a positive constant multiple independent of n, i and S.
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Proof. Notice that Upn-i(s_q4) is the difference of £%+ (L"7(S - ag)) - L% (L"7(S - as))

where K, = u (77 + mwagl) - (mKoﬂgl) and K_ = u (mKoﬂgl) - (6«35 + mwagl). From Lemma
[Z.13]and Lemmal[6.3] we get

|(Xn,i,2ULn*i(S—as),A(Rn,ifl) - an)‘ = |<Xn,i,2ULn*i(S—as)aA(Rn,z?l) - (A(Rn,ifl))€n7i>|
otiens (|27 - a9, #1220 AL
S TE

By Lemmal6.2] for all sufficiently small £ > 0, S is smooth in E, /3 and L"7(S - «) is smooth in
E, 3 - From direct computations, we get

Sn,i
[ el , <A+ 1) S - as)e s,
Sn,i TE

where S is smooth in E,, for some fixed s; > 0. Hence, together with (6.3) and Lemmal[6.3]
[(Xn,i.2ULn-i(5-ag)s M Rnjic1) = Rni)]

5\Nrn _ _
S (4171 1S = aslmn, 20 (7)) lasle) (AR D]+ [AG)]) 5220,

5\ Vs kn 5\Nr [ o 1-2k
() W1 ) (81, tasto) e (3) i ([Tens ) st
-1

j=

kn
5 Nf _ k2 2k
S8l +lasl)(3) 4 10len ) Chentstiens s (150, + laslo)
for all sufficiently small € > 0 where wa-_l are smooth positive closed currents in Lemmal[6.3l By
plugging-in s,, ; and ¢,, ;, we see the desired estimate. O

7.3. Estimate of d*i(xn7i73ULn_i<S_aS), A(Ryi-1)-Ry ;) in W, ; 5. In this region, A(R,, ;) is smooth.
Lemma 7.15 (Lemma 5.4.7 in [20]). Let o > 0. For all sufficiently small t > 0, we have
IA(R) [gaqviey $ [ Rllgat™ ¥,

for any smooth form R of bidegree (p,p) with 0 < p < k. The inequality is up to a constant multiple
independent of t and R.

Corollary 7.16. For all sufficiently small € > 0,
A7 (Xn,i3ULn-1(5-ag)> MRn,iz1) = Ruj) S €.
Here, the inequality < means < up to a positive constant multiple independent of n, i and S.

Proof. Note that the *-norm of the Green potential is uniformly bounded if the mass of S is
bounded. Indeed, for S € %, we have

(£54(8),w" )] = (8,27 (7)) s max {|25 (") 1S
and Ug = £5+(8) - £%-9) So, from (6.3), Lemma[3.2]and Lemma [6.3] we get
|47 (Xn.i.8ULn-i(5-arg)s A Rnjic1) = i) § [A(Rnjiz1) = Ruilloowi s [L77 (S = i)«
LS = as) |« § [Rnitlcrtni " eni| L (S - as)]«

SIA(Rni-1) o w5800

= ~6k? 12 5\ Nfn 5\ o 1/2
SRl € TTens ) el (30 (3) Mlaste) sem(3) el <
j=1
for all sufficiently small ¢ > 0. O

From Lemma [Z.17] Corollary[7.14} Corollary[7.16] we have
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Lemma 7.17. For all sufficiently small € > 0,
A" Upn-i(5-as) M Rnji-1) = Rnj) S €.
Here, the inequality < means < up to a positive constant multiple independent of n, i and S.
8. ESTIMATES OF d "(Us-ag, Rn.n)
For this estimate, we use a version of exponential estimate [22, Theorem 3.2.6].

Theorem 8.1 (Theorem 3.2.6 in [22]). Let S be a current in 9, and %s be the /3 normalized
superpotential of S. Then we have for R smooth in @,g_pﬂ with |R|. <1,

[ %s(R)| < c| S|« (1+1og™ |R]cn),
where log™ := max{log,0} and ¢ > 0 is a constant independent of S and R.
Corollary 8.2. For all sufficiently small € > 0,
|4 (Us g+ Ron)| $ [SI(1 +log* | Runlcn) S log (5

Here, the inequality < means < up to a positive constant multiple independent of n and S.

Proof. Let R, be smooth positive closed currents such that Re Z;_,,, R= R, - R_and |R.|c1 <
1. Then, from Proposition [3.5]and Lemma [6.3] we get

A" (Us-ag, Bnn)l S d7|S] 1 +1og™ [Rnnlcr] < d™™|S] |1 +1log™ ([ (R )nn

o+ [(R-)nnlon)l
n -6k>

I1 en,j) ) <d™ |1+ 21og (2] RlorCpe )|
=1

<d™|1+2log (23010;1(
J

2 £\6k \ "
(-loge) s n(@) (~loge) s nd™*(~loge)

. 12k%nC (4k + Ng) (40k2§)5kn
S I
for all sufficiently small ¢ > 0. O

9. GREEN CURRENTS AND (ALMOST) SIMPLE ACTION

On a general compact Kéhler manifold, the convergence of the sequence d,"(f")*w? is not
clear. For the existence and construction of the Green current, see [17], [122], [9], [15]. In this
section, we summarize some related results for our purpose.

We first summarizes some results from [15]. Let X and f be as in Theorem [I.1l We say that
the action of f on cohomology is simple if there is an integer 0 < p < k such that
(1) the dynamical degree d, of order p of f is strictly larger than the other dynamical degrees,
(2) d, is a simple eigenvalue of f* on H??(X,R), and
(3) the other (real or complex) eigenvalues of this operator have modulus strictly smaller
than d,.

Under this condition, we have the existence of the Green current 7.

Proposition 9.1 ([15} Proposition 5.51). The sequence d," (f")*(w") converges weakly to a positive
closed (p,p)-current T™ as n tends to infinity. The sequence dy," ( ™). (WFP) converges weakly to a
positive closed (k —p, k — p)-current T~ as n tends to infinity. Moreover, T+ and T~ have continuous
superpotentials.

Lemma 4.1 in [5] implies the following convergence.

Corollary 9.2. We have d,"(f")*(as) — casT" exponentially fast where cq g = (o T
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Together with Theorem [I.1] we get

Theorem 9.3. Let X and f be as in Theorem [[.Il Assume further that the action of f is simple.
Then, there exists a proper analytic subset E invariant under f such that if S € 6, is smooth near E,

then

& (f")"S — esT*
(5,17)

exponentially fast where cg = T In particular, if H is an analytic subset of pure dimension k —p

such that H n E = @, then the sequence d," (f")*[H ] converges to cyT" where cy =

{HLTT)
(WP T7) "

If we do not require the existence of the limit d," (") (w*~P), the convergence of d," (") (wP)
is true under slightly more relaxed conditions.

(1) dp,l < dp,
(2) d, is a simple eigenvalue of f* on H”P(X,R), and
(3) the other (real or complex) eigenvalues of this operator on HP?(X,R) have modulus

strictly smaller than d,,.

The proofs of lemmas and propositions in [15] work in the same way. So, we have Theorem [1.4]

[1]
(2]
[3]
(41
[5]

(6]
[7]

(8]
(91

[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

(18]

[19]

REFERENCES

AHN, T.: Equidistribution in higher codimension for holomorphic endomorphisms of IP*, Trans. Am. Math. Soc.
368 (2016) 3359 — 3388.

AHN, T.: Local regularity of super-potentials and equidistribution of positive closed currents on P*, Math. Ann.
371 (2018), no. 3-4, 1163-1190.

AHN, T.: An equidistribution theorem for certain birational maps of P*, Internat. J. Math. 32 (2021), no. 3,
Paper No. 2150017, 19 pp.

AHN, T.; NGUYEN, N. C.: Equidistribution of non-pluripolar products associated with quasi-plurisubharmonic
functions of finite energy, Proc. Amer. Math. Soc. 148 (2020), no. 2, 719-729.

AHN, T.; VU, D.-V.: Equidistribution for non-pluripolar currents on compact Kdhler manifolds, arXiv:2309.12099,
preprint

BLANCHARD, A.: Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956) 157-202.
BOST, J. -B.; GILLET, H.; SOULE, C.: Heights of projective varieties and positive Green forms, J. Amer. Math.
Soc. 7 (1994) no. 4, 903-1027.

BRIEND, J. -Y.; DUVAL, J.: Deux caractérisations de la mesure d’équilibre d'un endomorphisme de P*(C)
(French, with English and French summaries), Publ. Math. Inst. Hautes Etudes Sci. 93 (2001), 145-159

DE THELIN, H.; DINH, T.-C.: Dynamics of automorphisms on compact Kéhler manifolds, Adv. Math. 229 (2012),
no. 5, 2640-2655.

DEMAILLY, J.-P.: Complex Analytic and Differential Geometry.

DINH, T.-C.: Suites d’applications méromorphes multivaluées et courants laminaires, J. Geom. Anal. 15 (2005)
207 - 227.

DINH, T.-C.: Analytic multiplicative cocycles over holomorphic dynamical systems, Complex Var. Elliptic Equ. 54
(2009) no. 3-4, 243-251.

DINH, T.-C.; NGUYEN, V.-A.: The mixed Hodge-Riemann bilinear relations for compact Kihler manifolds, Geom.
Fuct. Anal. 16 (2006) 838-849.

DINH, T.-C.; NGUYEN, V.-A.; Truong, T. T.: Equidistribution for meromorphic maps with dominant topological
degree, Indiana Univ. Math. J. 64 (2015) no.6, 1805-1828.

DINH, T.-C.; NGUYEN, V.-A.; VU, D.-V.: Super-potentials, densities of currents and number of periodic points for
holomorphic maps

DINH, T.-C.; SIBONY, N.: Regularization of currents and entropy, Ann. Sci. Ec. Norm. Supér. 37 (2004), 959-971.
DINH, T.-C.; SIBONY, N.: Green currents for holomorphic automorphisms of compact K&hler manifolds, J. Amer.
Math. Soc., 18 (2005), no.2, 291-312.

DINH, T.-C.; SIBONY, N.: Pull-back of currents by holomorphic maps, Manuscripta Math. 123 (2007), no. 3,
357-371.

DINH, T.-C.; SIBONY, N.: Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Ec. Norm.
Supér. (4) 41 (2008), no. 2, 307-336.



[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

(28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]
[36]

[37]

[38]

31

DINH, T.-C.; SIBONY, N.: Super-potentials of positive closed currents, intersection theory and dynamics, Acta
Math., 203 (2009), 1-82.

DINH, T.-C.; SIBONY, N.: Equidistribution speed for endomorphisms of projective spaces, Math. Ann. 347
(2010), no.3, 613-626.

DINH, T.-C.; SIBONY, N.: Super-potentials for currents on compact Kdhler manifolds and dynamics of automor-
phisms, J. Algebraic Geom. 19 (2010), no. 3, 473-529.

FAVRE, C.: Note on pull-back and Lelong number of currents (English, with English and French summaries),
Bull. Soc. Math. France 127 (1999), no.3, 445-458.

FAVRE, C.: Dynamique des applications rationelles, PhD thesis, Université de Paris-Sud, Orsay, 2000.

FAVRE, C.: Multiplicity of holomorphic functions, Math. Ann. 316 (2000), no. 2, 355—378.

FAVRE, C.; JONSSON, M.: Brolin’s theorem for curves in two complex dimensions (English, with English and
French summaries), Ann. Inst. Fourier (Grenoble) 53 (2003), no.5, 1461-1501.

FAVRE, C.; JONSSON, M.: Eigenvaluations (English, with English and French summaries), Ann. Sci. Ecole Norm.
Sup. (4) 40 (2007), no. 2, 309-349

FORNASS, J. E.; SIBONY, N.: Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ,
1993), NATO Adv. Sci. Inst. Ser. CMath. Phys. Sci., vol. 439, Kluwer Acad. Publ., Dordrecht, 1994, pp. 131-186.
Notes partially written by Estela A. Gavosto.

FORNASS, J. E.; SIBONY, N.: Complex dynamics in higher dimension II. In Modern methods in complex analysis
(Princeton, NJ, 1992), volume 137 of Ann. Math. Stud., pages 135-182. Princeton University Press, 1995.
FREIRE, A.; LOPES, A.; MANE, M.: An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no.
1, 45-62.

GIGNAC, William: Measures and dynamics on Noetherian spaces, J. Geom. Anal. 24 (2014), no. 4, 1770-179.
GROMOV, M.: Convex sets and Kahler manifolds, World Sci. Publishing, Teaneck, NJ, 1990.

GUEDJ, V.: Equidistribution towards the Green current (English, with English and French summaries), Bull. Soc.
Math. France 131 (2003), no. 3, 359-372.

LJUBICH, M.: Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam.
Systems 3 (1983), no. 3, 351-385

PARRA, Rodrigo: The Jacobian cocycle and equidistribution towards the Green current, arXiv:1103.4633.
RUSSAKOVSKIL, A.; SHIFFMAN, B.: Value distribution for sequences of rational mappings and complex dynam-
ics, Indiana Univ. Math. J. 46 (1997), no. 3, 897-932

SIBONY, N.: Dynamique des applications rationnelles de Pk (French, with English and French summaries),
Dynamique et géométrie complexes (Lyon, 1997), Panor. Syntheses, vol. 8, Soc. Math. France, Paris, 1999, pp.
ix—x, xi—xii, 97-185.

TAFLIN, J.: Equidistribution speed towards the Green current for endomorphisms of P*, Adv. Math. 227 (2011),
no. 5, 2059-2081

(AHN) DEPARTMENT OF MATHEMATICS EDUCATION, INHA UNIVERSITY, 100 INHA-RO, MICHUHOL-GU, INCHEON
22212, REPUBLIC OF KOREA
Email address: t.ahn@inha.ac.kr



	1. Introduction
	2. Preliminaries
	2.1. Currents
	2.2. (semi-)regular transforms
	2.3. Superpotentials

	3. Regularization of positive closed currents
	4. Analytic (sub)multiplicative cocycles
	4.1. Local multiplicity of fn
	4.2. Multiplicity of the analytic subset defined by the set of critical values of fn

	5. Hölder Continuity
	6. Proof of Theorem 1.1
	6.1. df>1 and df'>1
	6.2. df=1 or df'=1

	7. Estimates of d-iULn-i(S-S),(Rn,i-1)-Rn,i
	7.1. Estimate of d-in,i,1ULn-i(S-S),(Rn,i-1)-Rn,i in Wn,i,1
	7.2. Estimate of d-in,i,2ULn-i(S-S),(Rn,i-1)-Rn,i in Wn,i,2
	7.3. Estimate of d-in,i,3ULn-i(S-S),(Rn,i-1)-Rn,i in Wn,i,3

	8. Estimates of d-nUS-S,Rn,n
	9. Green currents and (almost) simple action
	References

